1301
|
Abstract
The human colon plays host to a diverse and metabolically complex community of microorganisms. While the colonic microbiome has been suggested to contribute to the development of colorectal cancer (CRC), a definitive link has not been made. The role in which the colon microflora could contribute to the initiation and/or progression of CRC is explored in this review. Potential mechanisms of bacterial oncogenesis are presented, along with lines of evidence derived from animal models of microbially induced CRC. Particular focus is given to the oncogenic capabilities of enterotoxigenic Bacteroides fragilis. Recent progress in defining the microbiome of CRC in the human population is evaluated, and the future challenges of linking specific etiologic agents to CRC are emphasized.
Collapse
Affiliation(s)
- Christine Dejea
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
1302
|
Anand PK, Kanneganti TD. NLRP6 in infection and inflammation. Microbes Infect 2013; 15:661-8. [PMID: 23811097 PMCID: PMC3810296 DOI: 10.1016/j.micinf.2013.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 12/28/2022]
Abstract
NLRs play fundamental roles in host-defense and inflammatory disorders. NLRP6 is a newly characterized member of this family that inhibits NF-κB and MAP-kinase dependent immune signaling to hamper anti-microbial defense. Further, NLRP6 regulates intestinal inflammation by maintaining gut microbiota composition. In this review, we examine the recent studies and emphasize the key functions regulated by NLRP6.
Collapse
Affiliation(s)
- Paras K. Anand
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
1303
|
Crosstalk between the intestinal microbiota and the innate immune system in intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis 2013; 19:2227-37. [PMID: 23669404 DOI: 10.1097/mib.0b013e31828dcac7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
: Inflammatory bowel diseases are a set of complex and chronic disorders that arise in genetically predisposed individuals due to a lack of tolerance to the gut microflora. Although the intestinal microbiota is required for the proper development of the host and the maintenance of intestinal homeostasis, its dysbiosis is associated with inflammatory bowel diseases pathogenesis. In this review, we focus the discussion on the crosstalk between the innate immune system and the microbiota. We examine new findings from genetic and functional studies investigating the critical role of the intestinal epithelial cell layer and the processes that maintain its integrity in health and disease. We further explore the mechanisms of the mucosal innate immune system including dendritic cells, macrophages, and innate-like lymphocytes in mediating immunological tolerance at the steady state or pathogenic inflammatory responses in inflammatory bowel diseases.
Collapse
|
1304
|
Abstract
Inflammasomes are key signalling platforms that detect pathogenic microorganisms and sterile stressors, and that activate the highly pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. In this Review, we discuss the complex regulatory mechanisms that facilitate a balanced but effective inflammasome-mediated immune response, and we highlight the similarities to another molecular signalling platform - the apoptosome - that monitors cellular health. Extracellular regulatory mechanisms are discussed, as well as the intracellular control of inflammasome assembly, for example, via ion fluxes, free radicals and autophagy.
Collapse
Affiliation(s)
- Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn 53127, Germany.
| | | | | |
Collapse
|
1305
|
Myers-Morales T, Bussell KM, D'Orazio SE. Fecal transplantation does not transfer either susceptibility or resistance to food borne listeriosis in C57BL/6 and BALB/c/By mice. F1000Res 2013; 2:177. [PMID: 24555086 PMCID: PMC3869484 DOI: 10.12688/f1000research.2-177.v1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2013] [Indexed: 12/11/2022] Open
Abstract
The composition of the intestinal microbiota has wide reaching effects on the health of an individual, including the development of protective innate immune responses. In this report, a fecal transplantation approach was used to determine whether resistance to food borne listeriosis was dependent on the murine gut microbiota. Transplantation of BALB/c/By feces did not increase the susceptibility of C57BL/6 mice to
Listeria monocytogenes infection. Likewise, transplantation of C57BL/6 fecal matter did not enhance the resistance of BALB/c/By mice. Thus, intestinal microbiota composition is not a key factor that confers either susceptibility or resistance to food borne listeriosis in mice.
Collapse
Affiliation(s)
- Tanya Myers-Morales
- Dept. of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Kate M Bussell
- Dept. of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Sarah Ef D'Orazio
- Dept. of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
1306
|
Impact of the gut microbiome on mucosal inflammation. Trends Immunol 2013; 34:423-30. [PMID: 23957963 DOI: 10.1016/j.it.2013.07.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/01/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
In the past 10 years it has become increasingly apparent that the gut microbiome has profound effects on the immune system to which it is juxtaposed, the mucosal immune system. Here, I explore recent studies in which the effects of the microbiota expand or facilitate anti-inflammatory or regulatory immunological machinery or which favor development of proinflammatory immunological machinery in this system. I then focus on how these opposing processes play out in inflammatory bowel disease (IBD); a disease in which normal immune homeostasis is disturbed and inflammation takes hold.
Collapse
|
1307
|
Inflammasomes in cancer: a double-edged sword. Protein Cell 2013. [DOI: 10.1007/s13238-013-3051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
1308
|
Yang I, Eibach D, Kops F, Brenneke B, Woltemate S, Schulze J, Bleich A, Gruber AD, Muthupalani S, Fox JG, Josenhans C, Suerbaum S. Intestinal microbiota composition of interleukin-10 deficient C57BL/6J mice and susceptibility to Helicobacter hepaticus-induced colitis. PLoS One 2013; 8:e70783. [PMID: 23951007 PMCID: PMC3739778 DOI: 10.1371/journal.pone.0070783] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/22/2013] [Indexed: 12/26/2022] Open
Abstract
The mouse pathobiont Helicobacter hepaticus can induce typhlocolitis in interleukin-10-deficient mice, and H. hepaticus infection of immunodeficient mice is widely used as a model to study the role of pathogens and commensal bacteria in the pathogenesis of inflammatory bowel disease. C57BL/6J Il10−/− mice kept under specific pathogen-free conditions in two different facilities (MHH and MIT), displayed strong differences with respect to their susceptibilities to H. hepaticus-induced intestinal pathology. Mice at MIT developed robust typhlocolitis after infection with H. hepaticus, while mice at MHH developed no significant pathology after infection with the same H. hepaticus strain. We hypothesized that the intestinal microbiota might be responsible for these differences and therefore performed high resolution analysis of the intestinal microbiota composition in uninfected mice from the two facilities by deep sequencing of partial 16S rRNA amplicons. The microbiota composition differed markedly between mice from both facilities. Significant differences were also detected between two groups of MHH mice born in different years. Of the 119 operational taxonomic units (OTUs) that occurred in at least half the cecum or colon samples of at least one mouse group, 24 were only found in MIT mice, and another 13 OTUs could only be found in MHH samples. While most of the MHH-specific OTUs could only be identified to class or family level, the MIT-specific set contained OTUs identified to genus or species level, including the opportunistic pathogen, Bilophila wadsworthia. The susceptibility to H. hepaticus-induced colitis differed considerably between Il10−/− mice originating from the two institutions. This was associated with significant differences in microbiota composition, highlighting the importance of characterizing the intestinal microbiome when studying murine models of IBD.
Collapse
Affiliation(s)
- Ines Yang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Daniel Eibach
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Friederike Kops
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Birgit Brenneke
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Sabrina Woltemate
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Jessika Schulze
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Christine Josenhans
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- DZIF – German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
- * E-mail:
| |
Collapse
|
1309
|
Salcedo R, Cataisson C, Hasan U, Yuspa SH, Trinchieri G. MyD88 and its divergent toll in carcinogenesis. Trends Immunol 2013; 34:379-89. [PMID: 23660392 PMCID: PMC3847901 DOI: 10.1016/j.it.2013.03.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/21/2013] [Accepted: 03/31/2013] [Indexed: 02/07/2023]
Abstract
Toll-like and interleukin-1 (IL-1) family receptors recognize microbial or endogenous ligands and inflammatory mediators, respectively, and with the exception of Toll-like receptor 3 (TLR3), signal via the adaptor molecule myeloid differentiation factor 88 (MyD88). MyD88 is involved in oncogene-induced cell intrinsic inflammation and in cancer-associated extrinsic inflammation, and as such MyD88 contributes to skin, liver, pancreatic, and colon carcinogenesis, as well as sarcomagenesis. MyD88 is also protective, for example in oncogenic virus carcinogenesis or, acting downstream of IL-18R to strengthen mucosal repair, in azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colon carcinogenesis. Here, we discuss the mechanisms of the divergent effects of MyD88 and the balance of its protumor role in cancer-enhancing inflammation and immunity and its antitumor role in tissue homeostasis, repair, and immunity against the tumor or oncogenic pathogens.
Collapse
Affiliation(s)
- Rosalba Salcedo
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 217023, USA
| | | | | | | | | |
Collapse
|
1310
|
Athyros VG, Katsiki N, Karagiannis A, Mikhailidis DP. Statins and nonalcoholic fatty liver disease: a bright future? Expert Opin Investig Drugs 2013; 22:1089-93. [PMID: 23889731 DOI: 10.1517/13543784.2013.824423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease affecting up to 30% of adults in Western countries. NAFLD and mainly nonalcoholic steatohepatitis (NASH) are independent cardiovascular disease (CVD) risk factors; more of these patients are expected to die from CVD rather than from liver disease. The effect of statins on newer risk factors that may influence the pathobiology of liver damage in NASH is considered. These include microparticles, inflammasomes, gut-liver axis abnormalities and dietary lipids. Evidence suggests that statins induce NAFLD/NASH resolution and substantially improve symptom-free survival from CVD to a greater extent than in patients without NAFLD. However, large randomized clinical trials are needed to verify these findings.
Collapse
|
1311
|
Abstract
Although traditionally the adaptive immune system has been viewed as the essential contributor to autoimmune diseases, the evidence implicating the innate immune system has grown considerably in recent years. Several multisystem inflammatory diseases affect the uvea and occur as a result of a mutation in a gene coding for a component of the innate immune system. Diseases associated with uveitis such as ankylosing spondylitis, sarcoidosis, Behcet's disease and inflammatory bowel disease can best be conceptually understood by hypotheses that consider microbial infection and innate immunity as contributing factors.
Collapse
Affiliation(s)
- James T Rosenbaum
- Oregon Health & Science University, Casey Eye Institute, Portland, OR, USA.
| | | |
Collapse
|
1312
|
Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol 2013; 13:551-65. [DOI: 10.1038/nri3479] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
1313
|
Lopetuso LR, Chowdhry S, Pizarro TT. Opposing Functions of Classic and Novel IL-1 Family Members in Gut Health and Disease. Front Immunol 2013; 4:181. [PMID: 23847622 PMCID: PMC3705591 DOI: 10.3389/fimmu.2013.00181] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/24/2013] [Indexed: 12/17/2022] Open
Abstract
In addition to their well-established role(s) in the pathogenesis of gastrointestinal (GI)-related inflammatory disorders, including inflammatory bowel disease (IBD) and inflammation-associated colorectal cancer (CRC), emerging evidence confirms the critical involvement of the interleukin-1 (IL-1) cytokine family and their ligands in the maintenance of normal gut homeostasis. In fact, the paradigm that IBD occurs in two distinct phases is substantiated by the observation that classic IL-1 family members, such as IL-1, the IL-1 receptor antagonist (IL-1Ra), and IL-18, possess dichotomous functions depending on the phase of disease, as well as on their role in initiating vs. sustaining chronic gut inflammation. Another recently characterized IL-1 family member, IL-33, also possesses dual functions in the gut. IL-33 is upregulated in IBD and potently induces Th2 immune responses, while also amplifying Th1-mediated inflammation. Neutralization studies in acute colitis models, however, have yielded controversial results and recent reports suggest a protective role of IL-33 in epithelial regeneration and mucosal wound healing. Finally, although little is currently known regarding the potential contribution of IL-36 family members in GI inflammation/homeostasis, another IL-1 family member, IL-37, is emerging as a potent anti-inflammatory cytokine with the ability to down-regulate colitis. This new body of information has important translational implications for both the prevention and treatment of patients suffering from IBD and inflammation-associated CRC.
Collapse
Affiliation(s)
- Loris R Lopetuso
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, OH , USA ; Internal Medicine, Gastroenterology Division, Catholic University of Rome , Rome , Italy
| | | | | |
Collapse
|
1314
|
Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. ISME JOURNAL 2013; 7:2116-25. [PMID: 23823492 DOI: 10.1038/ismej.2013.106] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/23/2013] [Accepted: 05/28/2013] [Indexed: 12/11/2022]
Abstract
Maternal transmission and cage effects are powerful confounding factors in microbiome studies. To assess the consequences of cage microenvironment on the mouse gut microbiome, two groups of germ-free (GF) wild-type (WT) mice, one gavaged with a microbiota harvested from adult WT mice and another allowed to acquire the microbiome from the cage microenvironment, were monitored using Illumina 16S rRNA sequencing over a period of 8 weeks. Our results revealed that cage effects in WT mice moved from GF to specific pathogen free (SPF) conditions take several weeks to develop and are not eliminated by the initial gavage treatment. Initial gavage influenced, but did not eliminate a successional pattern in which Proteobacteria became less abundant over time. An analysis in which 16S rRNA sequences are mapped to the closest sequenced whole genome suggests that the functional potential of microbial genomes changes significantly over time shifting from an emphasis on pathogenesis and motility early in community assembly to metabolic processes at later time points. Functionally, mice allowed to naturally acquire a microbial community from their cage, but not mice gavaged with a common biome, exhibit a cage effect in Dextran Sulfate Sodium-induced inflammation. Our results argue that while there are long-term effects of the founding community, these effects are mitigated by cage microenvironment and successional community assembly over time, which must both be explicitly considered in the interpretation of microbiome mouse experiments.
Collapse
|
1315
|
Quante M, Varga J, Wang TC, Greten FR. The gastrointestinal tumor microenvironment. Gastroenterology 2013; 145:63-78. [PMID: 23583733 PMCID: PMC4012393 DOI: 10.1053/j.gastro.2013.03.052] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 12/11/2022]
Abstract
Over the past decade, the microenvironment of gastrointestinal tumors has gained increasing attention because it is required for tumor initiation, progression, and metastasis. The tumor microenvironment has many components and has been recognized as one of the major hallmarks of epithelial cancers. Although therapeutic strategies for gastrointestinal cancer have previously focused on the epithelial cell compartment, there is increasing interest in reagents that alter the microenvironment, based on reported interactions among gastrointestinal epithelial, stromal, and immune cells during gastrointestinal carcinogenesis. We review the different cellular components of the gastrointestinal tumor microenvironment and their functions in carcinogenesis and discuss how improving our understanding of the complex stromal network could lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Michael Quante
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, München, Germany.
| | - Julia Varga
- Institut für Molekulare Immunologie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Timothy C Wang
- Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, New York
| | - Florian R Greten
- Institut für Molekulare Immunologie, Klinikum rechts der Isar, Technische Universität München, München, Germany; German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
1316
|
Abstract
PURPOSE OF REVIEW Inflammasomes are molecular platforms assembled in response to infection or danger signals, and they regulate the activation of caspase-1 and the maturation of the inflammatory cytokines IL-1β and IL-18. In this review, we will summarize the centrality of Nod-like receptor proteins that assemble inflammasomes and regulate intestinal homeostasis by controlling host defense responses, microbiota composition, intestinal inflammation and tissue damage. RECENT FINDINGS In the intestine, the innate immune system evolved to tolerate commensal microorganisms while maintaining the capacity to trigger host defense responses to invading pathogens. Recent findings suggest that inflammasomes play a critical role in the intricate interplay between the local microbial community and the mucosal immune system by sensing commensal bacteria, regulating microbial ecology, establishing the host defense response that discriminates pathogenic from commensal microbes and preventing the emergence of pathobionts. A model to reconcile the conflicting results in the literature on the role of inflammasomes in experimental colitis will be discussed. SUMMARY A better understanding of the relationship between inflammasome signaling and the intestinal microbiota might provide insight into the complex interaction of the innate immune system with the intestinal environment, and identify new approaches for the treatment of inflammatory bowel disease and gastrointestinal cancer.
Collapse
|
1317
|
Desai P, Tamarapu Parthasarathy P, Galam L, Lockey R, Kolliputi N. A new role for inflammasomes: sensing the disturbances in non-alcoholic fatty liver disease. Front Physiol 2013; 4:156. [PMID: 23847540 PMCID: PMC3696836 DOI: 10.3389/fphys.2013.00156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/11/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
| | | | | | | | - Narasaiah Kolliputi
- Department of Internal Medicine, Division of Allergy and Immunology, Morsani College of Medicine, University of South FloridaTampa, FL, USA
| |
Collapse
|
1318
|
Radian AD, de Almeida L, Dorfleutner A, Stehlik C. NLRP7 and related inflammasome activating pattern recognition receptors and their function in host defense and disease. Microbes Infect 2013; 15:630-9. [PMID: 23618810 PMCID: PMC3722249 DOI: 10.1016/j.micinf.2013.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 12/16/2022]
Abstract
Host defense requires the maturation and release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and the induction of pyroptotic cell death, which depends on the activation of inflammatory Caspases within inflammasomes by innate immune cells. Several cytosolic pattern recognition receptors (PRRs) have been implicated in this process in response to infectious and sterile agonists. Here we summarize the current knowledge on inflammasome-organizing PRRs, emphasizing the recently described NLRP7, and their implications in human disease.
Collapse
Affiliation(s)
- Alexander D. Radian
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Driskill Graduate Program in Life Sciences (DGP), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucia de Almeida
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
1319
|
Harrison OJ, Powrie FM. Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb Perspect Biol 2013; 5:5/7/a018341. [PMID: 23818502 DOI: 10.1101/cshperspect.a018341] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A fundamental role of the mammalian immune system is to eradicate pathogens while minimizing immunopathology. Instigating and maintaining immunological tolerance within the intestine represents a unique challenge to the mucosal immune system. Regulatory T cells are critical for continued immune tolerance in the intestine through active control of innate and adaptive immune responses. Dynamic adaptation of regulatory T-cell populations to the intestinal tissue microenvironment is key in this process. Here, we discuss specialization of regulatory T-cell responses in the intestine, and how a breakdown in these processes can lead to chronic intestinal inflammation.
Collapse
Affiliation(s)
- Oliver J Harrison
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
1320
|
Influence of gut microbiota on subclinical inflammation and insulin resistance. Mediators Inflamm 2013; 2013:986734. [PMID: 23840101 PMCID: PMC3694527 DOI: 10.1155/2013/986734] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
Obesity is the main condition that is correlated with the appearance of insulin resistance, which is the major link among its comorbidities, such as type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. Obesity affects a large number of individuals worldwide; it degrades human health and quality of life. Here, we review the role of the gut microbiota in the pathophysiology of obesity and type 2 diabetes, which is promoted by a bacterial diversity shift mediated by overnutrition. Whole bacteria, their products, and metabolites undergo increased translocation through the gut epithelium to the circulation due to degraded tight junctions and the consequent increase in intestinal permeability that culminates in inflammation and insulin resistance. Several strategies focusing on modulation of the gut microbiota (antibiotics, probiotics, and prebiotics) are being experimentally employed in metabolic derangement in order to reduce intestinal permeability, increase the production of short chain fatty acids and anorectic gut hormones, and promote insulin sensitivity to counteract the inflammatory status and insulin resistance found in obese individuals.
Collapse
|
1321
|
Stecher B, Berry D, Loy A. Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiol Rev 2013; 37:793-829. [PMID: 23662775 DOI: 10.1111/1574-6976.12024] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 12/14/2022] Open
Abstract
The highly diverse intestinal microbiota forms a structured community engaged in constant communication with itself and its host and is characterized by extensive ecological interactions. A key benefit that the microbiota affords its host is its ability to protect against infections in a process termed colonization resistance (CR), which remains insufficiently understood. In this review, we connect basic concepts of CR with new insights from recent years and highlight key technological advances in the field of microbial ecology. We present a selection of statistical and bioinformatics tools used to generate hypotheses about synergistic and antagonistic interactions in microbial ecosystems from metagenomic datasets. We emphasize the importance of experimentally testing these hypotheses and discuss the value of gnotobiotic mouse models for investigating specific aspects related to microbiota-host-pathogen interactions in a well-defined experimental system. We further introduce new developments in the area of single-cell analysis using fluorescence in situ hybridization in combination with metabolic stable isotope labeling technologies for studying the in vivo activities of complex community members. These approaches promise to yield novel insights into the mechanisms of CR and intestinal ecophysiology in general, and give researchers the means to experimentally test hypotheses in vivo at varying levels of biological and ecological complexity.
Collapse
Affiliation(s)
- Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | | | | |
Collapse
|
1322
|
Mavrommatis B, Young GR, Kassiotis G. Counterpoise between the microbiome, host immune activation and pathology. Curr Opin Immunol 2013; 25:456-62. [PMID: 23743081 DOI: 10.1016/j.coi.2013.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022]
Abstract
The role of the mammalian intestinal microbiota in health and disease of the host has long been recognized and extensively studied. Largely, these studies have focused on the bacterial component of the microbiota. However, recent technological advances have shed new light on the microbiome at distinct anatomical locations and uncovered the role of additional microbial symbionts, including the virome and endogenous retroelements. Together, they have revealed interactions more intricate than previously recognized. Here, we review recent advances in our knowledge of this collective microbiome and the interactions with the immune system of their host.
Collapse
Affiliation(s)
- Bettina Mavrommatis
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | | | | |
Collapse
|
1323
|
Jin C, Henao-Mejia J, Flavell RA. Innate immune receptors: key regulators of metabolic disease progression. Cell Metab 2013; 17:873-882. [PMID: 23747246 DOI: 10.1016/j.cmet.2013.05.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 02/07/2023]
Abstract
The study of the intersection of immunology and metabolism is a growing field fueled by the increased prevalence of obesity-associated pathologies. Importantly, the capacity of the innate immune system to sense metabolic stress induced by nutritional surplus has been linked with the progression of obesity, insulin resistance, type 2 diabetes mellitus, nonalcoholic fatty liver disease, and atherosclerosis. Moreover, it is clear that the innate immune system regulates the composition of the intestinal microbiota, which impacts multiple host metabolic processes. Here we review recent studies in this emerging field with an emphasis on how innate immune receptors determine metabolic disease progression.
Collapse
Affiliation(s)
- Chengcheng Jin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jorge Henao-Mejia
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute.
| |
Collapse
|
1324
|
Bawa M, Saraswat VA. Gut-liver axis: role of inflammasomes. J Clin Exp Hepatol 2013; 3:141-9. [PMID: 25755488 PMCID: PMC4216435 DOI: 10.1016/j.jceh.2013.03.225] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 03/29/2013] [Indexed: 02/08/2023] Open
Abstract
Inflammasomes are large multiprotein complexes that have the ability to sense intracellular danger signals through special NOD-like receptors or NLRs. They include NLRP3, NLRC4, AIM2 and NLRP6. They are involved in recognizing diverse microbial (bacteria, viruses, fungi and parasites), stress and damage signals, which result in direct activation of caspase-1, leading to secretion of potent pro-inflammatory cytokines and pyroptosis. NLRP3 is the most studied antimicrobial immune response inflammasome. Recent studies reveal expression of inflammasomes in innate immune response cells including monocytes, macrophages, neutrophils, and dendritic cells. Inflammasome deficiency has been linked to alterations in the gastrointestinal microflora. Alterations in the microbiome population and/or changes in gut permeability promote microbial translocation into the portal circulation and thus directly to the liver. Gut derived lipopolysaccharides (LPS) play a significant role in several liver diseases. Recent advancements in the sequencing technologies along with improved methods in metagenomics and bioinformatics have provided effective tools for investigating the 10(14) microorganisms of the human microbiome that inhabit the human gut. In this review, we examine the significance of inflammasomes in relation to the gut microflora and liver. This review also highlights the emerging functions of human microbiota in health and liver diseases.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ATP, adenosine triphosphate
- BMDMs, bone marrow-derived macrophages
- CARD, caspase activation and recruitment domain
- CTB, Cholera toxin B
- DAMP, damage associated molecular patterns
- HMGB1, high-mobility group box1
- IFN, interferon
- IL, interleukin
- LPS, lipopolysaccharides
- LRR, leucine-rich repeat
- MDP, muramyl dipeptide
- NACHT, domain present in NAIP, CIITA, HET-E (Podospora anserina incompatibility, locus protein) and telomerase associated protein
- NAFLD, non-alcoholic fatty liver disease
- NAIP, neuronal apoptosis inhibitor protein
- NK/NKT, natural killer/natural killer T cells
- NLR, NOD-like receptor
- NOD, nucleotide-binding oligomerization domain
- PAMPs, pathogen associated molecular patterns
- ROS, reactive oxygen species
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor-α
- inflammasomes
- inflammation
- liver disease
- mCMV, mouse cytomegalovirus
- microbiota
Collapse
Affiliation(s)
- Manan Bawa
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, Haryana 160012, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
1325
|
Sun Y, Zhang M, Chen CC, Gillilland M, Sun X, El-Zaatari M, Huffnagle GB, Young VB, Zhang J, Hong SC, Chang YM, Gumucio DL, Owyang C, Kao JY. Stress-induced corticotropin-releasing hormone-mediated NLRP6 inflammasome inhibition and transmissible enteritis in mice. Gastroenterology 2013; 144:1478-87, 1487.e1-8. [PMID: 23470617 PMCID: PMC3777426 DOI: 10.1053/j.gastro.2013.02.038] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 02/23/2013] [Accepted: 02/27/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Stress alters brain-gut interactions and could exacerbate intestinal disorders, including irritable bowel syndrome. Alterations in the intestinal microbiota have been associated with irritable bowel syndrome. Maintenance of healthy microbiota requires nucleotide-binding oligomerization domain protein-like receptors, pyrin-domain containing (NLRP)-6 inflammasomes. We investigated the involvement of NLRP6 in water-avoidance stress (WAS)-induced intestinal disorders in mice. METHODS B57BL6 mice were subjected to WAS for 1 hour each day for 10 days; body weights and intestinal inflammation and permeability were analyzed. We investigated signaling via the NLRP3 and NLRP6 inflammasomes, and the role of corticotropin-releasing hormone (CRH) in WAS-associated inflammation and NLRP6 inhibition. Mice that were not exposed to stress were co-housed with mice subjected to WAS to determine the effects of WAS-induced dysbiosis, measured by sequencing bacterial 16S ribosomal RNA. We also assessed the effects of a peroxisome proliferator-activated receptor-γ agonist and probiotics. RESULTS WAS-induced small-bowel inflammation (enteritis) was associated with inhibition of NLRP6, but not NLRP3, and was prevented by a peroxisome proliferator-activated receptor-γ agonist, which induced epithelial expression of NLRP6. CRH was released during WAS and inhibited NLRP6 expression. WAS induced alterations in the gut microbiota of mice; co-housed nonstressed mice developed enteritis associated with increased CRH and decreased levels of NLRP6. Probiotic therapy reduced intestinal inflammation in mice with WAS-induced enteritis. CONCLUSIONS Exposure of mice to stress inhibits NLRP6 and alters the composition of the gut microbiota, leading to intestinal inflammation. These findings might explain the benefits of probiotics for patients with stress-associated gastrointestinal disorders.
Collapse
Affiliation(s)
- Yundong Sun
- Department of Microbiology, Shandong University School of Medicine, Jinan, Shandong, China
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Min Zhang
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Chun-Chia Chen
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital and National, Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Merritt Gillilland
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Xia Sun
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
- Institue of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Mohamad El-Zaatari
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Gary B. Huffnagle
- Division of Pulmonary and Critical Care, University of Michigan Medical School, Ann Arbor, Michigan
| | - Vincent B. Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jiajie Zhang
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
- Zhengzhou Maternal and Child Health Hospital, Zhengzhou, China
| | - Soon-Cheol Hong
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Yu-Ming Chang
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Deborah L. Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Chung Owyang
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| | - John Y. Kao
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
1326
|
Gut microbiota contributes to the growth of fast-growing transgenic common carp (Cyprinus carpio L.). PLoS One 2013; 8:e64577. [PMID: 23741344 PMCID: PMC3669304 DOI: 10.1371/journal.pone.0064577] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/17/2013] [Indexed: 11/19/2022] Open
Abstract
Gut microbiota has shown tight and coordinated connection with various functions of its host such as metabolism, immunity, energy utilization, and health maintenance. To gain insight into whether gut microbes affect the metabolism of fish, we employed fast-growing transgenic common carp (Cyprinus carpio L.) to study the connections between its large body feature and gut microbes. Metagenome-based fingerprinting and high-throughput sequencing on bacterial 16S rRNA genes indicated that fish gut was dominated by Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes, which displayed significant differences between transgenic fish and wild-type controls. Analyses to study the association of gut microbes with the fish metabolism discovered three major phyla having significant relationships with the host metabolic factors. Biochemical and histological analyses indicated transgenic fish had increased carbohydrate but decreased lipid metabolisms. Additionally, transgenic fish has a significantly lower Bacteroidetes:Firmicutes ratio than that of wild-type controls, which is similar to mammals between obese and lean individuals. These findings suggest that gut microbiotas are associated with the growth of fast growing transgenic fish, and the relative abundance of Firmicutes over Bacteroidetes could be one of the factors contributing to its fast growth. Since the large body size of transgenic fish displays a proportional body growth, which is unlike obesity in human, the results together with the findings from others also suggest that the link between obesity and gut microbiota is likely more complex than a simple Bacteroidetes:Firmicutes ratio change.
Collapse
|
1327
|
Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 2013; 31:533-8. [PMID: 23707974 DOI: 10.1038/nbt.2579] [Citation(s) in RCA: 830] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/10/2013] [Indexed: 12/11/2022]
Abstract
Reference genomes are required to understand the diverse roles of microorganisms in ecology, evolution, human and animal health, but most species remain uncultured. Here we present a sequence composition-independent approach to recover high-quality microbial genomes from deeply sequenced metagenomes. Multiple metagenomes of the same community, which differ in relative population abundances, were used to assemble 31 bacterial genomes, including rare (<1% relative abundance) species, from an activated sludge bioreactor. Twelve genomes were assembled into complete or near-complete chromosomes. Four belong to the candidate bacterial phylum TM7 and represent the most complete genomes for this phylum to date (relative abundances, 0.06-1.58%). Reanalysis of published metagenomes reveals that differential coverage binning facilitates recovery of more complete and higher fidelity genome bins than other currently used methods, which are primarily based on sequence composition. This approach will be an important addition to the standard metagenome toolbox and greatly improve access to genomes of uncultured microorganisms.
Collapse
|
1328
|
Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci U S A 2013; 110:9862-7. [PMID: 23696660 DOI: 10.1073/pnas.1307575110] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The microbiota is pivotal in the pathogenesis of inflammatory bowel disease (IBD)-associated inflammation-induced colorectal cancer (CRC), yet mechanisms for these effects remain poorly characterized. Here, we demonstrate that aberrant inflammasome-induced microbiota plays a critical role in CRC development, where mice deficient in the NOD-like receptor family pyrin domain containing 6 (NLRP6) inflammasome feature enhanced inflammation-induced CRC formation. Intriguingly, WT mice cohoused either with inflammasome-deficient mice or with mice lacking IL-18 feature exacerbated inflammation-induced CRC compared with singly housed WT mice. Enhanced tumorigenesis is dependent on microbiota-induced chemokine (C-C motif) ligand 5 (CCL5)-driven inflammation, which in turn promotes epithelial cell proliferation through local activation of the IL-6 pathway, leading to cancer formation. Altogether, our results mechanistically link the altered microbiota with the pathogenesis of inflammation-induced CRC and suggest that in some conditions, microbiota components may transfer CRC susceptibility between individuals.
Collapse
|
1329
|
Zenewicz LA, Yin X, Wang G, Elinav E, Hao L, Zhao L, Flavell RA. IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5306-12. [PMID: 23585682 PMCID: PMC3646987 DOI: 10.4049/jimmunol.1300016] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IL-22 is a good candidate to play a critical role in regulating gut microbiota because it is an important inducer of antimicrobial peptides and mucins in the gut. However, whether IL-22 participates in immune homeostasis by way of modulating gut microbiota remains to be elucidated. In this study, we find, through 16S rRNA gene-pyrosequencing analysis, that healthy IL-22-deficient mice had altered colonic microbiota, notably with decreased abundance of some genera, including Lactobacillus, and increased levels of others. Mice harboring this altered microbiota exhibited more severe disease during experimentally induced colitis. Interestingly, this altered gut microbiota can be transmitted to cohoused wild-type animals along with the increased susceptibility to this colitis, indicating an important role for IL-22 in shaping the homeostatic balance between immunity and colonic microbiota for host health.
Collapse
Affiliation(s)
- Lauren A. Zenewicz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Xiaochen Yin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Guoyang Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Eran Elinav
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Liming Hao
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai, 200240 China
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
1330
|
Sollberger G, Strittmatter GE, Garstkiewicz M, Sand J, Beer HD. Caspase-1: the inflammasome and beyond. Innate Immun 2013; 20:115-25. [PMID: 23676582 DOI: 10.1177/1753425913484374] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Caspase-1 plays a fundamental role in innate immunity and in several important inflammatory diseases as the protease activates the pro-inflammatory cytokines proIL-1β and proIL-18. Caspase-1 itself is activated in different inflammasome complexes, which assemble in response to a variety of exogenous and endogenous stressors. More recently, pyroptosis, a caspase-1-dependent type of programmed cell death, has been identified that is able to support secreted IL-1 and IL-18 in triggering an inflammatory response. Whereas these 'canonical' activities are well appreciated, this review also highlights less-known pathways and molecules activated by caspase-1. There is evidence that caspase-1 supports cell survival by activation of NF-κB, induction of membrane repair and regulation of unconventional secretion of certain proteins. The physiologic effects of processing of other downstream targets, such as proteins involved in glycolysis or activation of caspase-7, are less well understood. However, there is increasing evidence that caspase-1 contributes to innate and adaptive immunologic defense mechanisms, repair and pathologic conditions by the regulation of several different and partially opposing pathways.
Collapse
Affiliation(s)
- Gabriel Sollberger
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
1331
|
Bauernfeind F, Hornung V. Of inflammasomes and pathogens--sensing of microbes by the inflammasome. EMBO Mol Med 2013; 5:814-26. [PMID: 23666718 PMCID: PMC3779445 DOI: 10.1002/emmm.201201771] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/13/2013] [Accepted: 03/26/2013] [Indexed: 12/31/2022] Open
Abstract
Inflammasomes are signalling platforms that sense a diverse range of microbial products and also a number of stress and damage associated endogenous signals. Inflammasome complexes can be formed by members of the Nod-like receptor family or the PYHIN family member AIM2. Upon formation, inflammasomes trigger proteolysis of caspase-1, which subsequently leads to a potent inflammatory response through the maturation and secretion of IL-1 family cytokines, which can be accompanied by an inflammatory cell death termed pyroptosis. Here, we review the sensing mechanisms of the currently characterized inflammasome complexes and discuss how they are involved in the innate immune response against microbial pathogens. We especially highlight recent advances in the molecular understanding of how microbial patterns are detected and discriminated from endogenous compounds by inflammasome sensors. Further, we review how inflammasomes contribute to the anti microbial host defense by cytokine-dependent and cell autonomous mechanisms.
Collapse
Affiliation(s)
- Franz Bauernfeind
- Institute for Clinical Chemistry and Pharmacology, Unit for Clinical Biochemistry, University Hospital, University of Bonn, Germany
| | | |
Collapse
|
1332
|
NOD2-mediated suppression of CD55 on neutrophils enhances C5a generation during polymicrobial sepsis. PLoS Pathog 2013; 9:e1003351. [PMID: 23675299 PMCID: PMC3649968 DOI: 10.1371/journal.ppat.1003351] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 03/25/2013] [Indexed: 12/21/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD) 2 is a cytosolic protein that plays a defensive role in bacterial infection by sensing peptidoglycans. C5a, which has harmful effects in sepsis, interacts with innate proteins. However, whether NOD2 regulates C5a generation during sepsis remains to be determined. To address this issue, cecal ligation & puncture (CLP)-induced sepsis was compared in wild type and Nod2-/- mice. Nod2-/- mice showed lower levels of C5a, IL-10, and IL-1β in serum and peritoneum, but higher survival rate during CLP-induced sepsis compared to wild type mice. Injection of recombinant C5a decreased survival rates of Nod2-/- mice rate during sepsis, whereas it did not alter those in wild type mice. These findings suggest a novel provocative role for NOD2 in sepsis, in contrast to its protective role during bacterial infection. Furthermore, we found that NOD2-mediated IL-10 production by neutrophils enhanced C5a generation by suppressing CD55 expression on neutrophils in IL-1β-dependent and/or IL-1β-independent manners, thereby aggravating CLP-induced sepsis. SB203580, a receptor-interacting protein 2 (RIP2) inhibitor downstream of NOD2, reduced C5a generation by enhancing CD55 expression on neutrophils, resulting in attenuation of polymicrobial sepsis. Therefore, we propose a novel NOD2-mediated complement cascade regulatory pathway in sepsis, which may be a useful therapeutic target.
Collapse
|
1333
|
Genetic and functional profiling of Crohn's disease: autophagy mechanism and susceptibility to infectious diseases. BIOMED RESEARCH INTERNATIONAL 2013; 2013:297501. [PMID: 23738324 PMCID: PMC3662122 DOI: 10.1155/2013/297501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/20/2013] [Indexed: 12/19/2022]
Abstract
Crohn's disease is a complex disease in which genome, microbiome, and environment interact to produce the immunological background of the disease. Disease in childhood is more extensive and characterized by a rapid progression, leading to severe repercussions in the course of the disorder. Several genetic variations have been associated with an increased risk of developing the disease and most of these are also implicated in other autoimmune disorders. The gut has many tiers of defense against incursion by luminal microbes, including the epithelial barrier and the innate and adaptive immune responses. Moreover, recent evidence shows that bacterial and viral infections, as well as inflammasome genes and genes involved in the autophagy process, are implicated in Crohn's disease pathogenesis. The aim of this review is to establish how much the diagnostic system can improve, thus increasing the success of Crohn's disease diagnosis. The major expectation for the near future is to be able to anticipate the possible consequences of the disease already in childhood, thus preventing associated complications, and to choose the best treatment for each patient.
Collapse
|
1334
|
Fritz JV, Desai MS, Shah P, Schneider JG, Wilmes P. From meta-omics to causality: experimental models for human microbiome research. MICROBIOME 2013; 1:14. [PMID: 24450613 PMCID: PMC3971605 DOI: 10.1186/2049-2618-1-14] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/19/2013] [Indexed: 05/04/2023]
Abstract
Large-scale 'meta-omic' projects are greatly advancing our knowledge of the human microbiome and its specific role in governing health and disease states. A myriad of ongoing studies aim at identifying links between microbial community disequilibria (dysbiosis) and human diseases. However, due to the inherent complexity and heterogeneity of the human microbiome, cross-sectional, case-control and longitudinal studies may not have enough statistical power to allow causation to be deduced from patterns of association between variables in high-resolution omic datasets. Therefore, to move beyond reliance on the empirical method, experiments are critical. For these, robust experimental models are required that allow the systematic manipulation of variables to test the multitude of hypotheses, which arise from high-throughput molecular studies. Particularly promising in this respect are microfluidics-based in vitro co-culture systems, which allow high-throughput first-pass experiments aimed at proving cause-and-effect relationships prior to testing of hypotheses in animal models. This review focuses on widely used in vivo, in vitro, ex vivo and in silico approaches to study host-microbial community interactions. Such systems, either used in isolation or in a combinatory experimental approach, will allow systematic investigations of the impact of microbes on the health and disease of the human host. All the currently available models present pros and cons, which are described and discussed. Moreover, suggestions are made on how to develop future experimental models that not only allow the study of host-microbiota interactions but are also amenable to high-throughput experimentation.
Collapse
Affiliation(s)
- Joëlle V Fritz
- Eco-Systems Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Avenue des Hauts-Fourneaux, 7, Esch-sur-Alzette, L-4362, Luxembourg
| | - Mahesh S Desai
- Eco-Systems Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Avenue des Hauts-Fourneaux, 7, Esch-sur-Alzette, L-4362, Luxembourg
| | - Pranjul Shah
- Eco-Systems Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Avenue des Hauts-Fourneaux, 7, Esch-sur-Alzette, L-4362, Luxembourg
| | - Jochen G Schneider
- Translational & Experimental Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Avenue des Hauts-Fourneaux, 7, Esch-sur-Alzette, L-4362, Luxembourg
- Department of Medicine II, Saarland University Medical Center, Kirrberger Str., Homburg/Saar, D-66421, Germany
| | - Paul Wilmes
- Eco-Systems Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Avenue des Hauts-Fourneaux, 7, Esch-sur-Alzette, L-4362, Luxembourg
| |
Collapse
|
1335
|
Abstract
BACKGROUND The endoribonuclease RNase-L is a type-I interferon (IFN)-regulated component of the innate immune response that functions in antiviral, antibacterial, and antiproliferative activities. RNase-L produces RNA agonists of RIG-I-like receptors, sensors of cytosolic pathogen-associated RNAs that induce cytokines including IFN-β. IFN-β and RIG-I-like receptors signaling mediate protective responses against experimental colitis and colitis-associated cancer and contribute to gastrointestinal homeostasis. Therefore, we investigated a role for RNase-L in murine colitis and colitis-associated cancer and its association with RIG-I-like receptors signaling in response to bacterial RNA. METHODS Colitis was induced in wild type-deficient and RNase-L-deficient mice (RNase-L⁻/⁻) by administration of dextran sulfate sodium (DSS). Colitis-associated cancer was induced by DSS and azoxymethane (AOM). Histological analysis and immunohistochemistry were performed on colon tissue to analyze immune cell infiltration and tissue damage after induction of colitis. Expression of cytokines was measured by quantitative real-time-PCR and ELISA. RESULTS DSS-treated RNase-L⁻/⁻ mice exhibited a significantly higher clinical score, delayed leukocyte infiltration, reduced expression of IFN-β, tumor necrosis factor α, interleukin-1β, and interleukin-18 at early times post-DSS exposure, and increased mortality as compared with wild-type mice. DSS/AOM-treated RNase-L⁻/⁻ mice displayed an increased tumor burden. Bacterial RNA triggered IFN-β production in an RNase-L-dependent manner and provided a potential mechanism by which RNase-L contributes to the gastrointestinal immune response to microbiota and protects against experimental colitis and colitis-associated cancer. CONCLUSIONS RNase-L promotes the innate immune response to intestinal damage and ameliorates murine colitis and colitis-associated cancer. The RNase-L-dependent production of IFN-β stimulated by bacterial RNA may be a mechanism to protect against gastrointestinal inflammatory disease.
Collapse
|
1336
|
|
1337
|
Elinav E, Peer D. Harnessing nanomedicine for mucosal theranostics--a silver bullet at last? ACS NANO 2013; 7:2883-2890. [PMID: 23570555 DOI: 10.1021/nn400885b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Inflammatory bowel disease (IBD) has been extensively studied in the last four decades both in animal models and humans. The treatment options remain disappointing, nonspecific, and associated with multiple systemic adverse effects. In this Perspective, we highlight issues related to emerging nanotechnologies designed particularly for treatment and disease management of IBD and discuss potential therapeutic target options with novel molecular imaging modalities.
Collapse
Affiliation(s)
- Eran Elinav
- Department of Immunology, Weizmann Institute of Sciences, Rehovot 76100, Israel.
| | | |
Collapse
|
1338
|
Anand PK, Kanneganti TD. Targeting NLRP6 to enhance immunity against bacterial infections. Future Microbiol 2013; 7:1239-42. [PMID: 23075441 DOI: 10.2217/fmb.12.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
1339
|
Abstract
Obesity-induced insulin resistance is the major determinant of metabolic syndrome, which precedes the development of type 2 diabetes mellitus and is thus the driving force behind the emerging diabetes epidemic. The precise causes of insulin resistance are varied, and the relative importance of each is a matter of ongoing research. Here, we offer a Perspective on the heterogeneous etiology of insulin resistance, focusing in particular on the role of inflammation, lipid metabolism, and the gastrointestinal microbiota.
Collapse
Affiliation(s)
- Andrew M F Johnson
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0673, USA
| | | |
Collapse
|
1340
|
Di Virgilio F. The Therapeutic Potential of Modifying Inflammasomes and NOD-Like Receptors. Pharmacol Rev 2013; 65:872-905. [DOI: 10.1124/pr.112.006171] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
1341
|
Catechins and Sialic Acid Attenuate Helicobacter pylori-Triggered Epithelial Caspase-1 Activity and Eradicate Helicobacter pylori Infection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:248585. [PMID: 23653660 PMCID: PMC3638598 DOI: 10.1155/2013/248585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/25/2013] [Accepted: 02/07/2013] [Indexed: 02/07/2023]
Abstract
The inflammasome/caspase-1 signaling pathway in immune cells plays a critical role in bacterial pathogenesis; however, the regulation of this pathway in the gastric epithelium during Helicobacter pylori infection is yet to be elucidated. Here, we investigated the effect of catechins (CAs), sialic acid (SA), or combination of CA and SA (CASA) on H. pylori-induced caspase-1-mediated epithelial damage, as well as H. pylori colonization in vitro (AGS cells) and in vivo (BALB/c mice). Our results indicate that the activity of caspase-1 and the expression of its downstream substrate IL-1β were upregulated in H. pylori-infected AGS cells. In addition, we observed increased oxidative stress, NADPH oxidase gp91phox, CD68, caspase-1/IL-1β, and apoptosis, but decreased autophagy, in the gastric mucosa of H. pylori-infected mice. We have further demonstrated that treatment with CASA led to synergistic anti-H. pylori activity and was more effective than treatment with CA or SA alone. In particular, treatment with CASA for 10 days eradicated H. pylori infection in up to 95% of H. pylori-infected mice. Taken together, we suggest that the pathogenesis of H. pylori involves a gastric epithelial inflammasome/caspase-1 signaling pathway, and our results show that CASA was able to attenuate this pathway and effectively eradicate H. pylori infection.
Collapse
|
1342
|
Do bugs control our fate? The influence of the microbiome on autoimmunity. Curr Allergy Asthma Rep 2013; 12:511-9. [PMID: 22886439 DOI: 10.1007/s11882-012-0291-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Autoimmune disease has traditionally been thought to be due to the impact of environmental factors on genetically susceptible individuals causing immune dysregulation and loss of tolerance. However, recent literature has highlighted the importance of the microbiome, (a collective genome of microorganisms in a given niche) in immune homeostasis. Increasingly, it has been recognized that disruptions in the commensal microflora may lead to immune dysfunction and autoimmunity. This review summarizes recent studies investigating the interplay between the microbiome and immune-mediated organ-specific diseases. In particular, we review new findings on the role of the microbiome in inflammatory bowel disease, celiac disease, psoriasis, rheumatoid arthritis, type I diabetes, and multiple sclerosis.
Collapse
|
1343
|
Abstract
Intestinal microbiota may influence human physiology and disease risk due to the role it plays in mediating appropriate immune responses to harmful and innocuous antigens. Colonisation of the intestine in early life seems particularly important as it is the main environmental stimulus for immune system maturation. This is a dynamic process, which depends on both environmental and genetic factors. The pathogenesis of inflammatory bowel disease, such as Crohn's disease, involves genetic polymorphisms (e.g. CARD15/nucleotide-binding oligomerisation domain 2) related to an excessive inflammatory response to commensal microbiota and to its unbalanced composition. Atopic diseases have also been linked to imbalances in microbiota and to related genetic factors (e.g. TLR4 and CD14 genes), although these associations are still controversial. Research into the relationship between the genetic risk of developing celiac disease (human leukocyte antigen (HLA)-DQ2/DQ8) and the early colonisation process in infants at family risk of the disease has also reported that the HLA-DQ genotype could influence staphylococcal colonisation. Future observational studies considering both host genetics and microbiota could be critical in defining the complex host-microbe interactions and the respective role each plays in inflammatory disorders.
Collapse
|
1344
|
Abstract
The animal and bacterial kingdoms have coevolved and coadapted in response to environmental selective pressures over hundreds of millions of years. The meta'omics revolution in both sequencing and its analytic pipelines is fostering an explosion of interest in how the gut microbiome impacts physiology and propensity to disease. Gut microbiome studies are inherently interdisciplinary, drawing on approaches and technical skill sets from the biomedical sciences, ecology, and computational biology. Central to unraveling the complex biology of environment, genetics, and microbiome interaction in human health and disease is a deeper understanding of the symbiosis between animals and bacteria. Experimental model systems, including mice, fish, insects, and the Hawaiian bobtail squid, continue to provide critical insight into how host-microbiota homeostasis is constructed and maintained. Here we consider how model systems are influencing current understanding of host-microbiota interactions and explore recent human microbiome studies.
Collapse
Affiliation(s)
- Aleksandar D. Kostic
- Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts 02141, USA
| | - Michael R. Howitt
- Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Wendy S. Garrett
- Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts 02141, USA
| |
Collapse
|
1345
|
Kanauchi O, Mitsuyama K, Andoh A. The new prophylactic strategy for colon cancer in inflammatory bowel disease by modulating microbiota. Scand J Gastroenterol 2013; 48:387-400. [PMID: 23249220 DOI: 10.3109/00365521.2012.741617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is well understood that intestinal microbiota play an important role in the pathogenesis of inflammatory bowel disease (IBD). In addition, IBD patients are well known to have a higher risk of developing colon cancer due to chronic inflammation. Recent evidence suggests that manipulation of microbiota improves the clinical outcome of patients with IBD and may reduce onset of colon cancer without obvious toxicity. This review summarizes the current experimental and clinical knowledge about the role of intestinal microbiota in IBD and colon cancer, and the nutraceutical therapy for colon cancer.
Collapse
Affiliation(s)
- Osamu Kanauchi
- Strategic Research and Development Department Kirin Holdings Co., Ltd., Chuo-ku, Tokyo, Japan. kanauchio@kirin,co.jp
| | | | | |
Collapse
|
1346
|
Dimitriu PA, Boyce G, Samarakoon A, Hartmann M, Johnson P, Mohn WW. Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:200-10. [PMID: 23584963 DOI: 10.1111/j.1758-2229.2012.00393.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/17/2012] [Accepted: 08/28/2012] [Indexed: 05/20/2023]
Abstract
Gut microbial community properties of mammals are thought to be partly shaped by a combination of host immunity and environmental factors, but their relative importance is not firmly established. To address this gap, we first characterized the faecal bacteria of mice with a functioning immune system (wild-type, WT), mice with defective immune responses (CD45), mice lacking an adaptive immune system (RAG), and mice with both immune dysfunctions (45RAG). Using fingerprinting of 16S rRNA genes, we observed significant differences in gut microbiota composition across all mouse strains (P < 0.001) and identified several mouse strain-specific genera via pyrosequencing, including Turicibacter sp. (in WT mice) and Allobaculum sp. (in CD45-deficient animals). To define the role of the host immune system in constraining gut microbiota stability after perturbation, we cohoused CD45-deficient and WT mice and monitored gut bacterial community dynamics during 8 weeks. Cohousing caused the WT bacterial communities to become indistinguishable from those of CD45 mice (P > 0.05). Time-series analysis indicated that the communities of cohoused mice changed directionally as opposed to the relatively stable communities of non-cohoused controls. When we considered only taxonomic membership, it was the communities of CD45 non-cohoused mice that experienced the highest rate of change. Rather than be governed by fluctuations in the relative abundance of taxa, we suggest that CD45-regulated immune responses either are stimulated by the presence of bacteria per se or promote temporal stability by selecting for the occurrence of specific taxa.
Collapse
Affiliation(s)
- Pedro A Dimitriu
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
1347
|
Wu GD, Bushmanc FD, Lewis JD. Diet, the human gut microbiota, and IBD. Anaerobe 2013; 24:117-20. [PMID: 23548695 DOI: 10.1016/j.anaerobe.2013.03.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 02/08/2023]
Abstract
The human gut contains a vast number of microorganisms known collectively as the "gut microbiota". Despite its importance in maintaining the health of the host, growing evidence suggests the gut microbiota may also be an important factor in the pathogenesis of various diseases, a number of which have shown a rapid increase in incidence over the past few decades. Factors including age, genetics, and diet may influence microbiota composition. We used diet inventories and 16S rDNA sequencing to characterize fecal samples from 98 individuals. Fecal communities clustered into previously described enterotypes distinguished primarily by levels of Bacteroides and Prevotella. Enterotypes were associated with long-term diets, particularly protein and animal fat (Bacteroides) vs. simple carbohydrates (Prevotella). Although the distinction of enterotypes as either discrete clusters or a continuum will require additional investigation, numerous studies have demonstrated the co-exclusion of the closely related Prevotellaceae and Bacteroides genera in the gut microbiota of healthy human subjects where Prevotella appears to be a discriminatory taxon for residence in more agrarian societies. Ultimately, the impact of diet on the human gut microbiota may be an important environmental factor involved in the pathogenesis of disease states that show a rapidly increasing incidence in industrialized nations such as the inflammatory bowel diseases (IBD).
Collapse
Affiliation(s)
- Gary D Wu
- Division of Gastroenterology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
1348
|
Inflammasome in intestinal inflammation and cancer. Mediators Inflamm 2013; 2013:654963. [PMID: 23606794 PMCID: PMC3625567 DOI: 10.1155/2013/654963] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/07/2013] [Indexed: 02/07/2023] Open
Abstract
The activation of specific cytosolic pathogen recognition receptors, the nucleotide-binding-oligomerization-domain- (NOD-) like receptors (NLRs), leads to the assembly of the inflammasome, a multimeric complex platform that activates caspase-1. The caspase-1 pathway leads to the upregulation of important cytokines from the interleukin (IL)-1 family, IL-1β, and IL-18, with subsequent activation of the innate immune response. In this review, we discuss the molecular structure, the mechanisms behind the inflammasome activation, and its possible role in the pathogenesis of inflammatory bowel diseases and intestinal cancer. Here, we show that the available data points towards the importance of the inflammasome in the innate intestinal immune response, being the complex involved in the maintenance of intestinal homeostasis, correct intestinal barrier function and efficient elimination of invading pathogens.
Collapse
|
1349
|
Heimesaat MM, Plickert R, Fischer A, Göbel UB, Bereswill S. Can microbiota transplantation abrogate murine colonization resistance against Campylobacter jejuni? Eur J Microbiol Immunol (Bp) 2013; 3:36-43. [PMID: 24265916 DOI: 10.1556/eujmi.3.2013.1.5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 01/16/2013] [Indexed: 12/29/2022] Open
Abstract
Enterocolitis caused by Campylobacter jejuni represents an important socioeconomic burden worldwide. The host-specific intestinal microbiota is essential for maintaining colonization resistance (CR) against C. jejuni in conventional mice. Notably, CR is abrogated by shifts of the intestinal microbiota towards overgrowth with commensal E. coli during acute ileitis. Thus, we investigated whether oral transplantation (TX) of ileal microbiota derived from C. jejuni susceptible mice with acute ileitis overcomes CR of healthy conventional animals. Four days following ileitis microbiota TX or ileitis induction and right before C. jejuni infection, mice displayed comparable loads of main intestinal bacterial groups as shown by culture. Eight days following ileitis induction, but not ileal microbiota TX, however, C. jejuni could readily colonize the gastrointestinal tract of conventional mice and also translocate to extra-intestinal tissue sites such as mesenteric lymph nodes, spleen, liver, and blood within 4 days following oral infection. Of note, C. jejuni did not further deteriorate histopathology following ileitis induction. Lack of C. jejuni colonization in TX mice was accompanied by a decrease of commensal E. coli loads in the feces 4 days following C. jejuni infection. In summary, oral ileal microbiota TX from susceptible donors is not sufficient to abrogate murine CR against C. jejuni.
Collapse
Key Words
- Campylobacter jejuni, colonization resistance, fecal transplantation, microbiota, intestinal inflammation, acute ileitis, Toxoplasma gondii, bacterial translocation, susceptibility to infection, E. coli, pathogen–commensal interaction, pathogen–host i
Collapse
Affiliation(s)
- M M Heimesaat
- Charité-University Medicine Berlin, CC5, Department of Microbiology and Hygiene, Campus Benjamin Franklin Hindenburgdamm 27, D-12203 Berlin +49-30-8445-2194 +49-30-450-524-902 Germany
| | | | | | | | | |
Collapse
|
1350
|
Expression regulation and function of NLRC5. Protein Cell 2013; 4:168-75. [PMID: 23483478 DOI: 10.1007/s13238-012-2109-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/10/2012] [Indexed: 02/01/2023] Open
Abstract
The NOD like receptors (NLRs), a class of intracellular receptors that respond to pathogen attack or cellular stress, have gained increasing attention. NLRC5, the largest member of the NLR protein family, has recently been identified as a critical regulator of immune responses. While NLRC5 is constitutively and widely expressed, it can be dramatically induced by interferons during pathogen infections. Both in vitro and in vivo studies have demonstrated that NLRC5 is a specific and master regulator of major mistocompatibility complex (MHC) class I genes as well as related genes involved in MHC class I antigen presentation. The expression of MHC class I genes is regulated by NLRC5 in coordination with the RFX components through an enhanceosome-dependent manner. And the involvement of NLRC5 in MHC class I mediated CD8+ T cell activation, proliferation and cytotoxicity is proved to be critical for host defense against intracellular bacterial infections. Nevertheless, the role of NLRC5 in innate immunity remains to be further explored. Here, we review the research advances on the structure, expression regulation and function of NLRC5.
Collapse
|