1301
|
Cheung WMW, Jin LY, Smith DK, Cheung PT, Kwan EYW, Low L, Kung AWC. A family with osteoporosis pseudoglioma syndrome due to compound heterozygosity of two novel mutations in the LRP5 gene. Bone 2006; 39:470-6. [PMID: 16679074 DOI: 10.1016/j.bone.2006.02.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Revised: 10/19/2005] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
Osteoporosis pseudoglioma syndrome (OPPG) is an autosomal recessive disorder due to mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene. Here, we report two novel missense mutations found in a southern Chinese family of a non-consanguineous marriage. Three out of four children had blindness, low bone mineral density (BMD) and multiple fractures in their childhood. Genotyping by DNA sequencing demonstrated 2 new mutations in exon 7 of the LRP5 gene. Tryptophans at amino acid residue positions 478 and 504 were replaced by arginine (W478R) and cysteine (W504C), respectively. While the parents that possessed either heterozygous W478R or W504C were apparently normal, all affected subjects were compound heterozygotes for the W478R and W504C mutations in the LRP5 gene. W478R is located immediately C-terminal to the third YWTD repeat of the second YWTD/EGF domain in LRP5, while W504C is located between the third and the fourth YWTD repeats of the second YWTD/EGF domain in LRP5. Using LRP5-related proteins, such as the low-density lipoprotein receptor (LDLR) and nidogen as reference models, a homology model of LRP5 suggested that the observed mutations may affect the molecular interactions of LRP5 and so lead to the observed OPPG phenotypes.
Collapse
Affiliation(s)
- W M W Cheung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
1302
|
Huang QY, Ng MYM, Cheung CL, Chan V, Sham PC, Kung AWC. Identification of two sex-specific quantitative trait loci in chromosome 11q for hip bone mineral density in Chinese. Hum Hered 2006; 61:237-43. [PMID: 16926538 DOI: 10.1159/000095216] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 06/07/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chromosome 11q has not only been found to contain mutations responsible for the several Mendelian disorders of the skeleton, but it has also been linked to bone mineral density (BMD) variation in several genome-wide linkage studies. Furthermore, quantitative trait loci (QTL) affecting BMD in inbred mice and baboons have been mapped to a region syntenic to human chromosome 11q. The aim of the present study is to determine whether there is a QTL for BMD variation on chromosome 11q in the Chinese population. METHODS Nineteen microsatellite markers were genotyped for a 75 cM region on 11q13-25 in 306 Chinese families with 1,459 subjects. BMD (g/cm(2)) was measured by DXA. Linkage analyses were performed using the variance component linkage analysis method implemented in Merlin software. RESULTS For women, a maximum LOD score of 1.62 was achieved at 90.8 cM on 11q21 near the marker D11S4175 for femoral neck BMD; LOD scores greater than 1.0 were observed on 11q13 for trochanter BMD. For men, a maximum LOD score of 1.57 was achieved at 135.8 cM on 11q24 near the marker D11S4126 for total hip BMD. CONCLUSION We have not only replicated the previous linkage finding on chromosome 11q but also identified two sex-specific QTL that contribute to BMD variation in Chinese women and men.
Collapse
Affiliation(s)
- Qing-Yang Huang
- Department of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | | | | | | | | | | |
Collapse
|
1303
|
Thomas D, Kansara M. Epigenetic modifications in osteogenic differentiation and transformation. J Cell Biochem 2006; 98:757-69. [PMID: 16598744 DOI: 10.1002/jcb.20850] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Almost all tumors are characterized by both architectural and cellular abnormalities in differentiation. Osteoblast development is relatively well understood, making osteosarcoma a good model for understanding how tumorigenesis perturbs normal differentiation. We argue that there are two key transition points in normal cellular differentiation that are the focus of oncogenic events, in both of which epigenetic processes are critical. The first is the transition from an uncommitted pluripotent precursor (mesenchymal stem cell) to the 'transit-amplifying compartment' of the osteoblast lineage. This transition, normally exquisitely regulated in space and time, is abnormal in cancer. The second involves termination of lineage expansion, equally tightly regulated under normal circumstances. In cancer, the mechanisms that mandate eventual cessation of cell division are almost universally disrupted. This model predicts that key differentiation genes in bone, such as RUNX2, act in an oncogenic fashion to initiate entry into a proliferative phase of cell differentiation, and anti-oncogenically into the post-mitotic state, resulting in ambivalent roles in tumorigenesis. Polycomb genes exemplify epigenetic processes in the stem cell compartment and tumorigenesis, and are implicated in skeletal development in vivo. The epigenetic functions of the retinoblastoma protein, which plays a key role in tumorigenesis in bone, is discussed in the context of terminal cell cycle exit.
Collapse
Affiliation(s)
- David Thomas
- Ian Potter Foundation Centre for Cancer Genomics and Predictive Medicine, Peter MacCallum Cancer Centre, Victoria 3002, Melbourne, Australia.
| | | |
Collapse
|
1304
|
Abstract
Prostate cancer (CaP) is unique among all cancers in that when it metastasizes to bone, it typically forms osteoblastic lesions (characterized by increased bone production). CaP cells produce many factors, including Wnts that are implicated in tumor-induced osteoblastic activity. In this prospectus, we describe our research on Wnt and the CaP bone phenotype. Wnts are cysteine-rich glycoproteins that mediate bone development in the embryo and promote bone production in the adult. Wnts have been shown to have autocrine tumor effects, such as enhancing proliferation and protecting against apoptosis. In addition, we have recently identified that CaP-produced Wnts act in a paracrine fashion to induce osteoblastic activity in CaP bone metastases. In addition to Wnts, CaP cells express the soluble Wnt inhibitor dickkopf-1 (DKK-1). It appears that DKK-1 production occurs early in the development of skeletal metastases, which results in masking of osteogenic Wnts, thus favoring osteolysis at the metastatic site. As metastases progress, DKK-1 expression decreases allowing for unmasking of Wnt's osteoblastic activity and ultimately resulting in osteosclerosis at the metastatic site. We believe that DKK-1 is one of the switches that transitions the CaP bone metastasis activity from osteolytic to osteoblastic. Wnt/DKK-1 activity fits a model of CaP-induced bone remodeling occurring in a continuum composed of an osteolytic phase, mediated by receptor activator of NFkB ligand (RANKL), parathyroid hormone-related protein (PTHRP) and DKK-1; a transitional phase, where environmental alterations promote expression of osteoblastic factors (Wnts) and decreases osteolytic factors (i.e., DKK-1); and an osteoblastic phase, in which tumor growth-associated hypoxia results in production of vascular endothelial growth factor and endothelin-1, which have osteoblastic activity. This model suggests that targeting both osteolytic activity and osteoblastic activity will provide efficacy for therapy of CaP bone metastases.
Collapse
Affiliation(s)
- Christopher L Hall
- Department of Urology, The University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
1305
|
Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y, Sauter L, Babij P, Brown EL, Hill AA, Akhter MP, Johnson ML, Recker RR, Komm BS, Bex FJ. Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 2006; 281:31720-8. [PMID: 16908522 DOI: 10.1074/jbc.m602308200] [Citation(s) in RCA: 369] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A preliminary expression profiling analysis of osteoblasts derived from tibia explants of the high bone mass LRP5 G171V transgenic mice demonstrated increased expression of canonical Wnt pathway and Wnt/beta-catenin target genes compared with non-transgenic explant derived osteoblasts. Therefore, expression of Wnt/beta-catenin target genes were monitored after in vivo loading of the tibia of LRP5 G171V transgenic mice compared with non-transgenic mice. Loading resulted in the increased expression of Wnt pathway and Wnt/beta-catenin target genes including Wnt10B, SFRP1, cyclin D1, FzD2, WISP2, and connexin 43 in both genotypes; however, there was a further increased in transcriptional response with the LRP5 G171V transgenic mice. Similar increases in the expression of these genes (except cyclin D1) were observed when non-transgenic mice were pharmacologically treated with a canonical Wnt pathway activator, glycogen synthase kinase 3beta inhibitor and then subjected to load. These in vivo results were further corroborated by in vitro mechanical loading experiments in which MC3T3-E1 osteoblastic cells were subjected to 3400 microstrain alone for 5 h, which increased the expression of Wnt10B, SFRP1, cyclin D1, FzD2, WISP2, and connexin 43. Furthermore, when MC3T3-E1 cells were treated with either glycogen synthase kinase 3beta inhibitor or Wnt3A to activate Wnt signaling and then subjected to load, a synergistic up-regulation of these genes was observed compared with vehicle-treated cells. Collectively, the in vivo and in vitro mechanical loading results support that Wnt/beta-catenin signaling is a normal physiological response to load and that activation of the Wnt/beta-catenin pathway enhances the sensitivity of osteoblasts/osteocytes to mechanical loading.
Collapse
Affiliation(s)
- John A Robinson
- Women's Health and Musculoskeletal Biology, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1306
|
Martin TJ, Quinn JMW, Gillespie MT, Ng KW, Karsdal MA, Sims NA. Mechanisms involved in skeletal anabolic therapies. Ann N Y Acad Sci 2006; 1068:458-70. [PMID: 16831943 DOI: 10.1196/annals.1346.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Since parathyroid hormone (PTH) is the only proven anabolic therapy for bone, it becomes the benchmark by which new treatments will be evaluated. The anabolic effect of PTH is dependent upon intermittent administration, but when an elevated PTH level is maintained even for a few hours it initiates processes leading to new osteoclast formation, and the consequent resorption overrides the effects of activating genes that direct bone formation. Identification of PTH-related protein (PTHrP) production by cells early in the osteoblast lineage, and its action through the PTH1R upon more mature osteoblastic cells, together with the observation that PTHrP+/- mice are osteoporotic, all raise the possibility that PTHrP is a crucial paracrine regulator of bone formation. The finding that concurrent treatment with bisphosphonates impairs the anabolic response to PTH, adds to other clues that osteoclast activity is necessary to complement the direct effect that PTH has in promoting differentiation of committed osteoblast precursors. This might involve the generation of a coupling factor from osteoclasts that are transiently activated by receptor activator of nuclear factor-kappaB ligand (RANKL) in response to PTH. New approaches to anabolic therapies may come from the discovery that an activating mutation in the LRP5 gene is responsible for an inherited high bone mass syndrome, and the fact that this can be recapitulated in transgenic mice, whereas inactivating mutations result in severe bone loss. This has focused attention on the Wnt/frizzled/beta-catenin pathway as being important in bone formation, and proof of the concept has been obtained in experimental models.
Collapse
Affiliation(s)
- T J Martin
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy Vic 3065, Australia.
| | | | | | | | | | | |
Collapse
|
1307
|
Matsuzaki E, Takahashi-Yanaga F, Miwa Y, Hirata M, Watanabe Y, Sato N, Morimoto S, Hirofuji T, Maeda K, Sasaguri T. Differentiation-inducing factor-1 alters canonical Wnt signaling and suppresses alkaline phosphatase expression in osteoblast-like cell lines. J Bone Miner Res 2006; 21:1307-16. [PMID: 16869729 DOI: 10.1359/jbmr.060512] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Because DIF-1 has been shown to affect Wnt/beta-catenin signaling pathway, the effects of DIF-1 on osteoblast-like cell lines, SaOS-2 and MC3T3-E1, were examined. We found that DIF-1 inhibited this pathway, resulting in the suppression of ALP promoter activity through the TCF/LEF binding site. INTRODUCTION Differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium, inhibits cell proliferation and induces cell differentiation in several mammalian cells. Previous studies showed that DIF-1 activated glycogen synthase kinase-3beta, suggesting that this chemical could affect the Wnt/beta-catenin signaling pathway. This pathway has been shown to be involved in bone biology. MATERIALS AND METHODS We studied the effects of DIF-1 on SaOS-2 and MC3T3-E1, osteosarcoma cell lines widely used as a model system for ostoblastic cells and murine osteoblast-like cell line, respectively. Reporter gene assays were also carried out to examine the effect of DIF-1 on the Wnt/beta-catenin signaling pathway. RESULTS DIF-1 inhibited SaOS-2 proliferation and reduced alkaline phosphatase (ALP) activity in a concentration- and a time-dependent manner. The expression of ALP was markedly suppressed by DIF-1-treatment in protein and mRNA levels. DIF-1 also suppressed the expression of other osteoblast differentiation markers, including core binding factor alpha1, type I collagen, and osteocalcin, in protein and mRNA levels and inhibited osteoblast-mediated mineralization. Subsequently, we examined the effect of DIF-1 on the Wnt/beta-catenin signaling pathway. We found that DIF-1 suppressed the expression of beta-catenin protein and the activity of the reporter gene containing T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) consensus binding sites. We examined the effect of DIF-1 on a reporter gene driven by the human ALP promoter and found that DIF-1 significantly reduced the ALP reporter gene activity through the TCF/LEF binding site (-1023/-1017 bp). Furthermore, the effect of DIF-1 on MC3T3-E1, a murine osteoblast-like cell line, was examined, and it was found that DIF-1 suppressed ALP mRNA expression by the reduction of the ALP reporter gene activity through the TCF/LEF binding site. CONCLUSIONS Our data suggest that DIF-1 inhibits Wnt/beta-catenin signaling, resulting in the suppression of ALP promoter activity. To our knowledge, this is the first report to analyze the role of the TCF/LEF binding site (-1023/-1017 bp) of the ALP gene promoter in osteoblast-like cell lines.
Collapse
Affiliation(s)
- Etsuko Matsuzaki
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1308
|
Huang QY, Kung AWC. Genetics of osteoporosis. Mol Genet Metab 2006; 88:295-306. [PMID: 16762578 DOI: 10.1016/j.ymgme.2006.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 04/12/2006] [Accepted: 04/12/2006] [Indexed: 02/04/2023]
Abstract
Osteoporosis is a common disease with a strong genetic component. In recent years, some progress has been made in understanding the genetic basis of osteoporosis. Genetic factors contribute to osteoporosis by influencing not only bone mineral density but also bone size, bone quality, and bone turnover. Meta-analysis has been used to define the role of several candidate genes in osteoporosis. Some quantitative trait loci that regulate bone mass identified by linkage studies in humans and experimental animals have been replicated in multiple populations. Genes that cause monogenic bone diseases also contribute to regulation of bone mass in the normal population. Genome-wide association studies and functional genomics approaches have recently begun to apply to genetic studies of osteoporosis. In the future, not only single gene but also the entire gene networks involved in osteoporosis and regulation of bone mass will systematically be discovered through integrative genomics.
Collapse
Affiliation(s)
- Qing-Yang Huang
- Department of Medicine, The University of Hong Kong, Hong Kong, PR China.
| | | |
Collapse
|
1309
|
Abstract
The following are guidelines for evaluation and consideration for treatment of patients with inflammatory bone disease (IBD) after bone mineral density (BMD) measurements. The Crohn's & Colitis Foundation of America (CCFA) has indicated that its recommendations are intended to serve as reference points for clinical decision-making, not as rigid standards, limits, or rules. They should not be interpreted as quality standards.
Collapse
Affiliation(s)
- Gary R Lichtenstein
- University of Pennsylvania School of Medicine, Hospital of the University of Pennsylvania, Gastroenterology Division, Department of Medicine, Philadelphia, PA 19104-4283, USA.
| | | | | |
Collapse
|
1310
|
de Bustos C, Díaz de Ståhl T, Piotrowski A, Mantripragada KK, Buckley PG, Darai E, Hansson CM, Grigelionis G, Menzel U, Dumanski JP. Analysis of copy number variation in the normal human population within a region containing complex segmental duplications on 22q11 using high-resolution array-CGH. Genomics 2006; 88:152-62. [PMID: 16713171 DOI: 10.1016/j.ygeno.2006.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 03/22/2006] [Accepted: 03/25/2006] [Indexed: 12/13/2022]
Abstract
A previously detected copy number polymorphism (Ep CNP) in patients affected with neuroectodermal tumors led us to investigate its frequency and length in the normal population. For this purpose, a program called Sequence Allocator was developed and applied for the construction of an array that consisted of unique and duplicated fragments, allowing the assessment of copy number variation within regions of segmental duplications. The average resolution of this array was 11 kb and we determined the size of the Ep CNP to be 290 kb. Analysis of normal controls identified 7.7 and 7.1% gains in peripheral blood and lymphoblastoid cell line (LCL) DNA, respectively, while deletions were found only in the LCL group (7.1%). This array platform allows the detection of DNA copy number variation within regions of pronounced genomic complexity, which constitutes an improvement over available technologies.
Collapse
Affiliation(s)
- Cecilia de Bustos
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1311
|
Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006; 133:3231-44. [PMID: 16854976 DOI: 10.1242/dev.02480] [Citation(s) in RCA: 798] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hedgehog and canonical Wnt/beta-catenin signaling are implicated in development of the osteoblast, the bone matrix-secreting cell of the vertebrate skeleton. We have used genetic approaches to dissect the roles of these pathways in specification of the osteoblast lineage. Previous studies indicate that Ihh signaling in the long bones is essential for initial specification of an osteoblast progenitor to a Runx2+ osteoblast precursor. We show here that this is a transient requirement, as removal of Hh responsiveness in later Runx2+, Osx1+ osteoblast precursors does not disrupt the formation of mature osteoblasts. By contrast, the removal of canonical Wnt signaling by conditional removal of the beta-catenin gene in early osteoblast progenitors or in Runx2+, Osx1+ osteoblast precursors results in a similar phenotype: osteoblasts fail to progress to a terminal osteocalcin+ fate and instead convert to a chondrocyte fate. By contrast, stabilization of beta-catenin signaling in Runx2+, Osx1+ osteoblast precursors leads to the premature differentiation of bone matrix secreting osteoblasts. These data demonstrate that commitment within the osteoblast lineage requires sequential, stage-specific, Ihh and canonical Wnt/beta-catenin signaling to promote osteogenic, and block chondrogenic, programs of cell fate specification.
Collapse
Affiliation(s)
- Stephen J Rodda
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
1312
|
Winslow MM, Pan M, Starbuck M, Gallo EM, Deng L, Karsenty G, Crabtree GR. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell 2006; 10:771-82. [PMID: 16740479 DOI: 10.1016/j.devcel.2006.04.006] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 02/28/2006] [Accepted: 04/04/2006] [Indexed: 01/13/2023]
Abstract
Development and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here, we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass. NFATc1(nuc) mice have massive osteoblast overgrowth, enhanced osteoblast proliferation, and coordinated changes in the expression of Wnt signaling components. In contrast, viable NFATc1-deficient mice have defects in skull bone formation in addition to impaired osteoclast development. NFATc1(nuc) mice have increased osteoclastogenesis despite normal levels of RANKL and OPG, indicating that an additional NFAT-regulated mechanism influences osteoclastogenesis in vivo. Calcineurin/NFATc signaling in osteoblasts controls the expression of chemoattractants that attract monocytic osteoclast precursors, thereby coupling bone formation and bone resorption. Our results indicate that NFATc1 regulates bone mass by functioning in both osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Monte M Winslow
- Program in Immunology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
1313
|
Heider U, Fleissner C, Zavrski I, Kaiser M, Hecht M, Jakob C, Sezer O. Bone markers in multiple myeloma. Eur J Cancer 2006; 42:1544-53. [PMID: 16765040 DOI: 10.1016/j.ejca.2005.11.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 11/11/2005] [Indexed: 11/30/2022]
Abstract
Bone disease, a hallmark of multiple myeloma occurs in the majority of the patients, is associated with bone pain, fractures, hypercalcemia and has major impacts on quality of life. Myeloma is characterized by a unique form of bone disease with osteolytic bone destruction that is not followed by reactive bone formation, resulting in extensive lytic lesions. This review will focus on the pathophysiology of osteoclast activation and osteoblast inhibition in multiple myeloma and on biochemical markers of bone turnover. Since osteolytic lesions do not rapidly heal in myeloma, X-rays cannot reflect the activity of bone disease during antimyeloma treatment. Activity in bone turnover does not parallel changes in monoclonal protein levels. Thus, there is a need for biochemical markers reflecting disease activity in bone. The utility, prognostic implications and limitations of classical and novel markers of bone remodeling (e.g. ICTP, NTx, TRACP-5b, osteoprotegerin, sRANKL) will be discussed in this overview.
Collapse
Affiliation(s)
- Ulrike Heider
- Department of Haematology and Oncology, Charité, Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
1314
|
Zhong N, Gersch RP, Hadjiargyrou M. Wnt signaling activation during bone regeneration and the role of Dishevelled in chondrocyte proliferation and differentiation. Bone 2006; 39:5-16. [PMID: 16459154 DOI: 10.1016/j.bone.2005.12.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 12/03/2005] [Accepted: 12/05/2005] [Indexed: 01/10/2023]
Abstract
Wnt signaling is intrinsically involved in diverse cellular activities during cell differentiation, early embryonic development and organogenesis. Although much is known regarding the effects of Wnt signaling in the developing skeletal system, its role during regeneration remains unclear. Herein, we show transcriptional activation of specific members and target genes of the Wnt signaling pathway. Specifically, all of the Wnt signaling members and target genes analyzed were found to be upregulated during the early stages of fracture repair, with the exception of LEF1 whose expression was downregulated. In addition, spatial expression analysis of Dishevelled (Dvl) and beta-catenin in the fracture callus revealed an identical pattern of expression with both proteins localizing in osteoprogenitor cells of the periosteum, osteoblasts and proliferating/pre-hypertrophic chondrocytes. Further, in vitro knockdown of all three Dvl isoforms in chondrocytes using small interfering RNAs (siRNA) leads to partial inhibition of cell proliferation and differentiation, decreased expression of chondrogenic markers (ColII, ColX, Sox9) and suppressed nuclear accumulation of unphosphorylated beta-catenin. Taken together, these data verify our previous finding that the Wnt signaling pathway is activated during bone regeneration, by characterizing the temporal and spatial expression of a broad spectrum of Wnt-signaling molecules. Our data also suggest that all three Dvl isoforms, acting through the Wnt canonical pathway, are critical regulatory molecules for chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Nan Zhong
- Department of Biomedical Engineering, State University of New York, Stony Brook, Psychology A Building, Room 338, Stony Brook, NY 11794-2580, USA
| | | | | |
Collapse
|
1315
|
Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, Li J, Maye P, Rowe DW, Duncan RL, Warman ML, Turner CH. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem 2006; 281:23698-711. [PMID: 16790443 DOI: 10.1074/jbc.m601000200] [Citation(s) in RCA: 294] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell surface receptor, low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass. Loss-of-function mutations in LRP5 cause the human skeletal disease osteoporosis-pseudoglioma syndrome, an autosomal recessive disorder characterized by severely reduced bone mass and strength. We investigated the role of LRP5 on bone strength using mice engineered with a loss-of-function mutation in the gene. We then tested whether the osteogenic response to mechanical loading was affected by the loss of Lrp5 signaling. Lrp5-null (Lrp5-/-) mice exhibited significantly lower bone mineral density and decreased strength. The osteogenic response to mechanical loading of the ulna was reduced by 88 to 99% in Lrp5-/- mice, yet osteoblast recruitment and/or activation at mechanically strained surfaces was normal. Subsequent experiments demonstrated an inability of Lrp5-/- osteoblasts to synthesize the bone matrix protein osteopontin after a mechanical stimulus. We then tested whether Lrp5-/- mice increased bone formation in response to intermittent parathyroid hormone (PTH), a known anabolic treatment. A 4-week course of intermittent PTH (40 microg/kg/day; 5 days/week) enhanced skeletal mass equally in Lrp5-/- and Lrp5+/+ mice, suggesting that the anabolic effects of PTH do not require Lrp5 signaling. We conclude that Lrp5 is critical for mechanotransduction in osteoblasts. Lrp5 is a mediator of mature osteoblast function following loading. Our data suggest an important component of the skeletal fragility phenotype in individuals affected with osteoporosis-pseudoglioma is inadequate processing of signals derived from mechanical stimulation and that PTH might be an effective treatment for improving bone mass in these patients.
Collapse
Affiliation(s)
- Kimihiko Sawakami
- Department of Orthopedic Surgery, Biomechanics and Biomaterials Research Center, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1316
|
Abstract
Osteoporosis is a serious public health issue. The past 10 years have seen great advances in our understanding of its epidemiology, pathophysiology, and treatment, and further advances are rapidly being made. Clinical assessment will probably evolve from decisions mainly being made on the basis of bone densitometry, to use of algorithms of absolute fracture risk. Biochemical markers of bone turnover are also likely to become more widely used. Bisphosphonates will probably remain the mainstay of therapy, but improved understanding of the optimum amount of remodelling suppression and duration of therapy will be important. At the same time, other diagnostic and therapeutic approaches, including biological agents, are likely to become more widespread.
Collapse
Affiliation(s)
- Philip Sambrook
- Institute of Bone and Joint Research, University of Sydney, Sydney 2065, NSW, Australia.
| | | |
Collapse
|
1317
|
Christodoulides C, Laudes M, Cawthorn WP, Schinner S, Soos M, O’Rahilly S, Sethi JK, Vidal-Puig A. The Wnt antagonist Dickkopf-1 and its receptors are coordinately regulated during early human adipogenesis. J Cell Sci 2006; 119:2613-2620. [PMID: 16763196 PMCID: PMC4304001 DOI: 10.1242/jcs.02975] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Secretion of Wnts by adipose cells has an important role in the control of murine adipogenesis. We present the first evidence that a Wnt antagonist, Dickkopf 1 (Dkk1), is secreted by human preadipocytes and promotes adipogenesis. DKK1 mRNA increases six hours after onset of human adipogenesis and this is followed by an increase in Dkk1 protein. With further differentiation, the mRNA and protein levels progressively decline such that they are undetectable in mature adipocytes. The transient induction in DKK1 correlates with downregulation of cytoplasmic and nuclear beta-catenin levels, this being a surrogate marker of canonical Wnt signalling, and Wnt/beta-catenin transcriptional activity. In addition, constitutive expression of Dkk1 in 3T3-L1 preadipocytes promotes their differentiation, further supporting the functional significance of increased Dkk1 levels during human adipogenesis. Concomitant downregulation of the Dkk1 receptors LRP5 and LRP6 is likely to potentiate the ability of Dkk1 to inhibit Wnt signalling and promote differentiation. Notably, Dkk1 is not expressed in primary murine preadipocytes or cell lines. The involvement of Dkk1 in human but not murine adipogenesis indicates that inter-species differences exist in the molecular control of this process. Given the public health importance of disorders of adipose mass, further knowledge of the pathways involved specifically in human adipocyte differentiation might ultimately be of clinical relevance.
Collapse
Affiliation(s)
- Constantinos Christodoulides
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QR, UK
| | - Matthias Laudes
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QR, UK
| | - Will P. Cawthorn
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QR, UK
| | - Sven Schinner
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QR, UK
| | - Maria Soos
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QR, UK
| | - Stephen O’Rahilly
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QR, UK
| | - Jaswinder K. Sethi
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QR, UK
| | - Antonio Vidal-Puig
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QR, UK
| |
Collapse
|
1318
|
Jones DC, Wein MN, Oukka M, Hofstaetter JG, Glimcher MJ, Glimcher LH. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 2006; 312:1223-7. [PMID: 16728642 DOI: 10.1126/science.1126313] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic mutations that disrupt osteoblast function can result in skeletal dysmorphogenesis or, more rarely, in increased postnatal bone formation. Here we show that Schnurri-3 (Shn3), a mammalian homolog of the Drosophila zinc finger adapter protein Shn, is an essential regulator of adult bone formation. Mice lacking Shn3 display adult-onset osteosclerosis with increased bone mass due to augmented osteoblast activity. Shn3 was found to control protein levels of Runx2, the principal transcriptional regulator of osteoblast differentiation, by promoting its degradation through recruitment of the E3 ubiquitin ligase WWP1 to Runx2. By this means, Runx2-mediated extracellular matrix mineralization was antagonized, revealing an essential role for Shn3 as a central regulator of postnatal bone mass.
Collapse
Affiliation(s)
- Dallas C Jones
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
1319
|
Abstract
Multiple myeloma is the second most common adult haematological malignancy. One of the major clinical features is the development of a unique osteolytic bone disease, characterised by progressive and devastating bone destruction, bone pain, pathological fractures and hypercalcaemia. Bisphosphonates, inhibitors of osteoclastic bone resorption, are the standard therapy for myeloma-induced bone disease. However, as our understanding of the molecular mechanisms involved in the development of myeloma bone disease increases, new molecular targets have been identified for the treatment of this devastating bone disease.
Collapse
Affiliation(s)
- Claire M Shipman
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
1320
|
Grey A, Zhu Q, Watson M, Callon K, Cornish J. Lactoferrin potently inhibits osteoblast apoptosis, via an LRP1-independent pathway. Mol Cell Endocrinol 2006; 251:96-102. [PMID: 16650524 DOI: 10.1016/j.mce.2006.03.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/14/2006] [Accepted: 03/07/2006] [Indexed: 11/29/2022]
Abstract
Lactoferrin induces osteoblast proliferation in vitro and is anabolic to bone in vivo. We recently reported that the low-density lipoprotein-receptor-related protein 1 (LRP1), a multifunctional member of the LDL receptor family, transduces the mitogenic signal activated by lactoferrin. Here we investigate the effects of lactoferrin on osteoblast survival. At periphysiological concentrations (1-10mug/ml), lactoferrin protects both primary rat osteoblastic cells and SaOS2 cells from apoptosis induced by serum withdrawal. Surprisingly, this effect was not sensitive to the LRP1/2 inhibitor receptor-associated protein (RAP). Neither did lactoferrin selectively prevent apoptosis in fibroblastic cells expressing wild-type LRP1 compared to LRP1-null fibroblasts. Lactoferrin activates PI3 kinase-dependent Akt signaling in osteoblasts but this effect is neither LRP1-dependent nor required for lactoferrin-induced cell survival. Lactoferrin activates p42/44 MAPK signaling, but inhibiting this process does not abrogate its pro-survival actions. These results demonstrate that lactoferrin promotes osteoblast survival, an effect that may contribute to its anabolic skeletal actions in vivo. Our data also suggest that the molecular mechanisms that underpin the ability of lactoferrin to promote cell survival differ fundamentally from those which subserve its mitogenic actions, in particular being mediated by a distinct cell-membrane-based receptor.
Collapse
Affiliation(s)
- Andrew Grey
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
1321
|
Morvan F, Boulukos K, Clément-Lacroix P, Roman Roman S, Suc-Royer I, Vayssière B, Ammann P, Martin P, Pinho S, Pognonec P, Mollat P, Niehrs C, Baron R, Rawadi G. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 2006; 21:934-45. [PMID: 16753024 DOI: 10.1359/jbmr.060311] [Citation(s) in RCA: 427] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Wnt/beta-catenin signaling has been proven to play a central role in bone biology. Unexpectedly, the Wnt antagonist Dkk2 is required for terminal osteoblast differentiation and mineralized matrix formation. We show that Dkk1, unlike Dkk2, negatively regulates osteoblast differentiation and bone formation. INTRODUCTION The Wnt co-receptor LRP5 is a critical regulator of bone mass. Dickkopf (Dkk) proteins act as natural Wnt antagonists by bridging LRP5/6 and Kremen, inducing the internalization of the complex. Wnt antagonists are thus expected to negatively regulation bone formation. However, Dkk2 deficiency results in increased bone, questioning the precise role of Dkks in bone metabolism. MATERIALS AND METHODS In this study, we investigated specifically the role of Dkk1 in bone in vitro and in vivo. Using rat primary calvaria cells, we studied the effect of retroviral expression of Dkk1 on osteoblast differentiation. In addition, the effect of Dkk1 osteoblast was studied in MC3T3-E1 cells by means of recombinant protein. Finally, to address the role of Dkk1 in vivo, we analyzed the bone phenotype of Dkk1(+/-) animals. RESULTS Retroviral expression of Dkk1 in rat primary calvaria cells resulted in a complete inhibition of osteoblast differentiation and formation of mineralized nodules, with a marked decrease in the expression of alkaline phosphatase. Dkk1 expression also increased adipocyte differentiation in these cell cultures. Recombinant murine Dkk1 (rmDkk1) inhibited spontaneous and induced osteoblast differentiation of MC3T3-E1 cells. To determine the role of Dkk1 in vivo and overcome the embryonic lethality of homozygous deletion, we studied the bone phenotype in heterozygous Dkk1-deficient mice. Structural, dynamic, and cellular analysis of bone remodeling in Dkk1(+/-) mice showed an increase in all bone formation parameters, with no change in bone resorption, leading to a marked increase in bone mass. Importantly, the number of osteoblasts, mineral apposition, and bone formation rate were all increased several fold. CONCLUSIONS We conclude that Dkk1 protein is a potent negative regulator of osteoblasts in vitro and in vivo. Given that a heterozygous decrease in Dkk1 expression is sufficient to induce a significant increase in bone mass, antagonizing Dkk1 should result in a potent anabolic effect.
Collapse
Affiliation(s)
- Frederic Morvan
- Department of Cell Biology, Yale University, New Heaven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1322
|
Suwazono Y, Kobayashi E, Uetani M, Miura K, Morikawa Y, Ishizaki M, Kido T, Nakagawa H, Nogawa K. G-protein beta 3 subunit polymorphism C1429T and low-density lipoprotein receptor-related protein 5 polymorphism A1330V are risk factors for hypercholesterolemia in Japanese males--a prospective study over 5 years. Metabolism 2006; 55:751-7. [PMID: 16713434 DOI: 10.1016/j.metabol.2006.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 01/18/2006] [Indexed: 11/21/2022]
Abstract
We examined the relationship between the C825T, C1429T, and A-350G variants in the G-protein beta 3 subunit (GNB3) gene, the A1330V and Q89R variants in the low-density lipoprotein receptor-related protein 5 (LRP5) gene, and the risk of hypercholesterolemia in a prospective study in Japanese workers. This study included observations over a 5-year period from 1997 to 2002 on 936 males and 662 females who were not hypercholesterolemic on entry. Hypercholesterolemia was defined as a serum total cholesterol level of 240 mg/dL or higher. Pooled logistic regression analyses were performed using either of the gene variants with age, body mass index, smoking, alcohol consumption, and habitual exercise as the covariates. The risk of the development of hypercholesterolemia was 2.27 times higher in males with the TT genotype of GNB3/C1429T than in males with the CC genotype (95% confidence interval, 1.04-4.94), after adjustment for the effects of other potential covariates. Simultaneously, the risk was 1.49 times higher in males with the AV genotype of LRP5/A1330V than in males with the AA genotype (95% confidence interval, 1.04-2.12) after adjustment for the effects of other potential covariates. This study indicates the GNB3/C1429T and LRP5/A1330V are independent risk factors for hypercholesterolemia in Japanese males and suggests that targeting these polymorphisms may be beneficial when attempting to prevent hypercholesterolemia in the general Japanese male population.
Collapse
Affiliation(s)
- Yasushi Suwazono
- Department of Occupational and Environmental Medicine (A2), Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
1323
|
Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW. Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 2006; 7:1-16. [PMID: 17051438 DOI: 10.1007/s11154-006-9001-5] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We present an overview of the concepts of tissue-specific transcriptional control mechanisms essential for development of the bone cell phenotype. BMP2 induced transcription factors constitute a network of activities and molecular switches for bone development and osteoblast differentiation. Among these regulators are Runx2 (Cbfa1/AML3), the principal osteogenic master gene for bone formation, as well as homeodomain proteins and osterix. Runx2 has multiple regulatory activities, including activation or repression of gene expression, and integration of biological signals from developmental cues, such as BMP/TGFbeta, Wnt and Src signaling pathways. Runx2 provides a new paradigm for transcriptional control by functioning as a principal scaffolding protein in nuclear microenvironments to control gene expression in response to physiologic signals (growth factors, cytokines and hormones). The protein serves as a hub for the coordination of activities essential for the expansion and differentiation of osteogenic lineage cells through the formation of co-regulatory protein complexes organized in subnuclear domains. Mechanisms by which Runx2 supports commitment to osteogenesis and determines cell fate involve its retention on mitotic chromosomes. Disruption of a unique protein module, the subnuclear targeting signal of Runx2, has profound effects on osteoblast differentiation and metastasis of cancer cells in the bone microenvironment. Runx2 target genes include regulators of cell growth control, components of the bone extracellular matrix, angiogenesis, and signaling proteins for development of the osteoblast phenotype and bone turnover. The specificity of Runx2 regulatory activities provides a basis for novel therapeutic strategies to correct bone disorders.
Collapse
Affiliation(s)
- Jane B Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1324
|
Abstract
Skeletal homeostasis is determined by systemic hormones and local factors. Bone morphogenetic proteins (BMPs) are unique because they induce the commitment of mesenchymal cells toward cells of the osteoblastic lineage and also enhance the differentiated function of the osteoblast. BMP activities in bone are mediated through binding to specific cell surface receptors and through interactions with other growth factors. BMPs are required for skeletal development and maintenance of adult bone homeostasis, and play a role in fracture healing. BMPs signal by activating the mothers against decapentaplegic (Smad) and mitogen activated protein kinase (MAPK) pathways, and their actions are tempered by intracellular and extracellular proteins. The BMP antagonists block BMP signal transduction at multiple levels including pseudoreceptor, inhibitory intracellular binding proteins, and factors that induce BMP ubiquitination. A large number of extracellular proteins that bind BMPs and prevent their binding to signaling receptors have emerged. The extracellular antagonists are differentially expressed in cartilage and bone tissue and exhibit BMP antagonistic as well as additional activities. Both intracellular and extracellular antagonists are regulated by BMPs, indicating the existence of local feedback mechanisms to modulate BMP cellular activities.
Collapse
Affiliation(s)
- Elisabetta Gazzerro
- Unit of Muscular and Neurodegenerative Disorders, Gaslini Institute, Genoa, Italy.
| | | |
Collapse
|
1325
|
Kulkarni NH, Onyia JE, Zeng Q, Tian X, Liu M, Halladay DL, Frolik CA, Engler T, Wei T, Kriauciunas A, Martin TJ, Sato M, Bryant HU, Ma YL. Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res 2006; 21:910-20. [PMID: 16753022 DOI: 10.1359/jbmr.060316] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED GSK-3, a component of the canonical Wnt signaling pathway, is implicated in regulation of bone mass. The effect of a small molecule GSK-3 inhibitor was evaluated in pre-osteoblasts and in osteopenic rats. GSK-3 inhibitor induced osteoblast differentiation in vitro and increased markers of bone formation in vitro and in vivo with concomitant increased bone mass and strength in rats. INTRODUCTION Inactivation of glycogen synthase kinase -3 (GSK-3) leads to stabilization, accumulation, and translocation of beta-catenin into the nucleus to activate downstream Wnt target genes. To examine whether GSK-3 directly regulates bone formation and mass we evaluated the effect of 603281-31-8, a small molecule GSK-3 alpha/beta dual inhibitor in preosteoblastic cells and in osteopenic rats. MATERIALS AND METHODS Murine mesenchymal C3H10T1/2 cells were treated with GSK-3 inhibitor (603281-31-8) and assayed for beta-catenin levels, activity of Wnt-responsive promoter, expression of mRNA for bone formation, and adipogenic markers and alkaline phosphatase activity. In vivo, 6-month-old rats were ovariectomized (OVX), allowed to lose bone for 1 month, and treated with GSK-3 inhibitor at 3 mg/kg/day orally for 60 days. At the end of treatment, BMD was measured by DXA, bone formation rate by histomorphometry, vertebral strength (failure in compression), and the expression levels of osteoblast-related genes by real-time PCR. RESULTS Treatment of C3H10T1/2 cells with the GSK-3 inhibitor increased the levels of beta-catenin accompanied by activation of Wnt-responsive TBE6-luciferase reporter gene. This was associated with an increased expression of mRNA for bone sialoprotein (1.4-fold), collagen alpha1 (I) (approximately 2-fold), osteocalcin (1.2-fold), collagen alpha1(V) (1.5-fold), alkaline phosphatase (approximately 160-fold), and runx2 (1.6-fold), markers of the osteoblast phenotype and bone formation activity. Alkaline phosphatase mRNA expression paralleled alkaline phosphatase activity. The mRNA levels of collagens alpha1 (I), alpha1 (V), biglycan, osteonectin, and runx-2 increased on treatment with the GSK-3 inhibitor in rat femur compared with the OVX control. DXA analyses revealed significant increases in BMC and BMD in cancellous and cortical bone of OVX rats treated with GSK-3 inhibitor. This was associated with increased strength (peak load, energy, and stiffness) assessed by lumbar vertebra load to failure in compression. Histomorphometric analyses showed that 603281-31-8 robustly increased bone formation but did not exclude a small effect on osteoclasts (resorption). CONCLUSIONS An orally active, small molecule GSK-3 inhibitor induced osteoblast differentiation and increased markers of bone formation in vitro, and increased markers of bone formation, bone mass, and strength in vivo, consistent with a role for the canonical Wnt pathway in osteogenesis.
Collapse
Affiliation(s)
- Nalini H Kulkarni
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1326
|
Abstract
The Wnt signaling pathways play fundamental roles in the differentiation, proliferation, death and function of many cells and as a result are involved in critical developmental, growth and homeostatic processes in animals. There are four currently known pathways of Wnt signaling; the so-called canonical or Wnt/beta-catenin pathway, the Wnt/Ca(+2) pathway involving Protein Kinase A, the planar cell polarity pathway and a pathway involving Protein Kinase C that functions in muscle myogenesis. The best studied of these is the Wnt/beta-catenin pathway. The Wnts are an evolutionarily highly conserved family of genes/proteins. Control of the Wnt pathways is modulated by a number of the proteins that either interact with the Wnt ligands directly, or with the low density lipoprotein-receptor related proteins (LRP) 5 and 6 that along with one of several Frizzled proteins function as co-receptors for the Wnt ligands. Aberrant regulation resulting as a consequence of mutations in any of several components of the Wnt pathway and/or protein modulators of the pathway have been shown to cause a wide spectrum of diseases. This review will briefly touch on various diseases of Wnt signaling including cancer, aortic valve calcification and several bone related phenotypes. Our emerging understanding of Wnt signaling offers great hope that new molecular based screening tests and pharmaceutical agents that selectively target this pathway will be developed to diagnose and treat these diseases in the future.
Collapse
Affiliation(s)
- Mark L. Johnson
- Department of Oral Biology, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, USA
| | - Nalini Rajamannan
- Northwestern University Feinberg, School of Medicine, Chicago, IL, USA
| |
Collapse
|
1327
|
Cohen MM. Role of leptin in regulating appetite, neuroendocrine function, and bone remodeling. Am J Med Genet A 2006; 140:515-24. [PMID: 16463275 DOI: 10.1002/ajmg.a.31099] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Leptin, a hormone secreted by adipocytes, acts on the hypothalamus to regulate appetite and neuroendocrine function. In the hypothalamus, both the arcuate nucleus and the ventromedial nucleus express leptin receptors. Specific neurons in the arcuate nucleus regulate appetite and reproduction. In contrast, neurons in the ventromedial nucleus regulate bone mass. The melanocortin system is the downstream pathway for regulating appetite and neuroendocrine function. In contrast, the sympathetic nervous system is the downstream pathway for regulating bone mass. Leptin, in regulating food intake and body weight, acts, in part, by inhibiting the synthesis of neuropeptide Y and its release from the hypothalamus. The leptin and insulin pathways may interact and may be important in the pathogenesis of the metabolic syndrome.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Pediatrics, Dalhousie University, 5981 University Ave., Halifax, Nova Scotia.
| |
Collapse
|
1328
|
Gori F, Friedman LG, Demay MB. Wdr5, a WD-40 protein, regulates osteoblast differentiation during embryonic bone development. Dev Biol 2006; 295:498-506. [PMID: 16730692 DOI: 10.1016/j.ydbio.2006.02.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 01/27/2006] [Accepted: 02/20/2006] [Indexed: 12/26/2022]
Abstract
Wdr5 accelerates osteoblast and chondrocyte differentiation in vitro, and is developmentally expressed in osteoblasts as well as in proliferating and hypertrophic chondrocytes. To investigate the role of Wdr5 during endochondral bone development, transgenic mice overexpressing Wdr5 under the control of the 2.3-kb fragment of the mouse alpha(1) I collagen promoter were generated. The transgene was specifically expressed in the osteoblasts of transgene positive mice and was absent in the growth plate. Histological analyses at embryonic day 14.5 demonstrated that the humeri of transgene positive embryos were longer than those isolated from wild-type littermates largely due to an expansion of the hypertrophic chondrocyte layer. Acceleration of osteoblast differentiation was observed with greater and more extensive expression of type I collagen and more extensive mineral deposition in the bone collar of transgene positive embryos. Acceleration of vascular invasion was also observed in transgene positive mice. Postnatal analyses of transgenic mice confirmed persistent acceleration of osteoblast differentiation. Targeted expression of Wdr5 to osteoblasts resulted in earlier activation of the canonical Wnt signaling pathway in the bone collar as well as in primary calvarial osteoblast cultures. In addition, overexpression of Wdr5 increased the expression of OPG, a target of the canonical Wnt signaling pathway. Overall, our findings suggest that Wdr5 accelerates osteoblast differentiation in association with activation of the canonical Wnt pathway.
Collapse
Affiliation(s)
- Francesca Gori
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
1329
|
Guo YF, Xiong DH, Shen H, Zhao LJ, Xiao P, Guo Y, Wang W, Yang TL, Recker RR, Deng HW. Polymorphisms of the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with obesity phenotypes in a large family-based association study. J Med Genet 2006; 43:798-803. [PMID: 16723389 PMCID: PMC1829485 DOI: 10.1136/jmg.2006.041715] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The low-density lipoprotein receptor-related protein 5 (LRP5) gene, essential for glucose and cholesterol metabolism, may have a role in the aetiology of obesity, an important risk factor for diabetes. PARTICIPANTS AND METHODS To investigate the association between LRP5 polymorphisms and obesity, 27 single-nucleotide polymorphisms (SNPs), spacing about 5 kb apart on average and covering the full transcript length of the LRP5 gene, were genotyped in 1873 Caucasian people from 405 nuclear families. Obesity (defined as body mass index (BMI) >30 kg/m(2)) and three obesity-related phenotypes (BMI, fat mass and percentage of fat mass (PFM)) were investigated. RESULTS Single markers (12 tagging SNPs and 4 untaggable SNPs) and haplotypes (5 blocks) were tested for associations, using family-based designs. SNP4 (rs4988300) and SNP6 (rs634008) located in block 2 (intron 1) showed significant associations with obesity and BMI after Bonferroni correction (SNP4: p<0.001 and p = 0.001, respectively; SNP6: p = 0.002 and 0.003, respectively). The common allele A for SNP4 and minor allele G for SNP6 were associated with an increased risk of obesity. Significant associations were also observed between common haplotype A-G-G-G of block 2 with obesity, BMI, fat mass and PFM with global empirical values p<0.001, p<0.001, p = 0.003 and p = 0.074, respectively. Subsequent sex-stratified analyses showed that the association in the total sample between block 2 and obesity may be mainly driven by female subjects. CONCLUSION Intronic variants of the LRP5 gene are markedly associated with obesity. We hypothesise that such an association may be due to the role of LRP5 in the WNT signalling pathway or lipid metabolism. Further functional studies are needed to elucidate the exact molecular mechanism underlying our finding.
Collapse
Affiliation(s)
- Yan-fang Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1330
|
Cho HH, Kim YJ, Kim SJ, Kim JH, Bae YC, Ba B, Jung JS. Endogenous Wnt signaling promotes proliferation and suppresses osteogenic differentiation in human adipose derived stromal cells. ACTA ACUST UNITED AC 2006; 12:111-21. [PMID: 16499448 DOI: 10.1089/ten.2006.12.111] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multipotential adult mesenchymal stem cells (MSC) are able to differentiate along several known lineages, and lineage commitment is tightly regulated through specific cellular mediators and interactions. Human adipose tissues contain cell populations that have similar characteristics to bone marrow stromal cells. Wnt proteins have been reported to be involved in proliferation and differentiation of stem cells. RNA interference (RNAi) has recently emerged as a specific and efficient method to silence gene expression in mammalian cells. To analyze the role of beta-catenin signaling in human adipose stromal cells (hADSC), the effects of beta-catenin short hairpin RNAs (shRNA) expression and Wnt3a conditioned media on the growth and differentiation properties of hADSC were examined. Expression of an RNAi molecule to beta-catenin from a lentivirus vector decreased beta-catenin expression in hADSC, as indicated by Western blot and immunohistochemistry. Cells transduced with sibeta-catenin lentivirus had decreased CFU and lower numbers of cells per colony than transduced control cells, but this outcome did not result from altered attachment efficiency of hADSC. The inhibition of beta-catenin signal by RNAi expression increased osteogenic differentiation. The treatment of Wnt3a conditioned media increased cellular beta-catenin levels and the rate of cellular proliferation, but inhibited osteogenic differentiation. Transduction of beta-catenin RNAi lentivirus blocked the effect of Wnt3a on proliferation of hADSC. Taken together, these findings indicate that endogenous Wnt3a plays an important role in the regulation of proliferation and differentiation of hADSC.
Collapse
Affiliation(s)
- Hyun Hwa Cho
- Department of Physiology, College of Medicine, Pusan National University, Pusan, Korea
| | | | | | | | | | | | | |
Collapse
|
1331
|
Wei W, Lu Q, Chaudry GJ, Leppla SH, Cohen SN. The LDL receptor-related protein LRP6 mediates internalization and lethality of anthrax toxin. Cell 2006; 124:1141-54. [PMID: 16564009 DOI: 10.1016/j.cell.2005.12.045] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 11/18/2005] [Accepted: 12/20/2005] [Indexed: 12/20/2022]
Abstract
Toxins produced by Bacillus anthracis and other microbial pathogens require functions of host cell genes to yield toxic effects. Here we show that low density lipoprotein receptor-related protein 6 (LRP6), previously known to be a coreceptor for the Wnt signaling pathway, is required for anthrax toxin lethality in mammalian cells. Downregulation of LRP6 or coexpression of a truncated LRP6 dominant-negative peptide inhibited cellular uptake of complexes containing the protective antigen (PA) carrier of anthrax toxin moieties and protected targeted cells from death, as did antibodies against epitopes in the LRP6 extracellular domain. Fluorescence microscopy and biochemical analyses showed that LRP6 enables toxin internalization by interacting at the cell surface with PA receptors TEM8/ATR and/or CMG2 to form a multicomponent complex that enters cells upon PA binding. Our results, which reveal a previously unsuspected biological role for LRP6, identify LRP6 as a potential target for countermeasures against anthrax toxin lethality.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/metabolism
- Antigens, Bacterial/toxicity
- Bacterial Toxins/chemistry
- Bacterial Toxins/metabolism
- Bacterial Toxins/toxicity
- Cell Survival/drug effects
- Cells, Cultured
- Endocytosis
- Humans
- Low Density Lipoprotein Receptor-Related Protein-6
- Membrane Proteins/drug effects
- Membrane Proteins/metabolism
- Mice
- Microfilament Proteins
- Neoplasm Proteins/drug effects
- Neoplasm Proteins/metabolism
- Protein Structure, Tertiary
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/metabolism
- Receptors, LDL/chemistry
- Receptors, LDL/drug effects
- Receptors, LDL/metabolism
- Receptors, Peptide
- Signal Transduction
- Wnt Proteins/metabolism
Collapse
Affiliation(s)
- Wensheng Wei
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
1332
|
Si W, Kang Q, Luu HH, Park JK, Luo Q, Song WX, Jiang W, Luo X, Li X, Yin H, Montag AG, Haydon RC, He TC. CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Mol Cell Biol 2006; 26:2955-64. [PMID: 16581771 PMCID: PMC1446962 DOI: 10.1128/mcb.26.8.2955-2964.2006] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Marrow mesenchymal stem cells are pluripotent progenitors that can differentiate into bone, cartilage, muscle, and fat cells. Wnt signaling has been implicated in regulating osteogenic differentiation of mesenchymal stem cells. Here, we analyzed the gene expression profile of mesenchymal stem cells that were stimulated with Wnt3A. Among the 220 genes whose expression was significantly changed by 2.5-fold, we found that three members of the CCN family, CCN1/Cyr61, CCN2/connective tissue growth factor (CTGF), and CCN5/WISP2, were among the most significantly up-regulated genes. We further investigated the role of CCN1/Cyr61 in Wnt3A-regulated osteogenic differentiation. We confirmed that CCN1/Cyr61 was up-regulated at the early stage of Wnt3A stimulation. Chromatin immunoprecipitation analysis indicates that CCN1/Cyr61 is a direct target of canonical Wnt/beta-catenin signaling. RNA interference-mediated knockdown of CCN1/Cyr61 expression diminished Wnt3A-induced osteogenic differentiation. Furthermore, exogenously expressed CCN1/Cyr61 was shown to effectively promote mesenchymal stem cell migration. These findings suggest that tightly regulated CCN1/Cyr61 expression may play an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Weike Si
- Molecular Oncology Laboratory, University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1333
|
Abstract
Wnt proteins are a family of secreted proteins that regulate many aspects of cell growth, differentiation, function, and death. Considerable progress has been made in our understanding of the molecular links between Wnt signaling and bone development and remodeling since initial reports that mutations in the Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) are causally linked to alterations in human bone mass. Of the pathways activated by Wnts, it is signaling through the canonical (i.e., Wnt/beta-catenin) pathway that increases bone mass through a number of mechanisms including renewal of stem cells, stimulation of preosteoblast replication, induction of osteoblastogenesis, and inhibition of osteoblast and osteocyte apoptosis. This pathway is an enticing target for developing drugs to battle skeletal diseases as Wnt/beta-catenin signaling is composed of a series of molecular interactions that offer potential places for pharmacological intervention. In considering opportunities for anabolic drug discovery in this area, one must consider multiple factors, including (a) the roles of Wnt signaling for development, remodeling, and pathology of bone; (b) how pharmacological interventions that target this pathway may specifically treat osteoporosis and other aspects of skeletal health; and (c) whether the targets within this pathway are amenable to drug intervention. In this Review we discuss the current understanding of this pathway in terms of bone biology and assess whether targeting this pathway might yield novel therapeutics to treat typical bone disorders.
Collapse
Affiliation(s)
- Venkatesh Krishnan
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry U. Bryant
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ormond A. MacDougald
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
1334
|
Mount JG, Muzylak M, Allen S, Althnaian T, McGonnell IM, Price JS. Evidence that the canonical Wnt signalling pathway regulates deer antler regeneration. Dev Dyn 2006; 235:1390-9. [PMID: 16552759 DOI: 10.1002/dvdy.20742] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Wnt signalling regulates many developmental processes, including the fate specification, polarity, migration, and proliferation of cranial neural crest. The canonical Wnt pathway has also been shown to play an important role in bone physiology and there is evidence for its recapitulation during organ regeneration in lower vertebrates. This study explores the role of the Wnt signalling pathway in deer antlers, frontal bone appendages that are the only mammalian organs capable of regeneration. Immunocytochemistry was used to map the distribution of the activated form of beta-catenin ((a)betaCAT). A low level of (a)betaCAT staining was detected in chondrocytes and in osteoblasts at sites of endochondral bone formation. However, (a)betaCAT was localised in cellular periosteum and in osteoblasts in intramembranous bone, where it co-localised with osteocalcin. The most intense (a)betaCAT staining was in dividing undifferentiated cells in the mesenchymal growth zone. Antler progenitor cells (APCs) were cultured from this region and when the canonical Wnt pathway was inhibited at the level of Lef/TCF by epigallocatechin gallate (EGCG), the cell number decreased. TUNEL staining revealed that this was as a result of increased apoptosis. Activation of the pathway by lithium chloride (LiCl) had no effect on cell number but inhibited alkaline phosphate activity (ALP), a marker of APC differentiation, whereas EGCG increased ALP activity. This study demonstrates that beta-catenin plays an important role in the regulation of antler progenitor cell survival and cell fate. It also provides evidence that beta-catenin's function in regulating bone formation by osteoblasts may be site-specific.
Collapse
Affiliation(s)
- J G Mount
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
1335
|
White KE, Larsson TE, Econs MJ. The roles of specific genes implicated as circulating factors involved in normal and disordered phosphate homeostasis: frizzled related protein-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor 23. Endocr Rev 2006; 27:221-41. [PMID: 16467171 DOI: 10.1210/er.2005-0019] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Normal serum phosphate (Pi) concentrations are relatively tightly controlled by endocrine mediators of Pi balance. Recent data involving several disorders of Pi homeostasis have shed new light on the regulation of serum Pi balance. It has been hypothesized that circulating phosphaturic factors, or phosphatonins, exist that, when present at high serum concentrations, directly act on the kidney to induce renal Pi wasting. This review will focus upon recently discovered factors that are overexpressed in tumors associated with tumor-induced osteomalacia and have reported activity consistent with effecting Pi balance in vivo. Currently, the best-characterized group of phosphatonin-like polypeptides includes secreted frizzled related protein-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor-23. Our understanding of these factors will, in the short term, aid us in understanding normal Pi balance and, in the future, help to design novel therapeutic strategies for disorders of Pi handling.
Collapse
Affiliation(s)
- Kenneth E White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
1336
|
Fretz JA, Zella LA, Kim S, Shevde NK, Pike JW. 1,25-Dihydroxyvitamin D3 regulates the expression of low-density lipoprotein receptor-related protein 5 via deoxyribonucleic acid sequence elements located downstream of the start site of transcription. Mol Endocrinol 2006; 20:2215-30. [PMID: 16613987 DOI: 10.1210/me.2006-0102] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The skeleton is a direct target of vitamin D action, where the hormone modulates the proliferation of osteoblast precursors, their differentiation into mature osteoblasts, and their functional activity. Some of these effects of vitamin D are reminiscent of those orchestrated by the Wnt signaling pathway wherein stimulation of the membrane receptor Frizzled and its coreceptor LRP5 leads to activation of beta-catenin and subsequent transcription-mediated changes in osteoblast biology. Indeed, LRP5 is now known to play a particularly important role in bone formation such that the loss of this component results in a reduction in osteoblast number, a delay in mineralization, and a reduction in peak bone mineral density. Interestingly, we discovered during the course of a vitamin D receptor (VDR) chromatin immunoprecipitation/DNA microarray analysis that 1,25-(OH)2D3 could induce binding of the VDR to sites within the Lrp5 gene locus. VDR and retinoid X receptor binding was evident both in primary osteoblasts as well as in osteoblasts of cell line origin. Importantly, this interaction between 1,25-(OH)2D3-activated VDR and the Lrp5 gene led to both a modification in chromatin structure within the Lrp5 locus and the induction of Lrp5 mRNA transcripts in vivo as well as in vitro. One of these sites within the Lrp5 locus was discovered to confer vitamin D response to a heterologous promoter when introduced into osteoblastic cells, permitting both the identification and characterization of the vitamin D response element located within. Interestingly, additional studies revealed that whereas the regulatory region in the mouse Lrp5 gene was highly conserved in the human genome, the vitamin D response element was not. Our studies show that 1,25-(OH)2D3 can enhance the expression of a critical component of the Wnt signaling pathway that is known to impact osteogenesis.
Collapse
Affiliation(s)
- Jackie A Fretz
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
1337
|
Suwazono Y, Kobayashi E, Uetani M, Miura K, Morikawa Y, Ishizaki M, Kido T, Nakagawa H, Nogawa K. Low-density lipoprotein receptor-related protein 5 variant A1330V is a determinant of blood pressure in Japanese males. Life Sci 2006; 78:2475-9. [PMID: 16289238 DOI: 10.1016/j.lfs.2005.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/30/2005] [Accepted: 10/03/2005] [Indexed: 11/22/2022]
Abstract
We examined the influence of the A1330V variant in the low-density lipoprotein receptor-related protein 5 gene on blood pressure in a large cohort of Japanese workers. This study used analysis of covariance in a multivariate general linear model to adjust for other potential factors such as age, body mass index, blood chemistry and lifestyle. The target subjects were 1440 males and 1169 females selected from 3834 male and 2591 female workers in a single company. Hypertension was defined as systolic blood pressure >or=140 mm Hg and/or diastolic blood pressure >or=90 mm Hg or the use of antihypertensive medications. Genotype distributions for A1330V in hypertensive males (AA=139(54.5%), AV=101(39.6%), VV=15(5.9%)) and females (AA=48(63.2%), AV=24(31.6%), VV=4(5.3%)) were not significantly different from normotensive males (AA=594(50.1%), AV=488(41.2%), VV=103(8.7%)) and females (AA=568(52.0%), AV=441(40.3%), VV=84(7.7%)). Allele distributions were not significantly different in either sex. In males, analysis of covariance showed that the VV genotype was associated with a 2.5 mm Hg lower diastolic blood pressure and a 2.3 mm Hg lower mean blood pressure than the AA genotype. This study indicates that the 1330V allele is an independent factor for lower diastolic and mean blood pressure in Japanese males.
Collapse
Affiliation(s)
- Yasushi Suwazono
- Department of Occupational and Environmental Medicine (A2), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
1338
|
Abstract
Multiple myeloma (MM) is characterized by accumulation of monoclonal plasma cells in the bone marrow and progression of lytic bone lesions. MM cells enhance bone resorption by triggering a coordinated increase in RANK ligand and decrease in osteoprotegerin in the bone marrow. Macrophage inflammatory protein (MIP)-1alpha and (MIP)-1beta are secreted by MM cells, and play a major role in the enhancement of bone resorption by MM cells. Furthermore, the growth and survival of MM cells are enhanced by contact with osteoclasts (OCs) suggesting the presence of a vicious cycle between OCs and MM cells. OCs also enhance angiogenesis in concert with MM cells largely through the cooperative actions of osteopontin from OCs and VEGF from MM cells. The angiogenic effect may further facilitate the vicious cycle between bone destruction and MM cell expansion. In addition, MM cells secrete soluble factor(s) to suppress bone formation. Secreted Frizzled-related protein (sFRP)-2, an inhibitor of Wingless type (Wnt) binding to Frizzled, is produced by most MM cells, and immunodepletion of sFRP-2 abrogates the inhibition of bone formation. Thus, MM cells enhance bone resorption and suppress bone formation to cause destructive bone lesions. Further elucidation of the mechanism of bone destruction by MM may lead to a novel therapeutic approach to prevent bone destruction and tumor growth.
Collapse
Affiliation(s)
- Toshio Matsumoto
- Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Health Biosciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | | |
Collapse
|
1339
|
Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y. OSTEOIMMUNOLOGY: Interplay Between the Immune System and Bone Metabolism. Annu Rev Immunol 2006; 24:33-63. [PMID: 16551243 DOI: 10.1146/annurev.immunol.24.021605.090646] [Citation(s) in RCA: 499] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Studies of bone and the immune system have converged in recent years under the banner of osteoimmunology. The immune system is spawned in the bone marrow reservoir, and investigators now recognize that important niches also exist there for memory lymphocytes. At the same time, various factors produced during immune responses are capable of profoundly affecting regulation of bone. Mechanisms have evolved to prevent excessive interference by the immune system with bone homeostasis, yet pathologic bone loss is a common sequela associated with autoimmunity and cancer. There are also developmental links, or parallels, between bone and the immune system. Cells that regulate bone turnover share a common precursor with inflammatory immune cells and may restrict themselves anatomically, in part by utilizing a signaling network analogous to lymphocyte costimulation. Efforts are currently under way to further characterize how these two organ systems overlap and to develop therapeutic strategies that benefit from this understanding.
Collapse
Affiliation(s)
- Matthew C Walsh
- 1Department of Pathology and Laboratory Medicine, AFCRI, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
1340
|
Spencer GJ, Utting JC, Etheridge SL, Arnett TR, Genever PG. Wnt signalling in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci 2006; 119:1283-96. [PMID: 16522681 DOI: 10.1242/jcs.02883] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reports implicating Wnt signalling in the regulation of bone mass have prompted widespread interest in the use of Wnt mimetics for the treatment of skeletal disorders. To date much of this work has focused on their anabolic effects acting on cells of the osteoblast lineage. In this study we provide evidence that Wnts also regulate osteoclast formation and bone resorption, through a mechanism involving transcriptional repression of the gene encoding the osteoclastogenic cytokine receptor activator of NFkappaB ligand (RANKL or TNFSF11) expressed by osteoblasts. In co-cultures of mouse mononuclear spleen cells and osteoblasts, inhibition of GSK3beta with LiCl or exposure to Wnt3a inhibited the formation of tartrate-resistant acid phosphatase-positive multinucleated cells compared with controls. However, these treatments had no consistent effect on the differentiation, survival or activity of osteoclasts generated in the absence of supporting stromal cells. Activation of Wnt signalling downregulated RANKL mRNA and protein expression, and overexpression of fulllength beta-catenin, but not transcriptionally inactive beta-catenin DeltaC(695-781), inhibited RANKL promoter activity. Since previous studies have demonstrated an absence of resorptive phenotype in mice lacking LRP5, we determined expression of a second Wnt co-receptor LRP6 in human osteoblasts, CD14(+) osteoclast progenitors and mature osteoclasts. LRP5 expression was undetectable in CD14-enriched cells and mature human osteoclasts, although LRP6 was expressed at high levels by these cells. Our evidence of Wnt-dependent regulation of osteoclastogenesis adds to the growing complexity of Wnt signalling mechanisms that are now known to influence skeletal function and highlights the requirement to develop novel therapeutics that differentially target anabolic and catabolic Wnt effects in bone.
Collapse
Affiliation(s)
- Gary J Spencer
- Biomedical Tissue Research, Department of Biology, University of York, PO Box 373, York, YO10 5YW, UK.
| | | | | | | | | |
Collapse
|
1341
|
Swiatek W, Kang H, Garcia BA, Shabanowitz J, Coombs GS, Hunt DF, Virshup DM. Negative regulation of LRP6 function by casein kinase I epsilon phosphorylation. J Biol Chem 2006; 281:12233-41. [PMID: 16513652 DOI: 10.1074/jbc.m510580200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Wnt signaling acts in part through the low density lipoprotein receptor-related transmembrane proteins LRP5 and LRP6 to regulate embryonic development and stem cell proliferation. Up-regulated signaling is associated with many forms of cancer. Casein kinase I epsilon (CKIepsilon) is a known component of the Wnt-beta-catenin signaling pathway. We find that CKIepsilon binds to LRP5 and LRP6 in vitro and in vivo and identify three CKIepsilon-specific phosphorylation sites in LRP6. Two of the identified phosphorylation sites, Ser1420 and Ser1430, influence Wnt signaling in vivo, since LRP6 with mutation of these sites is a more potent activator of both beta-catenin accumulation and Lef-1 reporter activity. Whereas Wnt3a regulates CKIepsilon kinase activity, LRP6 does not, placing CKIepsilon upstream of LRP6. Mutation of LRP6 Ser1420 and Ser1430 to alanine strengthens its interaction with axin, suggesting a mechanism by which CKIepsilon may negatively regulate Wnt signaling. The role of CKIepsilon is therefore more complex than was previously appreciated. Generation of active CKIepsilon may induce a negative feedback loop by phosphorylation of sites on LRP5/6 that modulate axin binding and hence beta-catenin degradation.
Collapse
Affiliation(s)
- Wojciech Swiatek
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550, USA
| | | | | | | | | | | | | |
Collapse
|
1342
|
|
1343
|
Bayram F, Tanriverdi F, Kurtoğlu S, Atabek ME, Kula M, Kaynar L, Keleştimur F. Effects of 3 years of intravenous pamidronate treatment on bone markers and bone mineral density in a patient with osteoporosis-pseudoglioma syndrome (OPPG). J Pediatr Endocrinol Metab 2006; 19:275-9. [PMID: 16607930 DOI: 10.1515/jpem.2006.19.3.275] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We present a 21 year-old woman with osteoporosis-pseudoglioma syndrome (OPPG) suffering from bone pain and frequent long bone fractures (approximately 1 or 2 fractures/year) who was treated with i.v. pamidronate for 3 years. OPPG is a rare autosomal recessive disorder characterized by severe widespread osteoporosis leading to pathological fractures and congenital or early onset blindness. Bone mineral density (BMD) (g/cm2) was determined at lumbar spine and femur neck by dual energy X-ray absorptiometry. BMD studies were also performed in her parents and 18 year-old brother who were phenotypically normal. Within 2 months of the first pamidronate treatment the patient reported considerable decrease in bone pain and improved mobility. During the treatment period no important side effects and no recurrent bone fracture were reported. There were substantial increases in BMD, T score and z-score at both lumbar spine and femoral neck during therapy. Baseline lumbar spine BMD increased from 0.416 to 0.489 g/cm2 and femoral neck BMD increased from 0.455 to 0.532 g/cm2 after 3 years. Although her parents and brother did not have any history of fracture, BMD measurements revealed that her parents were osteopenic and her brother was osteoporotic. We demonstrated that pamidronate therapy seems to be safe and beneficial in both spinal and peripheral skeleton osteoporosis in patients with OPPG. Moreover, the present study clearly indicates that bone density studies and LRPS gene screening for mutations should be performed in phenotypically normal family members of patients with OPPG.
Collapse
Affiliation(s)
- Fahri Bayram
- Department of Endocrinology, Erciyes University, School of Medicine, Kayseri, Turkey
| | | | | | | | | | | | | |
Collapse
|
1344
|
Hartmann C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 2006; 16:151-8. [PMID: 16466918 DOI: 10.1016/j.tcb.2006.01.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/09/2005] [Accepted: 01/19/2006] [Indexed: 12/22/2022]
Abstract
Several transcription factors have been identified that control the differentiation of osteoblasts; however, relatively little is known about the signaling pathways involved in regulating the differentiation process. Recently, the canonical Wnt-beta-catenin pathway has been implicated in osteoblastogenesis. This review focuses on the role of the canonical Wnt-beta-catenin pathway during embryonic development, where it is required for the differentiation of osteoblasts from a precursor that is shared with the chondrocyte lineage and the requirement of this pathway during postnatal life in bone homeostasis. The recent findings covered in this review are major advances in our understanding of skeletal development and promise new therapeutic avenues for tissue engineering and treatment of osteoporosis.
Collapse
Affiliation(s)
- Christine Hartmann
- Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria.
| |
Collapse
|
1345
|
Fokina VM, Frolova EI. Expression patterns of Wnt genes during development of an anterior part of the chicken eye. Dev Dyn 2006; 235:496-505. [PMID: 16258938 PMCID: PMC2655638 DOI: 10.1002/dvdy.20621] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To address the roles of Wnts in the development of the anterior eye, we used a chicken model to perform comprehensive expression analysis of all Wnt genes during anterior eye development. In analyzing the available genomic sequences, we found that the chicken genome encodes 18 Wnt proteins that are homologous to corresponding human and mouse proteins. The mRNA sequences for 12 chicken Wnt genes are available in GenBank, and mRNAs for six other Wnt genes (Wnt2, Wnt5b, Wnt7b, Wnt8b, Wnt9b, and Wnt16) were identified and cloned based on the homology to the genes from other species. In addition, we found that chicken Wnt3a and Wnt7b genes encode two alternative mRNA isoforms containing different first exons. Following in situ hybridization, we found that out of 18 Wnt genes, 11 genes were expressed in the anterior eye, exhibiting distinct temporal-spatial patterns. Several Wnts were expressed in the lens, including Wnt2 and Wnt2b in the anterior epithelium and Wnt5a, Wnt5b, Wnt7a, and Wnt7b in the differentiating lens fiber cells. In the cornea, we detected Wnt3a, Wnt6, and Wnt9b in the ocular surface ectoderm, including the corneal epithelium, and Wnt9a in the corneal endothelium from the onset of its differentiation. In the optic cup, Wnt2, Wnt2b, and Wnt9a were localized in the rim of the optic cup (presumptive iris), while Wnt5a and Wnt16 were detected in the ciliary epithelium/iris zone of the differentiated optic cup, and Wnt6 was expressed in the iridial mesenchyme. These data suggest that Wnt signaling might play important roles in anterior eye development.
Collapse
Affiliation(s)
- Valentina M. Fokina
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-10191
| | - Elena I. Frolova
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-10191
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-10191
| |
Collapse
|
1346
|
Abstract
Bone mass declines progressively with age in both men and women from the age of approximately 30 y. Increased longevity will inevitability be associated with an increase in the incidence of osteoporosis, its associated complications, and incurred health care costs. Current pharmacologic approaches focus on inhibiting bone resorption in those with osteoporosis but do little to improve bone mass. Increased understanding of the cellular events responsible for normal bone formation has led to multiple pathways that can be targeted to positively influence bone mass. Bone morphogenetic proteins (BMPs) have been shown to stimulate bone formation, and the BMP2 gene was recently linked to osteoporosis. BMP-2 therefore represents one potential molecular target to identify new agents to simulate bone formation. Research is accumulating on the positive effects of dietary sources that stimulate the BMP2 promoter and their effects on bone formation. Flavonoids and statins occur naturally in food products and have been shown to promote bone formation. It may be possible to influence peak bone mass by dietary means and to decrease the risk of osteoporosis in later life. To ease the future burden of osteoporosis, focusing on prevention will be key, and this could include dietary interventions to stimulate bone formation.
Collapse
Affiliation(s)
- Gregory R Mundy
- University of Texas Health Science Center at San Antonio, Texas 78229-3900, USA.
| |
Collapse
|
1347
|
Henriksen K, Gram J, Høegh-Andersen P, Jemtland R, Ueland T, Dziegiel MH, Schaller S, Bollerslev J, Karsdal MA. Osteoclasts from patients with autosomal dominant osteopetrosis type I caused by a T253I mutation in low-density lipoprotein receptor-related protein 5 are normal in vitro, but have decreased resorption capacity in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1341-8. [PMID: 16251418 PMCID: PMC1603785 DOI: 10.1016/s0002-9440(10)61221-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Autosomal dominant osteopetrosis type I (ADOI) is presumably caused by gain-of-function mutations in the LRP5 gene. Patients with a T253I mutation in LRP5 have a high bone mass phenotype, characterized by increased mineralizing surface index but abnormally low numbers of small osteoclasts. To investigate the effect of the T253I mutation in LRP5 on osteoclasts, we isolated CD14+ monocytes from ADOI patients and assessed their ability to generate osteoclasts when treated with RANKL and M-CSF compared to that of age- and sex-matched control osteoclasts. We found normal osteoclastogenesis, expression of osteoclast markers, morphology, and localization of proteins involved in bone resorption, such as ClC-7 and cathepsin K. The ability to resorb bone was also normal. In vivo, we compared the bone resorption and bone formation response to T3 in ADOI patients and age- and sex-matched controls. We found attenuated resorptive response to T3 stimulation, despite a normal bone formation response, in alignment with the reduced number of osteoclasts in vivo. These data demonstrate that ADOI osteoclasts are normal with respect to all aspects investigated in vitro. We speculate that the mutations causing ADOI alter the osteoblastic phenotype toward a smaller potential for supporting osteoclastogenesis.
Collapse
Affiliation(s)
- Kim Henriksen
- Pharmos Bioscience A/S, Herlev Hovedgade 207, Herlev, DK-2730, Ribe County Hospital, Esbjerg, and the University Hospital of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
1348
|
Lane NE, Lian K, Nevitt MC, Zmuda JM, Lui L, Li J, Wang J, Fontecha M, Umblas N, Rosenbach M, de Leon P, Corr M. Frizzled-related protein variants are risk factors for hip osteoarthritis. ACTA ACUST UNITED AC 2006; 54:1246-54. [PMID: 16572458 DOI: 10.1002/art.21673] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To examine the association of the Arg200Trp and Arg324Gly variants of FRZB with the risk and phenotype of radiographic osteoarthritis (OA) of the hip and serum levels of Frizzled-related protein (FRP) in a prospective cohort of elderly Caucasian women. METHODS Radiographic hip OA status of patients was defined by the presence of severe joint space narrowing (JSN) (feature grade>or=3), a summary grade>or=3, or definite osteophytes (grade>or=2) and JSN (grade>or=2) in the same hip. Genotypes were obtained in 569 patients with radiographic OA of the hip and in 1,317 and 4,136 controls for the Arg200Trp and Arg324Gly variants, respectively. Serum FRP levels were measured by enzyme-linked immunosorbent assay. Multivariate logistic regression was performed. RESULTS The minor allele frequency for the Arg200Trp polymorphism was 0.12 in the control group compared with 0.14 in the group with radiographic OA of the hip (P=0.12), and the minor allele frequency for the Arg324Gly variant was 0.083 in the control group compared with 0.088 in the group with radiographic OA of the hip (P=0.63). The multilocus genotypes available in 1,886 subjects suggested that inheritance of both minor alleles was a risk factor for developing OA characterized by JSN (P<0.01). Patients with radiographic OA of the hip who were homozygous for the Arg200Trp minor allele had higher serum FRP levels than controls who were homozygous for the major allele. CONCLUSION Our data confirm findings of another study, that a rare haplotype with both Arg200Trp and Arg324Gly FRZB variants contributes to the genetic susceptibility to hip OA among Caucasian women, and that these polymorphisms may contribute to increased serum levels of proteins as biomarkers of OA.
Collapse
Affiliation(s)
- N E Lane
- University of California at San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1349
|
Glass DA, Karsenty G. Molecular bases of the regulation of bone remodeling by the canonical Wnt signaling pathway. Curr Top Dev Biol 2006; 73:43-84. [PMID: 16782455 DOI: 10.1016/s0070-2153(05)73002-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteoporosis is a common, prevalent, and debilitating condition, particularly in postmenopausal women. Genetics play a major role in determining peak bone mass and fracture risk, but few genes have been demonstrated conclusively to be involved, much less the signaling pathways with which they are affiliated. The identification of mutations in the gene Lrp5, a Wnt coreceptor, as the cause for both osteoporotic and high-bone mass disorders implicated the canonical Wnt signaling pathway in bone mass regulation. Since Lrp5, other Wnt components have been identified as being regulators of bone mass, and Wnt target genes affecting bone homeostasis have begun to be elucidated. This chapter looks at the various components of the canonical Wnt signaling pathway and the data indicating that this pathway plays a major role in the control of both bone formation and bone resorption, the two key aspects of bone remodeling.
Collapse
Affiliation(s)
- Donald A Glass
- Department of Molecular and Human Genetics, Bone Disease Program of Texas, Baylor College of Medicine, Houston, 77030, USA
| | | |
Collapse
|
1350
|
Borchert KM, Sells Galvin RJ, Hale LV, Trask OJ, Nickischer DR, Houck KA. Screening for Activators of the Wingless Type/Frizzled Pathway by Automated Fluorescent Microscopy. Methods Enzymol 2006; 414:140-50. [PMID: 17110191 DOI: 10.1016/s0076-6879(06)14009-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Development of means to screen primary human cells rather than established cell lines is important in improving the predictive value of cellular assays in drug discovery. We describe a method of using automated fluorescent microscopy to detect activators of the wingless type/Frizzled (Wnt/Fzd) pathway in primary human preosteoblasts. This technique relies on detection of endogenous beta-catenin translocation to the nucleus as an indicator of pathway activation, requires only a limited number of primary cells, and is robust enough for automation and high-content, high-throughput screening. Identification of activators of the Wnt/Fzd pathway in human preosteoblasts may be useful in providing lead compounds for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Kristen M Borchert
- Becton-Dickinson Technologies, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|