1351
|
Fan R, Vermesh O, Srivastava A, Yen BKH, Qin L, Ahmad H, Kwong GA, Liu CC, Gould J, Hood L, Heath JR. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol 2008; 26:1373-1378. [PMID: 19029914 DOI: 10.1038/nbt.l507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/21/2008] [Indexed: 05/27/2023]
Abstract
As the tissue that contains the largest representation of the human proteome, blood is the most important fluid for clinical diagnostics. However, although changes of plasma protein profiles reflect physiological or pathological conditions associated with many human diseases, only a handful of plasma proteins are routinely used in clinical tests. Reasons for this include the intrinsic complexity of the plasma proteome, the heterogeneity of human diseases and the rapid degradation of proteins in sampled blood. We report an integrated microfluidic system, the integrated blood barcode chip that can sensitively sample a large panel of protein biomarkers over broad concentration ranges and within 10 min of sample collection. It enables on-chip blood separation and rapid measurement of a panel of plasma proteins from quantities of whole blood as small as those obtained by a finger prick. Our device holds potential for inexpensive, noninvasive and informative clinical diagnoses, particularly in point-of-care settings.
Collapse
Affiliation(s)
- Rong Fan
- NanoSystems Biology Cancer Center, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California 91125, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1352
|
Hui L, Zatloukal K, Scheuch H, Stepniak E, Wagner EF. Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J Clin Invest 2008; 118:3943-53. [PMID: 19033664 PMCID: PMC2579707 DOI: 10.1172/jci37156] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/01/2008] [Indexed: 12/11/2022] Open
Abstract
JNK proteins have been shown to be involved in liver carcinogenesis in mice, but the extent of their involvement in the development of human liver cancers is unknown. Here, we show that activation of JNK1 but not JNK2 was increased in human primary hepatocellular carcinomas (HCCs). Further, JNK1 was required for human HCC cell proliferation in vitro and tumorigenesis after xenotransplantation. Importantly, mice lacking JNK1 displayed decreased tumor cell proliferation in a mouse model of liver carcinogenesis and decreased hepatocyte proliferation in a mouse model of liver regeneration. In both cases, impaired proliferation was caused by increased expression of p21, a cell-cycle inhibitor, and reduced expression of c-Myc, a negative regulator of p21. Genetic inactivation of p21 in JNK1-/- mice restored hepatocyte proliferation in models of both liver carcinogenesis and liver regeneration, and overexpression of c-Myc increased proliferation of JNK1-/- liver cells. Similarly, JNK1 was found to control the proliferation of human HCC cells by affecting p21 and c-Myc expression. Pharmacologic inhibition of JNK reduced the growth of both xenografted human HCC cells and chemically induced mouse liver cancers. These findings provide a mechanistic link between JNK activity and liver cell proliferation via p21 and c-Myc and suggest JNK targeting can be considered as a new therapeutic approach for HCC treatment.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Cell Proliferation
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Female
- Hepatocytes/metabolism
- Humans
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/therapy
- Liver Regeneration/drug effects
- Liver Regeneration/genetics
- Male
- Mice
- Mice, Knockout
- Mice, Nude
- Mitogen-Activated Protein Kinase 8/genetics
- Mitogen-Activated Protein Kinase 8/metabolism
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/therapy
Collapse
Affiliation(s)
- Lijian Hui
- Research Institute of Molecular Pathology, Vienna, Austria.
Institute of Pathology, Medical University of Graz, Graz, Austria.
Spanish National Cancer Research Center, Madrid, Spain
| | - Kurt Zatloukal
- Research Institute of Molecular Pathology, Vienna, Austria.
Institute of Pathology, Medical University of Graz, Graz, Austria.
Spanish National Cancer Research Center, Madrid, Spain
| | - Harald Scheuch
- Research Institute of Molecular Pathology, Vienna, Austria.
Institute of Pathology, Medical University of Graz, Graz, Austria.
Spanish National Cancer Research Center, Madrid, Spain
| | - Ewa Stepniak
- Research Institute of Molecular Pathology, Vienna, Austria.
Institute of Pathology, Medical University of Graz, Graz, Austria.
Spanish National Cancer Research Center, Madrid, Spain
| | - Erwin F. Wagner
- Research Institute of Molecular Pathology, Vienna, Austria.
Institute of Pathology, Medical University of Graz, Graz, Austria.
Spanish National Cancer Research Center, Madrid, Spain
| |
Collapse
|
1353
|
Modulation of the NF-kappaB pathway by Bordetella pertussis filamentous hemagglutinin. PLoS One 2008; 3:e3825. [PMID: 19043589 PMCID: PMC2584786 DOI: 10.1371/journal.pone.0003825] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 11/05/2008] [Indexed: 01/25/2023] Open
Abstract
Background Filamentous hemagglutinin (FHA) is a cell-associated and secreted adhesin produced by Bordetella pertussis with pro-apoptotic and pro-inflammatory activity in host cells. Given the importance of the NF-κB transcription factor family in these host cell responses, we examined the effect of FHA on NF-κB activation in macrophages and bronchial epithelial cells, both of which are relevant cell types during natural infection. Methodology/Principal Findings Exposure to FHA of primary human monocytes and transformed U-937 macrophages, but not BEAS-2B epithelial cells, resulted in early activation of the NF-κB pathway, as manifested by the degradation of cytosolic IκBα, by NF-κB DNA binding, and by the subsequent secretion of NF-κB-regulated inflammatory cytokines. However, exposure of macrophages and human monocytes to FHA for two hours or more resulted in the accumulation of cytosolic IκBα, and the failure of TNF-α to activate NF-κB. Proteasome activity was attenuated following exposure of cells to FHA for 2 hours, as was the nuclear translocation of RelA in BEAS-2B cells. Conclusions These results reveal a complex temporal dynamic, and suggest that despite short term effects to the contrary, longer exposures of host cells to this secreted adhesin may block NF-κB activation, and perhaps lead to a compromised immune response to this bacterial pathogen.
Collapse
|
1354
|
Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc Natl Acad Sci U S A 2008; 105:18936-41. [PMID: 19017806 DOI: 10.1073/pnas.0803943105] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Patients with cancer have circulating heterophile antibodies that agglutinate animal red cells via recognition of the mammalian cell surface sialic acid N-glycolylneuraminic acid (Neu5Gc), which was long considered an oncofetal antigen in humans. However, humans are genetically deficient in Neu5Gc production and instead metabolically accumulate Neu5Gc from dietary sources, particularly red meats and milk products. Moreover, mice with a human-like defect showed no alternate pathway for Neu5Gc synthesis and even normal humans express anti-Neu5Gc antibodies. We show here that human tumors accumulate Neu5Gc that is covalently attached to multiple classes of glycans. The paradox of human tumor Neu5Gc accumulation in the face of circulating anti-Neu5Gc antibodies was hypothesized to be due to facilitation of tumor progression by the resulting low-grade chronic inflammation. Indeed, murine tumors expressing human-like levels of Neu5Gc show accelerated growth in syngeneic mice with a human-like Neu5Gc deficiency, coincident with the induction of anti-Neu5Gc antibodies and increased infiltration of inflammatory cells. Transfer of polyclonal monospecific syngeneic mouse anti-Neu5Gc serum also enhanced growth of transplanted syngeneic tumors bearing human-like levels of Neu5Gc, with tumors showing evidence for antibody deposition, enhanced angiogenesis and chronic inflammation. These effects were suppressed by a cyclooxygenase-2 inhibitor, a drug type known to reduce human carcinoma risk. Finally, affinity-purified human anti-Neu5Gc antibodies also accelerate growth of Neu5Gc-containing tumors in Neu5Gc-deficient mice. Taken together, the data suggest that the human propensity to develop diet-related carcinomas is contributed to by local chronic inflammation, resulting from interaction of metabolically-accumulated dietary Neu5Gc with circulating anti-Neu5Gc antibodies.
Collapse
|
1355
|
Molecular decoys: antidotes, therapeutics and immunomodulators. Curr Opin Biotechnol 2008; 19:644-51. [PMID: 18977299 PMCID: PMC7127390 DOI: 10.1016/j.copbio.2008.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 09/17/2008] [Accepted: 10/03/2008] [Indexed: 12/27/2022]
Abstract
Receptor–ligand interactions are fundamental to the regulation of cell physiology, enabling the communication between cells and their environment via signal transduction. Receptors are also exploited by toxins and infectious agents to mediate pathogenesis. Over the past 20 years, however, this bi-partite paradigm for cellular regulation, that is, receptors and their ligands, has been revised to include an unforeseen participant namely, soluble receptors or molecular decoys. Decoys function as nature's modifiers of potent responses such as inflammation, stimulation of cell proliferation and triggering apoptosis. Decoys not only provide the means to fine tune the regulation of these phenomena; they also serve as potential leads for the development of recombinant anti-toxins, anti-viral agents and novel therapeutics for combating cancer and inflammatory disease.
Collapse
|
1356
|
Lee EJ, Heo YM, Choi JH, Song HO, Ryu JS, Ahn MH. Suppressed production of pro-inflammatory cytokines by LPS-activated macrophages after treatment with Toxoplasma gondii lysate. THE KOREAN JOURNAL OF PARASITOLOGY 2008; 46:145-51. [PMID: 18830053 DOI: 10.3347/kjp.2008.46.3.145] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During Toxoplasma gondii infection, macrophages, dendritic cells, and neutrophils are important sources of pro-inflammatory cytokines from the host. To counteract the pro-inflammatory activities, T. gondii is known to have several mechanisms inducing down-regulation of the host immunity. In the present study, we analyzed the production of proand anti-inflammatory cytokines from a human myelomonocytic cell line, THP-1 cells, in response to treatment with T. gondii lysate or lipopolysaccharide (LPS). Treatment of THP-1 cells with LPS induced production of IL-12, TNF-alpha, IL-8, and IL-10. Co-treatment of THP-1 cells with T. gondii lysate inhibited the LPS-induced IL-12, IL-8 and TNF-alpha expression, but increased the level of IL-10 synergistically. IL-12 and IL-10 production was down-regulated by anti-human toll-like receptor (TLR)-2 and TLR4 antibodies. T. gondii lysate triggered nuclear factor (NF)-kappaB-dependent IL-8 expression in HEK293 cells transfected with TLR2. It is suggested that immunosuppression induced by T. gondii lysate treatment might occur via TLR2-mediated NF-kappaB activation.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Department of Parasitology and Institute of Biomedical Science, Hanyang University College of Medicine, Seoul 133-791, Korea
| | | | | | | | | | | |
Collapse
|
1357
|
Favaro E, Amadori A, Indraccolo S. Cellular interactions in the vascular niche: implications in the regulation of tumor dormancy. APMIS 2008; 116:648-59. [PMID: 18834409 DOI: 10.1111/j.1600-0463.2008.01025.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Angiogenesis plays an established role in the promotion of growth of dormant micrometastasis, because blood vessels deliver oxygen and nutrients to the tumor microenvironment. In addition to this feeding function, however, there is accumulating evidence suggesting that endothelial cells-and perhaps other cellular components of the microenvironment--could communicate both positive and negative signals to tumor cells. This cross-talk between heterogeneous cell types could turn out to be important in the regulation of cancer cell behavior. Normal cells recruited during the angiogenic process, or attracted to future sites of metastasis by soluble products released by cancer cells, have been shown to create a niche favorable to tumor cell proliferation and survival. In addition, following an exogenous angiogenic spike, as may occur during inflammation, the same mechanisms could lead to re-activation of poorly angiogenic tumor cells seeded into tissues. In this review, we discuss the possible implications of this hypothesis for our understanding of the phenomenon of tumor dormancy.
Collapse
Affiliation(s)
- Elena Favaro
- Department of Oncology and Surgical Sciences, Oncology Section, University of Padova, Padova, Italy
| | | | | |
Collapse
|
1358
|
Mumm JB, Oft M. Cytokine-based transformation of immune surveillance into tumor-promoting inflammation. Oncogene 2008; 27:5913-9. [PMID: 18836472 DOI: 10.1038/onc.2008.275] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the last decade, it has become clear that the mammalian immune system is able to recognize and partially suppress nascent tumors. Human T cells specific to oncogenes and onco-fetal antigens are present in human cancer patients and their tumors. At the same time, molecular links between tumor-associated inflammation and tumor progression have been uncovered, providing an explanation for the long recognized epidemiological link between inflammation and cancer. The synopsis of these findings suggests a new interpretation of tumor immunity. It appears that antigen recognition or antigen-specific T-cell expansion at large is not as profoundly impaired in tumor patients as the correct polarization, the survival and the effector function of tumor-infiltrating T cells. This review will focus on pro-inflammatory cytokines likely to contribute to the deregulation of tumor-specific immunity and its consequences.
Collapse
Affiliation(s)
- J B Mumm
- Department of Oncology, Schering-Plough Biopharma (formerly DNAX), Palo Alto, CA 94303, USA
| | | |
Collapse
|
1359
|
Fang L, Lee VC, Cha E, Zhang H, Hwang ST. CCR7 regulates B16 murine melanoma cell tumorigenesis in skin. J Leukoc Biol 2008; 84:965-72. [PMID: 18519742 DOI: 10.1189/jlb.1107776] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tumor cell-associated chemokine receptors play distinct roles in cancer biology, including enhancement of lymph node (LN) metastasis. To determine if CCR7 influences tumor formation in skin, we inoculated B16 cells transduced with CCR7 and luciferase (CCR7-luc-B16) or with retroviral vector and luciferase (pLNCX2-luc-B16) into ear skin and footpads of wild-type (WT) mice. In contrast to pLNCX2-luc-B16 cells, 97% of CCR7-luc-B16 cell-inoculated mice formed skin tumors as well as cervical LN metastases by Day 21 following ear inoculation. CCR7-expressing and control B16 cells, however, formed tumors of similar size and with high-efficiency in SCID-beige mice. Cells from both lines accumulated in the skin of WT mice in similar numbers until Day 7. By Day 11, however, control cells decreased tenfold, whereas CCR7-luc-B16 cells formed small tumor nodules. Tumor cells were infrequently detected in draining cervical LNs up to 11 days after injection of both cell lines, but stable nodal metastases were only observed after CCR7-luc-B16 ear tumors had been established (Day 21). ELISPOT assays revealed that IFN--producing cells in draining LNs from CCR7-luc-B16-injected ears were reduced through Day 7. After footpad injection, tumor formation by CCR7-expressing B16 cells was enhanced only with small, initial tumor cell inocula. With larger inocula, tumor formation was equivalent, but the numbers of tumor-infiltrating leukocytes were reduced by approximately sixfold in CCR7-B16 tumors compared with pLNCX2-B16 tumors of equal size. IFN- and CXCL10 were reduced 35- and sixfold, respectively, in CCR7-B16 cell tumors (vs. control tumors). Thus, CCR7 expression enhances tumorigenesis in addition to facilitating LN metastasis.
Collapse
Affiliation(s)
- Lei Fang
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
1360
|
Synergistic effect of combination of phenethyl isothiocyanate and sulforaphane or curcumin and sulforaphane in the inhibition of inflammation. Pharm Res 2008; 26:224-31. [PMID: 18841446 DOI: 10.1007/s11095-008-9734-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 09/22/2008] [Indexed: 12/14/2022]
Abstract
PURPOSE Accumulating evidence from epidemiologic and clinical studies indicates that chronic inflammatory disorders harbor an increased risk of cancer development. Curcumin (CUR) has been strongly linked to the anti-inflammatory effect. On the other hand, isothiocyanates such as sulforaphane (SFN) and phenethyl isothiocyanate (PEITC) are strong phase-II detoxifying/antioxidant enzymes inducer. Therefore it is interesting to see if combination of these drugs can inhibit inflammation with higher combined efficacies. METHODS We used nitric oxide (NO) assay to assess the synergism of the different combinations of CUR, SFN and PEITC. The inflammatory markers, e.g. iNOS, COX-2, prostaglandin E2 (PGE2), tumor necrosis factor (TNF) and interleukin-1 (IL-1) levels were determined using RT-PCR, Western blot and ELISA assays. RESULTS We report that combination of PEITC + SFN or CUR + SFN has a synergistic effect in down-regulating inflammation markers like TNF, IL-1, NO, PGE2. The synergism is probably due to the synergistic induction of phase II/antioxidant enzymes including heme-oxygenase1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO-1). CONCLUSIONS Our data suggest that CUR + SFN and PEITC + SFN combinations could be more effective than used alone in preventing inflammation and possibly its associated diseases including cancer.
Collapse
|
1361
|
Liby K, Yore MM, Roebuck BD, Baumgartner KJ, Honda T, Sundararajan C, Yoshizawa H, Gribble GW, Williams CR, Risingsong R, Royce DB, Dinkova-Kostova AT, Stephenson KK, Egner PA, Yates MS, Groopman JD, Kensler TW, Sporn MB. A novel acetylenic tricyclic bis-(cyano enone) potently induces phase 2 cytoprotective pathways and blocks liver carcinogenesis induced by aflatoxin. Cancer Res 2008; 68:6727-33. [PMID: 18701497 DOI: 10.1158/0008-5472.can-08-1123] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel acetylenic tricyclic bis-(cyano enone), TBE-31, is a lead compound in a series of tricyclic compounds with enone functionalities in rings A and C. Nanomolar concentrations of this potent multifunctional molecule suppress the induction of the inflammatory protein, inducible nitric oxide synthase, activate phase 2 cytoprotective enzymes in vitro and in vivo, block cell proliferation, and induce differentiation and apoptosis of leukemia cells. Oral administration of TBE-31 also significantly reduces formation of aflatoxin-DNA adducts and decreases size and number of aflatoxin-induced preneoplastic hepatic lesions in rats by >90%. Because of the two cyano enones in rings A and C, TBE-31 may directly interact with DTT and protein targets such as Keap1 that contain reactive cysteine residues. The above findings suggest that TBE-31 should also be tested for chemoprevention and chemotherapy in relevant models of cancer and against other chronic, degenerative diseases in which inflammation and oxidative stress contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Karen Liby
- Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1362
|
Zitvogel L, Tesniere A, Apetoh L, Ghiringhelli F, Kroemer G. Contribution du système immunitaire à l’efficacité des chimiothérapies anticancéreuses. BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE 2008. [DOI: 10.1016/s0001-4079(19)32694-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
1363
|
Modulation of the antitumor immune response by complement. Nat Immunol 2008; 9:1225-35. [PMID: 18820683 PMCID: PMC2678913 DOI: 10.1038/ni.1655] [Citation(s) in RCA: 546] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 08/15/2008] [Indexed: 12/11/2022]
Abstract
The involvement of complement activation products in promoting tumor growth has not yet been recognized. Here we show that generation of complement C5a in the tumor microenvironment enhanced tumor growth by suppressing the anti-tumor CD8+ T cell-mediated response. This suppression was associated with the recruitment of myeloid-derived suppressor cells (MDSCs) into tumors and augmentation of their T cell-directed suppressive capabilities. Amplification of MDSC suppressive capacity by C5a occurred through regulation of the production of reactive oxygen and nitrogen species. Pharmacological blockade of C5a receptor significantly impaired tumor growth to a degree comparable to the effect produced by the anti-cancer drug Taxol. Thus, this study demonstrates a therapeutic role for complement inhibition in the treatment of cancer.
Collapse
|
1364
|
Tumor volume reduction using combined phacoemulsification and intravitreal triamcinolone injection for the management of cataract with treated uveal melanoma and atypical nevi. J Cataract Refract Surg 2008; 34:1669-73. [PMID: 18812116 DOI: 10.1016/j.jcrs.2008.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE To study the reduction in tumor size and the safety and efficacy of combined phacoemulsification and intravitreal triamcinolone acetonide injection (phaco-IVTA) in patients with treated melanoma and atypical nevi. SETTING Bascom Palmer Eye Institute, Miami, Florida, USA. METHODS The medical records of 49 consecutive patients (51 eyes) with treated melanoma or atypical nevi treated with phaco-IVTA were evaluated retrospectively for changes in Snellen visual acuity, tumor volume, and frequency of complications. Main outcome measures included a postsurgical change in tumor size greater than or equal to 0.5 mm of height or 1.0 mm of basal diameter by echographic analysis, improvement in visual acuity at 6 months and final follow-up, and complications including endophthalmitis, cystoid macular edema, epiretinal membrane, increased intraocular pressure, and persistent corneal edema. RESULTS The median baseline visual acuity was 20/80 in the affected eye. At the 6-month follow-up examination, 13 (68%) of 19 eyes had achieved better than 20/40 visual acuity. Treated uveal melanomas (n=30) and atypical choroidal nevi (n=21) were stable with combined therapy, and echographic measurements improved in 12 eyes. Intraocular pressure increased from baseline to 25 mm Hg or more postoperatively in 4 of 51 eyes (8%). No other significant complications occurred. CONCLUSIONS Combined phacoemulsification and IVTA was reasonably safe in patients with treated melanoma and atypical nevi. Tumors remained stable or decreased slightly in size. Intravitreal triamcinolone acetonide injection at the time of cataract surgery in patients with treated melanoma or nevus may reduce rates of tumor progression in these patients.
Collapse
|
1365
|
Cahill CM, Rogers JT. Interleukin (IL) 1beta induction of IL-6 is mediated by a novel phosphatidylinositol 3-kinase-dependent AKT/IkappaB kinase alpha pathway targeting activator protein-1. J Biol Chem 2008; 283:25900-12. [PMID: 18515365 PMCID: PMC2533786 DOI: 10.1074/jbc.m707692200] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 04/28/2008] [Indexed: 02/06/2023] Open
Abstract
Here we describe a novel role for the phosphatidylinositol 3-kinase/AKT pathway in mediating induction of interleukin-6 (IL-6) in response to IL-1. Pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K) inhibited IL-6 mRNA and protein production. Overexpression of either dominant-negative AKT or IkappaB kinase alpha mutant, IKKalphaT23A, containing a mutation in a functional AKT phosphorylation site, shown previously to be important for NFkappaB activation, completely abrogated IL-6 promoter activation in response to IL-1. However, mutation of the consensus NFkappaB site on the IL-6 promoter did not abrogate promoter activation by IL-1 in contrast to the AP-1 site mutation. IL-1 induces phosphorylation of IKKalpha on the NFkappaB inducing kinase (NIK) phosphorylation sites Ser(176)/Ser(180) and on the Thr(23) site, and although phosphorylation of IKKalphaT23 is inhibited both by LY294002 and wortmannin, phosphorylation of Ser(176)/Ser(180) is not. Neither inhibition of PI 3-kinase/AKT nor IKKalphaT23A overexpression affected IkappaBalpha degradation in response to IL-1. Only partial inhibition by dominant-negative AKT and no inhibitory effect of IKKalphaT23A was observed on an IL-6 promoter-specific NFkappaB site in contrast to significant inhibitory effects on the AP-1 site. Taken together, we have discovered a novel PI 3-kinase/AKT-dependent pathway in response to IL-1, encompassing PI 3-kinase/AKT/IKKalphaT23 upstream of AP-1. This novel pathway is a parallel pathway to the PI 3-kinase/AKT upstream of NFkappaB and both are involved in IL-6 gene transcription in response to IL-1.
Collapse
Affiliation(s)
- Catherine M Cahill
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience and Genetics and Aging Research Unit, Massachusetts General Hospital (East), Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
1366
|
Mazar AP. Urokinase Plasminogen Activator Receptor Choreographs Multiple Ligand Interactions: Implications for Tumor Progression and Therapy. Clin Cancer Res 2008; 14:5649-55. [DOI: 10.1158/1078-0432.ccr-07-4863] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
1367
|
Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 2008; 454:463-9. [PMID: 18650917 DOI: 10.1038/nature07206] [Citation(s) in RCA: 784] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inadequate physical activity is linked to many chronic diseases. But the mechanisms that tie muscle activity to health are unclear. The transcriptional coactivator PGC1alpha has recently been shown to regulate several exercise-associated aspects of muscle function. We propose that this protein controls muscle plasticity, suppresses a broad inflammatory response and mediates the beneficial effects of exercise.
Collapse
Affiliation(s)
- Christoph Handschin
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, CH-8057 Zurich, Switzerland.
| | | |
Collapse
|
1368
|
Chittezhath M, Deep G, Singh RP, Agarwal C, Agarwal R. Silibinin inhibits cytokine-induced signaling cascades and down-regulates inducible nitric oxide synthase in human lung carcinoma A549 cells. Mol Cancer Ther 2008; 7:1817-26. [PMID: 18644994 DOI: 10.1158/1535-7163.mct-08-0256] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recently, we reported that silibinin inhibits primary lung tumor growth and progression in mice and down-regulates inducible nitric oxide synthase (iNOS) expression in tumors; however, the mechanisms of silibinin action are largely not understood. Also, the activation of signaling pathways inducing various transcription factors are associated with lung carcinogenesis and their inhibition could be an effective strategy to prevent and/or treat lung cancer. Herein, we used human lung epithelial carcinoma A549 cells to explore the potential mechanisms and observed strong iNOS expression by cytokine mixture (containing 100 units/mL IFN-gamma + 0.5 ng/mL interleukin-1beta + 10 ng/mL tumor necrosis factor-alpha). We also examined the cytokine mixture-activated signaling cascades, which could potentially up-regulate iNOS expression, and then examined the effect of silibinin (50-200 mumol/L) on these signaling cascades. Silibinin treatment inhibited, albeit to different extent, the cytokine mixture-induced activation of signal transducer and activator of transcription 1 (Tyr(701)), signal transducer and activator of transcription 3 (Tyr(705)), activator protein-1 family of transcription factors, and nuclear factor-kappaB. The results for activator protein-1 were correlated with the decreased nuclear levels of phosphorylated c-Jun, c-Jun, JunB, JunD, phosphorylated c-Fos, and c-Fos. Further, silibinin also strongly decreased cytokine mixture-induced phosphorylation of extracellular signal-regulated kinase 1/2 but only marginally affected JNK1/2 phosphorylation. Silibinin treatment also decreased constitutive p38 phosphorylation in the presence or absence of cytokine mixture. Downstream of these pathways, silibinin strongly decreased cytokine mixture-induced expression of hypoxia-inducible factor-1alpha without any considerable effect on Akt activation. Cytokine mixture-induced iNOS expression was completely inhibited by silibinin. Overall, these results suggest that silibinin could target multiple cytokine-induced signaling pathways to down-regulate iNOS expression in lung cancer cells and that could contribute to its overall cancer preventive efficacy against lung tumorigenesis.
Collapse
Affiliation(s)
- Manesh Chittezhath
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Box C238, East 4200 9th Street, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
1369
|
The neutrophil gelatinase-associated lipocalin (NGAL), a NF-kappaB-regulated gene, is a survival factor for thyroid neoplastic cells. Proc Natl Acad Sci U S A 2008; 105:14058-63. [PMID: 18768801 DOI: 10.1073/pnas.0710846105] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
NF-kappaB is constitutively activated in primary human thyroid tumors, particularly in those of anaplastic type. The inhibition of NF-kappaB activity in the human anaplastic thyroid carcinoma cell line, FRO, leads to an increased susceptibility to chemotherapeutic drug-induced apoptosis and to the blockage of their ability to form tumors in nude mice. To identify NF-kappaB target genes involved in thyroid cancer, we analyzed the secretome of conditioned media from parental and NF-kappaB-null FRO cells. Proteomic analysis revealed that the neutrophil gelatinase-associated lipocalin (NGAL), a protein involved in inflammatory and immune responses, is secreted by FRO cells whereas its expression is strongly reduced in the NF-kappaB-null FRO cells. NGAL is highly expressed in human thyroid carcinomas, and knocking down its expression blocks the ability of FRO cells to grow in soft agar and form tumors in nude mice. These effects are reverted by the addition of either recombinant NGAL or FRO conditioned medium. In addition, we show that the prosurvival activity of NGAL is mediated by its ability to bind and transport iron inside the cells. Our data suggest that NF-kappaB contributes to thyroid tumor cell survival by controlling iron uptake via NGAL.
Collapse
|
1370
|
Endo Y, Marusawa H, Kou T, Nakase H, Fujii S, Fujimori T, Kinoshita K, Honjo T, Chiba T. Activation-induced cytidine deaminase links between inflammation and the development of colitis-associated colorectal cancers. Gastroenterology 2008; 135:889-98, 898.e1-3. [PMID: 18691581 DOI: 10.1053/j.gastro.2008.06.091] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 05/06/2008] [Accepted: 06/05/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Activation-induced cytidine deaminase (AID) was originally identified as an inducer of somatic hypermutations in the immunoglobulin gene. We recently revealed that ectopic AID expression serves as a link between the cellular editing machinery and high mutation frequencies, leading to human cancer development. In the current study, we investigated whether AID might contribute to the development of colitis-associated colorectal cancers. METHODS The expression and regulation of AID in association with proinflammatory cytokine stimulation were investigated in cultured colonic cells. Genotoxic activity of AID in colonic cells was analyzed using retroviral system. Immunohistochemistry for AID was carried out on various human colonic tissues specimens. RESULTS Tumor necrosis factor-alpha induced aberrant AID expression via IkappaB kinase-dependent nuclear factor (NF)-kappaB-signaling pathways in human colonic epithelial cells. Moreover, AID expression was also induced in response to the T helper cell 2-driven cytokines interleukin-4 and interleukin-13, which are activated in human inflammatory bowel disease. Aberrant activation of AID in colonic cells preferentially induced genetic mutations in the TP53 gene, whereas there were no nucleotide alterations of the APC gene. Immunohistochemistry revealed enhanced expression of endogenous AID protein not only in the inflamed colonic mucosa of ulcerative colitis patients but also in tumor lesions of colitis-associated colorectal cancers. CONCLUSIONS Our findings indicate that proinflammatory cytokine-mediated aberrant expression of AID in colonic epithelial cells is a genotoxic factor linking inflammation, somatic mutations, and colorectal cancer development.
Collapse
Affiliation(s)
- Yoko Endo
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1371
|
Spoletini I, Gianni W, Repetto L, Bria P, Caltagirone C, Bossù P, Spalletta G. Depression and cancer: an unexplored and unresolved emergent issue in elderly patients. Crit Rev Oncol Hematol 2008; 65:143-55. [PMID: 18068997 DOI: 10.1016/j.critrevonc.2007.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 10/12/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022] Open
Abstract
Despite the high prevalence of depressive disorders in cancer patients and elderly people, the topic of depression in elderly cancer patients still remains unexplored. This emerges from a systematic review of the literature conducted to investigate issues of depression, diagnosis, pathogenesis, treatment and their complex neuroimmunobiological interactions. Indeed, it becomes apparent that depression in elderly patients with cancer may have a peculiar phenomenology. In addition, the moderate rate of major depressive disorder and the high rate of minor depressive disorder are accompanied by subthreshold forms of depression that are at risk to be underrecognized and untreated. Immune dysfunction may represent a common pathogenic ground of depression, cancer and aging. This may have important implications for treatment. In the near future, we need to develop validated mood disorder diagnoses and verify antidepressant treatment efficacy for elderly cancer patients with depression in order to improve their clinical outcome and quality of life.
Collapse
|
1372
|
Trejo-de la O A, Torres J, Pérez-Rodríguez M, Camorlinga-Ponce M, Luna LF, Abdo-Francis JM, Lazcano E, Maldonado-Bernal C. TLR4 single-nucleotide polymorphisms alter mucosal cytokine and chemokine patterns in Mexican patients with Helicobacter pylori-associated gastroduodenal diseases. Clin Immunol 2008; 129:333-40. [PMID: 18755634 DOI: 10.1016/j.clim.2008.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/09/2008] [Accepted: 07/09/2008] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is associated with peptic ulcer and gastric adenocarcinoma. Toll-like receptors (TLRs) participate in H. pylori recognition, and single-nucleotide polymorphisms (SNPs) in TLRs are associated with impaired immune response. We aimed to evaluate the association of TLR2/R753Q and TLR4/D299G/T399I SNPs with gastroduodenal diseases; and study the effect of SNPs on cytokine and chemokine expression in the gastric mucosa. Study included 450 Mexican patients with gastroduodenal diseases. SNPs in TLRs 2 and 4 genes were analyzed by allele-specific PCR. Cytokines and chemokines were assessed by qRT-PCR and immunoassay. TLR4/D299G/T399I polymorphisms were more frequent in duodenal ulcer and showed a trend in gastric cancer, when compared with non-atrophic gastritis. Patients with TLR4 polymorphisms expressed significantly lower levels of IL-1beta, IL-6, IL-8 and GRO-alpha; and higher levels of TNF-alpha, IL-10, MCP-1 and MIP-1alpha . SNPs in TLR4 gene had an association with severe H. pylori-associated disease and with modified pattern of inflammatory cytokines and chemokines in the gastric mucosa. These results suggest that TLR4 SNPs contributes importantly to the clinical outcome of H. pylori infection.
Collapse
Affiliation(s)
- Alejandra Trejo-de la O
- Unidad de Investigación en Enfermedades Infecciosas, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, México
| | | | | | | | | | | | | | | |
Collapse
|
1373
|
Meijer J, Ogink J, Kreike B, Nuyten D, de Visser KE, Roos E. The chemokine receptor CXCR6 and its ligand CXCL16 are expressed in carcinomas and inhibit proliferation. Cancer Res 2008; 68:4701-8. [PMID: 18559516 DOI: 10.1158/0008-5472.can-08-0482] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chemokine receptor CXCR6 and its ligand CXCL16 are involved in inflammation. Thus far, they were known to be expressed mainly by T cells and macrophages, respectively. However, we detected both in all of 170 human primary mammary carcinomas and at similar levels in all 8 human mammary carcinoma cell lines tested by microarray analysis. Expression was confirmed by reverse transcription-PCR and for the cell lines also by fluorescence-activated cell sorting analysis. CXCR6 and CXCL16 were also detected in several mouse and human mammary, colon, and pancreatic carcinoma cell lines. CXCL16 is a transmembrane protein from which the soluble chemokine can be cleaved off. The transmembrane form is present on the surface of the carcinoma cells. Surprisingly, suppression of either CXCR6 or CXCL16 led to greatly enhanced proliferation in vitro as well as in vivo, indicating that their interaction inhibits proliferation. This notion was verified using inhibitory antibodies and by introduction of CXCL16 into a rare CXCL16-negative cell line. The effect was mediated by the G protein-coupled receptor CXCR6 because it was blocked by the G(i) protein inhibitor pertussis toxin. In contrast, the soluble CXCL16 chemokine enhanced proliferation, and this was also mediated by CXCR6 but not via G(i) protein. It is remarkable that both CXCR6 and CXCL16 are expressed by all mammary carcinomas because cells that lose either acquire a growth advantage and should be selected during tumor progression. This suggests an unknown important role in tumor formation. Proteases, possibly macrophage derived, might convert inhibitory transmembrane CXCL16 into the stimulatory chemokine.
Collapse
Affiliation(s)
- Joost Meijer
- Divisions of Cell Biology, Radiotherapy, Experimental Therapy, and Molecular Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
1374
|
Germano G, Allavena P, Mantovani A. Cytokines as a key component of cancer-related inflammation. Cytokine 2008; 43:374-9. [PMID: 18701317 DOI: 10.1016/j.cyto.2008.07.014] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 12/17/2022]
Abstract
Inflammatory conditions in some tissues increase the risk of cancer. Cytokines and chemokines are components of an intensive dialog promoting angiogenesis, metastasis, subversion of adaptive immunity and changing response to hormones and to chemotherapeutic agents. Cytokines involved in cancer-related inflammation represent a target for innovative diagnostic and therapeutic strategies, and a future challenge for scientists and clinicians.
Collapse
Affiliation(s)
- Giovanni Germano
- Istituto Clinico Humanitas IRCCS, Via Manzoni 56, Rozzano, Milan, Italy
| | | | | |
Collapse
|
1375
|
Ono M. Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 2008; 99:1501-6. [PMID: 18754859 PMCID: PMC11158258 DOI: 10.1111/j.1349-7006.2008.00853.x] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Both inflammation and angiogenesis are exacerbated by increased production of chemokines/cytokines, growth factors, proteolytic enzymes, proteoglycans, lipid mediators and prostaglandins. It has been reported that approximately 15-20% of all malignancies are initiated or exacerbated by inflammation. Initiation and progression of cancer are also closely linked to angiogenesis. Infiltration of macrophages is a dramatic and common feature of inflammation, angiogenesis and cancer, and has been recently highlighted in an attempt to develop novel strategies for treating cancer. The recruitment and infiltration of macrophages in the tumor microenvironment activates them to support the malignant progression of cancer cells, and these macrophages are called tumor-associated macrophages. In a model of experimental angiogenesis using mouse corneas, macrophages infiltrated tissue in response to inflammatory cytokines and produced chemokines and angiogenesis-promoting factors, such as vascular endothelial growth factor-A, interleukin-8, matrix metalloproteinases, prostanoids and reactive oxygen species. Moreover, in a cancer xenograft model, inflammatory stimuli by a representative inflammatory cytokine, interleukin-1beta, enhanced tumor growth and angiogenesis with infiltration and activation of macrophages. Co-culture of cancer cells with macrophages synergistically stimulated production of various angiogenesis-related factors when stimulated by the inflammatory cytokine. This inflammatory angiogenesis in both mouse cornea and a tumor model was mediated, in part, by activation of nuclear factor kappaB and activator protein 1 (Jun/Fos). Administration of either nuclear factor kappaB-targeting drugs or cyclooxygenase 2 inhibitors or depletion of macrophages could block both inflammatory angiogenesis and tumor angiogenesis. Thus, both inflammatory and angiogenic responses in tumor stroma could be targets for development of anticancer therapeutic drugs.
Collapse
Affiliation(s)
- Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
1376
|
Shojaei F, Zhong C, Wu X, Yu L, Ferrara N. Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol 2008; 18:372-8. [PMID: 18614368 DOI: 10.1016/j.tcb.2008.06.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 05/21/2008] [Accepted: 06/02/2008] [Indexed: 01/17/2023]
|
1377
|
Vasto S, Carruba G, Lio D, Colonna-Romano G, Di Bona D, Candore G, Caruso C. Inflammation, ageing and cancer. Mech Ageing Dev 2008; 130:40-5. [PMID: 18671998 DOI: 10.1016/j.mad.2008.06.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 06/04/2008] [Accepted: 06/30/2008] [Indexed: 12/22/2022]
Abstract
Cancer is generally recognized as an age-related disease. In fact, incidence and mortality rates of most human cancers increase consistently with age up to 90 years, but they plateau and decline thereafter. A low-grade systemic inflammation characterizes ageing and this pro-inflammatory status underlies biological mechanisms responsible for age-related inflammatory diseases. On the other hand, clinical and epidemiological studies show a strong association between chronic infection, inflammation and cancer and indicate that even in tumours not directly linked to pathogens, the microenvironment is characterized by the presence of a smouldering inflammation, fuelled primarily by stromal leukocytes. In this review, we have briefly mentioned inflammatory mediators involved in cancer although we decided to choose the ones which show a strict association with ageing and longevity. Inflammation is necessary to manage with damaging agents and is crucial for survival. But, in our opinion, the pro-inflammatory status of ageing might be one of the mechanisms which relate cancer to ageing. The most appropriate inflammatory genes have been selected to survive and to reproduce. Paradoxically, inflammatory age-related diseases (including cancer) are the marks of the same evolutionistic trait. Centenarians are characterized by a higher frequency of genetic markers associated with better control of inflammation. The reduced capacity of centenarians to mount inflammatory responses appears to exert a protective effect towards the development of those age-related pathologies having a strong inflammatory pathogenetic component, including cancer. All in all, centenarians seem to carry a genetic background with a peculiar resistance to cancer which is also an anti-inflammatory profile.
Collapse
Affiliation(s)
- Sonya Vasto
- Dipartimento di Biopatologia e Metodologie Biomediche, Università di Palermo, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
1378
|
Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 2008; 3:e2599. [PMID: 18612415 PMCID: PMC2440522 DOI: 10.1371/journal.pone.0002599] [Citation(s) in RCA: 500] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/30/2008] [Indexed: 01/02/2023] Open
Abstract
Background There is growing awareness that tumour cells build up a “self-advantageous” microenvironment that reduces effectiveness of anti-tumour immune response. While many different immunosuppressive mechanisms are likely to come into play, recent evidence suggests that extracellular adenosine acting at A2A receptors may have a major role in down-modulating the immune response as cancerous tissues contain elevated levels of adenosine and adenosine break-down products. While there is no doubt that all cells possess plasma membrane adenosine transporters that mediate adenosine uptake and may also allow its release, it is now clear that most of extracellularly-generated adenosine originates from the catabolism of extracellular ATP. Methodology/Principal Findings Measurement of extracellular ATP is generally performed in cell supernatants by HPLC or soluble luciferin-luciferase assay, thus it generally turns out to be laborious and inaccurate. We have engineered a chimeric plasma membrane-targeted luciferase that allows in vivo real-time imaging of extracellular ATP. With this novel probe we have measured the ATP concentration within the tumour microenvironment of several experimentally-induced tumours. Conclusions/Significance Our results show that ATP in the tumour interstitium is in the hundrends micromolar range, while it is basically undetectable in healthy tissues. Here we show that a chimeric plasma membrane-targeted luciferase allows in vivo detection of high extracellular ATP concentration at tumour sites. On the contrary, tumour-free tissues show undetectable extracellular ATP levels. Extracellular ATP may be crucial for the tumour not only as a stimulus for growth but also as a source of an immunosuppressive agent such as adenosine. Our approach offers a new tool for the investigation of the biochemical composition of tumour milieu and for development of novel therapies based on the modulation of extracellular purine-based signalling.
Collapse
Affiliation(s)
- Patrizia Pellegatti
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy
| | | | - Giovanna Bianchi
- Laboratory of Oncology, Giannina Gaslini Institute, Genoa, Italy
| | | | - Vito Pistoia
- Laboratory of Oncology, Giannina Gaslini Institute, Genoa, Italy
| | - Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy
- * E-mail:
| |
Collapse
|
1379
|
Kloth JN, Gorter A, Fleuren GJ, Oosting J, Uljee S, Haar NT, Dreef EJ, Kenter GG, Jordanova ES. Elevated expression of SerpinA1 and SerpinA3 in HLA-positive cervical carcinoma. J Pathol 2008; 215:222-30. [DOI: 10.1002/path.2347] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
1380
|
Fukaya Y, Shimada H, Wang LC, Zandi E, DeClerck YA. Identification of Galectin-3-binding Protein as a Factor Secreted by Tumor Cells That Stimulates Interleukin-6 Expression in the Bone Marrow Stroma. J Biol Chem 2008; 283:18573-81. [DOI: 10.1074/jbc.m803115200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
1381
|
|
1382
|
Abstract
Cancer stem cells are defined as the unique subpopulation in the tumors that possess the ability to initiate tumor growth and sustain self-renewal as well as metastatic potential. Accumulating evidence in recent years strongly indicate the existence of cancer stem cells in solid tumors of a wide variety of organs. In this review, we will discuss the possible existence of a gastric cancer stem cell. Our recent data suggest that a subpopulation with a defined marker shows spheroid colony formation in serum-free media in vitro, as well as tumorigenic ability in immunodeficient mice in vivo. We will also discuss the possible origins of the gastric cancer stem cell from an organ-specific stem cell versus a recently recognized new candidate bone marrow-derived cell (BMDC). We have previously shown that BMDC contributed to malignant epithelial cells in the mouse model of Helicobacter-associated gastric cancer. On the basis of these findings from animal model, we propose that a similar phenomenon may also occur in human cancer biology, particularly in the cancer origin of other inflammation-associated cancers. The expanding research field of cancer stem-cell biology may offer a novel clinical apparatus to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Shigeo Takaishi
- Division of Digestive and Liver Disease, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
1383
|
Effect of Interleukin-10 Gene Polymorphisms on Clinical Outcome of Patients with Aggressive Non-Hodgkin's Lymphoma: An Exploratory Study. Clin Cancer Res 2008; 14:3777-84. [DOI: 10.1158/1078-0432.ccr-07-5182] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
1384
|
SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 2008; 112:1269-79. [PMID: 18524989 DOI: 10.1182/blood-2008-03-147033] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the evidence for the role of inflammation in cancer initiation, promotion, and progression, the precise mechanism by which the inflammation within tumor is orchestrated by inflammatory cells remains to be determined. Here, we report that tumor-infiltrating mast cells remodel tumor microenvironment and promote tumor growth. Mast cell infiltration and activation in tumors were mainly mediated by tumor-derived stem cell factor (SCF) and its receptor c-Kit on mast cells. Low concentrations of SCF efficiently induced the chemotactic migration of mast cells. Tumor-infiltrating mast cells, activated by higher concentrations of SCF, expressed multiple proinflammatory factors and increased IL-17 expression in tumors. The activity of NF-kappaB and AP-1 in tumor cells was intensified in the mast cell-remodeled inflammatory microenvironment. SCF-activated mast cells also exacerbated tumor immunosuppression by releasing adenosine and increasing T regulatory cells, which augmented the suppression of T cells and natural killer cells in tumors. These findings emphasize that the remodeling of the tumor microenvironment can actually be initiated by tumor cell-released SCF and suggest that mast cells are not only a participator but also a critical regulator of inflammation and immunosuppression in the tumor microenvironment.
Collapse
|
1385
|
Müller-Hermelink N, Braumüller H, Pichler B, Wieder T, Mailhammer R, Schaak K, Ghoreschi K, Yazdi A, Haubner R, Sander CA, Mocikat R, Schwaiger M, Förster I, Huss R, Weber WA, Kneilling M, Röcken M. TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 2008; 13:507-18. [PMID: 18538734 DOI: 10.1016/j.ccr.2008.04.001] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 05/23/2007] [Accepted: 04/08/2008] [Indexed: 12/12/2022]
Abstract
Immune responses may arrest tumor growth by inducing tumor dormancy. The mechanisms leading to either tumor dormancy or promotion of multistage carcinogenesis by adaptive immunity are poorly characterized. Analyzing T antigen (Tag)-induced multistage carcinogenesis in pancreatic islets, we show that Tag-specific CD4+ T cells home selectively into the tumor microenvironment around the islets, where they either arrest or promote transition of dysplastic islets into islet carcinomas. Through combined TNFR1 signaling and IFN-gamma signaling, Tag-specific CD4+ T cells induce antiangiogenic chemokines and prevent alpha(v)beta(3) integrin expression, tumor angiogenesis, tumor cell proliferation, and multistage carcinogenesis, without destroying Tag-expressing islet cells. In the absence of either TNFR1 signaling or IFN-gamma signaling, the same T cells paradoxically promote angiogenesis and multistage carcinogenesis. Thus, tumor-specific T cells can directly survey multistage carcinogenesis through cytokine signaling.
Collapse
MESH Headings
- Animals
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/metabolism
- Blood Glucose/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- CD4-Positive T-Lymphocytes/transplantation
- Cell Movement
- Cell Proliferation
- Cell Survival
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- Immunotherapy/methods
- Insulinoma/blood supply
- Insulinoma/genetics
- Insulinoma/immunology
- Insulinoma/metabolism
- Insulinoma/pathology
- Insulinoma/therapy
- Integrin alphaVbeta3/metabolism
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred C3H
- Mice, Knockout
- Mice, Transgenic
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Pancreatic Neoplasms/blood supply
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction
- Th1 Cells/immunology
- Th1 Cells/pathology
- Time Factors
- Whole-Body Irradiation
Collapse
Affiliation(s)
- Nele Müller-Hermelink
- Department of Dermatology, Eberhard Karls University, Liebermeisterstrasse 25, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1386
|
Chiurchiù V, Izzi V, D'Aquilio F, Carotenuto F, Di Nardo P, Baldini P. Brain Natriuretic Peptide (BNP) regulates the production of inflammatory mediators in human THP-1 macrophages. ACTA ACUST UNITED AC 2008; 148:26-32. [DOI: 10.1016/j.regpep.2008.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 02/20/2008] [Accepted: 02/25/2008] [Indexed: 01/21/2023]
|
1387
|
Badoual C, Bouchaud G, Agueznay NEH, Mortier E, Hans S, Gey A, Fernani F, Peyrard S, -Puig PL, Bruneval P, Sastre X, Plet A, Garrigue-Antar L, Quintin-Colonna F, Fridman WH, Brasnu D, Jacques Y, Tartour E. The Soluble α Chain of Interleukin-15 Receptor: A Proinflammatory Molecule Associated with Tumor Progression in Head and Neck Cancer. Cancer Res 2008; 68:3907-14. [PMID: 18483276 DOI: 10.1158/0008-5472.can-07-6842] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Cécile Badoual
- EA 4054 Université Paris Descartes, Faculté de Medecine; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1388
|
Engels EA. Inflammation in the development of lung cancer: epidemiological evidence. Expert Rev Anticancer Ther 2008; 8:605-15. [PMID: 18402527 DOI: 10.1586/14737140.8.4.605] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The lung is a site for repeated or chronic inflammatory insults. Epidemiologic research has provided evidence to support the hypothesis that tissue damage caused by inflammation can initiate or promote the development of lung cancer, possibly in conjunction with tobacco use. For example, some studies suggest an increased risk of lung cancer among persons with lung infections, such as tuberculosis, bacterial pneumonia, or inflammatory lung diseases. Elevated serum levels of C-reactive protein, an inflammation marker, are associated with heightened lung cancer risk. Recent studies also demonstrate increased lung cancer risk among immunosuppressed individuals infected with HIV. Other research indicates an association between genetic polymorphisms in the inflammation pathway, which might modulate the inflammatory response and lung cancer risk.
Collapse
Affiliation(s)
- Eric A Engels
- Infections & Immunoepidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, 6120 Executive Blvd, EPS 7076, Rockville, MD 20892, USA.
| |
Collapse
|
1389
|
Genetics of biliary tract diseases: new insights into gallstone disease and biliary tract cancers. Curr Opin Gastroenterol 2008; 24:363-71. [PMID: 18408466 DOI: 10.1097/mog.0b013e3282f79b32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Chronic biliary diseases are due to complex interactions between environmental and genetic factors. Here we summarize the current knowledge of genetic factors that contribute to common biliary diseases, focusing on gallstones and carcinogenesis, and review the recent association studies. RECENT FINDINGS Since most studies were based on small sample sizes, replication of the findings is mandatory. Recently a large twin study confirmed a genetic predisposition to gallstones and a genome-wide association scan identified the hepatocanalicular cholesterol transporter ABCG8 as the common susceptibility factor for gallstone disease. Genetic studies in patients with cholangiocarcinoma indicate that genes controlling the metabolism and transport of xenobiotics or modulating chronic inflammation may determine individual susceptibility. SUMMARY Genetic studies have identified the first susceptibility factors for gallstones and biliary tract cancers, but most results have yet to be replicated. In the future, genome-wide studies in different populations are likely to identify the entire set of genes contributing to chronic biliary diseases. Since the disease phenotypes result from the manifestation of susceptibility factors under the influence of environmental triggers, the discovery of these genes will open avenues to control environmental challenges and lead to novel strategies for risk assessment ('gene signatures') and prevention.
Collapse
|
1390
|
Abstract
The hepatic wound-healing response is a complex process involving many different cell types and factors. It leads to the formation of excessive matrix and a fibrotic scar, which ultimately disrupts proper functioning of the liver and establishes cirrhosis. Activated hepatic myofibroblasts, which are derived from cells such as hepatic stellate cells (HSCs), play a key role in this process. Upon chronic liver injury, there is an upregulation in the local neuroendocrine system and it has recently been demonstrated that activated HSCs express specific receptors and respond to different components of this system. Neuroendocrine factors and their receptors participate in a complex network that modulates liver inflammation and wound healing, and controls the development and progression of liver fibrosis. The first part of this review provides an overview of the molecular mechanisms governing hepatic wound healing. In the second section, we explore important components of the hepatic neuroendocrine system and their recently highlighted roles in HSC biology and hepatic fibrogenesis. We discuss the therapeutic interventions that are being developed for use in antifibrotic therapy.
Collapse
|
1391
|
Abstract
Cytokine signaling via a restricted number of Jak-Stat pathways positively and negatively regulates all cell types involved in the initiation, propagation, and resolution of inflammation. Here, we focus on Jak-Stat signaling in three major cell types involved in inflammatory responses: T cells, neutrophils, and macrophages. We summarize how the Jak-Stat pathways in these cells are negatively regulated by the Suppressor of cytokine signaling (Socs) proteins. We emphasize that common Jak-Stat-Socs signaling modules can have diverse developmental, pro- and anti-inflammatory outcomes depending on the cytokine receptor activated and which genes are accessible at a given time in a cell's life. Because multiple components of Jak-Stat-Socs pathways are mutated or closely associated with human inflammatory diseases, and cytokine-based therapies are increasingly deployed to treat inflammation, understanding cytokine signaling will continue to advance our ability to manipulate chronic and acute inflammatory diseases.
Collapse
Affiliation(s)
- John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20852, USA.
| | | |
Collapse
|
1392
|
Kacevska M, Robertson GR, Clarke SJ, Liddle C. Inflammation and CYP3A4-mediated drug metabolism in advanced cancer: impact and implications for chemotherapeutic drug dosing. Expert Opin Drug Metab Toxicol 2008; 4:137-49. [PMID: 18248309 DOI: 10.1517/17425255.4.2.137] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The inability to accurately predict treatment outcomes for cancer patients in terms of tumour response and anticancer drug toxicity is a severe limitation inherent in current approaches to chemotherapy. Many anticancer drugs are metabolically cleared by cytochrome P450 3A4 (CYP3A4), the predominant CYP expressed in liver. CYP3A4 expression exhibits marked interindividual variation and is repressed in acute inflammatory states. OBJECTIVES (1) To review the relevance of CYP3A4 variability to drug metabolism in the setting of cancer and to understand how inflammation associated with malignancy contributes to both this variability and to adverse treatment outcomes. (2) To examine the relationship between tumour-induced inflammation and repression of CYP3A4 and to explore methods of dosing of anticancer drugs in the setting of advanced cancer. METHODS Review of relevant literature covering both human and animal studies as well as in vitro mechanistic studies. RESULTS/CONCLUSIONS Interindividual variability in CYP3A4 expression is a major confounding factor for effective cancer treatment and methods to predict CYP3A4-mediated drug clearance may have clinical utility in this setting. Although acute inflammation has long been recognised to repress drug metabolism, it is now becoming apparent that cancer patients exhibiting clinical and laboratory features of an inflammatory response have reduced expression of CYP3A4 and possibly other genes relevant to anticancer drug disposition.
Collapse
Affiliation(s)
- Marina Kacevska
- University of Sydney, Storr Liver Unit, Westmead Millennium Institute, Westmead Hospital, Westmead, NSW, Australia
| | | | | | | |
Collapse
|
1393
|
Schulz S, Häussler U, Mandic R, Heverhagen JT, Neubauer A, Dünne AA, Werner JA, Weihe E, Bette M. Treatment with ozone/oxygen-pneumoperitoneum results in complete remission of rabbit squamous cell carcinomas. Int J Cancer 2008; 122:2360-7. [PMID: 18224691 DOI: 10.1002/ijc.23382] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) represent a group of metastasizing tumors with a high mortality rate in man and animals. Since the biomolecule ozone was found to inhibit growth of various carcinoma cells in vitro we here applied the highly aggressive and lethal VX2 carcinoma HNSCC tumor model of the New Zealand White rabbit to test whether ozone exerts antitumorous effects in vivo. Therapeutic insufflation of medical ozone/oxygen (O(3)/O(2)) gas mixture into the peritoneum (O(3)/O(2)-pneumoperitoneum) at an advanced stage of tumor disease led to a survival rate of 7/14 rabbits. Six of the seven surviving rabbits presented full tumor regression and the absence of local or distant lung metastases. Insufflation of pure oxygen (O(2)) resulted in a survival rate of 3/13 animals accompanied by full tumor remission in 2 of the 3 surviving animals. Of the 14 sham-treated animals only 1 had spontaneous tumor remission and survived. No adverse effects or changes in standard blood parameters were observed after repeated intraperitoneal insufflations of the O(3)/O(2) or O(2) gas. Animals with O(3)/O(2)-induced tumor eradication developed tolerance against reimplantation of the VX2 tumor. This could be reversed by immune suppression with a combination of dexamethasone and cyclosporin A suggesting an antitumorous effect of O(3)/O(2)-mediated activation of the body's own immunosurveillance. Although the exact mechanisms of action are still unclear the present data point to O(3)/O(2)-pneumoperitoneum as a promising new strategy in anticancer therapy.
Collapse
Affiliation(s)
- Siegfried Schulz
- Veterinary Services and Laboratory Animal Medicine, Philipps University Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
1394
|
Biswas SK, Sica A, Lewis CE. Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. THE JOURNAL OF IMMUNOLOGY 2008; 180:2011-7. [PMID: 18250403 DOI: 10.4049/jimmunol.180.4.2011] [Citation(s) in RCA: 312] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies have shown that macrophages play an important part in both tumor initiation and various key steps in growth and metastasis. These cells show a remarkable degree of plasticity during tumor development with a "switch" in macrophage phenotypes occurring during the course of tumor progression. During chronic inflammation they appear to predispose a given tissue to tumor initiation by the release of factors that promote neoplastic transformation. Following this, their phenotype shifts more toward one that is immunosuppressive and supports tumor growth, angiogenesis, and metastasis. In this review, we discuss the evidence for this plasticity of macrophage functions, the specific signaling mechanisms that may be regulating it, and the new targets for anticancer therapies highlighted by these findings.
Collapse
Affiliation(s)
- Subhra K Biswas
- Singapore Immunology Network, Biomedical Sciences Institutes, Agency for Science, Technology and Research, Singapore
| | | | | |
Collapse
|
1395
|
Borchers AT, Krishnamurthy A, Keen CL, Meyers FJ, Gershwin ME. The immunobiology of mushrooms. Exp Biol Med (Maywood) 2008; 233:259-76. [PMID: 18296732 DOI: 10.3181/0708-mr-227] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There has been enormous interest in the biologic activity of mushrooms and innumerable claims have been made that mushrooms have beneficial effects on immune function with subsequent implications for inhibition of tumor growth. The majority of these observations are anecdotal and often lack standardization. However, there remains considerable data on both in vitro and in vivo effects that reflect on the potential of mushroom compounds to influence human immunity. A number of these effects are beneficial but, unfortunately, many responses are still characterized based on phenomenology and there is more speculation than substance. With respect to tumor biology, although many neoplastic lesions are immunogenic, tumor antigens frequently are self antigens and induce tolerance and many patients with cancer exhibit suppressed immune responses, including defective antigen presentation. Therefore, if and when mushroom extracts are effective, they more likely function as a result of improved antigen presentation by dendritic cells than by a direct cytopathic effect. In this review we attempt to place these data in perspective, with a particular focus on dendritic cell populations and the ability of mushroom extracts to modulate immunity. There is, at present, no scientific basis for the use of either mushrooms or mushroom extracts in the treatment of human patients but there is significant potential for rigorous research to understand the potential of mushrooms in human disease and thence to focus on appropriate clinical trials to demonstrate effectiveness and/ or potential toxicity.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, University of California at Davis School of Medicine, 451 E. Health Sciences Drive, Suite 6510, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
1396
|
Neil JR, Schiemann WP. Altered TAB1:I kappaB kinase interaction promotes transforming growth factor beta-mediated nuclear factor-kappaB activation during breast cancer progression. Cancer Res 2008; 68:1462-70. [PMID: 18316610 DOI: 10.1158/0008-5472.can-07-3094] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The conversion of transforming growth factor beta (TGF-beta) from a tumor suppressor to a tumor promoter occurs frequently during mammary tumorigenesis, yet the molecular mechanisms underlying this phenomenon remain undefined. We show herein that TGF-beta repressed nuclear factor-kappaB (NF-kappaB) activity in normal NMuMG cells, but activated this transcription factor in their malignant counterparts, 4T1 cells, by inducing assembly of TGF-beta-activated kinase 1 (TAK1)-binding protein 1 (TAB1):I kappaB kinase beta (IKK beta) complexes, which led to the stimulation of a TAK1:IKK beta:p65 pathway. TAB1:IKK beta complexes could only be detected in NMuMG cells following their induction of epithelial-mesenchymal transition (EMT), which, on TGF-beta treatment, activated NF-kappaB. Expression of a truncated TAB1 mutant [i.e., TAB1(411)] reduced basal and TGF-beta-mediated NF-kappaB activation in NMuMG cells driven to undergo EMT by TGF-beta and in 4T1 cells stimulated by TGF-beta. TAB1(411) expression also inhibited TGF-beta-stimulated tumor necrosis factor-alpha and cyclooxygenase-2 expression in 4T1 cells. Additionally, the ability of human MCF10A-CA1a breast cancer cells to undergo invasion in response to TGF-beta absolutely required the activities of TAK1 and NF-kappaB. Moreover, small interfering RNA-mediated TAK1 deficiency restored the cytostatic activity of TGF-beta in MCF10A-CA1a cells. Finally, expression of truncated TAB1(411) dramatically reduced the growth of 4T1 breast cancers in syngeneic BALB/c, as well as in nude mice, suggesting a potentially important role of NF-kappaB in regulating innate immunity by TGF-beta. Collectively, our findings have defined a novel TAB1:TAK1:IKK beta:NF-kappaB signaling axis that forms aberrantly in breast cancer cells and, consequently, enables oncogenic signaling by TGF-beta.
Collapse
Affiliation(s)
- Jason R Neil
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | |
Collapse
|
1397
|
Zhu Y, Xu Y, Wei Y, Liang W, Liao M, Zhang L. Association of IL-1B Gene Polymorphisms with Nasopharyngeal Carcinoma in a Chinese Population. Clin Oncol (R Coll Radiol) 2008; 20:207-11. [DOI: 10.1016/j.clon.2008.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/20/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
|
1398
|
Sharma S, Dominguez AL, Hoelzinger DB, Lustgarten J. CpG-ODN but not other TLR-ligands restore the antitumor responses in old mice: the implications for vaccinations in the aged. Cancer Immunol Immunother 2008; 57:549-61. [PMID: 17828396 PMCID: PMC11031019 DOI: 10.1007/s00262-007-0393-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 08/15/2007] [Indexed: 12/11/2022]
Abstract
AIM There is accumulative evidence indicating that targeting antigen presenting cells (APCs) with different types of adjuvants could result in the induction of antitumor immune responses. It has been hypothesized that APCs function may be altered in the elderly contributing to a decline in the immune function. We evaluated whether targeting APCs following injection with Poly I:C, LPS, flagellin, imiquimod and CpG-ODN would induce an antitumor response in the old. MATERIALS AND METHODS The immune and antitumor responses induce Poly I:C, LPS, flagellin, imiquimod and CpG-ODN were compared in young (2 month old) and old (18 months) mice. RESULTS Our results indicated that only intratumoral (i.t.) injections of CpG-ODN completely rejected the tumor in both young and old mice. Injections of Poly I:C also induced the rejection of tumors in the young but not in the old. Furthermore, i.t. injections of CpG-ODN promoted the development of protective memory responses in the young and the old. Analysis of the immune responses in the old indicated that CpG-ODN but not Poly-I:C induces: a pro-inflammatory Th1 type response; accumulation and activation of CD4+, CD8+ T and, NK cell responses; activation of APCs; and reduction in the number of Tregs. The activation of these immune-parameters positively correlates with the induction of an antitumor response. CONCLUSIONS These studies indicate that there are differences in the level of stimulation with TLR-ligands between young and old APCs and that the aged immune responses can be rescued and exploited for the induction of tumor immunity by targeting APCs with specific TLR-ligands. These results have important clinical implications for developing immunization strategies containing TLR-ligands that will be effective in both the young and old.
Collapse
Affiliation(s)
- Sanjay Sharma
- Cancer Center Scottsdale, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ 85259 USA
| | - Ana Lucia Dominguez
- Cancer Center Scottsdale, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ 85259 USA
| | - Dominique B. Hoelzinger
- Cancer Center Scottsdale, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ 85259 USA
| | - Joseph Lustgarten
- Cancer Center Scottsdale, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ 85259 USA
| |
Collapse
|
1399
|
Hojilla CV, Wood GA, Khokha R. Inflammation and breast cancer: metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Res 2008; 10:205. [PMID: 18394187 PMCID: PMC2397522 DOI: 10.1186/bcr1980] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Two rapidly evolving fields are converging to impact breast cancer: one has identified novel substrates of metalloproteinases that alter immune cell function, and the other has revealed a role for inflammation in human cancers. Evidence now shows that the mechanisms underlying these two fields interact in the context of breast cancer, providing new opportunities to understand this disease and uncover novel therapeutic strategies. The metalloproteinase class of enzymes is well studied in mammary gland development and physiology, but mostly in the context of extracellular matrix modification. Aberrant metalloproteinase expression has also been implicated in breast cancer progression, where these genes act as tumor modifiers. Here, we review how the metalloproteinase axis impacts mammary physiology and tumorigenesis and is associated with inflammatory cell influx in human breast cancer, and evaluate its potential as a regulator of inflammation in the mammary gland.
Collapse
Affiliation(s)
- Carlo V Hojilla
- Department of Medical Biophysics, Ontario Cancer Institute, Toronto, M5G 2M9 Canada
| | | | | |
Collapse
|
1400
|
Chaturvedi PK, Bhui K, Shukla Y. Lupeol: connotations for chemoprevention. Cancer Lett 2008; 263:1-13. [PMID: 18359153 DOI: 10.1016/j.canlet.2008.01.047] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 01/19/2008] [Accepted: 01/21/2008] [Indexed: 12/17/2022]
Abstract
The perception of chemoprevention lies still in its infancy. Intervention, to slow down, arrest or reverse the process of carcinogenesis, by the use of either natural or synthetic substances individually or in combination therapy has emerged as a promising and pragmatic medical approach to reduce cancer risk. Pentacyclic lupane-type triterpenes exemplified by lupeol [lup-20(29)-en-3b-ol], are principally found in common fruit plants such as olive, mango, fig, etc. Although, lupeol exhibits an array of biological activities like anti-inflammatory, anti-arthritic, anti-mutagenic and anti-malarial activity both in in vitro and in vivo systems yet, extensive exploration in regard to establish its role as chemopreventive compound is warranted. Interest in developing lupeol based potent anti-neoplastic agents, has led to the discovery of a host of highly active derivatives exhibiting greater potencies and better therapeutic indices. This review asserts on the chemopreventive prospects of lupeol and reveals potential chemoprevention drug targets, central to which are the cell cycle regulatory pathway genes and tries to explain the mechanism operating behind its action.
Collapse
Affiliation(s)
- Pranav K Chaturvedi
- Proteomics Laboratory, Industrial Toxicology Research Centre, Environmental Carcinogenesis Division, P.O. Box 80, M.G. Marg, Lucknow 226001, India
| | | | | |
Collapse
|