1401
|
Gaajetaan GR, Bruggeman CA, Stassen FR. The type I interferon response during viral infections: a "SWOT" analysis. Rev Med Virol 2011; 22:122-37. [PMID: 21971992 PMCID: PMC7169250 DOI: 10.1002/rmv.713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/26/2011] [Accepted: 08/31/2011] [Indexed: 12/24/2022]
Abstract
The type I interferon (IFN) response is a strong and crucial moderator for the control of viral infections. The strength of this system is illustrated by the fact that, despite some temporary discomfort like a common cold or diarrhea, most viral infections will not cause major harm to the healthy immunocompetent host. To achieve this, the immune system is equipped with a wide array of pattern recognition receptors and the subsequent coordinated type I IFN response orchestrated by plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs). The production of type I IFN subtypes by dendritic cells (DCs), but also other cells is crucial for the execution of many antiviral processes. Despite this coordinated response, morbidity and mortality are still common in viral disease due to the ability of viruses to exploit the weaknesses of the immune system. Viruses successfully evade immunity and infection can result in aberrant immune responses. However, these weaknesses also open opportunities for improvement via clinical interventions as can be seen in current vaccination and antiviral treatment programs. The application of IFNs, Toll-like receptor ligands, DCs, and antiviral proteins is now being investigated to further limit viral infections. Unfortunately, a common threat during stimulation of immunity is the possible initiation or aggravation of autoimmunity. Also the translation from animal models to the human situation remains difficult. With a Strengths-Weaknesses-Opportunities-Threats ("SWOT") analysis, we discuss the interaction between host and virus as well as (future) therapeutic options, related to the type I IFN system.
Collapse
Affiliation(s)
- Giel R Gaajetaan
- Department of Medical Microbiology, Maastricht University Medical Center, The Netherlands
| | | | | |
Collapse
|
1402
|
Barth H, Rybczynska J, Patient R, Choi Y, Sapp RK, Baumert TF, Krawczynski K, Liang TJ. Both innate and adaptive immunity mediate protective immunity against hepatitis C virus infection in chimpanzees. Hepatology 2011; 54:1135-48. [PMID: 21674561 PMCID: PMC3184181 DOI: 10.1002/hep.24489] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 05/30/2011] [Indexed: 12/24/2022]
Abstract
UNLABELLED Understanding the immunological correlates associated with protective immunity following hepatitis C virus (HCV) reexposure is a prerequisite for the design of effective HCV vaccines and immunotherapeutics. In this study we performed a comprehensive analysis of innate and adaptive immunity following HCV reexposure of two chimpanzees that had previously recovered from HCV-JFH1 infection. One of the chimpanzees, CH10274, became protected from active viremia by repeated challenges with homologous HCV-JFH1 and developed neutralizing antibodies, but was later infected with high-level viremia by a heterologous challenge with the HCV H77 virus that persisted for more than 1 year. The other chimpanzee, CH10273, was protected from a similar, heterologous H77 challenge without any evidence of neutralizing antibodies. Peripheral HCV-specific T-cell responses were present in both chimpanzees after challenges and, interestingly, the overall magnitude of response was lower in uninfected CH10273, which, however, exhibited a more robust CD8+ T-cell response. CH10273 showed higher hepatic expression of CD8 and CD56 (natural killer) markers than CH10274 did shortly after inoculation with H77. The heightened T-cell response was associated with an enhanced hepatic production of interferons (both type I and II) and interferon-stimulated genes (ISGs) in CH10273. Therefore, protection or clearance of HCV reinfection upon heterologous rechallenge depends on the activation of both intrahepatic innate and cellular immune responses. Furthermore, our results suggest that serum neutralizing antibodies may contribute to early control of viral replication and spread after homologous HCV rechallenges but may not be sufficient for a long-term protective immunity. CONCLUSION Our study shows that protective immunity against HCV reinfection is orchestrated by a complex network of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Heidi Barth
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, USA
- Inserm, U748, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Jolanta Rybczynska
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA
| | - Romuald Patient
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, USA
- Inserm U966, Département de Biologie Cellulaire, Tours, France
| | - Youkyung Choi
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA
| | - Ronda K. Sapp
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, USA
| | - Thomas F. Baumert
- Inserm, U748, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Kris Krawczynski
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, USA
| |
Collapse
|
1403
|
Kropp KA, Robertson KA, Sing G, Rodriguez-Martin S, Blanc M, Lacaze P, Hassim MFBN, Khondoker MR, Busche A, Dickinson P, Forster T, Strobl B, Mueller M, Jonjic S, Angulo A, Ghazal P. Reversible inhibition of murine cytomegalovirus replication by gamma interferon (IFN-γ) in primary macrophages involves a primed type I IFN-signaling subnetwork for full establishment of an immediate-early antiviral state. J Virol 2011; 85:10286-99. [PMID: 21775459 PMCID: PMC3196417 DOI: 10.1128/jvi.00373-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/11/2011] [Indexed: 12/25/2022] Open
Abstract
Activated macrophages play a central role in controlling inflammatory responses to infection and are tightly regulated to rapidly mount responses to infectious challenge. Type I interferon (alpha/beta interferon [IFN-α/β]) and type II interferon (IFN-γ) play a crucial role in activating macrophages and subsequently restricting viral infections. Both types of IFNs signal through related but distinct signaling pathways, inducing a vast number of interferon-stimulated genes that are overlapping but distinguishable. The exact mechanism by which IFNs, particularly IFN-γ, inhibit DNA viruses such as cytomegalovirus (CMV) is still not fully understood. Here, we investigate the antiviral state developed in macrophages upon reversible inhibition of murine CMV by IFN-γ. On the basis of molecular profiling of the reversible inhibition, we identify a significant contribution of a restricted type I IFN subnetwork linked with IFN-γ activation. Genetic knockout of the type I-signaling pathway, in the context of IFN-γ stimulation, revealed an essential requirement for a primed type I-signaling process in developing a full refractory state in macrophages. A minimal transient induction of IFN-β upon macrophage activation with IFN-γ is also detectable. In dose and kinetic viral replication inhibition experiments with IFN-γ, the establishment of an antiviral effect is demonstrated to occur within the first hours of infection. We show that the inhibitory mechanisms at these very early times involve a blockade of the viral major immediate-early promoter activity. Altogether our results show that a primed type I IFN subnetwork contributes to an immediate-early antiviral state induced by type II IFN activation of macrophages, with a potential further amplification loop contributed by transient induction of IFN-β.
Collapse
Affiliation(s)
- Kai A. Kropp
- Division of Pathway Medicine and Centre of Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin A. Robertson
- Division of Pathway Medicine and Centre of Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre of Systems Biology at Edinburgh University, The King's Buildings, Edinburgh, United Kingdom
| | - Garwin Sing
- Division of Pathway Medicine and Centre of Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Rodriguez-Martin
- Division of Pathway Medicine and Centre of Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Mathieu Blanc
- Division of Pathway Medicine and Centre of Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Lacaze
- Division of Pathway Medicine and Centre of Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Muhamad F. B. Noor Hassim
- Division of Pathway Medicine and Centre of Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Mizanur R. Khondoker
- Division of Pathway Medicine and Centre of Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Andreas Busche
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Paul Dickinson
- Division of Pathway Medicine and Centre of Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre of Systems Biology at Edinburgh University, The King's Buildings, Edinburgh, United Kingdom
| | - Thorsten Forster
- Division of Pathway Medicine and Centre of Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre of Systems Biology at Edinburgh University, The King's Buildings, Edinburgh, United Kingdom
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Mueller
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stipan Jonjic
- Department for Histology and Embryology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ana Angulo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Peter Ghazal
- Division of Pathway Medicine and Centre of Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre of Systems Biology at Edinburgh University, The King's Buildings, Edinburgh, United Kingdom
| |
Collapse
|
1404
|
Liikanen I, Monsurrò V, Ahtiainen L, Raki M, Hakkarainen T, Diaconu I, Escutenaire S, Hemminki O, Dias JD, Cerullo V, Kanerva A, Pesonen S, Marzioni D, Colombatti M, Hemminki A. Induction of interferon pathways mediates in vivo resistance to oncolytic adenovirus. Mol Ther 2011; 19:1858-66. [PMID: 21792178 PMCID: PMC3188743 DOI: 10.1038/mt.2011.144] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oncolytic adenoviruses are an emerging experimental approach for treatment of tumors refractory to available modalities. Although preclinical results have been promising, and clinical safety has been excellent, it is also apparent that tumors can become virus resistant. The resistance mechanisms acquired by advanced tumors against conventional therapies are increasingly well understood, which has allowed development of countermeasures. To study this in the context of oncolytic adenovirus, we developed two in vivo models of acquired resistance, where initially sensitive tumors eventually gain resistance and relapse. These models were used to investigate the phenomenon on RNA and protein levels using two types of analysis of microarray data, quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. Interferon (IFN) signaling pathways were found upregulated and Myxovirus resistance protein A (MxA) expression was identified as a marker correlating with resistance, while transplantation experiments suggested a role for tumor stroma in maintaining resistance. Furthermore, pathway analysis suggested potential therapeutic targets in oncolytic adenovirus-resistant cells. Improved understanding of the antiviral phenotype causing tumor recurrence is of key importance in order to improve treatment of advanced tumors with oncolytic adenoviruses. Given the similarities between mechanisms of action, this finding might be relevant for other oncolytic viruses as well.
Collapse
Affiliation(s)
- Ilkka Liikanen
- Cancer Gene Therapy Group, Molecular Cancer Biology Program, Transplantation Laboratory, Haartman Institute and Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1405
|
Sagong M, Lee C. Porcine reproductive and respiratory syndrome virus nucleocapsid protein modulates interferon-β production by inhibiting IRF3 activation in immortalized porcine alveolar macrophages. Arch Virol 2011; 156:2187-95. [PMID: 21947566 PMCID: PMC7086947 DOI: 10.1007/s00705-011-1116-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/13/2011] [Indexed: 12/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection appears to elicit a weak innate immune response suppressing type 1 interferon (IFN) production. Recent studies have revealed that several nonstructural proteins encoded by the PRRSV genome independently antagonize the type 1 IFN system. The present study sought to identify the structural proteins that possess the immune evasion properties in immortalized porcine alveolar macrophages (PAM). Each structural protein gene was stably expressed in a porcine monocyte-derived macrophage cell line, PAM-pCD163, and tested for its potential to inhibit IFN-β induction. We then focused on the nucleocapsid (N) protein, which has a strong inhibitory effect on dsRNA-induced IFN-β production. Upon dsRNA stimulation, IFN-β production was shown to decrease proportionally with increasing levels of N expression. Furthermore, the PRRSV N protein was found to down-regulate IFN-dependent gene production by dsRNA. Taken together, these results indicate the ability of N to modulate the dsRNA-mediated IFN induction pathways. In addition, the N protein significantly interfered with dsRNA-induced phosphorylation and nuclear translocation of IRF3. Our data suggest that the PRRSV N protein is a responsible component, independent of other nonstructural elements, for evading the IFN response by antagonizing IRF3 activation.
Collapse
Affiliation(s)
- Mingeun Sagong
- Department of Microbiology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | | |
Collapse
|
1406
|
Sarojini S, Theofanis T, Reiss CS. Interferon-induced tetherin restricts vesicular stomatitis virus release in neurons. DNA Cell Biol 2011; 30:965-74. [PMID: 21919738 DOI: 10.1089/dna.2011.1384] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tetherin, a recently identified interferon (IFN)-inducible, type 2 transmembrane protein, has been shown to be a cellular antiviral restriction factor that retains newly formed virions in infected cells. Thus, tetherin plays an important role in the innate cell-autonomous immune response. The aim of this study was to examine the antiviral activities of tetherin in vesicular stomatitis virus infections of murine neuronal cells. Both IFN-β and IFN-γ induce the expression of tetherin mRNA and protein. Tetherin knockdown experiments were carried out by transfection of tethrin shRNA into murine neuroblastoma cells using a vector containing the pCMV-driven tGFP gene. The efficiency of transfection was monitored through GFP expression by the transfected cells. Selected transfected cells were used for further mRNA and protein analysis, fluorescent immunocytolocalization, and viral infection to study the impact of tetherin knockdown. Our research indicates that tetherin is expressed on the outer face of the plasma membrane of murine neuroblastoma cells, its expression can be induced with both IFN-γ and IFN-β, and tetherin restricts progeny virus release up to 100-fold in mammalian neurons, thus contributing to a potent antiviral state within the host cell.
Collapse
Affiliation(s)
- Sreeja Sarojini
- Biology Department, New York University, New York, New York, USA.
| | | | | |
Collapse
|
1407
|
Nejepinska J, Malik R, Filkowski J, Flemr M, Filipowicz W, Svoboda P. dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells. Nucleic Acids Res 2011; 40:399-413. [PMID: 21908396 PMCID: PMC3245926 DOI: 10.1093/nar/gkr702] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Double-stranded RNA (dsRNA) can enter different pathways in mammalian cells, including sequence-specific RNA interference (RNAi), sequence-independent interferon (IFN) response and editing by adenosine deaminases. To study the routing of dsRNA to these pathways in vivo, we used transgenic mice ubiquitously expressing from a strong promoter, an mRNA with a long hairpin in its 3′-UTR. The expressed dsRNA neither caused any developmental defects nor activated the IFN response, which was inducible only at high expression levels in cultured cells. The dsRNA was poorly processed into siRNAs in somatic cells, whereas, robust RNAi effects were found in oocytes, suggesting that somatic cells lack some factor(s) facilitating siRNA biogenesis. Expressed dsRNA did not cause transcriptional silencing in trans. Analysis of RNA editing revealed that a small fraction of long dsRNA is edited. RNA editing neither prevented the cytoplasmic localization nor processing into siRNAs. Thus, a long dsRNA structure is well tolerated in mammalian cells and is mainly causing a robust RNAi response in oocytes.
Collapse
Affiliation(s)
- Jana Nejepinska
- Institute of Molecular Genetics AS CR, Videnska 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
1408
|
Unterholzner L, Sumner RP, Baran M, Ren H, Mansur DS, Bourke NM, Randow F, Smith GL, Bowie AG. Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7. PLoS Pathog 2011; 7:e1002247. [PMID: 21931555 PMCID: PMC3169548 DOI: 10.1371/journal.ppat.1002247] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/17/2011] [Indexed: 12/24/2022] Open
Abstract
Recognition of viruses by pattern recognition receptors (PRRs) causes interferon-β (IFN-β) induction, a key event in the anti-viral innate immune response, and also a target of viral immune evasion. Here the vaccinia virus (VACV) protein C6 is identified as an inhibitor of PRR-induced IFN-β expression by a functional screen of select VACV open reading frames expressed individually in mammalian cells. C6 is a member of a family of Bcl-2-like poxvirus proteins, many of which have been shown to inhibit innate immune signalling pathways. PRRs activate both NF-κB and IFN regulatory factors (IRFs) to activate the IFN-β promoter induction. Data presented here show that C6 inhibits IRF3 activation and translocation into the nucleus, but does not inhibit NF-κB activation. C6 inhibits IRF3 and IRF7 activation downstream of the kinases TANK binding kinase 1 (TBK1) and IκB kinase-ε (IKKε), which phosphorylate and activate these IRFs. However, C6 does not inhibit TBK1- and IKKε-independent IRF7 activation or the induction of promoters by constitutively active forms of IRF3 or IRF7, indicating that C6 acts at the level of the TBK1/IKKε complex. Consistent with this notion, C6 immunoprecipitated with the TBK1 complex scaffold proteins TANK, SINTBAD and NAP1. C6 is expressed early during infection and is present in both nucleus and cytoplasm. Mutant viruses in which the C6L gene is deleted, or mutated so that the C6 protein is not expressed, replicated normally in cell culture but were attenuated in two in vivo models of infection compared to wild type and revertant controls. Thus C6 contributes to VACV virulence and might do so via the inhibition of PRR-induced activation of IRF3 and IRF7. A key event in the innate immune response to virus infection is the detection of pathogen-associated molecular patterns (PAMPs) such as viral DNA and RNA by cellular pattern recognition receptors (PRRs). This leads to expression of interferon-β (IFN-β) by an infected cell. Many viruses have evolved mechanisms to evade the induction of IFN-β. Here a screen of poorly characterized vaccinia virus (VACV) proteins identified protein C6 as an inhibitor of IFN-β induction by PRRs. Data presented show that C6 prevents the activation of the transcription factors IRF3 and IRF7 by the kinases TBK1 and IKKε, which are key components at the point of convergence of several PRR signalling pathways. C6 interacts with the scaffold proteins NAP1, TANK and SINTBAD, which are components of the protein complexes containing TBK1 and IKKε, and this interaction might modulate the activity of these kinases. C6 is expressed early during infection and contributes to virulence because viruses that do not express C6 are attenuated in two in vivo models compared to wild type and revertant control viruses.
Collapse
Affiliation(s)
- Leonie Unterholzner
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Rebecca P. Sumner
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Marcin Baran
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Hongwei Ren
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Daniel S. Mansur
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Nollaig M. Bourke
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Felix Randow
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
1409
|
Avunje S, Kim WS, Park CS, Oh MJ, Jung SJ. Toll-like receptors and interferon associated immune factors in viral haemorrhagic septicaemia virus-infected olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2011; 31:407-14. [PMID: 21689758 DOI: 10.1016/j.fsi.2011.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/24/2011] [Accepted: 06/05/2011] [Indexed: 05/20/2023]
Abstract
Pattern recognition receptor (PRR) toll-like receptors (TLRs), antiviral agent interferon (IFN) and the effector IFN stimulated genes (ISGs) play pivotal role in antiviral innate immunity of a host. The present in-vivo experiment was conducted to investigate the role of these innate immune factors in early phase as well as during recovery of viral haemorrhagic septicaemia virus (VHSV) infection by quantitative real-time reverse transcriptase polymerase chain reaction. A less lethal VHSV infection was generated in olive flounder (Paralichthys olivaceus) and was sampled at 3, 6, and 12h post infection (hpi), and 1, 2, 4, and 7 days post infection (dpi). At 3 hpi, the VHSV N gene was detected in three out of five fish and all five fish showed a relative fold increase of TLR 2, TLR 7, interleukin 8 (IL 8), IFN regulatory factor 3 (IRF 3), IRF 7, and ISG 15. Viral copies rapidly increased at 12 hpi then remained high until 2 dpi. When viral copy numbers were high, a higher expression of immune genes IL 1β, IRF 3, IRF 7, Type I IFN, ISG 15 and Mx was observed. Viral copies were drastically reduced in 4 and 7 dpi fish, and also the immune response was considerably reduced but remained elevated, except for ISG 15 which found equal to control in 7 dpi fish. A high degree of correlation was observed between immune genes and viral copy number in each of the sampled fish at 12 hpi. A fish with ascites sampled at 7 dpi displayed high viral copy but under-expressed immune genes except for Mx. When viral copies were high at 1 and 2 dpi, both TLR 2 and TLR 7 were down-regulated, perhaps indicating immune suppression by the virus. The quick and prolonged elevated expression of the immune genes indicates their crucial role in survival of host against VHSV.
Collapse
Affiliation(s)
- Satheesha Avunje
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Chonnam, Republic of Korea
| | | | | | | | | |
Collapse
|
1410
|
Gerlier D, Lyles DS. Interplay between innate immunity and negative-strand RNA viruses: towards a rational model. Microbiol Mol Biol Rev 2011; 75:468-90, second page of table of contents. [PMID: 21885681 PMCID: PMC3165544 DOI: 10.1128/mmbr.00007-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of a new class of cytosolic receptors recognizing viral RNA, called the RIG-like receptors (RLRs), has revolutionized our understanding of the interplay between viruses and host cells. A tremendous amount of work has been accumulating to decipher the RNA moieties required for an RLR agonist, the signal transduction pathway leading to activation of the innate immunity orchestrated by type I interferon (IFN), the cellular and viral regulators of this pathway, and the viral inhibitors of the innate immune response. Previous reviews have focused on the RLR signaling pathway and on the negative regulation of the interferon response by viral proteins. The focus of this review is to put this knowledge in the context of the virus replication cycle within a cell. Likewise, there has been an expansion of knowledge about the role of innate immunity in the pathophysiology of viral infection. As a consequence, some discrepancies have arisen between the current models of cell-intrinsic innate immunity and current knowledge of virus biology. This holds particularly true for the nonsegmented negative-strand viruses (Mononegavirales), which paradoxically have been largely used to build presently available models. The aim of this review is to bridge the gap between the virology and innate immunity to favor the rational building of a relevant model(s) describing the interplay between Mononegavirales and the innate immune system.
Collapse
Affiliation(s)
- Denis Gerlier
- INSERM U758, CERVI, 21 avenue Tony Garnier, 69007 Lyon, France.
| | | |
Collapse
|
1411
|
Abstract
Adenoviruses are the most commonly used vectors for gene therapy. Despite the promising safety profile demonstrated in clinical trials, the efficacy of using adenoviruses for gene therapy is poor. A major hurdle to adenoviral-mediated gene therapy is the innate immune system. Cell-mediated recognition of viruses via capsid components or nucleic acids has received significant attention, principally thought to be regulated by the toll-like receptors (TLRs). Antiviral innate immune responses are initiated by the infected cell, which activates the interferon (IFN) response to block viral replication, while simultaneously releasing chemokines to attract neutrophils, mononuclear- and natural killer-cells. While the IFN and cellular recruitment pathways are activated and regulated independently of each other, both are required to overcome immune escape mechanisms by adenoviruses. Recent work has shown that the generation of adenoviral vectors lacking specific transcriptionally-active regions decreases immune system activation and increases the chance for immune escape. In this review, we elucidate how adenoviral vector modifications alter the IFN and innate inflammatory pathway response and propose future targets with clinically-translational relevance.
Collapse
|
1412
|
Improved knockout methodology reveals that frog virus 3 mutants lacking either the 18K immediate-early gene or the truncated vIF-2alpha gene are defective for replication and growth in vivo. J Virol 2011; 85:11131-8. [PMID: 21865381 DOI: 10.1128/jvi.05589-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
To better assess the roles of frog virus 3 (FV3; genus Ranavirus, family Iridoviridae) genes in virulence and immune evasion, we have developed a reliable and efficient method to systematically knock out (KO) putative virulence genes by site-specific integration into the FV3 genome. Our approach utilizes a dual selection marker consisting of the puromycin resistance gene fused in frame with the enhanced green fluorescent protein (EGFP) reporter (Puro-EGFP cassette) under the control of the FV3 immediate-early (IE) 18K promoter. By successive rounds of selection for puromycin resistance and GFP expression, we have successfully constructed three recombinant viruses. In one, a "knock-in" mutant was created by inserting the Puro-EGFP cassette into a noncoding region of the FV3 genome (FV3-Puro/GFP). In the remaining two, KO mutants were constructed by replacement of the truncated viral homolog of eIF-2α (FV3-ΔvIF-2α) or the 18K IE gene (FV3-Δ18K) with the Puro-EGFP cassette. The specificity of recombination and the clonality of each mutant were confirmed by PCR, sequencing, and immunofluorescence microscopy. Viral replication of each recombinant in cell culture was similar to that of parental FV3; however, infection in Xenopus laevis tadpoles revealed that FV3-ΔvIF-2α and FV3-Δ18K replicated less and resulted in lower mortality than did GFP-FV3 and wild-type FV3. Our results suggest that 18K, which is conserved in all ranaviruses, and the truncated vIF-2α gene contribute to virulence. In addition, our study describes a powerful methodology that lays the foundation for the discovery of potentially new ranaviral genes involved in virulence and immune escape.
Collapse
|
1413
|
Christmann RB, Hayes E, Pendergrass S, Padilla C, Farina G, Affandi AJ, Whitfield ML, Farber HW, Lafyatis R. Interferon and alternative activation of monocyte/macrophages in systemic sclerosis-associated pulmonary arterial hypertension. ACTA ACUST UNITED AC 2011; 63:1718-28. [PMID: 21425123 DOI: 10.1002/art.30318] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To explore the relationship between biomarkers of pulmonary arterial hypertension (PAH), interferon (IFN)-regulated gene expression, and the alternative activation pathway in systemic sclerosis (SSc). METHODS Peripheral blood mononuclear cells (PBMCs) were purified from healthy controls, patients with idiopathic PAH, and SSc patients (classified as having diffuse cutaneous SSc, limited cutaneous SSc [lcSSc] without PAH, and lcSSc with PAH). IFN-regulated and "PAH biomarker" genes were compared after supervised hierarchical clustering. Messenger RNA levels of selected IFN-regulated genes (Siglec1 and MX1), biomarker genes (IL13RA1, CCR1, and JAK2), and the alternative activation marker gene (MRC1) were analyzed on PBMCs and on CD14- and CD14+ cell populations. Interleukin-13 (IL-13) and IL-4 concentrations were measured in plasma by immunoassay. CD14, MRC1, and IL13RA1 surface expression was analyzed by flow cytometry. RESULTS Increased PBMC expression of both IFN-regulated and biomarker genes distinguished SSc patients from healthy controls. Expression of genes in the biomarker cluster, but not in the IFN-regulated cluster, distinguished lcSSc with PAH from lcSSc without PAH. The genes CCR1 (P<0.001) and JAK2 (P<0.001) were expressed more highly in lcSSc patients with PAH compared with controls and mainly by CD14+ cells. MRC1 expression was increased exclusively in lcSSc patients with PAH (P<0.001) and correlated strongly with pulmonary artery pressure (r=0.52, P=0.03) and higher mortality (P=0.02). MRC1 expression was higher in CD14+ cells and was greatly increased by stimulation with IL-13. IL-13 concentrations in plasma were most highly increased in lcSSc patients with PAH (P<0.001). CONCLUSION IFN-regulated and biomarker genes represent distinct, although related, clusters in lcSSc patients with PAH. MRC1, a marker for the effect of IL-13 on alternative monocyte/macrophage activation, is associated with this severe complication and is related to mortality.
Collapse
Affiliation(s)
- Romy B Christmann
- Boston University School of Medicine, E501 Arthritis Center, Boston, Massachusetts 02118-2526, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1414
|
Varicella-zoster virus immediate-early protein ORF61 abrogates the IRF3-mediated innate immune response through degradation of activated IRF3. J Virol 2011; 85:11079-89. [PMID: 21835786 DOI: 10.1128/jvi.05098-11] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Varicella-zoster virus (VZV) infection of differentiated cells within the host and establishment of latency likely requires evasion of innate immunity and limits secretion of antiviral cytokines. Here we report that its immediate-early protein ORF61 antagonizes the beta interferon (IFN-β) pathway. VZV infection down-modulated the Sendai virus (SeV)-activated IFN-β pathway, including mRNA of IFN-β and its downstream interferon-stimulated genes (ISGs), ISG54 and ISG56. Through a primary screening of VZV genes, we found that ORF61 inhibited SeV-mediated activation of IFN-β and ISRE (IFN-stimulated response element) promoter activities but only slightly affected NF-κB promoter activity, implying that the IFN-β pathway may be blocked in the IRF3 branch. An indirect immunofluorescence assay demonstrated that ectopic expression of ORF61 abrogated the detection of IRF3 in SeV-infected cells; however, it did not affect endogenous dormant IRF3 in noninfected cells. Additionally, ORF61 was shown to be partially colocalized with activated IRF3 in the nucleus upon treatment with MG132, an inhibitor of proteasomes, and the direct interaction between ORF61 and activated IRF3 was confirmed by a coimmunoprecipitation assay. Furthermore, Western blot analysis demonstrated that activated IRF3 was ubiquitinated in the presence of ORF61, suggesting that ORF61 degraded phosphorylated IRF3 via a ubiquitin-proteasome pathway. Semiquantitative reverse transcription-PCR (RT-PCR) analysis demonstrated that the level of ISG54 and ISG56 mRNAs was also downregulated by ORF61. Taken together, our results convincingly demonstrate that ORF61 down-modulates the IRF3-mediated IFN-β pathway by degradation of activated IRF3 via direct interaction, which may contribute to the pathogenesis of VZV infection.
Collapse
|
1415
|
Gugliesi F, Dell'Oste V, De Andrea M, Baggetta R, Mondini M, Zannetti C, Bussolati B, Camussi G, Gariglio M, Landolfo S. Tumor-Derived Endothelial Cells Evade Apoptotic Activity of the Interferon-Inducible IFI16 Gene. J Interferon Cytokine Res 2011; 31:609-18. [DOI: 10.1089/jir.2011.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Francesca Gugliesi
- Department of Public Health and Microbiology, Medical School, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Microbiology, Medical School, University of Turin, Turin, Italy
| | - Marco De Andrea
- Department of Public Health and Microbiology, Medical School, University of Turin, Turin, Italy
- Department of Clinical and Experimental Medicine, Medical School, University of Eastern Piedmont “A. Avogadro,” Novara, Italy
| | - Rossella Baggetta
- Department of Public Health and Microbiology, Medical School, University of Turin, Turin, Italy
| | - Michele Mondini
- Department of Clinical and Experimental Medicine, Medical School, University of Eastern Piedmont “A. Avogadro,” Novara, Italy
| | - Claudia Zannetti
- Infection and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Benedetta Bussolati
- Department of Internal Medicine, Center for Experimental Research and Medical Studies, San Giovanni Battista Hospital, Turin, Italy
| | - Gianni Camussi
- Department of Internal Medicine, Center for Experimental Research and Medical Studies, San Giovanni Battista Hospital, Turin, Italy
| | - Marisa Gariglio
- Department of Clinical and Experimental Medicine, Medical School, University of Eastern Piedmont “A. Avogadro,” Novara, Italy
| | - Santo Landolfo
- Department of Public Health and Microbiology, Medical School, University of Turin, Turin, Italy
| |
Collapse
|
1416
|
Luo R, Fang L, Jin H, Jiang Y, Wang D, Chen H, Xiao S. Antiviral activity of type I and type III interferons against porcine reproductive and respiratory syndrome virus (PRRSV). Antiviral Res 2011; 91:99-101. [PMID: 21569798 DOI: 10.1016/j.antiviral.2011.04.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 04/22/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
The newly identified type III interferons (IFNs), also known as IFN-λ1/IL-29, IFN-λ2/IL-28A and IFN-λ3/IL-28B, like type I IFNs, have antiviral activity against a broad spectrum of viruses. We therefore examined whether type III IFNs, as well as type I IFNs, has the ability to inhibit porcine reproductive and respiratory syndrome virus (PRRSV) replication in MARC-145 cells. We found that replication of PRRSV in MARC-145 cells was significantly reduced following treatment with IFN-λ1, IFN-λ2 and IFN-λ3, respectively, and such inhibition was dose-dependent. However, type III IFNs (IFN-λ1, IFN-λ2 and IFN-λ3) was less effective than type I IFNs (IFN-α and IFN-β) in antiviral activity against PRRSV. Mixture of two types of IFNs could not improve the antiviral activity of each type alone. In addition, all types of IFNs in our study were able to induce the expression of ISG56, 2',5'-OAS and MxA in MARC-145 cells. These data demonstrate that type III IFNs had antiviral activity against PRRSV and may serve as useful antiviral agents against infectious swine diseases.
Collapse
Affiliation(s)
- Rui Luo
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
1417
|
Chopy D, Detje CN, Lafage M, Kalinke U, Lafon M. The type I interferon response bridles rabies virus infection and reduces pathogenicity. J Neurovirol 2011; 17:353-67. [PMID: 21805057 DOI: 10.1007/s13365-011-0041-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/25/2011] [Accepted: 06/10/2011] [Indexed: 12/24/2022]
Abstract
Rabies virus (RABV) is a neurotropic virus transmitted by the bite of an infected animal that triggers a fatal encephalomyelitis. During its migration in the nervous system (NS), RABV triggers an innate immune response, including a type I IFN response well known to limit viral infections. We showed that although the neuroinvasive RABV strain CVS-NIV dampens type I IFN signaling by inhibiting IRF3 phosphorylation and STAT2 translocation, an early and transient type I IFN response is still triggered in the infected neuronal cells and NS. This urged us to investigate the role of type I IFN on RABV infection. We showed that primary mouse neurons (DRGs) of type I IFN(α/β) receptor deficient mice (IFNAR(-/-) mice) were more susceptible to RABV than DRGs of WT mice. In addition, exogenous type I IFN is partially efficient in preventing and slowing down infection in human neuroblastoma cells. Intra-muscular inoculation of type I IFNAR deficient mice [IFNAR(-/-) mice and NesCre ((+/-)) IFNAR ((flox/flox)) mice lacking IFNAR in neural cells of neuroectodermal origin only] with RABV reveals that the type I IFN response limits RABV dissemination in the inoculated muscle, slows down invasion of the spinal cord, and delays mortality. Thus, the type I IFN which is still produced in the NS during RABV infection is efficient enough to reduce neuroinvasiveness and pathogenicity and partially protect the host from fatal infection.
Collapse
Affiliation(s)
- Damien Chopy
- Département de Virologie Institut Pasteur, Unité de Neuroimmunologie Virale, 75015, Paris, France
| | | | | | | | | |
Collapse
|
1418
|
Rider TH, Zook CE, Boettcher TL, Wick ST, Pancoast JS, Zusman BD. Broad-spectrum antiviral therapeutics. PLoS One 2011; 6:e22572. [PMID: 21818340 PMCID: PMC3144912 DOI: 10.1371/journal.pone.0022572] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/24/2011] [Indexed: 12/24/2022] Open
Abstract
Currently there are relatively few antiviral therapeutics, and most which do exist are highly pathogen-specific or have other disadvantages. We have developed a new broad-spectrum antiviral approach, dubbed Double-stranded RNA (dsRNA) Activated Caspase Oligomerizer (DRACO) that selectively induces apoptosis in cells containing viral dsRNA, rapidly killing infected cells without harming uninfected cells. We have created DRACOs and shown that they are nontoxic in 11 mammalian cell types and effective against 15 different viruses, including dengue flavivirus, Amapari and Tacaribe arenaviruses, Guama bunyavirus, and H1N1 influenza. We have also demonstrated that DRACOs can rescue mice challenged with H1N1 influenza. DRACOs have the potential to be effective therapeutics or prophylactics for numerous clinical and priority viruses, due to the broad-spectrum sensitivity of the dsRNA detection domain, the potent activity of the apoptosis induction domain, and the novel direct linkage between the two which viruses have never encountered.
Collapse
Affiliation(s)
- Todd H Rider
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
1419
|
Choi MK, Moon CH, Ko MS, Lee UH, Cho WJ, Cha SJ, Do JW, Heo GJ, Jeong SG, Hahm YS, Harmache A, Bremont M, Kurath G, Park JW. A nuclear localization of the infectious haematopoietic necrosis virus NV protein is necessary for optimal viral growth. PLoS One 2011; 6:e22362. [PMID: 21814578 PMCID: PMC3141031 DOI: 10.1371/journal.pone.0022362] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/22/2011] [Indexed: 12/14/2022] Open
Abstract
The nonvirion (NV) protein of infectious hematopoietic necrosis virus (IHNV) has been previously reported to be essential for efficient growth and pathogenicity of IHNV. However, little is known about the mechanism by which the NV supports the viral growth. In this study, cellular localization of NV and its role in IHNV growth in host cells was investigated. Through transient transfection in RTG-2 cells of NV fused to green fluorescent protein (GFP), a nuclear localization of NV was demonstrated. Deletion analyses showed that the (32)EGDL(35) residues were essential for nuclear localization of NV protein, and fusion of these 4 amino acids to GFP directed its transport to the nucleus. We generated a recombinant IHNV, rIHNV-NV-ΔEGDL in which the (32)EGDL(35) was deleted from the NV. rIHNVs with wild-type NV (rIHNV-NV) or with the NV gene replaced with GFP (rIHNV-ΔNV-GFP) were used as controls. RTG-2 cells infected with rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL yielded 12- and 5-fold less infectious virion, respectively, than wild type rIHNV-infected cells at 48 h post-infection (p.i.). While treatment with poly I∶C at 24 h p.i. did not inhibit replication of wild-type rIHNVs, replication rates of rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL were inhibited by poly I∶C. In addition, both rIHNV-ΔNV and rIHNV-NV-ΔEGDL induced higher levels of expressions of both IFN1 and Mx1 than wild-type rIHNV. These data suggest that the IHNV NV may support the growth of IHNV through inhibition of the INF system and the amino acid residues of (32)EGDL(35) responsible for nuclear localization are important for the inhibitory activity of NV.
Collapse
Affiliation(s)
- Myeong Kyu Choi
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1420
|
Evasion and subversion of interferon-mediated antiviral immunity by Kaposi's sarcoma-associated herpesvirus: an overview. J Virol 2011; 85:10934-44. [PMID: 21775463 DOI: 10.1128/jvi.00687-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Viral invasion of a host cell triggers immune responses with both innate and adaptive components. The innate immune response involving the induction of type I interferons (alpha and beta interferons [IFN-α and -β]) constitutes the first line of antiviral defenses. The type I IFNs signal the transcription of a group of antiviral effector proteins, the IFN-stimulated genes (ISGs), which target distinct viral components and distinct stages of the viral life cycle, aiming to eliminate invading viruses. In the case of Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma (KS), a sudden upsurge of type I IFN-mediated innate antiviral signals is seen immediately following both primary de novo infection and viral lytic reactivation from latency. Potent subversion of these responses thus becomes mandatory for the successful establishment of a primary infection following viral entry as well as for efficient viral assembly and egress. This review gives a concise overview of the induction of the type I IFN signaling pathways in response to viral infection and provides a comprehensive understanding of the antagonizing effects exerted by KSHV on type I IFN pathways wielded at various stages of the viral life cycle. Information garnered from this review should result in a better understanding of KSHV biology essential for the development of immunotherapeutic strategies targeted toward KSHV-associated malignancies.
Collapse
|
1421
|
Li Y, Si R, Feng Y, Chen HH, Zou L, Wang E, Zhang M, Warren HS, Sosnovik DE, Chao W. Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and Toll-like receptor 4. J Biol Chem 2011; 286:31308-19. [PMID: 21775438 DOI: 10.1074/jbc.m111.246124] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Innate immune response after transient ischemia is the most common cause of myocardial inflammation and may contribute to injury, yet the detailed signaling mechanisms leading to such a response are not well understood. Herein we tested the hypothesis that myocardial ischemia activates interleukin receptor-associated kinase-1 (IRAK-1), a kinase critical for the innate immune signaling such as that of Toll-like receptors (TLRs), via a mechanism that involves heat shock proteins (HSPs) and TLRs. Coronary artery occlusion induced a rapid myocardial IRAK-1 activation within 30 min in wild-type (WT), TLR2(-/-), or Trif(-/-) mice, but not in TLR4(def) or MyD88(-/-) mice. HSP60 protein was markedly increased in serum or in perfusate of isolated heart following ischemia/reperfusion (I/R). In vitro, recombinant HSP60 induced IRAK-1 activation in cells derived from WT, TLR2(-/-), or Trif(-/-) mice, but not from TLR4(def) or MyD88(-/-) mice. Both myocardial ischemia- and HSP60-induced IRAK-1 activation was abolished by anti-HSP60 antibody. Moreover, HSP60 treatment of cardiomyocytes (CMs) led to marked activation of caspase-8 and -3, but not -9. Expression of dominant-negative mutant of Fas-associated death domain protein or a caspase-8 inhibitor completely blocked HSP60-induced caspase-8 activation, suggesting that HSP60 likely activates an apoptotic program via the death-receptor pathway. In vivo, I/R-induced myocardial apoptosis and cytokine expression were significantly attenuated in TLR4(def) mice or in WT mice treated with anti-HSP60 antibody compared with WT controls. Taken together, the current study demonstrates that myocardial ischemia activates an innate immune signaling via HSP60 and TLR4, which plays an important role in mediating apoptosis and inflammation during I/R.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1422
|
Su C, Hou Z, Zhang C, Tian Z, Zhang J. Ectopic expression of microRNA-155 enhances innate antiviral immunity against HBV infection in human hepatoma cells. Virol J 2011; 8:354. [PMID: 21762537 PMCID: PMC3169510 DOI: 10.1186/1743-422x-8-354] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/18/2011] [Indexed: 02/06/2023] Open
Abstract
Background Host innate antiviral immunity is the first line of defense against viral infection, and is precisely regulated by thousands of genes at various stages, including microRNAs. MicroRNA-155 (miR-155) was found to be up-regualted during viral infection, and influence the host immune response. Besides, the expression of miR-155, or its functional orthologs, may also contribute to viral oncogenesis. HBV is known to cause hepatocellular carcinoma, and there is evidence that attenuated intracellular immune response is the main reason for HBV latency. Thus, we assume miR-155 may affect the immune response during HBV infection in human hepatoma cells. Results We found that ectopic expression of miR-155 upregulated the expression of several IFN-inducible antiviral genes in human hepatoma cells. And over-expression of miR-155 suppressed suppressor of cytokine signaling 1 (SOCS1) expression and subsequently enhanced signal transducers and activators of transcription1 (STAT1) and signal transducers and activators of transcription3 (STAT3) phosphorylation. We further demonstrate that ectopic expression of miR-155 inhibits HBV X gene expression to some extent in vitro. Conclusion MiR-155 enhances innate antiviral immunity through promoting JAK/STAT signaling pathway by targeting SOCS1, and mildly inhibits HBV infection in human hepatoma cells.
Collapse
Affiliation(s)
- Chenhe Su
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | | | |
Collapse
|
1423
|
Kuhl BD, Sloan RD, Donahue DA, Liang C, Wainberg MA. Vpu-mediated tetherin antagonism of ongoing HIV-1 infection in CD4(+) T-cells is not directly related to the extent of tetherin cell surface downmodulation. Virology 2011; 417:353-61. [PMID: 21757214 DOI: 10.1016/j.virol.2011.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/23/2011] [Accepted: 06/16/2011] [Indexed: 11/30/2022]
Abstract
Tetherin is a host cell restriction factor that acts against HIV-1 and other enveloped viruses. The antiviral activity of tetherin is antagonized by the HIV-1 protein Vpu, that downregulates tetherin from the cell surface. Here, we report the specific detection of cell surface tetherin levels in primary activated CD4(+) T-cells and in CD4(+) T-cell lines. Differences were observed regarding tetherin cell surface expression, Vpu-mediated tetherin downmodulation and promotion of virus release. However, Vpu expression in all T-cell lines resulted in a 2-fold increase in numbers of infected cells after three days. This implies a Vpu-mediated effect in ongoing infection and possibly in cell-to-cell viral spread that is independent of the extent of Vpu-mediated tetherin cell surface downmodulation. Endogenous cell surface tetherin levels in T-cell lines were also downmodulated following infection with Vpu-deleted virus, suggesting an additional Vpu-independent mechanism of tetherin cell surface downmodulation following HIV-1 infection in T-cell lines.
Collapse
Affiliation(s)
- Björn D Kuhl
- McGill University AIDS Center, Lady Davis Institute, Jewish General Hospital, Montréal, Canada.
| | | | | | | | | |
Collapse
|
1424
|
Li L, Wang D, Jiang Y, Sun J, Zhang S, Chen Y, Wang X. Crystal structure of human ISG15 protein in complex with influenza B virus NS1B. J Biol Chem 2011; 286:30258-30262. [PMID: 21757684 DOI: 10.1074/jbc.c111.257899] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ISG15 (interferon-stimulated gene 15), the first ubiquitin-like protein (UBL) identified, has emerged as an important cellular antiviral factor. It consists of two UBL domains with a short linker between them. The covalent attachment of ISG15 to host and viral proteins to modify their functions, similar to ubiquitylation, is named ISGylation. Influenza B virus NS1B protein antagonizes human but not mouse ISGylation because NS1B exhibits species specificity; it only binds human and non-human primate ISG15. Previous studies have demonstrated that the N-terminal UBL domain and linker of ISG15 are required for the binding by NS1B and that the linker plays a large role in the species specificity, but the structural basis for them has not been elucidated. Here we report the crystal structure of human ISG15 in complex with NS1B at a resolution of 2.0 Å. A loop in the ISG15 N-terminal UBL domain inserts into a pocket in the NS1B dimer, forming a high affinity binding site. The nonspecific van der Waals contacts around the ISG15 linker form a low affinity site for NS1B binding. However, sequence alignment reveals that residues in the high affinity site are highly conserved in primate and non-primate ISG15. We propose that the low affinity binding around the ISG15 linker is important for the initial contact with NS1B and that the stable complex formation is largely contributed by the following high affinity interactions between ISG15 N-terminal UBL domain and NS1B. This provides a structural basis for the species-specific binding of ISG15 by the NS1B protein.
Collapse
Affiliation(s)
- Liang Li
- Center for Structural Biology, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084 and
| | - Dongli Wang
- Center for Structural Biology, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084 and
| | - Yinan Jiang
- Center for Structural Biology, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084 and
| | - Jianfeng Sun
- Center for Structural Biology, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084 and
| | - Senyan Zhang
- Center for Structural Biology, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084 and
| | - Yuanyuan Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinquan Wang
- Center for Structural Biology, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084 and.
| |
Collapse
|
1425
|
Münk C, Sommer AF, König R. Systems-biology approaches to discover anti-viral effectors of the human innate immune response. Viruses 2011; 3:1112-30. [PMID: 21994773 PMCID: PMC3185791 DOI: 10.3390/v3071112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/26/2011] [Accepted: 06/29/2011] [Indexed: 12/31/2022] Open
Abstract
Virus infections elicit an immediate innate response involving antiviral factors. The activities of some of these factors are, in turn, blocked by viral countermeasures. The ensuing battle between the host and the viruses is crucial for determining whether the virus establishes a foothold and/or induces adaptive immune responses. A comprehensive systems-level understanding of the repertoire of anti-viral effectors in the context of these immediate virus-host responses would provide significant advantages in devising novel strategies to interfere with the initial establishment of infections. Recent efforts to identify cellular factors in a comprehensive and unbiased manner, using genome-wide siRNA screens and other systems biology “omics” methodologies, have revealed several potential anti-viral effectors for viruses like Human immunodeficiency virus type 1 (HIV-1), Hepatitis C virus (HCV), West Nile virus (WNV), and influenza virus. This review describes the discovery of novel viral restriction factors and discusses how the integration of different methods in systems biology can be used to more comprehensively identify the intimate interactions of viruses and the cellular innate resistance.
Collapse
Affiliation(s)
- Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine-University, Düsseldorf 40225, Germany; E-Mail:
| | - Andreas F.R. Sommer
- Research Group “Host-Pathogen Interactions”, Paul-Ehrlich-Institut, Langen 63225, Germany; E-Mail:
| | - Renate König
- Research Group “Host-Pathogen Interactions”, Paul-Ehrlich-Institut, Langen 63225, Germany; E-Mail:
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-6103-774019; Fax: +49-6103-771255
| |
Collapse
|
1426
|
Frias AH, Jones RM, Fifadara NH, Vijay-Kumar M, Gewirtz AT. Rotavirus-induced IFN-β promotes anti-viral signaling and apoptosis that modulate viral replication in intestinal epithelial cells. Innate Immun 2011; 18:294-306. [PMID: 21733977 DOI: 10.1177/1753425911401930] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rotavirus (RV), a leading cause of diarrhea, primarily infects intestinal epithelial cells (IEC). Rotavirus-infected IEC produce IFN-β and express hundreds of IFN-dependent genes. We thus hypothesized that type 1 IFN plays a key role in helping IEC limit RV replication and/or protect against cell death. To test this hypothesis, we examined IEC (HT29 cells) infected with RV (MOI 1) ± neutralizing antibodies to IFN-α/β via microscopy and SDS-PAGE immunoblotting. We hypothesized that neutralization of IFN would be clearly detrimental to RV-infected IEC. Rather, we observed that blockade of IFN function rescued IEC from the apoptotic cell death that otherwise would have occurred 24-48 h following exposure to RV. This resistance to cell death correlated with reduced levels of viral replication at early time points (< 8 h) following infection and eventuated in reduced production of virions. The reduction in RV replication that resulted from IFN neutralization correlated with, and could be recapitulated by, blockade of IFN-induced protein kinase R (PKR) activation, suggesting involvement of this kinase. Interestingly, pharmacologic blockade of caspase activity ablated RV-induced apoptosis and dramatically increased viral protein synthesis, suggesting that IFN-induced apoptosis helps to control RV infection. These results suggest non-mutually exclusive possibilities that IFN signaling is usurped by RV to promote early replication and induction of cell death may be a means by which IFN signaling possibly clears RV from the intestine.
Collapse
Affiliation(s)
- Amena H Frias
- Department of Pathology, School of Medicine, Emory University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
1427
|
Vesicular stomatitis virus has extensive oncolytic activity against human sarcomas: rare resistance is overcome by blocking interferon pathways. J Virol 2011; 85:9346-58. [PMID: 21734048 DOI: 10.1128/jvi.00723-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oncolytic viruses have been tested against many carcinomas of ectodermal and endodermal origin; however, sarcomas, arising from mesoderm, have received relatively little attention. Using 13 human sarcomas representing seven tumor types, we assessed the efficiency of infection, cytolysis, and replication of green fluorescent protein (GFP)-expressing vesicular stomatitis virus (VSV) and its oncolytically enhanced mutant VSV-rp30a. Both viruses efficiently infected and killed 12 of 13 sarcomas. VSV-rp30a showed a faster rate of infection and replication. In vitro and in vivo, VSV was selective for sarcomas compared with normal mesoderm. A single intravenous injection of VSV-rp30a selectively infected all subcutaneous human sarcomas tested in mice and arrested the growth of tumors that otherwise grew 11-fold. In contrast to other sarcomas, synovial sarcoma SW982 demonstrated remarkable resistance, even to high titers of virus (multiplicity of infection [MOI] of 100). We found no dysfunction in VSV binding or internalization. SW982 also resisted infection by human cytomegalovirus and Sindbis virus, suggesting a virus resistance mechanism based on an altered antiviral state. Quantitative reverse transcriptase (qRT)-PCR analysis revealed a heightened basal expression of interferon-stimulated genes (ISGs). Pretreatment, but not cotreatment, with interferon attenuators valproate, Jak1 inhibitor, or vaccinia virus B18R protein rendered SW982 highly susceptible, and this correlated with downregulation of ISG expression. Jak1 inhibitor pretreatment also enhanced susceptibility in moderately VSV-resistant liposarcoma and bladder carcinoma. Overall, we find that the potential efficacy of VSV as an oncolytic agent extends to nonhematologic mesodermal tumors and that unusually strong resistance to VSV oncolysis can be overcome with interferon attenuators.
Collapse
|
1428
|
Emerging role of high density lipoproteins as a player in the immune system. Atherosclerosis 2011; 220:11-21. [PMID: 21783193 DOI: 10.1016/j.atherosclerosis.2011.06.045] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/08/2011] [Accepted: 06/24/2011] [Indexed: 11/23/2022]
Abstract
High density lipoproteins (HDL) possess a number of physiological activities. The most studied and, perhaps, better understood is the ability of HDL to promote excess cholesterol efflux from peripheral tissues and transport to the liver for excretion, a mechanism believed to confer protection against atherosclerotic cardiovascular disease. The ability of HDL to modulate cholesterol bioavailability in the lipid rafts, membrane microdomains enriched in glycosphingolipids and cholesterol, is evolutionary conserved and affects the properties of cells involved in the innate and adaptive immune response, tuning inflammatory response and antigen presentation functions in macrophages as well as B and T cell activation. Also sphingosine-1 phosphate (S1P), a major active sphingolipid carried by HDL, is of relevance in the pathogenesis of several immuno-inflammatory disorders through the modulation of macrophage and lymphocyte functions. Furthermore, HDL influence the humoral innate immunity by modulating the activation of the complement system and the expression of pentraxin 3 (PTX3). Finally, in humans, HDL levels and functions are altered in several immune-mediated disorders, such as rheumatoid arthritis, systemic lupus eritematosus, Crohn's disease and multiple sclerosis as well as during inflammatory responses. Altogether these observations suggest that the effects of HDL in immunity could be related, to either the ability of HDL to modulate cholesterol content in immune cell lipid rafts and to their role as reservoir for several biologically active substances that may impact the immune system.
Collapse
|
1429
|
Cui Q, Zhang YX, Su J, Chen X, Ding K, Lei N, Liu Y, Li J, Zhang Y, Yu RB. Genetic variation in IL28RA is associated with the outcomes of HCV infection in a high-risk Chinese population. INFECTION GENETICS AND EVOLUTION 2011; 11:1682-9. [PMID: 21742059 DOI: 10.1016/j.meegid.2011.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 12/30/2022]
Abstract
Hepatitis C virus (HCV) infection varies in the outcomes depending on both viral and host factors. This study aims to investigate the association of single-nucleotide polymorphisms (SNPs) of IFNAR2, IL10RB, and IL28RA genes with susceptibility to HCV infection and resolution. Genotyping of IFNAR2, IL10RB, and IL28RA gene polymorphisms were performed using TaqMan® method from 552 patients with sero-positive anti-HCV and 421 uninfected controls. The distribution of IFNAR2 and IL10RB genotypes among the control, persistent infection, and spontaneous clearance groups did not differ. However, IL28RA-rs10903035 A allele was over-represented in persistent infection group when compared with uninfected controls and spontaneous clearance group, respectively (OR=1.54, 95%CI=1.23-1.92, P=0.004; OR=1.42, 95%CI=1.12-1.81, P=0.016), and AA genotype had a significant increased risk of persistent infection in different strata except for the females subgroup (P<0.05). IL28RA-rs11249006 GG genotype showed reduced susceptibility to persistent HCV infection (OR=0.53, 95%CI=0.31-0.91, P=0.044), and the protective effect was significantly different among subgroups stratified by age and likely source of infection (P<0.05). Besides, AG genotype had a significant negative effect on spontaneous clearance of HCV among young subjects (aged ⩽40) and patients infected with viral genotype-1 (P<0.05). Stratified analysis also showed that IL10RB-rs2834167 AG genotype was associated with an increased risk of persistent HCV infection in females, and GG genotype was associated with an increased risk of persistent HCV infection in females and patients with viral genotype non-1 (P<0.05). Haplotype analysis showed that IL28RA rs10903035-rs11249006 haplotype GG played a protective effect for HCV infection (OR=0.21, 95%CI=0.13-0.36, P<0.001; OR=0.20, 95%CI=0.12-0.34, P<0.001). This study indicates that two SNPs in IL28RA are correlated with susceptibility to HCV infection and spontaneous viral clearance, which implicates a primary role of IL28RA in the outcomes of HCV infection.
Collapse
Affiliation(s)
- Qian Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1430
|
Robert-Tissot C, Rüegger VL, Cattori V, Meli ML, Riond B, Gomes-Keller MA, Vögtlin A, Wittig B, Juhls C, Hofmann-Lehmann R, Lutz H. The innate antiviral immune system of the cat: molecular tools for the measurement of its state of activation. Vet Immunol Immunopathol 2011; 143:269-81. [PMID: 21719112 PMCID: PMC7112645 DOI: 10.1016/j.vetimm.2011.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The innate immune system plays a central role in host defence against viruses. While many studies portray mechanisms in early antiviral immune responses of humans and mice, much remains to be discovered about these mechanisms in the cat. With the objective of shedding light on early host-virus interactions in felids, we have developed 12 real-time TaqMan(®) qPCR systems for feline genes relevant to innate responses to viral infection, including those encoding for various IFNα and IFNω subtypes, IFNβ, intracellular antiviral factor Mx, NK cell stimulator IL-15 and effectors perforin and granzyme B, as well as Toll-like receptors (TLRs) 3 and 8. Using these newly developed assays and others previously described, we measured the relative expression of selected markers at early time points after viral infection in vitro and in vivo. Feline embryonic fibroblasts (FEA) inoculated with feline leukemia virus (FeLV) indicated peak levels of IFNα, IFNβ and Mx expression already 6h after infection. In contrast, Crandell-Rees feline kidney (CrFK) cells inoculated with feline herpes virus (FHV) responded to infection with high levels of IFNα and IFNβ only after 24h, and no induction of Mx could be detected. In feline PBMCs challenged in vitro with feline immunodeficiency virus (FIV), maximal expression levels of IFNα, β and ω subtype genes as well as IL-15 and TLRs 3, 7 and 8 were measured between 12 and 24h after infection, whereas expression levels of proinflammatory cytokine gene IL-6 were consistently downregulated until 48h post inoculation. A marginal upregulation of granzyme B was also observed within 3h after infection. In an in vivo experiment, cats challenged with FIV exhibited a 2.4-fold increase in IFNα expression in blood 1 week post infection. We furthermore demonstrate the possibility of stimulating feline immune cells in vitro with various immune response modifiers (IRMs) already known for their immunostimulatory properties in mice and humans, namely Poly IC, Resiquimod (R-848) and dSLIM™, a synthetic oligonucleotide containing several unmethylated CpG motifs. Stimulation of feline PBMCs with dSLIM™ and R-848 effectively enhanced expression of IFNα within 12h by factors of 6 and 12, respectively, and Poly IC induced an increase in Mx mRNA expression of 28-fold. Altogether, we describe new molecular tools and their successful use for the characterization of innate immune responses against viruses in the cat and provide evidence that feline cells can be stimulated by synthetic molecules to enhance their antiviral defence mechanisms.
Collapse
Affiliation(s)
- Céline Robert-Tissot
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1431
|
Yi L, Lu J, Kung HF, He ML. The virology and developments toward control of human enterovirus 71. Crit Rev Microbiol 2011; 37:313-27. [PMID: 21651436 DOI: 10.3109/1040841x.2011.580723] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71), a member of the Enterovirus genus in the Picornaviridae family, was first recognized as a dermotrophic virus that usually cause mild, self-limiting hand-foot-and-mouth disease (HFMD). However, EV71 infection can sometimes induce a variety of severe neurological complications and even death. Current large outbreaks of EV71 make this virus being a major public health issue. Intense effort has been made to address its underlying pathogenesis and to develop effective means for combating EV71 infections. Here, we aimed to provide an overview of cellular mechanisms underlying EV71 infection and to assess potential agents for prevention and treatment of EV71 infections.
Collapse
Affiliation(s)
- Lina Yi
- Stanley Ho Center for Emerging Infectious Diseases, School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
1432
|
Spiesschaert B, McFadden G, Hermans K, Nauwynck H, Van de Walle GR. The current status and future directions of myxoma virus, a master in immune evasion. Vet Res 2011; 42:76. [PMID: 21658227 PMCID: PMC3131250 DOI: 10.1186/1297-9716-42-76] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/09/2011] [Indexed: 01/12/2023] Open
Abstract
Myxoma virus (MYXV) gained importance throughout the twentieth century because of the use of the highly virulent Standard Laboratory Strain (SLS) by the Australian government in the attempt to control the feral Australian population of Oryctolagus cuniculus (European rabbit) and the subsequent illegal release of MYXV in Europe. In the European rabbit, MYXV causes a disease with an exceedingly high mortality rate, named myxomatosis, which is passively transmitted by biting arthropod vectors. MYXV still has a great impact on European rabbit populations around the world. In contrast, only a single cutaneous lesion, restricted to the point of inoculation, is seen in its natural long-term host, the South-American Sylvilagus brasiliensis and the North-American S. Bachmani. Apart from being detrimental for European rabbits, however, MYXV has also become of interest in human medicine in the last two decades for two reasons. Firstly, due to the strong immune suppressing effects of certain MYXV proteins, several secreted virus-encoded immunomodulators (e.g. Serp-1) are being developed to treat systemic inflammatory syndromes such as cardiovascular disease in humans. Secondly, due to the inherent ability of MYXV to infect a broad spectrum of human cancer cells, the live virus is also being developed as an oncolytic virotherapeutic to treat human cancer. In this review, an update will be given on the current status of MYXV in rabbits as well as its potential in human medicine in the twenty-first century. Table of contents Abstract 1. The virus 2. History 3. Pathogenesis and disease symptoms 4. Immunomodulatory proteins of MYXV 4.1. MYXV proteins with anti-apoptotic functions 4.1.1. Inhibition of pro-apoptotic molecules 4.1.2. Inhibition by protein-protein interactions by ankyrin repeat viral proteins 4.1.3. Inhibition of apoptosis by enhancing the degradation of cellular proteins 4.1.4. Inhibition of apoptosis by blocking host Protein Kinase R (PKR) 4.2. MYXV proteins interfering with leukocyte chemotaxis 4.3. MYXV serpins that inhibit cellular pro-inflammatory or pro-apoptotic proteases 4.4. MYXV proteins that interfere with leukocyte activation 4.5. MYXV proteins with sequence similarity to HIV proteins 4.6. MYXV proteins with unknown immune function 5. Vaccination strategies against myxomatosis 5.1. Current MYXV vaccines 5.2. Vaccination campaigns to protect European rabbits in the wild 6. Applications of myxoma virus for human medicine 6.1. MYXV proteins as therapeutics for allograft vasculopathy and atherosclerosis 6.2. Applications for MYXV as a live oncolytic virus to treat cancer 7. Discussion and Conclusions 8. List of Abbreviations References Author Details Authors' contributions Competing interests Figure Legends Acknowledgements
Collapse
Affiliation(s)
- Bart Spiesschaert
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
1433
|
Na H, Acharjee S, Jones G, Vivithanaporn P, Noorbakhsh F, McFarlane N, Maingat F, Ballanyi K, Pardo CA, Cohen EA, Power C. Interactions between human immunodeficiency virus (HIV)-1 Vpr expression and innate immunity influence neurovirulence. Retrovirology 2011; 8:44. [PMID: 21645334 PMCID: PMC3123635 DOI: 10.1186/1742-4690-8-44] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 06/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viral diversity and abundance are defining properties of human immunodeficiency virus (HIV)-1's biology and pathogenicity. Despite the increasing availability of antiretroviral therapy, HIV-associated dementia (HAD) continues to be a devastating consequence of HIV-1 infection of the brain although the underlying disease mechanisms remain uncertain. Herein, molecular diversity within the HIV-1 non-structural gene, Vpr, was examined in RNA sequences derived from brain and blood of HIV/AIDS patients with or without HIV-associated dementia (HAD) together with the ensuing pathobiological effects. RESULTS Cloned brain- and blood-derived full length vpr alleles revealed that amino acid residue 77 within the brain-derived alleles distinguished HAD (77Q) from non-demented (ND) HIV/AIDS patients (77R) (p < 0.05) although vpr transcripts were more frequently detected in HAD brains (p < 0.05). Full length HIV-1 clones encoding the 77R-ND residue induced higher IFN-α, MX1 and BST-2 transcript levels in human glia relative to the 77Q-HAD encoding virus (p < 0.05) but both viruses exhibited similar levels of gene expression and replication. Myeloid cells transfected with 77Q-(pVpr77Q-HAD), 77R (pVpr77R-ND) or Vpr null (pVpr(-))-containing vectors showed that the pVpr77R-ND vector induced higher levels of immune gene expression (p < 0.05) and increased neurotoxicity (p < 0.05). Vpr peptides (amino acids 70-96) containing the 77Q-HAD or 77R-ND motifs induced similar levels of cytosolic calcium activation when exposed to human neurons. Human glia exposed to the 77R-ND peptide activated higher transcript levels of IFN-α, MX1, PRKRA and BST-2 relative to 77Q-HAD peptide (p < 0.05). The Vpr 77R-ND peptide was also more neurotoxic in a concentration-dependent manner when exposed to human neurons (p < 0.05). Stereotaxic implantation of full length Vpr, 77Q-HAD or 77R-ND peptides into the basal ganglia of mice revealed that full length Vpr and the 77R-ND peptide caused greater neurobehavioral deficits and neuronal injury compared with 77Q-HAD peptide-implanted animals (p < 0.05). CONCLUSIONS These observations underscored the potent neuropathogenic properties of Vpr but also indicated viral diversity modulates innate neuroimmunity and neurodegeneration.
Collapse
Affiliation(s)
- Hong Na
- Department of Medicine University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1434
|
IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA. Nat Immunol 2011; 12:624-30. [PMID: 21642987 DOI: 10.1038/ni.2048] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/28/2011] [Indexed: 12/17/2022]
Abstract
Antiviral innate immunity relies on the recognition of microbial structures. One such structure is viral RNA that carries a triphosphate group on its 5' terminus (PPP-RNA). By an affinity proteomics approach with PPP-RNA as the 'bait', we found that the antiviral protein IFIT1 (interferon-induced protein with tetratricopeptide repeats 1) mediated binding of a larger protein complex containing other IFIT family members. IFIT1 bound PPP-RNA with nanomolar affinity and required the arginine at position 187 in a highly charged carboxy-terminal groove of the protein. In the absence of IFIT1, the growth and pathogenicity of viruses containing PPP-RNA was much greater. In contrast, IFIT proteins were dispensable for the clearance of pathogens that did not generate PPP-RNA. On the basis of this specificity and the great abundance of IFIT proteins after infection, we propose that the IFIT complex antagonizes viruses by sequestering specific viral nucleic acids.
Collapse
|
1435
|
Jha BK, Polyakova I, Kessler P, Dong B, Dickerman B, Sen GC, Silverman RH. Inhibition of RNase L and RNA-dependent protein kinase (PKR) by sunitinib impairs antiviral innate immunity. J Biol Chem 2011; 286:26319-26. [PMID: 21636578 DOI: 10.1074/jbc.m111.253443] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNase L and RNA-dependent protein kinase (PKR) are effectors of the interferon antiviral response that share homology in their pseudokinase and protein kinase domains, respectively. Sunitinib is an orally available, ATP-competitive inhibitor of VEGF and PDGF receptors used clinically to suppress angiogenesis and tumor growth. Sunitinib also impacts IRE1, an endoplasmic reticulum protein involved in the unfolded protein response that is closely related to RNase L. Here, we report that sunitinib is a potent inhibitor of both RNase L and PKR with IC(50) values of 1.4 and 0.3 μM, respectively. In addition, flavonol activators of IRE1 inhibited RNase L. Sunitinib treatment of wild type (WT) mouse embryonic fibroblasts resulted in about a 12-fold increase in encephalomyocarditis virus titers. However, sunitinib had no effect on encephalomyocarditis virus growth in cells lacking both PKR and RNase L. Furthermore, oral delivery of sunitinib in WT mice resulted in 10-fold higher viral titers in heart tissues while suppressing by about 2-fold the IFN-β levels. In contrast, sunitinib had no effect on viral titers in mice deficient in both RNase L and PKR. Also, sunitinib reduced mean survival times from 12 to 6 days in virus-infected WT mice while having no effect on survival of mice lacking both RNase L and PKR. Results indicate that sunitinib treatments prevent antiviral innate immune responses mediated by RNase L and PKR.
Collapse
Affiliation(s)
- Babal Kant Jha
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
1436
|
Lu MY, Liao F. Interferon-stimulated gene ISG12b2 is localized to the inner mitochondrial membrane and mediates virus-induced cell death. Cell Death Differ 2011; 18:925-36. [PMID: 21151029 PMCID: PMC3131945 DOI: 10.1038/cdd.2010.160] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 10/29/2010] [Accepted: 11/08/2010] [Indexed: 12/11/2022] Open
Abstract
Interferons (IFNs) are crucial for host defence against viruses. Many IFN-stimulated genes (ISGs) induced by viral infection exert antiviral effects. Microarray analysis of gene expression induced in liver tissues of mice on dengue virus (DENV) infection has led to identification of the ISG gene ISG12b2. ISG12b2 is also dramatically induced on DENV infection of Hepa 1-6 cells (mouse hepatoma cell line). Here, we performed biochemical and functional analyses of ISG12b2. We demonstrate that ISG12b2 is an inner mitochondrial membrane (IMM) protein containing a cleavable mitochondrial targeting sequence and multiple transmembrane segments. Overexpression of ISG12b2 in Hepa 1-6 induced release of cytochrome c from mitochondria, disruption of the mitochondrial membrane potential, and activation of caspase-9, caspase-3, and caspase-8. Treatment of ISG12b2-overexpressing Hepa 1-6 with inhibitors of pan-caspase, caspase-9, or caspase-3, but not caspase-8, reduced apoptotic cell death, suggesting that ISG12b2 activates the intrinsic apoptotic pathway. Of particular interest, we further demonstrated that ISG12b2 formed oligomers, and that ISG12b2 was able to mediate apoptosis through both Bax/Bak-dependent and Bax/Bak-independent pathways. Our study demonstrates that the ISG12b2 is a novel IMM protein induced by IFNs and regulates mitochondria-mediated apoptosis during viral infection.
Collapse
Affiliation(s)
- M-Y Lu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - F Liao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
1437
|
Lütgehetmann M, Bornscheuer T, Volz T, Allweiss L, Bockmann JH, Pollok JM, Lohse AW, Petersen J, Dandri M. Hepatitis B virus limits response of human hepatocytes to interferon-α in chimeric mice. Gastroenterology 2011; 140:2074-83, 2083.e1-2. [PMID: 21376046 DOI: 10.1053/j.gastro.2011.02.057] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/06/2011] [Accepted: 02/18/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Interferon (IFN)-α therapy is not effective for most patients with chronic hepatitis B virus (HBV) infection for reasons that are not clear. We investigated whether HBV infection reduced IFN-α-mediated induction of antiviral defense mechanisms in human hepatocytes. METHODS Human hepatocytes were injected into severe combined immune-deficient mice (SCID/beige) that expressed transgenic urokinase plasminogen activator under control of the albumin promoter. Some mice were infected with HBV; infected and uninfected mice were given injections of human IFN-α. Changes in viral DNA and expression of human interferon-stimulated genes (ISGs) were measured by real-time polymerase chain reaction, using human-specific primers, and by immunohistochemistry. RESULTS Median HBV viremia (0.8log) and intrahepatic loads of HBV RNA decreased 3-fold by 8 or 12 hours after each injection of IFN-α, but increased within 24 hours. IFN-α activated expression of human ISGs and nuclear translocation of signal transducers and activators of transcription-1 (STAT1) in human hepatocytes that repopulated the livers of uninfected mice. Although baseline levels of human ISGs were slightly increased in HBV-infected mice, compared with uninfected mice, IFN-α failed to increase expression of the ISGs OAS-1, MxA, MyD88, and TAP-1 (which regulates antigen presentation) in HBV-infected mice. IFN-α did not induce nuclear translocation of STAT1 in HBV-infected human hepatocytes. Administration of the nucleoside analogue entecavir (for 20 days) suppressed HBV replication but did not restore responsiveness to IFN-α. CONCLUSIONS HBV prevents induction of IFN-α signaling by inhibiting nuclear translocation of STAT1; this can interfere with transcription of ISGs in human hepatocytes. These effects of HBV might contribute to the limited effectiveness of endogenous and therapeutic IFN-α in patients and promote viral persistence.
Collapse
Affiliation(s)
- Marc Lütgehetmann
- Department of Internal Medicine, University Medical Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
1438
|
Hsu YA, Lin HJ, Sheu JJC, Shieh FK, Chen SY, Lai CH, Tsai FJ, Wan L, Chen BH. A novel interaction between interferon-inducible protein p56 and ribosomal protein L15 in gastric cancer cells. DNA Cell Biol 2011; 30:671-9. [PMID: 21612406 DOI: 10.1089/dna.2010.1149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type I interferons (IFNs) are potent inducers of antiviral and antiproliferative activities in vertebrates. IFNs cause activation of genes encoding antiviral proteins, such as p56 from the IFN-stimulated gene family. There are six tetratricopeptide repeat (TPR) motifs located at the N-terminal sequence of p56. Since TPR motifs are known to participate in protein-protein interactions, p56 may associate with various large protein complexes to modify their functions. Using a T7 phage display library, we identified ribosomal protein L15 (RPL15) as a novel interacting partner of p56. The p56-RPL15 interaction was confirmed by pull-down assays. Overexpression of p56 exhibited strong inhibition on the growth of RPL15-overexpressing cancer cells. Small interfering RNA targeting RPL15 not only reduced the growth rate of gastric cancer cells but also sensitized these cells to type I IFN-induced proliferative inhibition. Using site-directed mutagenesis, we also mapped the TPRs 1-4 of p56 as crucial domains to interact with RPL15. Taken together, our results demonstrated a novel interaction between p56 and RPL15. Differential regulation of p56 and RPL15 expression contributes to the antiproliferative capacity on gastric cancer cells, and further elucidation of their interaction may facilitate the development of new anticancer regimens.
Collapse
Affiliation(s)
- Yu-An Hsu
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
1439
|
Ohshima D, Qin J, Konno H, Hirosawa A, Shiraishi T, Yanai H, Shimo Y, Shinzawa M, Akiyama N, Yamashita R, Nakai K, Akiyama T, Inoue JI. RANK signaling induces interferon-stimulated genes in the fetal thymic stroma. Biochem Biophys Res Commun 2011; 408:530-6. [PMID: 21527253 DOI: 10.1016/j.bbrc.2011.04.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/09/2011] [Indexed: 11/22/2022]
Abstract
Medullary thymic epithelial cells (mTECs) are essential for thymic negative selection to prevent autoimmunity. Previous studies show that mTEC development is dependent on the signal transducers TRAF6 and NIK. However, the downstream target genes of signals controlled by these molecules remain unknown. We performed a microarray analysis on mRNAs down-regulated by deficiencies in TRAF6 or functional NIK in an in vitro organ culture of fetal thymic stromata (2DG-FTOC). An in silico analysis of transcription factor binding sites in plausible promoter regions of differentially expressed genes suggests that STAT1 is involved in TRAF6- and NIK-dependent gene expression. Indeed, the signal of RANK, a TNF receptor family member that activates TRAF6 and NIK, induces the activation of STAT1 in 2DG-FTOC. Moreover, RANK signaling induces the up-regulation of interferon (IFN)-stimulated gene (ISG) expression, suggesting that the RANKL-dependent activation of STAT1 up-regulates ISG expression. The RANKL-dependent expression levels of ISGs were reduced but not completely abolished in interferon α receptor 1-deficient (Ifnar1(-/-)) 2DG-FTOC. Our data suggest that RANK signaling induces ISG expression in both type I interferon-independent and interferon-dependent mechanisms.
Collapse
Affiliation(s)
- Daisuke Ohshima
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1440
|
Man Ng SS, Chang TH, Tailor P, Ozato K, Kino T. Virus-induced differential expression of nuclear receptors and coregulators in dendritic cells: implication to interferon production. FEBS Lett 2011; 585:1331-7. [PMID: 21492741 PMCID: PMC3101080 DOI: 10.1016/j.febslet.2011.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/17/2011] [Accepted: 04/01/2011] [Indexed: 12/31/2022]
Abstract
We investigated mRNA expression of 49 nuclear hormone receptors (NRs) and 35 transcriptional coregulators in mouse bone marrow-derived dendritic cells (DCs) upon infection with Newcastle Disease virus (NDV) or murine cytomegalovirus (MCMV). These viruses regulated mRNA expression of some NRs among which NOR1 and LXRα were highly induced at mRNA and protein levels. Exogenous expression of the latter NRs repressed IRF3- or IRF7-induced transactivation of the interferon β promoter and NDV infection further potentiated their repressive effect. The viral infection also significantly regulated mRNA expression of some coregulators, including HDAC1. Toll-like receptor ligands regulated NR and coregulator mRNA expression similar to the viruses. Thus, NRs and coregulators are integral components of DC-organizing anti-viral response wherein NOR1 and LXRα participate in regulating interferon production.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Gene Expression Profiling
- HCT116 Cells
- Histone Deacetylase 1/genetics
- Histone Deacetylase 1/metabolism
- Host-Pathogen Interactions
- Humans
- Immunoblotting
- Interferon-alpha/genetics
- Interferon-alpha/metabolism
- Liver X Receptors
- Male
- Mice
- Mice, Inbred C57BL
- Muromegalovirus/physiology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Newcastle disease virus/physiology
- Orphan Nuclear Receptors/genetics
- Orphan Nuclear Receptors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Sinnie Sin Man Ng
- Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Tsung-Hsien Chang
- Program in Genomics of Differentiation, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prafullakumar Tailor
- Program in Genomics of Differentiation, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Ozato
- Program in Genomics of Differentiation, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomoshige Kino
- Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
1441
|
Ohtani M, Hikima JI, Kondo H, Hirono I, Jung TS, Aoki T. Characterization and antiviral function of a cytosolic sensor gene, MDA5, in Japanese flounder, Paralichthys olivaceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:554-562. [PMID: 21185857 DOI: 10.1016/j.dci.2010.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 05/30/2023]
Abstract
Cytosolic pattern recognition receptors such as retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play an important role in sensing viral RNAs. The receptor encoded by melanoma differentiation-associated gene 5 (MDA5), an RLR, recognizes viral RNA in the cytoplasm and enhances antiviral response in host cells. The full-length MDA5 gene in Japanese flounder, Paralichthys olivaceus was cloned and found to have 11,251 nucleotides. MDA5 transcript abundance was significantly increased in whole kidney infected with viral hemorrhagic septicemia virus (VHSV) as well as whole kidney and peripheral blood leukocytes stimulated with poly I:C in vitro. Hirame natural embryo (HINAE) cells overexpressing MDA5 showed a lower cytopathic effect (CPE) against VHSV, hirame rhabdovirus (HIRRV) and infectious pancreatic necrosis virus (IPNV) infection. When infected with VHSV, MDA5-overexpressing HINAE cells had 24-75 fold lower virus titer than normal HINAE cells. These results suggest that Japanese flounder MDA5 is involved in the induction of antiviral response.
Collapse
Affiliation(s)
- Maki Ohtani
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, 900 Gajwa-dong, Jinju, Gyeongnam 660-710, South Korea
| | | | | | | | | | | |
Collapse
|
1442
|
Fernández-Trujillo M, Novel P, Manchado M, Sepulcre M, Mulero V, Borrego J, Álvarez M, Béjar J. Three Mx genes with differential response to VNNV infection have been identified in Gilthead seabream (Sparus aurata). Mol Immunol 2011; 48:1216-23. [DOI: 10.1016/j.molimm.2011.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 12/27/2022]
|
1443
|
Analysis of the cumulative changes in Graves’ disease thyroid glands points to IFN signature, plasmacytoid DCs and alternatively activated macrophages as chronicity determining factors. J Autoimmun 2011; 36:189-200. [DOI: 10.1016/j.jaut.2011.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 12/21/2022]
|
1444
|
Wang C, Liu X, Wei B. Mitochondrion: an emerging platform critical for host antiviral signaling. Expert Opin Ther Targets 2011; 15:647-65. [PMID: 21476879 DOI: 10.1517/14728222.2011.561321] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Toll-like receptors (TLRs) and cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are the two major receptor systems for detecting RNA viruses. RLRs play essential roles within the cytosol of various cell types. The signaling pathways converge at the mitochondrial antiviral signalling protein (MAVS) on the outer membrane of mitochondria. Recent research has surprisingly shown that many mitochondrial intrinsic factors play novel functions in RLR signaling, conferring a new perspective of therapeutic drug design to inhibit viral infection. AREAS COVERED This review covers the literature of the past 6 years and summarizes the components, regulation and mechanisms of RLR signaling, highlighting the function and regulation of mitochondrial proteins, such as MAVS and translocase of outer membrane (Tom)70 in this process. The authors attempt to delineate the complicated cross-talk among subcellular organelles in the context of intracellular antiviral signaling. EXPERT OPINION It is imperative to elucidate the specific roles and mechanisms of post-translational modifications in MAVS signaling. The sub-cellular dynamics of regulatory proteins should be correlated with their multiple functions. Animal models are needed to further probe the integration of mitochondria with innate immunity evolutionarily; they will be instrumental for identifying novel antiviral targets and, ultimately, for developing specific clinical drugs.
Collapse
Affiliation(s)
- Chen Wang
- Shanghai Institutes for Biological Sciences-Institute of Biochemistry and Cell Biology, Shanghai, China.
| | | | | |
Collapse
|
1445
|
Seo JY, Yaneva R, Hinson ER, Cresswell P. Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. Science 2011; 332:1093-7. [PMID: 21527675 DOI: 10.1126/science.1202007] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Viperin is an interferon-inducible protein that is directly induced in cells by human cytomegalovirus (HCMV) infection. Why HCMV would induce viperin, which has antiviral activity, is unknown. We show that HCMV-induced viperin disrupts cellular metabolism to enhance the infectious process. Viperin interaction with the viral protein vMIA resulted in viperin relocalization from the endoplasmic reticulum to the mitochondria. There, viperin interacted with the mitochondrial trifunctional protein that mediates β-oxidation of fatty acids to generate adenosine triphosphate (ATP). This interaction with viperin, but not with a mutant lacking the viperin iron-sulfur cluster-binding motif, reduced cellular ATP generation, which resulted in actin cytoskeleton disruption and enhancement of infection. This function of viperin, which was previously attributed to vMIA, suggests that HCMV has coopted viperin to facilitate the infectious process.
Collapse
Affiliation(s)
- Jun-Young Seo
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8011, USA
| | | | | | | |
Collapse
|
1446
|
Satie AP, Mazaud-Guittot S, Seif I, Mahé D, He Z, Jouve G, Jégou B, Dejucq-Rainsford N. Excess type I interferon signaling in the mouse seminiferous tubules leads to germ cell loss and sterility. J Biol Chem 2011; 286:23280-95. [PMID: 21515676 DOI: 10.1074/jbc.m111.229120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I (α and β) interferons (IFNs) elicit antiproliferative and antiviral activities via the surface receptor IFNAR. Serendipitous observations in transgenic mice in 1988 strongly suggested that IFNα/β overexpression in the testis disrupts spermatogenesis. Here, we compare a new mouse strain transgenic for IFNβ (Tg10) and a sister strain lacking the IFNAR1 subunit of IFNAR (Tg10-Ifnar1(-/-)), both strains expressing the transgene in the testis. The main source of IFNβ RNA was the spermatid population. Importantly, the Tg10 mice, but not the double mutant Tg10-Ifnar1(-/-), showed altered spermatogenesis. The first IFNAR-dependent histological alteration was a higher apoptosis index in all germ cell categories apart from non-dividing spermatogonia. This occurred 3 weeks after the onset of IFNβ production at postnatal day 20 and in the absence of somatic cell defects in terms of cell number, expression of specific cell markers, and hormonal activities. Several known interferon-stimulated genes were up-regulated in Tg10 Sertoli cells and prepachytene germ cells but not in pachytene spermatocytes and spermatids. In concordance with this, pachytene spermatocytes and spermatids isolated from wild-type testes did not display measurable amounts of IFNAR1 and phosphorylated STAT1 upon IFNβ challenge in vitro, suggesting hyporesponsiveness of these cell types to IFN. At day 60, Tg10 males were sterile, and Sertoli cells showed increased amounts of anti-Mullerian hormone and decreased production of inhibin B, both probably attributable to the massive germ cell loss. Type I interferon signaling may lead to idiopathic infertilities by affecting the interplay between germ cells and Sertoli cells.
Collapse
Affiliation(s)
- Anne-Pascale Satie
- INSERM, Unité 625, Institut Fédératif de Recherche 140, Université de Rennes 1, F-35042 Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
1447
|
Abstract
Cancers are still difficult targets despite recent advances in cancer therapy. Due to the heterogeneity of cancer, a single-treatment modality is insufficient for the complete elimination of cancer cells. Therapeutic strategies from various aspects are needed. Gene therapy has been expected to bring a breakthrough to cancer therapy, but it has not yet been successful. Gene therapy also should be combined with other treatments to enhance multiple therapeutic pathways. In this view, gene delivery vector itself should be equipped with intrinsic anti-cancer activities. HVJ (hemagglutinating virus of Japan; Sendai virus) envelope vector (HVJ-E) was developed to deliver therapeutic molecules. HVJ-E itself possessed anti-tumor activities such as the generation of anti-tumor immunities and the induction of cancer-selective apoptosis. In addition to the intrinsic anti-tumor activities, therapeutic molecules incorporated into HVJ-E enabled to achieve multi-modal therapeutic strategies in cancer treatment. Tumor-targeting HVJ-E was also developed. Thus, HVJ-E will be a novel promising tool for cancer treatment.
Collapse
Affiliation(s)
- Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Japan.
| |
Collapse
|
1448
|
Loci controlling lymphocyte production of interferon c after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility. Cancer Immunol Immunother 2011; 59:203-13. [PMID: 19655140 PMCID: PMC2776939 DOI: 10.1007/s00262-009-0739-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 07/02/2009] [Indexed: 12/11/2022]
Abstract
Low infiltration of lymphocytes into cancers is associated with poor prognosis, but the reasons why some patients exhibit a low and others a high infiltration of tumors are unknown. Previously we mapped four loci (Lynf1–Lynf4) controlling lymphocyte infiltration of mouse lung tumors. These loci do not encode any of the molecules that are involved in traffic of lymphocytes. Here we report a genetic relationship between these loci and the control of production of IFNγ in allogeneic mixed lymphocyte cultures (MLC). We found that IFNγ production by lymphocytes of O20/A mice is lower than by lymphocytes of OcB-9/Dem mice (both H2pz) stimulated in MLC by irradiated splenocytes of C57BL/10SnPh (H2b) or BALB/cHeA (H2d) mice, or by ConA. IFNγ production in MLCs of individual (O20 × OcB-9)F2 mice stimulated by irradiated C57BL/10 splenocytes and genotyped for microsatellite markers revealed four IFNγ-controlling loci (Cypr4-Cypr7), each of which is closely linked with one of the four Lynf loci and with a cluster of susceptibility genes for different tumors. This suggests that inherited differences in certain lymphocyte responses may modify their propensity to infiltrate tumors and their capacity to affect tumor growth.
Collapse
|
1449
|
Toll-like receptor 4 signaling confers cardiac protection against ischemic injury via inducible nitric oxide synthase- and soluble guanylate cyclase-dependent mechanisms. Anesthesiology 2011; 114:603-13. [PMID: 21270629 DOI: 10.1097/aln.0b013e31820a4d5b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prior administration of a small dose of lipopolysaccharide confers a cardiac protection against ischemia-reperfusion injury. However, the signaling mechanisms that control the protection are incompletely understood. We tested the hypothesis that Toll-like receptor 4 (TLR4) mediates the ability of lipopolysaccharide to protect against cardiac ischemia-reperfusion injury through distinct intracellular pathways involving myeloid differentiation factor 88 (MyD88), TIR-domain-containing adaptor protein-inducing interferon-β-mediated transcription factor (Trif), inducible nitric oxide synthase (iNOS), and soluble guanylate cyclase (sGC). METHODS Wild-type mice and genetically modified mice, that is TLR4-deficient (TLR4(-def)), TLR2 knockout (TLR2(-/-)), MyD88(-/-), Trif(-/-), iNOS(-/-), and sGCα1(-/-), were treated with normal saline or 0.1 mg/kg lipopolysaccharide intraperitoneally. Twenty-four hours later, isolated hearts were perfused in a Langendorff apparatus and subsequently subjected to 30 min global ischemia and reperfusion for as long as 60 min. Left ventricular function and myocardial infarction sizes were examined. RESULTS Compared with saline-treated mice, lipopolysaccharide-treated mice had markedly improved left ventricular developed pressure and dP/dt(max) (P < 0.01) and reduced myocardial infarction sizes (37.2 ± 3.4% vs. 19.8 ± 4.9%, P < 0.01) after ischemia-reperfusion. The cardiac protective effect of lipopolysaccharide was abolished in the TLR4(-def) and MyD88(-/-) mice but remained intact in TLR2(-/-) or Trif(-/-) mice. iNOS(-/-) mice or wild-type mice treated with the iNOS inhibitor 1400W failed to respond to the TLR4-induced nitric oxide production and were not protected by the lipopolysaccharide preconditioning. Although sGCα(1)(-/-) mice had robust nitric oxide production in response to lipopolysaccharide, they were not protected by the TLR4-elicited cardiac protection. CONCLUSIONS TLR4 activation confers a potent cardiac protection against ischemia-reperfusion injury via a MyD88-dependent, but Trif-independent, mechanism. iNOS/sGC are essential for the TLR4-induced cardiac protection.
Collapse
|
1450
|
Abstract
Interferon regulatory factor 7 (IRF7) was originally identified in the context of Epstein-Barr virus (EBV) infection, and has since emerged as the crucial regulator of type I interferons (IFNs) against pathogenic infections, which activate IRF7 by triggering signaling cascades from pathogen recognition receptors (PRRs) that recognize pathogenic nucleic acids. Moreover, IRF7 is a multifunctional transcription factor, underscored by the fact that it is associated with EBV latency, in which IRF7 is induced as well as activated by the EBV principal oncoprotein latent membrane protein-1 (LMP1). Aberrant production of type I IFNs is associated with many types of diseases such as cancers and autoimmune disorders. Thus, tight regulation of IRF7 expression and activity is imperative in dictating appropriate type I IFN production for normal IFN-mediated physiological functions. Posttranslational modifications have important roles in regulation of IRF7 activity, exemplified by phosphorylation, which is indicative of its activation. Furthermore, mounting evidence has shed light on the importance of regulatory ubiquitination in activation of IRF7. Albeit these exciting findings have been made in the past decade since its discovery, many questions related to IRF7 remain to be addressed.
Collapse
|