1401
|
Balassa K, Rocha V. Anticancer cellular immunotherapies derived from umbilical cord blood. Expert Opin Biol Ther 2017; 18:121-134. [PMID: 29103317 DOI: 10.1080/14712598.2018.1402002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The lack of highly effective drugs in many malignancies has prompted scientific interest in the development of alternative treatment strategies. Cellular immunotherapy involving the adoptive transfer of immune cells that potently recognize and eliminate malignantly transformed cells has become a promising new tool in the anticancer armory. Studies suggest that the unique biological properties of umbilical cord blood (UCB) cells could precipitate enhanced anticancer activity; hence, UCB could be an optimal source for immunotherapy with the potential to provide products with 'off-the-shelf' availability. AREAS COVERED In this review, the authors summarize data on the transfer of naturally occurring or genetically modified UCB cells to treat cancer. The focus within is on the phenotypic and functional differences compared to other sources, the alloreactive and anticancer properties, and manufacturing of these products. Therapies utilizing cytokine-induced killer (CIK) cells, natural killer (NK) cells and chimeric antigen receptor (CAR) T-cells, are discussed. EXPERT OPINION The cellular immunotherapy field has become a growing, exciting area that has generated much enthusiasm. There is evidence that anticancer immunotherapy with UCB-derived products is feasible and safe; however, considering the limited number of clinical trials using UCB-derived products, further studies are warranted to facilitate translation into clinical practice.
Collapse
Affiliation(s)
- Katalin Balassa
- a Department of Clinical Haematology, Cancer and Haematology Centre , Oxford University Hospitals NHS Foundation Trust, Churchill Hospital , Oxford , UK.,b NHS Blood and Transplant , John Radcliffe Hospital , Oxford , UK
| | - Vanderson Rocha
- a Department of Clinical Haematology, Cancer and Haematology Centre , Oxford University Hospitals NHS Foundation Trust, Churchill Hospital , Oxford , UK.,b NHS Blood and Transplant , John Radcliffe Hospital , Oxford , UK.,c Department of Haematology , University of Sao Paulo , Sao Paulo , Brazil
| |
Collapse
|
1402
|
Pittari G, Vago L, Festuccia M, Bonini C, Mudawi D, Giaccone L, Bruno B. Restoring Natural Killer Cell Immunity against Multiple Myeloma in the Era of New Drugs. Front Immunol 2017; 8:1444. [PMID: 29163516 PMCID: PMC5682004 DOI: 10.3389/fimmu.2017.01444] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
Transformed plasma cells in multiple myeloma (MM) are susceptible to natural killer (NK) cell-mediated killing via engagement of tumor ligands for NK activating receptors or “missing-self” recognition. Similar to other cancers, MM targets may elude NK cell immunosurveillance by reprogramming tumor microenvironment and editing cell surface antigen repertoire. Along disease continuum, these effects collectively result in a progressive decline of NK cell immunity, a phenomenon increasingly recognized as a critical determinant of MM progression. In recent years, unprecedented efforts in drug development and experimental research have brought about emergence of novel therapeutic interventions with the potential to override MM-induced NK cell immunosuppression. These NK-cell enhancing treatment strategies may be identified in two major groups: (1) immunomodulatory biologics and small molecules, namely, immune checkpoint inhibitors, therapeutic antibodies, lenalidomide, and indoleamine 2,3-dioxygenase inhibitors and (2) NK cell therapy, namely, adoptive transfer of unmanipulated and chimeric antigen receptor-engineered NK cells. Here, we summarize the mechanisms responsible for NK cell functional suppression in the context of cancer and, specifically, myeloma. Subsequently, contemporary strategies potentially able to reverse NK dysfunction in MM are discussed.
Collapse
Affiliation(s)
- Gianfranco Pittari
- Department of Medical Oncology, National Center for Cancer Care and Research, HMC, Doha, Qatar
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Moreno Festuccia
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Deena Mudawi
- Department of Medical Oncology, National Center for Cancer Care and Research, HMC, Doha, Qatar
| | - Luisa Giaccone
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Benedetto Bruno
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
1403
|
Ghosh A, Mailankody S, Giralt SA, Landgren CO, Smith EL, Brentjens RJ. CAR T cell therapy for multiple myeloma: where are we now and where are we headed? Leuk Lymphoma 2017; 59:2056-2067. [PMID: 29105517 DOI: 10.1080/10428194.2017.1393668] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While recent progress has been made in the management of multiple myeloma, it remains a highly fatal malignancy especially among patients with relapsed-refractory disease. Immunotherapy with adoptive T cells targeting myeloma-associated antigens are at various stages of development and have brought about a new hope for cure. This is a review on the emerging field of adoptively transferred engineered T cell based approaches, with an in-depth focus on chimeric antigen receptors (CAR) targeting multiple myeloma. The recent results from CAR T cells targeting B cell maturation antigen are encouraging but eventual resistance to the CAR T cell therapies remain problematic. With newer approaches in therapies for multiple myeloma, the role of transplantation is evolved to form a platform for T cell therapies.
Collapse
Affiliation(s)
- Arnab Ghosh
- a Hematology/Oncology/BMT Fellowship Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Sham Mailankody
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Sergio A Giralt
- c Adult BMT Service, Memorial Sloan Kettering Cancer Center , New York , NY , USA.,d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - C Ola Landgren
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Eric L Smith
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA.,d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Renier J Brentjens
- d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA.,e Leukemia Service, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
1404
|
Integrating a 19F MRI Tracer Agent into the Clinical Scale Manufacturing of a T-Cell Immunotherapy. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:9548478. [PMID: 29230151 PMCID: PMC5688349 DOI: 10.1155/2017/9548478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 01/22/2023]
Abstract
Leukocyte immunotherapies have made great progress in the treatment of cancer. Recent reports on the treatment of B-cell malignancies using Chimeric Antigen Receptor and affinity enhanced T-Cell Receptor therapies have demonstrated encouraging clinical results. As investigators begin to explore the treatment of solid tumors with these cells, the hurdle of evaluating T-cell homing to and persistence at the site of disease remain. Significant challenges regarding the GMP manufacture and administration of a therapeutic dose of millions to billions of transduced T-cells remain. Here we report on the application of a clinically authorized 19F MRI tracer agent to human T-cells, employing state-of-the-art methods and equipment in the manufacture of a cellular therapy. Using a general T-cell expansion protocol and clinical scale industrial bioreactors, we show 19F labeling without detriment to the product +/− cryopreservation. While the incorporation of the 19F tracer is not trivial, it is just one of the many steps that can aid in progression of a therapeutic to and though the clinic. Combining the MRI tracking capabilities, safety profiles, and clinical sensitivity of this method, this application demonstrates the ability of 19F MRI to be used in industrial scale applications to visualize the spatial fate of cellular therapeutics.
Collapse
|
1405
|
Ghosh A, Politikos I, Perales MA. Stop and go: hematopoietic cell transplantation in the era of chimeric antigen receptor T cells and checkpoint inhibitors. Curr Opin Oncol 2017; 29:474-483. [PMID: 28872470 PMCID: PMC5806704 DOI: 10.1097/cco.0000000000000408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW For several decades, hematopoietic cell transplantation (HCT) has been considered the standard curative therapy for many patients with hematological malignancies. In addition to the cytotoxic effects of the chemotherapy and radiation used in the conditioning regimen, the benefits of HCT are derived from a reset of the immune system and harnessing the ability of donor T cells to eliminate malignant cells. With the dawn of the era of immunotherapies in the form of checkpoint inhibitors and chimeric antigen receptor (CAR) T cells, the role of HCT has evolved. RECENT FINDINGS Immunotherapy with checkpoint inhibitors is increasingly being used for relapsed Hodgkin and non-Hodgkin lymphoma after autologous HCT. Checkpoint inhibitors are also being tested after allogeneic HCT with observable benefits in treating hematological malignancies, but with a potential risk of increased graft versus host disease and transplant-related mortality. Immunotherapy with Cluster of differentiation 19 CAR T cells are powerful options with aggressive B-cell malignancies both for therapy and as induction leading to allogeneic HCT. SUMMARY Although immunotherapies with checkpoint inhibition and CAR T cells are increasingly being used to treat hematological malignancies, HCT remains a standard of care for most of the diseases with the best chance of cure. Combination of these therapies with HCT has the potential to more effectively treat hematological malignancies.
Collapse
Affiliation(s)
- Arnab Ghosh
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ioannis Politikos
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
1406
|
SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7 + normal lymphocytes. Blood 2017; 130:2838-2847. [PMID: 29089311 DOI: 10.1182/blood-2017-04-778423] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
SLAMF7 is under intense investigation as a target for immunotherapy in multiple myeloma. In this study, we redirected the specificity of T cells to SLAMF7 through expression of a chimeric antigen receptor (CAR) derived from the huLuc63 antibody (elotuzumab) and demonstrate that SLAMF7-CAR T cells prepared from patients and healthy donors confer potent antimyeloma reactivity. We confirmed uniform, high-level expression of SLAMF7 on malignant plasma cells in previously untreated and in relapsed/refractory (R/R) myeloma patients who had received previous treatment with proteasome inhibitors and immunomodulatory drugs. Consequently, SLAMF7-CAR T cells conferred rapid cytolysis of previously untreated and R/R primary myeloma cells in vitro. In addition, a single administration of SLAMF7-CAR T cells led to resolution of medullary and extramedullary myeloma manifestations in a murine xenograft model in vivo. SLAMF7 is expressed on a fraction of normal lymphocytes, including subsets of natural killer (NK) cells, T cells, and B cells. After modification with the SLAMF7-CAR, both CD8+ and CD4+ T cells rapidly acquired and maintained a SLAMF7- phenotype and could be readily expanded to therapeutically relevant cell doses. We analyzed the recognition of normal lymphocytes by SLAMF7-CAR T cells and show that they induce selective fratricide of SLAMF7+/high NK cells, CD4+ and CD8+ T cells, and B cells. Importantly, however, the fratricide conferred by SLAMF7-CAR T cells spares the SLAMF7-/low fraction in each cell subset and preserves functional lymphocytes, including virus-specific T cells. In aggregate, our data illustrate the potential use of SLAMF7-CAR T-cell therapy as an effective treatment against multiple myeloma and provide novel insights into the consequences of targeting SLAMF7 for the normal lymphocyte compartment.
Collapse
|
1407
|
Jain MD, Davila ML. Concise Review: Emerging Principles from the Clinical Application of Chimeric Antigen Receptor T Cell Therapies for B Cell Malignancies. Stem Cells 2017; 36:36-44. [PMID: 29024301 DOI: 10.1002/stem.2715] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/27/2017] [Accepted: 09/21/2017] [Indexed: 11/07/2022]
Abstract
Gene-engineered T cell therapies are soon to be United States Food and Drug Administration (FDA) approved for at least two types of B cell malignancies in pediatric and adult patients, in the form of CD19 targeted chimeric antigen receptor T (CAR T) cell therapy. This represents a triumph of a true bench to bedside clinical translation of a therapy that was conceived of in the early 1990s. Clinical results have demonstrated efficacious responses in patients with the CD19 positive diseases B cell acute lymphoblastic leukemia and diffuse large B cell lymphoma. However, significant challenges have emerged, including worrisome immune-related toxicities, therapy resistance, and understanding how to administer CD19 CAR T cells in clinical practice. Although much remains to be learned, pioneering clinical trials have led to foundational insights about the clinical translation of this novel therapy. Here, we review the "lessons learned" from the pre-clinical and human experience with CAR T cell therapy. Stem Cells 2018;36:36-44.
Collapse
Affiliation(s)
- Michael D Jain
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Marco L Davila
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
1408
|
Liu B, Song Y, Liu D. Clinical trials of CAR-T cells in China. J Hematol Oncol 2017; 10:166. [PMID: 29058636 PMCID: PMC5651613 DOI: 10.1186/s13045-017-0535-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022] Open
Abstract
Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR)-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous and sequential CAR-T cells are being studied for clinical applications. Multi-target CAR-engineered T cells are also entering clinical trials. T cell receptor-engineered CAR-T and universal CAR-T cells represent new frontiers in CAR-T cell development. In this study, we analyzed the characteristics of CAR constructs and registered clinical trials of CAR-T cells in China and provided a quick glimpse of the landscape of CAR-T studies in China.
Collapse
Affiliation(s)
- Bingshan Liu
- School of Basic Medical Sciences and The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China.,Henan Cancer Hospital and The Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008, China
| | - Yongping Song
- Henan Cancer Hospital and The Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008, China.
| | - Delong Liu
- Henan Cancer Hospital and The Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008, China.
| |
Collapse
|
1409
|
Development of T-cell immunotherapy for hematopoietic stem cell transplantation recipients at risk of leukemia relapse. Blood 2017; 131:108-120. [PMID: 29051183 DOI: 10.1182/blood-2017-07-791608] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022] Open
Abstract
Leukemia relapse remains the major cause of allogeneic hematopoietic stem cell transplantation (HCT) failure, and the prognosis for patients with post-HCT relapse is poor. There is compelling evidence that potent selective antileukemic effects can be delivered by donor T cells specific for particular minor histocompatibility (H) antigens. Thus, T-cell receptors (TCRs) isolated from minor H antigen-specific T cells represent an untapped resource for developing targeted T-cell immunotherapy to manage post-HCT leukemic relapse. Recognizing that several elements may be crucial to the efficacy and safety of engineered T-cell immunotherapy, we developed a therapeutic transgene with 4 components: (1) a TCR specific for the hematopoietic-restricted, leukemia-associated minor H antigen, HA-1; (2) a CD8 coreceptor to promote function of the class I-restricted TCR in CD4+ T cells; (3) an inducible caspase 9 safety switch to enable elimination of the HA-1 TCR T cells in case of toxicity; and (4) a CD34-CD20 epitope to facilitate selection of the engineered cell product and tracking of transferred HA-1 TCR T cells. The T-cell product includes HA-1 TCR CD4+ T cells to augment the persistence and function of the HA-1 TCR CD8+ T cells and includes only memory T cells; naive T cells are excluded to limit the potential for alloreactivity mediated by native TCR coexpressed by HA-1 TCR T cells. We describe the development of this unique immunotherapy and demonstrate functional responses to primary leukemia by CD4+ and CD8+ T cells transduced with a lentiviral vector incorporating the HA-1 TCR transgene construct.
Collapse
|
1410
|
Ormhøj M, Bedoya F, Frigault MJ, Maus MV. CARs in the Lead Against Multiple Myeloma. Curr Hematol Malig Rep 2017; 12:119-125. [PMID: 28233151 DOI: 10.1007/s11899-017-0373-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The recent clinical success of CD19-directed chimeric antigen receptor (CAR) T cell therapy in chronic and acute leukemia has led to increased interest in broadening this technology to other hematological malignancies and solid tumors. Now, advances are being made using CAR T cell technology to target myeloma antigens such as B cell maturation antigen (BCMA), CD138, and kappa-light chain as well as CD19 on putative myeloma stem cells. To date, only a limited number of multiple myeloma patients have received CAR T cell therapy but preliminary results have been encouraging. In this review, we summarize the recently reported results of clinical trials conducted utilizing CAR T cell therapy in multiple myeloma (MM).
Collapse
Affiliation(s)
- Maria Ormhøj
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, 149 13th Street, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, USA.,Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.,University of Southern Denmark, Odense, Denmark
| | - Felipe Bedoya
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, 149 13th Street, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, USA
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, 149 13th Street, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, 149 13th Street, Charlestown, MA, 02129, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
1411
|
Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood 2017; 131:121-130. [PMID: 29038338 DOI: 10.1182/blood-2017-07-793760] [Citation(s) in RCA: 430] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/08/2017] [Indexed: 12/11/2022] Open
Abstract
Lymphodepletion chemotherapy with CD19-targeted chimeric antigen receptor-modified T (CAR-T)-cell immunotherapy is a novel treatment for refractory or relapsed B-cell malignancies. Infectious complications of this approach have not been systematically studied. We evaluated infections occurring between days 0 to 90 in 133 patients treated with CD19 CAR-T cells in a phase 1/2 study. We used Poisson and Cox regression to evaluate pre- and posttreatment risk factors for infection, respectively. The cohort included patients with acute lymphoblastic leukemia (ALL; n = 47), chronic lymphocytic leukemia (n = 24), and non-Hodgkin lymphoma (n = 62). There were 43 infections in 30 of 133 patients (23%) within 28 days after CAR-T-cell infusion with an infection density of 1.19 infections for every 100 days at risk. There was a lower infection density of 0.67 between days 29 and 90 (P = .02). The first infection occurred a median of 6 days after CAR-T-cell infusion. Six patients (5%) developed invasive fungal infections and 5 patients (4%) had life-threatening or fatal infections. Patients with ALL, ≥4 prior antitumor regimens, and receipt of the highest CAR-T-cell dose (2 × 107 cells per kg) had a higher infection density within 28 days in an adjusted model of baseline characteristics. Cytokine release syndrome (CRS) severity was the only factor after CAR-T-cell infusion associated with infection in a multivariable analysis. The incidence of infections was comparable to observations from clinical trials of salvage chemoimmunotherapies in similar patients. This trial was registered at www.clinicaltrials.gov as #NCT01865617.
Collapse
|
1412
|
Gust J, Hay KA, Hanafi LA, Li D, Myerson D, Gonzalez-Cuyar LF, Yeung C, Liles WC, Wurfel M, Lopez JA, Chen J, Chung D, Harju-Baker S, Özpolat T, Fink KR, Riddell SR, Maloney DG, Turtle CJ. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discov 2017; 7:1404-1419. [PMID: 29025771 DOI: 10.1158/2159-8290.cd-17-0698] [Citation(s) in RCA: 906] [Impact Index Per Article: 129.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/07/2017] [Accepted: 09/11/2017] [Indexed: 11/16/2022]
Abstract
Lymphodepletion chemotherapy followed by infusion of CD19-targeted chimeric antigen receptor-modified T (CAR-T) cells can be complicated by neurologic adverse events (AE) in patients with refractory B-cell malignancies. In 133 adults treated with CD19 CAR-T cells, we found that acute lymphoblastic leukemia, high CD19+ cells in bone marrow, high CAR-T cell dose, cytokine release syndrome, and preexisting neurologic comorbidities were associated with increased risk of neurologic AEs. Patients with severe neurotoxicity demonstrated evidence of endothelial activation, including disseminated intravascular coagulation, capillary leak, and increased blood-brain barrier (BBB) permeability. The permeable BBB failed to protect the cerebrospinal fluid from high concentrations of systemic cytokines, including IFNγ, which induced brain vascular pericyte stress and their secretion of endothelium-activating cytokines. Endothelial activation and multifocal vascular disruption were found in the brain of a patient with fatal neurotoxicity. Biomarkers of endothelial activation were higher before treatment in patients who subsequently developed grade ≥4 neurotoxicity.Significance: We provide a detailed clinical, radiologic, and pathologic characterization of neurotoxicity after CD19 CAR-T cells, and identify risk factors for neurotoxicity. We show endothelial dysfunction and increased BBB permeability in neurotoxicity and find that patients with evidence of endothelial activation before lymphodepletion may be at increased risk of neurotoxicity. Cancer Discov; 7(12); 1404-19. ©2017 AACR.See related commentary by Mackall and Miklos, p. 1371This article is highlighted in the In This Issue feature, p. 1355.
Collapse
Affiliation(s)
- Juliane Gust
- Department of Neurology, University of Washington, Seattle, Washington
| | - Kevin A Hay
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laïla-Aïcha Hanafi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Daniel Li
- Juno Therapeutics, Seattle, Washington
| | - David Myerson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Pathology, University of Washington, Seattle, Washington
| | | | - Cecilia Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Pathology, University of Washington, Seattle, Washington
| | - W Conrad Liles
- Department of Medicine, University of Washington, Seattle, Washington
| | - Mark Wurfel
- Department of Medicine, University of Washington, Seattle, Washington
| | - Jose A Lopez
- Department of Medicine, University of Washington, Seattle, Washington.,Bloodworks Northwest Research Institute, Seattle, Washington
| | - Junmei Chen
- Bloodworks Northwest Research Institute, Seattle, Washington
| | - Dominic Chung
- Bloodworks Northwest Research Institute, Seattle, Washington
| | | | - Tahsin Özpolat
- Bloodworks Northwest Research Institute, Seattle, Washington
| | - Kathleen R Fink
- Department of Radiology, University of Washington, Seattle, Washington
| | - Stanley R Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| | - David G Maloney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| | - Cameron J Turtle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
1413
|
Perna F, Berman SH, Soni RK, Mansilla-Soto J, Eyquem J, Hamieh M, Hendrickson RC, Brennan CW, Sadelain M. Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML. Cancer Cell 2017; 32:506-519.e5. [PMID: 29017060 PMCID: PMC7025434 DOI: 10.1016/j.ccell.2017.09.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/02/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
Chimeric antigen receptor (CAR) therapy targeting CD19 has yielded remarkable outcomes in patients with acute lymphoblastic leukemia. To identify potential CAR targets in acute myeloid leukemia (AML), we probed the AML surfaceome for overexpressed molecules with tolerable systemic expression. We integrated large transcriptomics and proteomics datasets from malignant and normal tissues, and developed an algorithm to identify potential targets expressed in leukemia stem cells, but not in normal CD34+CD38- hematopoietic cells, T cells, or vital tissues. As these investigations did not uncover candidate targets with a profile as favorable as CD19, we developed a generalizable combinatorial targeting strategy fulfilling stringent efficacy and safety criteria. Our findings indicate that several target pairings hold great promise for CAR therapy of AML.
Collapse
Affiliation(s)
- Fabiana Perna
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samuel H Berman
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rajesh K Soni
- Microchemistry and Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin Eyquem
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohamad Hamieh
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
1414
|
Abramowski-Mock U, Delhove JM, Qasim W. Gene Modified T Cell Therapies for Hematological Malignancies. Hematol Oncol Clin North Am 2017; 31:913-926. [PMID: 28895856 DOI: 10.1016/j.hoc.2017.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article focuses on clinical applications of T cells transduced to express recombinant T cell receptor and chimeric antigen receptor constructs directed toward hematological malignancies, and considers newer strategies incorporating gene-editing technologies to address GvHD and host-mediated rejection. Recent data from clinical trials are reviewed, and an overview is provided of current and emerging manufacturing processes; consideration is also given to new developments in the pipeline.
Collapse
Affiliation(s)
- Ulrike Abramowski-Mock
- Molecular and Cellular Immunology Unit, University college London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Juliette M Delhove
- Molecular and Cellular Immunology Unit, University college London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Waseem Qasim
- Molecular and Cellular Immunology Unit, University college London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
1415
|
Landoni E, Savoldo B. Treating hematological malignancies with cell therapy: where are we now? Expert Opin Biol Ther 2017; 18:65-75. [DOI: 10.1080/14712598.2018.1384810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
1416
|
Brown CE, Aguilar B, Starr R, Yang X, Chang WC, Weng L, Chang B, Sarkissian A, Brito A, Sanchez JF, Ostberg JR, D'Apuzzo M, Badie B, Barish ME, Forman SJ. Optimization of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma. Mol Ther 2017; 26:31-44. [PMID: 29103912 DOI: 10.1016/j.ymthe.2017.10.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 12/27/2022] Open
Abstract
T cell immunotherapy is emerging as a powerful strategy to treat cancer and may improve outcomes for patients with glioblastoma (GBM). We have developed a chimeric antigen receptor (CAR) T cell immunotherapy targeting IL-13 receptor α2 (IL13Rα2) for the treatment of GBM. Here, we describe the optimization of IL13Rα2-targeted CAR T cells, including the design of a 4-1BB (CD137) co-stimulatory CAR (IL13BBζ) and a manufacturing platform using enriched central memory T cells. Utilizing orthotopic human GBM models with patient-derived tumor sphere lines in NSG mice, we found that IL13BBζ-CAR T cells improved anti-tumor activity and T cell persistence as compared to first-generation IL13ζ-CAR CD8+ T cells that had shown evidence for bioactivity in patients. Investigating the impact of corticosteroids, given their frequent use in the clinical management of GBM, we demonstrate that low-dose dexamethasone does not diminish CAR T cell anti-tumor activity in vivo. Furthermore, we found that local intracranial delivery of CAR T cells elicits superior anti-tumor efficacy as compared to intravenous administration, with intraventricular infusions exhibiting possible benefit over intracranial tumor infusions in a multifocal disease model. Overall, these findings help define parameters for the clinical translation of CAR T cell therapy for the treatment of brain tumors.
Collapse
Affiliation(s)
- Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA.
| | - Brenda Aguilar
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Renate Starr
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Xin Yang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Wen-Chung Chang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Lihong Weng
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Brenda Chang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Aniee Sarkissian
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Alfonso Brito
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - James F Sanchez
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Julie R Ostberg
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Massimo D'Apuzzo
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Behnam Badie
- Department of Neurosurgery, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Michael E Barish
- Department of Developmental and Stem Cell Biology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Stephen J Forman
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
1417
|
Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature 2017; 545:423-431. [PMID: 28541315 DOI: 10.1038/nature22395] [Citation(s) in RCA: 582] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022]
Abstract
Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimaeric antigen receptors (CARs) are a class of synthetic receptors that reprogram lymphocyte specificity and function. CARs targeting CD19 have demonstrated remarkable potency in B cell malignancies. Engineered T cells are applicable in principle to many cancers, pending further progress to identify suitable target antigens, overcome immunosuppressive tumour microenvironments, reduce toxicities, and prevent antigen escape. Advances in the selection of optimal T cells, genetic engineering, and cell manufacturing are poised to broaden T-cell-based therapies and foster new applications in infectious diseases and autoimmunity.
Collapse
Affiliation(s)
- Michel Sadelain
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Isabelle Rivière
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Stanley Riddell
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
1418
|
Gomes-Silva D, Mukherjee M, Srinivasan M, Krenciute G, Dakhova O, Zheng Y, Cabral JMS, Rooney CM, Orange JS, Brenner MK, Mamonkin M. Tonic 4-1BB Costimulation in Chimeric Antigen Receptors Impedes T Cell Survival and Is Vector-Dependent. Cell Rep 2017; 21:17-26. [PMID: 28978471 PMCID: PMC5645034 DOI: 10.1016/j.celrep.2017.09.015] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/17/2017] [Accepted: 09/03/2017] [Indexed: 01/11/2023] Open
Abstract
Antigen-independent tonic signaling by chimeric antigen receptors (CARs) can increase differentiation and exhaustion of T cells, limiting their potency. Incorporating 4-1BB costimulation in CARs may enable T cells to resist this functional exhaustion; however, the potential ramifications of tonic 4-1BB signaling in CAR T cells remain unclear. Here, we found that tonic CAR-derived 4-1BB signaling can produce toxicity in T cells via continuous TRAF2-dependent activation of the nuclear factor κB (NF-κB) pathway and augmented FAS-dependent cell death. This mechanism was amplified in a non-self-inactivating gammaretroviral vector through positive feedback on the long terminal repeat (LTR) promoter, further enhancing CAR expression and tonic signaling. Attenuating CAR expression by substitution with a self-inactivating lentiviral vector minimized tonic signaling and improved T cell expansion and anti-tumor function. These studies illuminate the interaction between tonic CAR signaling and the chosen expression platform and identify inhibitory properties of the 4-1BB costimulatory domain that have direct implications for rational CAR design.
Collapse
MESH Headings
- 4-1BB Ligand/genetics
- 4-1BB Ligand/immunology
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cell Death
- Cell Survival
- Gammaretrovirus/genetics
- Gammaretrovirus/metabolism
- Gene Expression Regulation, Leukemic
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Lentivirus/genetics
- Lentivirus/metabolism
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Mice
- Mice, Inbred NOD
- Mutant Chimeric Proteins/genetics
- Mutant Chimeric Proteins/immunology
- NF-kappa B/genetics
- NF-kappa B/immunology
- Neoplasm Transplantation
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/transplantation
- Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- fas Receptor/genetics
- fas Receptor/immunology
Collapse
Affiliation(s)
- Diogo Gomes-Silva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Malini Mukherjee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Madhuwanti Srinivasan
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Giedre Krenciute
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olga Dakhova
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Yueting Zheng
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Joaquim M S Cabral
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
1419
|
Anderson J. Unleashing the immune response against childhood solid cancers. Pediatr Blood Cancer 2017; 64. [PMID: 28383769 DOI: 10.1002/pbc.26548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 11/11/2022]
Abstract
Tumor immunotherapy has come to the fore fuelled by impressive clinical responses to checkpoint inhibitor antibodies in a range of adult malignancies and by the success of chimeric antigen receptor T cells targeting adult and pediatric B-cell malignancies. Clearly, if appropriately fine-tuned, the immune system has the capability to seek out and destroy cancer. Studies in pediatric solid cancers so far have not shown the therapeutic potential checkpoint inhibitors described in adult cancers and this may reflect fewer tumor-associated antigens or different immune evasion mechanisms. One potential approach to overcome these limitations will be to combine interventions to undermine immune evasion mechanisms with engineered T-cell adoptive transfer.
Collapse
Affiliation(s)
- John Anderson
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
1420
|
Ruella M, Klichinsky M, Kenderian SS, Shestova O, Ziober A, Kraft DO, Feldman M, Wasik MA, June CH, Gill S. Overcoming the Immunosuppressive Tumor Microenvironment of Hodgkin Lymphoma Using Chimeric Antigen Receptor T Cells. Cancer Discov 2017; 7:1154-1167. [PMID: 28576927 PMCID: PMC5628114 DOI: 10.1158/2159-8290.cd-16-0850] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/19/2017] [Accepted: 05/31/2017] [Indexed: 01/03/2023]
Abstract
Patients with otherwise treatment-resistant Hodgkin lymphoma could benefit from chimeric antigen receptor T-cell (CART) therapy. However, Hodgkin lymphoma lacks CD19 and contains a highly immunosuppressive tumor microenvironment (TME). We hypothesized that in Hodgkin lymphoma, CART should target both malignant cells and the TME. We demonstrated CD123 on both Hodgkin lymphoma cells and TME, including tumor-associated macrophages (TAM). In vitro, Hodgkin lymphoma cells convert macrophages toward immunosuppressive TAMs that inhibit T-cell proliferation. In contrast, anti-CD123 CART recognized and killed TAMs, thus overcoming immunosuppression. Finally, we showed in immunodeficient mouse models that CART123 eradicated Hodgkin lymphoma and established long-term immune memory. A novel platform that targets malignant cells and the microenvironment may be needed to successfully treat malignancies with an immunosuppressive milieu.Significance: Anti-CD123 chimeric antigen receptor T cells target both the malignant cells and TAMs in Hodgkin lymphoma, thereby eliminating an important immunosuppressive component of the tumor microenvironment. Cancer Discov; 7(10); 1154-67. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1047.
Collapse
Affiliation(s)
- Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Klichinsky
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saad S Kenderian
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Olga Shestova
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy Ziober
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel O Kraft
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Saar Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
1421
|
Adair JE, Kubek SP, Kiem HP. Hematopoietic Stem Cell Approaches to Cancer. Hematol Oncol Clin North Am 2017; 31:897-912. [DOI: 10.1016/j.hoc.2017.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
1422
|
Abstract
Utility of flow cytometry in the evaluation of pediatric hematopoietic neoplasms and the differences from adult hematopoietic neoplasms are discussed in this review. Distinction of hematogones from B-lymphoblasts, detection of residual/relapsed disease after novel targeted therapies, and evaluation of pediatric myeloid neoplasms are discussed.
Collapse
Affiliation(s)
- Jie Li
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Hospital of University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerald Wertheim
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Hospital of University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michele Paessler
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Hospital of University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
1423
|
Understanding cytokine release syndrome. Intensive Care Med 2017; 44:371-373. [PMID: 28956093 DOI: 10.1007/s00134-017-4943-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/14/2017] [Indexed: 12/30/2022]
|
1424
|
Kebriaei P, Izsvák Z, Narayanavari SA, Singh H, Ivics Z. Gene Therapy with the Sleeping Beauty Transposon System. Trends Genet 2017; 33:852-870. [PMID: 28964527 DOI: 10.1016/j.tig.2017.08.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
The widespread clinical implementation of gene therapy requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective, and economical manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient nonviral gene delivery approaches that are prevalent in ongoing clinical trials. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here, we review the most important aspects of using SB for gene therapy, including vectorization as well as genomic integration features. We also illustrate the path to successful clinical implementation by highlighting the application of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Partow Kebriaei
- Department of Stem Cell Transplant and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suneel A Narayanavari
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Harjeet Singh
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
1425
|
Chimeric Antigen Receptor T cells for B Cell Neoplasms: Choose the Right CAR for You. Curr Hematol Malig Rep 2017; 11:368-84. [PMID: 27475429 DOI: 10.1007/s11899-016-0336-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Genetic redirection of T lymphocytes allows us to unleash these potent cellular immune effectors against cancer. Chimeric antigen receptor (CAR) T cells are the best-in-class example that genetic engineering of T cells can lead to deep and durable responses, as has been shown in several clinical trials for CD19+ B cell malignancies. As a consequence, in the last few years, several academic institutions and commercial partners have started developing anti-CD19 CAR T cell products. Although most of these T cell products are highly effective in vivo, basic differences among them can generate different performance characteristics and thereby impact their long-term clinical outcome. Several strategies are being implemented in order to solve the current open issues of CART19 therapy: (i) increasing efficacy against indolent B cell leukemias and lymphomas, (ii) avoiding or preventing antigen-loss relapses, (iii) reducing and managing toxicity, and (iv) bringing this CART therapy to routine clinical practice. The field of CART therapies is thriving, and exciting new avenues are opening for both scientists and patients.
Collapse
|
1426
|
Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood 2017; 130:2317-2325. [PMID: 28935694 DOI: 10.1182/blood-2017-06-786129] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Tisagenlecleucel (CTL019) is an investigational immunotherapy that involves reprogramming a patient's own T cells with a transgene encoding a chimeric antigen receptor to identify and eliminate CD19-expressing cells. We previously reported that CTL019 achieved impressive clinical efficacy in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL), including the expansion and persistence of CTL019 cells, which correlates with response to therapy. Here, we performed formal cellular kinetic analyses of CTL019 in a larger cohort of 103 patients treated with CTL019 in 2 different diseases (ALL and CLL). CTL019 was measured in peripheral blood and bone marrow, using quantitative polymerase chain reaction and flow cytometry. CTL019 levels in peripheral blood typically peaked at 10 to 14 days postinfusion and then declined slowly over time. Patients with complete response (CR)/CR with incomplete count recovery had higher levels of CTL019 in peripheral blood, with greater maximal concentration and area under the curve values compared with nonresponding patients (P < .0001 for each). CTL019 transgene levels were measurable up to 780 days in peripheral blood. CTL019 trafficking and persistence were observed in bone marrow and cerebrospinal fluid. CTL019 expansion correlated with severity of cytokine release syndrome (CRS) and preinfusion tumor burden in pediatric ALL. The results described here are the first detailed formal presentation of cellular kinetics across 2 diseases and highlight the importance of the application of in vivo cellular kinetic analyses to characterize clinical efficacy and CRS severity associated with CTL019 therapy.
Collapse
|
1427
|
Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 2017; 130:2295-2306. [PMID: 28924019 DOI: 10.1182/blood-2017-06-793141] [Citation(s) in RCA: 739] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/09/2017] [Indexed: 01/01/2023] Open
Abstract
Lymphodepletion chemotherapy followed by infusion of CD19-specific chimeric antigen receptor-modified (CAR) T cells has produced impressive antitumor responses in patients with refractory CD19+ B-cell malignancies but is often associated with cytokine release syndrome (CRS). Our understanding of CRS continues to evolve, and identification of the kinetics of CRS and predictive clinical and laboratory biomarkers of severity are needed to evaluate strategies to mitigate toxicity. We report the clinical presentation of and identify biomarkers of severe CRS in 133 adult patients who received CD19 CAR T cells. CRS developed in 70% of patients, including 62.5% with grade 1 to 3 CRS (grade 1, 26%; grade 2, 32%; grade 3, 4.5%), 3.8% with grade 4, and 3.8% with grade 5. A majority of cases of grade ≥4 CRS occurred during CAR T-cell dose finding. Multivariable analysis of baseline characteristics identified high marrow tumor burden, lymphodepletion using cyclophosphamide and fludarabine, higher CAR T-cell dose, thrombocytopenia before lymphodepletion, and manufacturing of CAR T cells without selection of CD8+ central memory T cells as independent predictors of CRS. Severe CRS was characterized by hemodynamic instability, capillary leak, and consumptive coagulopathy. Angiopoietin-2 and von Willebrand factor, which are biomarkers of endothelial activation, were increased during severe CRS and also before lymphodepletion in patients who subsequently developed CRS. We describe a classification-tree algorithm to guide studies of early intervention after CAR T-cell infusion for patients at high risk of severe CRS. These data provide a framework for early intervention studies to facilitate safer application of effective CD19 CAR T-cell therapy.
Collapse
|
1428
|
Development of novel target modules for retargeting of UniCAR T cells to GD2 positive tumor cells. Oncotarget 2017; 8:108584-108603. [PMID: 29312553 PMCID: PMC5752466 DOI: 10.18632/oncotarget.21017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/25/2017] [Indexed: 01/17/2023] Open
Abstract
As the expression of a tumor associated antigen (TAA) is commonly not restricted to tumor cells, adoptively transferred T cells modified to express a conventional chimeric antigen receptor (CAR) might not only destroy the tumor cells but also attack target-positive healthy tissues. Furthermore, CAR T cells in patients with large tumor bulks will unpredictably proliferate and put the patients at high risk of adverse side effects including cytokine storms and tumor lysis syndrome. To overcome these problems, we previously established a modular CAR technology termed UniCAR: UniCAR T cells can repeatedly be turned on and off via dosing of a target module (TM). TMs are bispecific molecules which cross-link UniCAR T cells with target cells. After elimination of the respective TM, UniCAR T cells automatically turn off. Here we describe novel TMs against the disialoganglioside GD2 which is overexpressed in neuroectodermal but also many other tumors. In the presence of GD2-specific TMs, we see a highly efficient target-specific and -dependent activation of UniCAR T cells, secretion of pro-inflammatory cytokines, and tumor cell lysis both in vitro and experimental mice. According to PET-imaging, anti-GD2 TM enrich at the tumor site and are rapidly eliminated thus fulfilling all prerequisites of a UniCAR TM.
Collapse
|
1429
|
Cummins KD, Gill S. Anti-CD123 chimeric antigen receptor T-cells (CART): an evolving treatment strategy for hematological malignancies, and a potential ace-in-the-hole against antigen-negative relapse. Leuk Lymphoma 2017; 59:1539-1553. [DOI: 10.1080/10428194.2017.1375107] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Katherine D. Cummins
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saar Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
1430
|
Absence of Replication-Competent Lentivirus in the Clinic: Analysis of Infused T Cell Products. Mol Ther 2017; 26:280-288. [PMID: 28970045 DOI: 10.1016/j.ymthe.2017.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022] Open
Abstract
Exposure to replication-competent lentivirus (RCL) is a theoretical safety concern for individuals treated with lentiviral gene therapy. For certain ex vivo gene therapy applications, including cancer immunotherapy trials, RCL detection assays are used to screen the vector product as well as the vector-transduced cells. In this study, we reviewed T cell products screened for RCL using methodology developed in the National Gene Vector Biorepository. All trials utilized third-generation lentiviral vectors produced by transient transfection. Samples from 26 clinical trials totaling 460 transduced cell products from 375 subjects were evaluated. All cell products were negative for RCL. A total of 296 of the clinical trial participants were screened for RCL at least 1 month after infusion of the cell product. No research subject has shown evidence of RCL infection. These findings provide further evidence attesting to the safety of third-generation lentiviral vectors and that testing T cell products for RCL does not provide added value to screening the lentiviral vector product.
Collapse
|
1431
|
The what, when and how of CAR T cell therapy for ALL. Best Pract Res Clin Haematol 2017; 30:275-281. [DOI: 10.1016/j.beha.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 11/22/2022]
|
1432
|
Aldoss I, Song J, Stiller T, Nguyen T, Palmer J, O'Donnell M, Stein AS, Marcucci G, Forman S, Pullarkat V. Correlates of resistance and relapse during blinatumomab therapy for relapsed/refractory acute lymphoblastic leukemia. Am J Hematol 2017; 92:858-865. [PMID: 28494518 DOI: 10.1002/ajh.24783] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/13/2017] [Accepted: 05/05/2017] [Indexed: 01/02/2023]
Abstract
We retrospectively analyzed 65 patients with refractory/relapsed (r/r) ALL who were treated with blinatumomab for predictors of leukemia response as well as clinical patterns of relapse and resistance with particular focus on downregulation of CD19 expression and extramedullary disease (EM-ALL). The complete remission (CR) rate was 51%, and 15 (45%) responders underwent allogeneic hematopoietic cell transplantation (HCT) in CR. High leukemia burden (bone marrow blasts >50%) (P = .02), history of prior EM-ALL (P = .005), and active EM-ALL at the time of initiating blinatumomab (P = .05) predicted lower CR rate. Among refractory cases, 13 (41%) had evidence of EM-ALL progression, and CD19 expression was negative or dim in 18% and 23%, respectively. Among responders, 20 (61%) subsequently relapsed among whom EM-ALL relapse occurred in 8 (40%) patients, and CD19 expression was negative or dim in 35 and 6% of evaluable cases, respectively. Pretreatment moderate/strong CD19 expression (P = .01) and history of prior EM-ALL during ALL course (P = .04) were risk factors for developing EM-ALL at progression/relapse. However, no pretreatment factors predicted progression/relapse with CD19-negative ALL. Overall-survival (OS) and even-free survival were improved for patients underwent allogeneic HCT compared to responders who did not. Furthermore, OS was superior for patients responded to blinatumomab compared to those who did not. Extramedullary and CD19-negative disease are common during blinatumomab failure in r/r ALL. In addition to high leukemia burden, concurrent or prior history EM-ALL were associated with lower response to blinatumomab. Higher CD19 expression as well as prior history of EM-ALL were associated with EM-ALL at the time of blinatumomab failure.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation; Gehr Family Center for Leukemia Research, City of Hope Medical Center; Duarte California
| | - Joo Song
- Department of Information Sciences, Division of Biostatistics; City of Hope Medical Center; Duarte California
| | - Tracey Stiller
- Department of Pathology; City of Hope Medical Center; Duarte California
| | - Tina Nguyen
- Department of Pharmacy; City of Hope Medical Center; Duarte California
| | - Joycelynne Palmer
- Department of Pathology; City of Hope Medical Center; Duarte California
| | - Margaret O'Donnell
- Department of Hematology and Hematopoietic Cell Transplantation; Gehr Family Center for Leukemia Research, City of Hope Medical Center; Duarte California
| | - Anthony S. Stein
- Department of Hematology and Hematopoietic Cell Transplantation; Gehr Family Center for Leukemia Research, City of Hope Medical Center; Duarte California
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation; Gehr Family Center for Leukemia Research, City of Hope Medical Center; Duarte California
| | - Stephen Forman
- Department of Hematology and Hematopoietic Cell Transplantation; Gehr Family Center for Leukemia Research, City of Hope Medical Center; Duarte California
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation; Gehr Family Center for Leukemia Research, City of Hope Medical Center; Duarte California
| |
Collapse
|
1433
|
Chimeric antigen receptor T-cells for B-cell malignancies. Transl Res 2017; 187:59-82. [PMID: 28719798 DOI: 10.1016/j.trsl.2017.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022]
Abstract
The adoptive transfer of T-lymphocytes modified to express chimeric antigen receptors (CAR-Ts) has produced impressive clinical responses among patients with B-cell malignancies. This has led to a rapid expansion in the number of clinical trials over the past several years. Although CD19-specific CAR-Ts are the most extensively evaluated, CAR-Ts specific for other B-cell-associated targets have also shown promise. However, despite this success, toxicities associated with CAR-T administration remain a significant concern. There continues to be substantial heterogeneity among CAR-T products, and differences in both CAR designs and CAR-T production strategies can substantially affect clinical outcomes. Ongoing clinical studies will further elucidate these differences and many other innovative approaches are being evaluated at the preclinical level. In this review, we will discuss the background and rationale for the use of CAR-Ts, provide an overview of advances in the field, and examine the application of CAR-Ts to the treatment of B-cell malignancies, including a summary of clinical trials published to date.
Collapse
|
1434
|
How do we measure MRD in ALL and how should measurements affect decisions. Re: Treatment and prognosis? Best Pract Res Clin Haematol 2017; 30:237-248. [DOI: 10.1016/j.beha.2017.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022]
|
1435
|
Gauthier J, Yakoub-Agha I. Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: Clinical data to date, current limitations and perspectives. Curr Res Transl Med 2017; 65:93-102. [DOI: 10.1016/j.retram.2017.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 12/24/2022]
|
1436
|
New approaches for the enhancement of chimeric antigen receptors for the treatment of HIV. Transl Res 2017; 187:83-92. [PMID: 28755872 DOI: 10.1016/j.trsl.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022]
Abstract
HIV infection continues to be a life-long chronic disease in spite of the success of antiretroviral therapy (ART) in controlling viral replication and preventing disease progression. However, because of the high cost of treatment, severe side effects, and inefficiency in curing the disease with ART, there is a call for alternative therapies that will provide a functional cure for HIV. Cytotoxic T lymphocytes (CTLs) are vital in the control and clearance of viral infections and therefore immune-based therapies have attempted to engineer HIV-specific CTLs that would be able to clear the infection from the body. The development of chimeric antigen receptors (CARs) provides an opportunity to engineer superior HIV-specific CTLs that will be independent of the major histocompatibility complex for target recognition. A CD4-based CAR has been previously tested in clinical trials to test the antiviral efficacy of peripheral T cells armed with this CD4-based CAR. The results from these clinical trials showed the safety and feasibility of CAR T cell therapy for HIV infection; however, minimal antiviral efficacy was seen. In this review, we will discuss the various strategies being developed to enhance the therapeutic potency of anti-HIV CARs with the goal of generating superior antiviral responses that will lead to life-long HIV immunity and clearance of the virus from the body.
Collapse
|
1437
|
Abstract
New therapies are needed for patients with Hodgkin or non-Hodgkin lymphomas that are resistant to standard therapies. Indeed, unresponsiveness to standard chemotherapy and relapse after autologous stem-cell transplantation are indicators of an especially poor prognosis. Chimeric antigen receptor (CAR) T cells are emerging as a novel treatment modality for these patients. Clinical trial data have demonstrated the potent activity of anti-CD19 CAR T cells against multiple subtypes of B-cell lymphoma, including diffuse large-B-cell lymphoma (DLBCL), follicular lymphoma, mantle-cell lymphoma, and marginal-zone lymphoma. Importantly, anti-CD19 CAR T cells have impressive activity against chemotherapy-refractory lymphoma, inducing durable complete remissions lasting >2 years in some patients with refractory DLBCL. CAR-T-cell therapies are, however, associated with potentially fatal toxicities, including cytokine-release syndrome and neurological toxicities. CAR T cells with novel target antigens, including CD20, CD22, and κ-light chain for B-cell lymphomas, and CD30 for Hodgkin and T-cell lymphomas, are currently being investigated in clinical trials. Centrally manufactured CAR T cells are also being tested in industry-sponsored multicentre clinical trials, and will probably soon become a standard therapy. Herein, we review the clinical efficacy and toxicity of CAR-T-cell therapies for lymphoma, and discuss their limitations and future directions with regard to toxicity management, CAR designs and CAR-T-cell phenotypes, conditioning regimens, and combination therapies.
Collapse
|
1438
|
Biondi A, Magnani CF, Tettamanti S, Gaipa G, Biagi E. Redirecting T cells with Chimeric Antigen Receptor (CAR) for the treatment of childhood acute lymphoblastic leukemia. J Autoimmun 2017; 85:141-152. [PMID: 28843422 DOI: 10.1016/j.jaut.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/27/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Nowadays the survival rate is around 85%. Nevertheless, an urgent clinical need is still represented by primary refractory and relapsed patients who do not significantly benefit from standard approaches, including chemo-radiotherapy and hematopoietic stem cell transplantation (HSCT). For this reason, immunotherapy has so far represented a challenging novel treatment opportunity, including, as the most validated therapeutic options, cancer vaccines, donor-lymphocyte infusions and tumor-specific immune effector cells. More recently, unexpected positive clinical results in ALL have been achieved by application of gene-engineered chimeric antigen expressing (CAR) T cells. Several CAR designs across different trials have generated similar response rates, with Complete Response (CR) of 60-90% at 1 month and an Event-Free Survival (EFS) of 70% at 6 months. Relevant challenges anyway remain to be addressed, such as amelioration of technical, cost and feasibility aspects of cell and gene manipulation and the necessity to face the occurrence of relapse mechanisms. This review describes the state of the art of ALL immunotherapies, the novelties in terms of gene manipulation approaches and the problems emerged from early clinical studies. We describe and discuss the process of clinical translation, including the design of a cell manufacturing protocol, vector production and regulatory issues. Multiple antigen targeting and combination of CAR T cells with molecular targeted drugs have also been evaluated as latest strategies to prevail over immune-evasion.
Collapse
Affiliation(s)
- Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy.
| | - Chiara F Magnani
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Giuseppe Gaipa
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Ettore Biagi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| |
Collapse
|
1439
|
Hematopoietic stem cell involvement in BCR-ABL1-positive ALL as a potential mechanism of resistance to blinatumomab therapy. Blood 2017; 130:2027-2031. [PMID: 28827408 DOI: 10.1182/blood-2017-05-782888] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/27/2017] [Indexed: 01/07/2023] Open
Abstract
The bispecific T-cell engager blinatumomab targeting CD19 can induce complete remission in relapsed or refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, some patients ultimately relapse with loss of CD19 antigen on leukemic cells, which has been established as a novel mechanism to escape CD19-specific immunotherapies. Here, we provide evidence that CD19-negative (CD19-) relapse after CD19-directed therapy in BCP-ALL may be a result of the selection of preexisting CD19- malignant progenitor cells. We present 2 BCR-ABL1 fusion-positive BCP-ALL patients with CD19- myeloid lineage relapse after blinatumomab therapy and show BCR-ABL1 positivity in their hematopoietic stem cell (HSC)/progenitor/myeloid compartments at initial diagnosis by fluorescence in situ hybridization after cell sorting. By using the same approach with 25 additional diagnostic samples from patients with BCR-ABL1-positive BCP-ALL, we identified HSC involvement in 40% of the patients. Patients (6 of 8) with major BCR-ABL1 transcript encoding P210BCR-ABL1 mainly showed HSC involvement, whereas in most of the patients (9 of 12) with minor BCR-ABL1 transcript encoding P190BCR-ABL1, only the CD19+ leukemia compartments were BCR-ABL1 positive (P = .02). Our data are of clinical importance, because they indicate that both CD19+ cells and CD19- precursors should be targeted to avoid CD19- relapses in patients with BCR-ABL1-positive ALL.
Collapse
|
1440
|
Wei G, Wang J, Huang H, Zhao Y. Novel immunotherapies for adult patients with B-lineage acute lymphoblastic leukemia. J Hematol Oncol 2017; 10:150. [PMID: 28821272 PMCID: PMC5563021 DOI: 10.1186/s13045-017-0516-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022] Open
Abstract
The past decade witnessed the rapid development of adult B-lineage acute lymphoblastic leukemia (ALL) treatment. Beyond the development of chemotherapy regimens, immunotherapy is starting a new era with unprecedented complete remission (CR) rate. Targeting B-lineage-specific surface markers such as CD19, CD20, CD22, or CD52, immunotherapy has been demonstrating promising clinical results. Among the immunotherapeutic methods, naked monoclonal antibodies (mAbs), antibody-drug conjugate (ADC), bispecific T cell engager (BiTE), and chimeric antigen receptor (CAR) T cells are the main types. In this review, we will examine the emerging preclinical and clinical development on (1) anti-CD20 naked mAbs rituximab, ofatumumab, and obinutuzumab; (2) anti-CD19 ADCs SAR3419 and SGN-CD19A and anti-CD19 BiTE blinatumomab; (3) anti-CD22 naked mAb epratuzumab and anti-CD22 ADC inotuzumab ozogamicin; (4) anti-CD52 naked mAb alemtuzumab; and (5) anti-CD19 CAR T cells. We will discuss their efficacy, adverse effects, as well as future development.
Collapse
Affiliation(s)
- Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jiasheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
1441
|
Ramos CA, Ballard B, Zhang H, Dakhova O, Gee AP, Mei Z, Bilgi M, Wu MF, Liu H, Grilley B, Bollard CM, Chang BH, Rooney CM, Brenner MK, Heslop HE, Dotti G, Savoldo B. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J Clin Invest 2017; 127:3462-3471. [PMID: 28805662 DOI: 10.1172/jci94306] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/29/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Targeting CD30 with monoclonal antibodies in Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL) has had profound clinical success. However, adverse events, mainly mediated by the toxin component of the conjugated antibodies, cause treatment discontinuation in many patients. Targeting CD30 with T cells expressing a CD30-specific chimeric antigen receptor (CAR) may reduce the side effects and augment antitumor activity. METHODS We conducted a phase I dose escalation study in which 9 patients with relapsed/refractory HL or ALCL were infused with autologous T cells that were gene-modified with a retroviral vector to express the CD30-specific CAR (CD30.CAR-Ts) encoding the CD28 costimulatory endodomain. Three dose levels, from 0.2 × 108 to 2 × 108 CD30.CAR-Ts/m2, were infused without a conditioning regimen. All other therapy for malignancy was discontinued at least 4 weeks before CD30.CAR-T infusion. Seven patients had previously experienced disease progression while being treated with brentuximab. RESULTS No toxicities attributable to CD30.CAR-Ts were observed. Of 7 patients with relapsed HL, 1 entered complete response (CR) lasting more than 2.5 years after the second infusion of CD30.CAR-Ts, 1 remained in continued CR for almost 2 years, and 3 had transient stable disease. Of 2 patients with ALCL, 1 had a CR that persisted 9 months after the fourth infusion of CD30.CAR-Ts. CD30.CAR-T expansion in peripheral blood peaked 1 week after infusion, and CD30.CAR-Ts remained detectable for over 6 weeks. Although CD30 may also be expressed by normal activated T cells, no patients developed impaired virus-specific immunity. CONCLUSION CD30.CAR-Ts are safe and can lead to clinical responses in patients with HL and ALCL, indicating that further assessment of this therapy is warranted. TRIAL REGISTRATION ClinicalTrials.gov NCT01316146. FUNDING National Cancer Institute (3P50CA126752, R01CA131027 and P30CA125123), National Heart, Lung, and Blood Institute (R01HL114564), and Leukemia and Lymphoma Society (LLSTR 6227-08).
Collapse
Affiliation(s)
- Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA.,Department of Medicine
| | - Brandon Ballard
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA
| | - Huimin Zhang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA
| | - Olga Dakhova
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA
| | - Zhuyong Mei
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA
| | - Mrinalini Bilgi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA
| | - Meng-Fen Wu
- Biostatistics Shared Resource, Dan L. Duncan Cancer Center, and
| | - Hao Liu
- Department of Medicine.,Biostatistics Shared Resource, Dan L. Duncan Cancer Center, and
| | - Bambi Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Catherine M Bollard
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA.,Department of Medicine.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Bill H Chang
- Division of Pediatric Hematology and Oncology, Oregon Health and Science University, Portland, Oregon, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA.,Department of Pathology and Immunology and.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA.,Department of Medicine.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA.,Department of Medicine.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA.,Department of Medicine
| | - Barbara Savoldo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
1442
|
Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial Watch: Adoptively transferred cells for anticancer immunotherapy. Oncoimmunology 2017; 6:e1363139. [PMID: 29147628 DOI: 10.1080/2162402x.2017.1363139] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/29/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Immunotherapies aimed at strengthening immune effector responses against malignant cells are growing at exponential rates. Alongside, the impressive benefits obtained by patients with advanced melanoma who received adoptively transferred tumor-infiltrating lymphocytes (TILs) have encouraged the scientific community to pursue adoptive cell transfer (ACT)-based immunotherapy. ACT involves autologous or allogenic effector lymphocytes that are generally obtained from the peripheral blood or resected tumors, expanded and activated ex vivo, and administered to lymphodepleted patients. ACT may be optionally associated with chemo- and/or immunotherapeutics, with the overall aim of enhancing the proliferation, persistence and functionality of infused cells, as well as to ensure their evolution in an immunological permissive local and systemic microenvironment. In addition, isolated lymphocytes can be genetically engineered to endow them with the ability to target a specific tumor-associated antigen (TAA), to increase their lifespan, and/or to reduce their potential toxicity. The infusion of chimeric antigen receptor (CAR)-expressing cytotoxic T lymphocytes redirected against CD19 has shown promising clinical efficacy in patients with B-cell malignancies. Accordingly, the US Food and Drug Administration (FDA) has recently granted 'breakthrough therapy' designation to a CAR-based T-cell therapy (CTL019) for patients with B-cell malignancies. Considerable efforts are now being devoted to the development of efficient ACT-based immunotherapies for non-hematological neoplasms. In this Trial Watch, we summarize recent clinical advances on the use of ACT for oncological indications.
Collapse
Affiliation(s)
- Carole Fournier
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - François Martin
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lionel Apetoh
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
1443
|
Gattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and disease. Nat Med 2017; 23:18-27. [PMID: 28060797 DOI: 10.1038/nm.4241] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
Abstract
T memory stem (TSCM) cells are a rare subset of memory lymphocytes endowed with the stem cell-like ability to self-renew and the multipotent capacity to reconstitute the entire spectrum of memory and effector T cell subsets. Cumulative evidence in mice, nonhuman primates and humans indicates that TSCM cells are minimally differentiated cells at the apex of the hierarchical system of memory T lymphocytes. Here we describe emerging findings demonstrating that TSCM cells, owing to their extreme longevity and robust potential for immune reconstitution, are central players in many physiological and pathological human processes. We also discuss how TSCM cell stemness could be leveraged therapeutically to enhance the efficacy of vaccines and adoptive T cell therapies for cancer and infectious diseases or, conversely, how it could be disrupted to treat TSCM cell driven and sustained diseases, such as autoimmunity, adult T cell leukemia and HIV-1.
Collapse
Affiliation(s)
- Luca Gattinoni
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel E Speiser
- Department of Oncology, Ludwig Cancer Research, Lausanne University Hospital, Lausanne, Switzerland
| | - Mathias Lichterfeld
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology Transplantation and Infectious Diseases, Leukemia Unit, San Raffaele Scientific Institute, Milan, Italy.,Hematology Department, Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
1444
|
Gökbuget N. How should we treat a patient with relapsed Ph-negative B-ALL and what novel approaches are being investigated? Best Pract Res Clin Haematol 2017; 30:261-274. [PMID: 29050699 DOI: 10.1016/j.beha.2017.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022]
Abstract
Despite significant improvements in outcome of newly diagnosed B-precursor ALL, the results in relapsed or refractory adult ALL are overall poor. Large retrospective studies revealed significant differences in terms of outcome, with particularly poor response rates in early or refractory relapses, whereas late relapses usually respond very well to repeated standard induction. Particularly new immunotherapy compounds like the CD19 bispecific antibody Blinatumomab and the conjugated CD22 antibody Inotuzumab yielded promising response rates compared to standard therapies in randomised trials. Long-term survival is however still poor. The optimal use of these compounds remains to be defined. Chimeric antigen receptor T-cells are another promising treatment approach and multicenter clinical trials in adult ALL are awaited. For selected patients molecular directed therapies may have a role in relapsed ALL; standard diagnostic algorithms need to be defined. One of the major challenges is to define the role of stem cell transplantation after relapse. Whereas this procedure appears to be the only chance for cure, the mortality and relapse rate are still high and optimisation is urgently needed. Future strategies include optimised use of new compounds as part of combination regimens and the earlier treatment of upcoming relapse in the situation of persistent or recurrent minimal residual disease.
Collapse
Affiliation(s)
- Nicola Gökbuget
- Universitätsklinikum Frankfurt/Main, Medizinische Klinik II, Hämatologie/Onkologie, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
1445
|
Abstract
PURPOSE OF REVIEW The treatment landscape of multiple myeloma is rapidly changing; however, despite improvement in patients' survival, it still remains a largely incurable disease. One hallmark of myeloma is substantial immune dysfunction leading to an increased infection rate and the inability of immune surveillance to detect neoplastic cells. Here, we critically analyze clinical approaches to harness the immune system to overcome this defect with a focus on antibody based and adoptive cellular therapies. RECENT FINDINGS Clinical trials exploring these immunotherapies to treat myeloma are now well underway and show promising results. In relapsed myeloma, monoclonal antibodies directed against plasma cell antigens and immune checkpoints have already shown substantial efficacy. In parallel, trials of adoptive cellular therapy have exciting promise in myeloma, having induced dramatic responses in a handful of early study participants. Taken together, immunotherapeutic approaches hold enormous potential in the field of multiple myeloma and in the near future can be combined with or even replace the current standard of care.
Collapse
Affiliation(s)
- Mattia D'Agostino
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Eric L Smith
- Myeloma Service, Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
1446
|
Fesnak AD, Hanley PJ, Levine BL. Considerations in T Cell Therapy Product Development for B Cell Leukemia and Lymphoma Immunotherapy. Curr Hematol Malig Rep 2017; 12:335-343. [PMID: 28762038 PMCID: PMC5693739 DOI: 10.1007/s11899-017-0395-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Based on laboratory and clinical research findings and investments in immunotherapy by many institutions in academia, government-funded laboratories, and industry, there is tremendous and deserved excitement in the field of cell and gene therapy. In particular, understanding of immune-mediated control of cancer has created opportunities to develop new forms of therapies based on engineered T cells. Unlike conventional drugs or biologics, the source material for these new therapies is collected from the patient or donor. The next step is commonly either enrichment to deplete unwanted cells, or methods to positively select T cells prior to polyclonal expansion or antigen-specific expansion. As the first generation of engineered T cell therapies have demonstrated proof of concept, the next stages of development will require the integration of automated technologies to enable more consistent manufacturing and the ability to produce therapies for more patients.
Collapse
Affiliation(s)
- Andrew D Fesnak
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-5156, USA.
| | - Patrick J Hanley
- Program for Cell Enhancement and Technologies for Immunotherapy, Center for Cancer and Immunology Research, Division of Blood and Marrow Transplantation, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System and The George Washington University, Washington, DC, 20010, USA
| | - Bruce L Levine
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-5156, USA
| |
Collapse
|
1447
|
Promises and limitations of nanoparticles in the era of cell therapy: Example with CD19-targeting chimeric antigen receptor (CAR)-modified T cells. Int J Pharm 2017; 532:813-824. [PMID: 28764981 DOI: 10.1016/j.ijpharm.2017.07.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/16/2023]
Abstract
A number of nanoparticles has been developed by chemists for biomedical applications to meet imaging and targeting needs. In parallel, adoptive T therapy with chimeric antigen receptor engineered T cells (CART cells) has recently held great promise in B-cell malignancy treatments thanks to the development of anti-CD19 CAR T cells. Indeed, CD19 is a reliable B cell marker and a validated target protein for therapy. In this perspective article, we propose to discuss the advantages, limits and challenges of nanoparticles and CAR T cells, focusing on CD19 targeting objects: anti-CD19 nanoparticles and anti-CD19 CAR T cells, because those genetically-modified cells are the most widely developed in clinical setting. In the first part, we will introduce B cell malignancies and the CD19 surface marker. Then we will present the positioning of nanomedicine in the topic of B cell malignancy, before exposing CAR T technology. Finally, we will discuss the complementary approaches between nanoparticles and CAR T cells.
Collapse
|
1448
|
Abstract
近年来, 以免疫检查点阻断单克隆抗体和抗原受体T细胞免疫疗法细胞治疗为代表的免疫疗法在治疗恶性肿瘤方面取得突破性进展. 然而, 肿瘤通过各种不同的机制逃避免疫系统的识别和杀伤, 导致免疫治疗效果仍不理想. 由癌细胞、血管、淋巴、成纤维细胞、炎症细胞以及多种细胞外基质有机构成的肿瘤组织微环境不仅支持癌细胞的生长和转移, 也影响免疫细胞识别和杀伤癌细胞以及迁移的功能, 调控免疫效应分子的活化, 从而影响免疫治疗的效果. 实体肿瘤内异常血管网络和快速生长的癌细胞对氧过量需求导致肿瘤组织缺氧, 并加剧由于癌细胞异常代谢导致肿瘤组织的酸性微环境. 缺氧酸性微环境是肿瘤微环境最重要的组成部分, 癌细胞适应和利用这些微环境, 导致基因变异的多样性和不稳定性, 激活多种信号通路和生存因子, 造成肿瘤对包括免疫治疗在内的多种治疗方法的耐受和抵抗. 本文针对近年来肿瘤缺氧酸性微环境对免疫治疗影响机制的研究进展进行述评, 希望给从事癌症微环境和免疫治疗的临床基础科研人员提供新的思路.
Collapse
|
1449
|
Alabanza L, Pegues M, Geldres C, Shi V, Wiltzius JJW, Sievers SA, Yang S, Kochenderfer JN. Function of Novel Anti-CD19 Chimeric Antigen Receptors with Human Variable Regions Is Affected by Hinge and Transmembrane Domains. Mol Ther 2017; 25:2452-2465. [PMID: 28807568 DOI: 10.1016/j.ymthe.2017.07.013] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 01/17/2023] Open
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T cells have caused remissions of B cell malignancies, but problems including cytokine-mediated toxicity and short persistence of CAR T cells in vivo might limit the effectiveness of anti-CD19 CAR T cells. Anti-CD19 CARs that have been tested clinically had single-chain variable fragments (scFvs) derived from murine antibodies. We have designed and constructed novel anti-CD19 CARs containing a scFv with fully human variable regions. T cells expressing these CARs specifically recognized CD19+ target cells and carried out functions including degranulation, cytokine release, and proliferation. We compared CARs with CD28 costimulatory moieties along with hinge and transmembrane domains from either the human CD28 molecule or the human CD8α molecule. Compared with T cells expressing CARs with CD28 hinge and transmembrane domains, T cells expressing CARs with CD8α hinge and transmembrane domains produced lower levels of cytokines and exhibited lower levels of activation-induced cell death (AICD). Importantly, CARs with hinge and transmembrane regions from either CD8α or CD28 had similar abilities to eliminate established tumors in mice. In anti-CD19 CARs with CD28 costimulatory moieties, lower levels of inflammatory cytokine production and AICD are potential clinical advantages of CD8α hinge and transmembrane domains over CD28 hinge and transmembrane domains.
Collapse
Affiliation(s)
- Leah Alabanza
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Melissa Pegues
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Claudia Geldres
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Victoria Shi
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | - Shicheng Yang
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - James N Kochenderfer
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
1450
|
Affiliation(s)
- Ibrahim Aldoss
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, USA
| | - Anthony S. Stein
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, USA
| |
Collapse
|