1401
|
Yang Y, Chen Y, Wu JH, Ren Y, Liu B, Zhang Y, Yu H. Targeting regulated cell death with plant natural compounds for cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death, and necroptosis. Phytother Res 2023; 37:1488-1525. [PMID: 36717200 DOI: 10.1002/ptr.7738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
Regulated cell death (RCD) refers to programmed cell death regulated by various protein molecules, such as apoptosis, autophagy-dependent cell death, and necroptosis. Accumulating evidence has recently revealed that RCD subroutines have several links to many types of human cancer; therefore, targeting RCD with pharmacological small-molecule compounds would be a promising therapeutic strategy. Moreover, plant natural compounds, small-molecule compounds synthesized from plant sources, and their derivatives have been widely reported to regulate different RCD subroutines to improve potential cancer therapy. Thus, in this review, we focus on updating the intricate mechanisms of apoptosis, autophagy-dependent cell death, and necroptosis in cancer. Moreover, we further discuss several representative plant natural compounds and their derivatives that regulate the above-mentioned three subroutines of RCD, and their potential as candidate small-molecule drugs for the future cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmei Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Hao Wu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yueting Ren
- Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
1402
|
Hosseini M, Pereira DM. The Chemical Space of Terpenes: Insights from Data Science and AI. Pharmaceuticals (Basel) 2023; 16:202. [PMID: 37259351 PMCID: PMC9961535 DOI: 10.3390/ph16020202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/19/2023] [Indexed: 07/30/2023] Open
Abstract
Terpenes are a widespread class of natural products with significant chemical and biological diversity, and many of these molecules have already made their way into medicines. In this work, we employ a data science-based approach to identify, compile, and characterize the diversity of terpenes currently known in a systematic way, in a total of 59,833 molecules. We also employed several methods for the purpose of classifying terpene subclasses using their physicochemical descriptors. Light gradient boosting machine, k-nearest neighbours, random forests, Gaussian naïve Bayes and Multilayer perceptron were tested, with the best-performing algorithms yielding accuracy, F1 score, precision and other metrics all over 0.9, thus showing the capabilities of these approaches for the classification of terpene subclasses. These results can be important for the field of phytochemistry and pharmacognosy, as they allow the prediction of the subclass of novel terpene molecules, even when biosynthetic studies are not available.
Collapse
|
1403
|
Xue M, Hou X, Fu J, Zhang J, Wang J, Zhao Z, Xu D, Lai D, Zhou L. Recent Advances in Search of Bioactive Secondary Metabolites from Fungi Triggered by Chemical Epigenetic Modifiers. J Fungi (Basel) 2023; 9:jof9020172. [PMID: 36836287 PMCID: PMC9961798 DOI: 10.3390/jof9020172] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Genomic analysis has demonstrated that many fungi possess essential gene clusters for the production of previously unobserved secondary metabolites; however, these genes are normally reduced or silenced under most conditions. These cryptic biosynthetic gene clusters have become treasures of new bioactive secondary metabolites. The induction of these biosynthetic gene clusters under stress or special conditions can improve the titers of known compounds or the production of novel compounds. Among the inducing strategies, chemical-epigenetic regulation is considered a powerful approach, and it uses small-molecule epigenetic modifiers, which mainly act as the inhibitors of DNA methyltransferase, histone deacetylase, and histone acetyltransferase, to promote changes in the structure of DNA, histones, and proteasomes and to further activate cryptic biosynthetic gene clusters for the production of a wide variety of bioactive secondary metabolites. These epigenetic modifiers mainly include 5-azacytidine, suberoylanilide hydroxamic acid, suberoyl bishydroxamic acid, sodium butyrate, and nicotinamide. This review gives an overview on the method of chemical epigenetic modifiers to trigger silent or low-expressed biosynthetic pathways to yield bioactive natural products through external cues of fungi, mainly based on the research progress in the period from 2007 to 2022. The production of about 540 fungal secondary metabolites was found to be induced or enhanced by chemical epigenetic modifiers. Some of them exhibited significant biological activities such as cytotoxic, antimicrobial, anti-inflammatory, and antioxidant activity.
Collapse
|
1404
|
Liu J, Yang Y, Xie X, Li SM. A Streptomyces Cytochrome P450 Enzyme Catalyzes Regiospecific C2-Guaninylation for the Synthesis of Diverse Guanitrypmycin Analogs. JOURNAL OF NATURAL PRODUCTS 2023; 86:94-102. [PMID: 36599087 DOI: 10.1021/acs.jnatprod.2c00787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Heterologous expression of a cdps-p450 locus from Streptomyces sp. NRRL S-1521 led to the identification of guanitrypmycin D1, a new guaninylated diketopiperazine. The cytochrome P450 GutD1521 catalyzed the regiospecific transfer of guanine to C-2 of the indole ring of cyclo-(l-Trp-l-Tyr) via a C-C linkage and represents a new chemical transformation within this enzyme class. Furthermore, GutD1521 efficiently accepts several other tryptophan-containing cyclodipeptides or derivatives for regiospecific coupling with guanine, thus generating different guanitrypmycin analogs.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Yiling Yang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| |
Collapse
|
1405
|
Salzillo A, Ragone A, Spina A, Naviglio S, Sapio L. Forskolin affects proliferation, migration and Paclitaxel-mediated cytotoxicity in non-small-cell lung cancer cell lines via adenylyl cyclase/cAMP axis. Eur J Cell Biol 2023; 102:151292. [PMID: 36736051 DOI: 10.1016/j.ejcb.2023.151292] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Non-Small-Cell Lung Cancer (NSCLC) is considered one of the most frequently diagnosed cancers and the leading cause of cancer-related deaths worldwide. Despite the undoubted therapeutic advances that have occurred in clinical practice over time, due to its high degree in both heterogeneity and resistance, NSCLC remains largely incurable. As a natural cAMP elevating agent, Forskolin has shown anti-cancer properties in different tumor types, thus supposing its possible usage in treating malignancies. In this study, we investigated the Forskolin outcome in H1299 and A549 NSCLC cell lines, either alone or in combination with Paclitaxel. We proved that Forskolin impairs cell growth and migration ability of these cells, concurrently. Albeit with a different extent between H1299 and A549, changes in cell-cycle progression and epithelial-mesenchymal markers were observed in response to Forskolin administration. Interestingly, comparable cell growth impairment was also obtained with the cAMP phosphodiesterase inhibitor IBMX, while the employment of adenylyl cyclase inhibitor SQ22536 counteracted, at least in part, the Forskolin-mediated anticancer effects. Besides as a single agent, we also demonstrated that Forskolin strongly enhances Paclitaxel-induced cytotoxicity, affecting cell death mainly via apoptosis induction. Notably, H89-mediated protein kinase A (PKA) inhibition further deteriorated the combination outcome. Altogether, our data designate Forskolin as a possible anticancer molecule in NSCLC, and recognize the adenylyl cyclase/cAMP axis as one of the pathways involved in. Although achieved at preclinical stage, our findings encourage the design of future studies aimed at further exploring the Forskolin employment in NSCLC treatment.
Collapse
Affiliation(s)
- Alessia Salzillo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Ragone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annamaria Spina
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Luigi Sapio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
1406
|
Khdary NH, Alangari AA, Katubi KM, Alanazi M, Alhassan A, Alzahrani SD, Khan Z, Alanazi IO. Synthesis of Gingerol-Metals Complex and in-vitro Cytotoxic Activity on Human Colon Cancer Cell Line. Cancer Manag Res 2023; 15:87-98. [PMID: 36733670 PMCID: PMC9888304 DOI: 10.2147/cmar.s391546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Herbs are excellent sources of medicinal substances, and their curative abilities have been recognized to treat many ailments and are used for example as antioxidants, analgesics, anti-inflammatories, antipyretics, and many other medicinal uses. The properties of natural compounds and their health effects have been studied extensively, especially those that originate from plant sources such as ginger. The ginger plant contains many chemical compounds, such as 6-gingerol, which is characterized by containing active groups such as carbonyl and hydroxide, which can be attached to metal molecules. This is what was done in this study, where the formation of complexes with a group of metals was studied and their effect on cancer cells was investigated. These complexes will open new horizons for further study of medicinal uses. Methods The synthesis of gingerol-metal complexes was carried out by conjugating gingerol molecules with Ag, Au, Cd, Co, Cu, Ni, and Zn metal ions. The extracted gingerol was transferred to culture tubes and deionized water-DMSO were added followed by sonication. The tubes were incubated at 90°C for two days as well as the control sample. The samples were then filtered and the complex solutions were transferred into new tubes for further studies. Different characterization techniques such as FT-IR, UV-vis spectroscopy, FESEM, and EDX are used to confirm the formation of the complexes. The in vitro of the complexes was tested by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay against the human colorectal cancer cell lines HCT116 and HT29 which exhibited strong cytotoxicity. Results The gingerol-metal complexes showed an enhancement as an anticancer agent compared to the control. The in vitro anticancer activity showed that the Ag-gingerol complex showed the most activity among the other complexes. Discussion Gingerol-metal complexes can inhibit cancer cells, noting that the potency of the complex depends on the type of metal used.
Collapse
Affiliation(s)
- Nezar H Khdary
- Institute of Materials Science, King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia,Correspondence: Nezar H Khdary, Institute of Materials Science, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia, Tel +966-114814236, Email
| | | | - Khadijah M Katubi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmed Alhassan
- Institute of Materials Science, King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia
| | - Sami D Alzahrani
- Institute of Materials Science, King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia
| | - Zahid Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ibrahim O Alanazi
- Institute of Materials Science, King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia,Ibrahim O Alanazi, Aging institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia, Tel +966114813289, Email
| |
Collapse
|
1407
|
Identifying molecular targets of Aspiletrein-derived steroidal saponins in lung cancer using network pharmacology and molecular docking-based assessments. Sci Rep 2023; 13:1545. [PMID: 36707691 PMCID: PMC9883450 DOI: 10.1038/s41598-023-28821-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
Lung cancer is one of the leading cancers and causes of cancer-related deaths worldwide. Due to its high prevalence and mortality rate, its clinical management remains a significant challenge. Previously, the in vitro anticancer activity of Aspiletrein A, a steroid and a saponin from Aspidistra letreae, against non-small cell lung cancer (NSCLC) cells was reported. However, the anticancer molecular mechanism of other Aspiletreins from A. letreae remains unknown. Using in silico network pharmacology approaches, the targets of Aspiletreins were predicted using the Swiss Target Prediction database. In addition, key mediators in NSCLC were obtained from the Genetic databases. The compound-target interacting networks were constructed using the STRING database and Cytoscape, uncovering potential targets, including STAT3, VEGFA, HSP90AA1, FGF2, and IL2. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that several pathways were highly relevant to cancer pathogenesis. Additionally, molecular docking and molecular dynamic analyses revealed the interaction between key identified targets and Aspiletreins, including hydrogen bonding and Van der Waals interaction. This study provides potential targets of Aspiletreins in NSCLC, and its approach of integrating network pharmacology, bioinformatics, and molecular docking is a powerful tool for investigating the mechanism of new drug targets on a specific disease.
Collapse
|
1408
|
Henrique Santana Silveira P, Pita SSDR. Druggable sites identification in Streptococcus mutans VicRK system evaluated by catechols. J Biomol Struct Dyn 2023; 41:12000-12015. [PMID: 36703608 DOI: 10.1080/07391102.2023.2166118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/26/2022] [Indexed: 01/28/2023]
Abstract
Dental caries is a global public health problem, being the most common non-communicable disease. Streptococcus mutans, the causative agent of human cariogenic dental biofilms, produce glycosyltransferases (Gtfs) whose gene expression is modulated by the VicRK system, which makes them a promising target for dental biofilm inhibitor developments. Bioinformatics have playing a significant role in drug discovery programs mainly in novel hit identification. In this study, potential inhibitors against the S. mutans VicK system have been identified through Structure-based Virtual Screening performed between the VicK druggable sites followed byMolecular Dynamic simulations (MD) with binding affinity analysis by MM-PBSA approach. First, VicK protein was downloaded from PDB, and druggability analyses were performed by PockDrug and FTMap servers describing three interaction sites (S1, S2, and S3) that covered the most important domains for stability and activity. Next, a catechol virtual screening (n = 383) was performed on AutoDock4.2, and better-docked catechols showed strong binding affinity interaction through hydrogen bonding, hydrophobic interactions, and π-stacking with VicK auto kinase and phosphatase activity sites. Ligand efficiency indexes were also calculated (LE, LELP, LLE, and BEI) and showed optimal values. Furthermore, a 200 ns MD simulation run showed stability (RMSD and RMSF) and a high number of hydrogen bonds into peltatoside and maritimein, the two best VicK complexes. These results supported that catechols could potentially inhibit exopolysaccharides synthesis and be used in the biofilm management of new anti-cariogenic and antimicrobial agents.
Collapse
Affiliation(s)
- Paulo Henrique Santana Silveira
- Multidisciplinary Institute in Health, Campus Anísio Teixeira, Federal University of Bahia (UFBA - IMS/CAT), Vitória da Conquista, Bahia, Brasil
| | - Samuel Silva da Rocha Pita
- Laboratory of Bioinformatic and Molecular Modelling (LaBiMM), Pharmacy College, Ondina Campus, Federal University of Bahia (UFBA), Salvador, Bahia, Brasil
| |
Collapse
|
1409
|
Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032429. [PMID: 36768748 PMCID: PMC9917110 DOI: 10.3390/ijms24032429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Traditional herbal medicines based on natural products play a pivotal role in preventing and managing atherosclerotic diseases, which are among the leading causes of death globally. Monoterpenes are a large class of naturally occurring compounds commonly found in many aromatic and medicinal plants. Emerging evidence has shown that monoterpenes have many biological properties, including cardioprotective effects. Remarkably, an increasing number of studies have demonstrated the therapeutic potential of natural monoterpenes to protect against the pathogenesis of atherosclerosis. These findings shed light on developing novel effective antiatherogenic drugs from these compounds. Herein, we provide an overview of natural monoterpenes' effects on atherogenesis and the underlying mechanisms. Monoterpenes have pleiotropic and multitargeted pharmacological properties by interacting with various cell types and intracellular molecular pathways involved in atherogenesis. These properties confer remarkable advantages in managing atherosclerosis, which has been recognized as a multifaceted vascular disease. We also discuss limitations in the potential clinical application of monoterpenes as therapeutic agents against atherosclerosis. We propose perspectives to give new insights into future preclinical research and clinical practice regarding natural monoterpenes.
Collapse
|
1410
|
Predictive Biomarkers for Response to Immunotherapy in Triple Negative Breast Cancer: Promises and Challenges. J Clin Med 2023; 12:jcm12030953. [PMID: 36769602 PMCID: PMC9917763 DOI: 10.3390/jcm12030953] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a highly heterogeneous disease with a poor prognosis and a paucity of therapeutic options. In recent years, immunotherapy has emerged as a new treatment option for patients with TNBC. However, this therapeutic evolution is paralleled by a growing need for biomarkers which allow for a better selection of patients who are most likely to benefit from this immune checkpoint inhibitor (ICI)-based regimen. These biomarkers will not only facilitate a better optimization of treatment strategies, but they will also avoid unnecessary side effects in non-responders, and limit the increasing financial toxicity linked to the use of these agents. Huge efforts have been deployed to identify predictive biomarkers for the ICI, but until now, the fruits of this labor remained largely unsatisfactory. Among clinically validated biomarkers, only programmed death-ligand 1 protein (PD-L1) expression has been prospectively assessed in TNBC trials. In addition to this, microsatellite instability and a high tumor mutational burden are approved as tumor agnostic biomarkers, but only a small percentage of TNBC fits this category. Furthermore, TNBC should no longer be approached as a single biological entity, but rather as a complex disease with different molecular, clinicopathological, and tumor microenvironment subgroups. This review provides an overview of the validated and evolving predictive biomarkers for a response to ICI in TNBC.
Collapse
|
1411
|
Valenza C, Taurelli Salimbeni B, Santoro C, Trapani D, Antonarelli G, Curigliano G. Tumor Infiltrating Lymphocytes across Breast Cancer Subtypes: Current Issues for Biomarker Assessment. Cancers (Basel) 2023; 15:cancers15030767. [PMID: 36765724 PMCID: PMC9913599 DOI: 10.3390/cancers15030767] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) represent a surrogate biomarker of anti-tumor, lymphocyte-mediated immunity. In early, triple-negative breast cancer, TILs have level 1B of evidence to predict clinical outcomes. TILs represent a promising biomarker to select patients who can experience a better prognosis with de-intensified cancer treatments and derive larger benefits from immune checkpoint inhibitors. However, the assessment and the validation of TILs as a biomarker require a prospective and rigorous demonstration of its clinical validity and utility, provided reproducible analytical performance. With pending data about the prospective validation of TILs' clinical validity to modulate treatments in early breast cancer, this review summarizes the most important current issues and future challenges related to the implementation of TILs assessments across all breast cancer subtypes and their potential integration into clinical practice.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Beatrice Taurelli Salimbeni
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Celeste Santoro
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-5748-9599
| |
Collapse
|
1412
|
Zhang L, Wang C, Chen K, Zhong W, Xu Y, Molnár I. Engineering the biosynthesis of fungal nonribosomal peptides. Nat Prod Rep 2023; 40:62-88. [PMID: 35796260 DOI: 10.1039/d2np00036a] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2011 up to the end of 2021.Fungal nonribosomal peptides (NRPs) and the related polyketide-nonribosomal peptide hybrid products (PK-NRPs) are a prolific source of bioactive compounds, some of which have been developed into essential drugs. The synthesis of these complex natural products (NPs) utilizes nonribosomal peptide synthetases (NRPSs), multidomain megaenzymes that assemble specific peptide products by sequential condensation of amino acids and amino acid-like substances, independent of the ribosome. NRPSs, collaborating polyketide synthase modules, and their associated tailoring enzymes involved in product maturation represent promising targets for NP structure diversification and the generation of small molecule unnatural products (uNPs) with improved or novel bioactivities. Indeed, reprogramming of NRPSs and recruiting of novel tailoring enzymes is the strategy by which nature evolves NRP products. The recent years have witnessed a rapid development in the discovery and identification of novel NRPs and PK-NRPs, and significant advances have also been made towards the engineering of fungal NRP assembly lines to generate uNP peptides. However, the intrinsic complexities of fungal NRP and PK-NRP biosynthesis, and the large size of the NRPSs still present formidable conceptual and technical challenges for the rational and efficient reprogramming of these pathways. This review examines key examples for the successful (and for some less-successful) re-engineering of fungal NRPS assembly lines to inform future efforts towards generating novel, biologically active peptides and PK-NRPs.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Kang Chen
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Weimao Zhong
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.,VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| |
Collapse
|
1413
|
Makinde E, Ma L, Mellick GD, Feng Y. Mitochondrial Modulators: The Defender. Biomolecules 2023; 13:biom13020226. [PMID: 36830595 PMCID: PMC9953029 DOI: 10.3390/biom13020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are widely considered the "power hub" of the cell because of their pivotal roles in energy metabolism and oxidative phosphorylation. However, beyond the production of ATP, which is the major source of chemical energy supply in eukaryotes, mitochondria are also central to calcium homeostasis, reactive oxygen species (ROS) balance, and cell apoptosis. The mitochondria also perform crucial multifaceted roles in biosynthetic pathways, serving as an important source of building blocks for the biosynthesis of fatty acid, cholesterol, amino acid, glucose, and heme. Since mitochondria play multiple vital roles in the cell, it is not surprising that disruption of mitochondrial function has been linked to a myriad of diseases, including neurodegenerative diseases, cancer, and metabolic disorders. In this review, we discuss the key physiological and pathological functions of mitochondria and present bioactive compounds with protective effects on the mitochondria and their mechanisms of action. We highlight promising compounds and existing difficulties limiting the therapeutic use of these compounds and potential solutions. We also provide insights and perspectives into future research windows on mitochondrial modulators.
Collapse
|
1414
|
Wang X, Chan YS, Wong K, Yoshitake R, Sadava D, Synold TW, Frankel P, Twardowski PW, Lau C, Chen S. Mechanism-Driven and Clinically Focused Development of Botanical Foods as Multitarget Anticancer Medicine: Collective Perspectives and Insights from Preclinical Studies, IND Applications and Early-Phase Clinical Trials. Cancers (Basel) 2023; 15:701. [PMID: 36765659 PMCID: PMC9913787 DOI: 10.3390/cancers15030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer progression and mortality remain challenging because of current obstacles and limitations in cancer treatment. Continuous efforts are being made to explore complementary and alternative approaches to alleviate the suffering of cancer patients. Epidemiological and nutritional studies have indicated that consuming botanical foods is linked to a lower risk of cancer incidence and/or improved cancer prognosis after diagnosis. From these observations, a variety of preclinical and clinical studies have been carried out to evaluate the potential of botanical food products as anticancer medicines. Unfortunately, many investigations have been poorly designed, and encouraging preclinical results have not been translated into clinical success. Botanical products contain a wide variety of chemicals, making them more difficult to study than traditional drugs. In this review, with the consideration of the regulatory framework of the USFDA, we share our collective experiences and lessons learned from 20 years of defining anticancer foods, focusing on the critical aspects of preclinical studies that are required for an IND application, as well as the checkpoints needed for early-phase clinical trials. We recommend a developmental pipeline that is based on mechanisms and clinical considerations.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yin S. Chan
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Kelly Wong
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Ryohei Yoshitake
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - David Sadava
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Timothy W. Synold
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Paul Frankel
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Przemyslaw W. Twardowski
- Department of Urologic Oncology, Saint John’s Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Clayton Lau
- Department of Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Shiuan Chen
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
1415
|
Louwen JJR, Medema MH, van der Hooft JJJ. Enhanced correlation-based linking of biosynthetic gene clusters to their metabolic products through chemical class matching. MICROBIOME 2023; 11:13. [PMID: 36691088 PMCID: PMC9869629 DOI: 10.1186/s40168-022-01444-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/07/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND It is well-known that the microbiome produces a myriad of specialised metabolites with diverse functions. To better characterise their structures and identify their producers in complex samples, integrative genome and metabolome mining is becoming increasingly popular. Metabologenomic co-occurrence-based correlation scoring methods facilitate the linking of metabolite mass fragmentation spectra (MS/MS) to their cognate biosynthetic gene clusters (BGCs) based on shared absence/presence patterns of metabolites and BGCs in paired omics datasets of multiple strains. Recently, these methods have been made more readily accessible through the NPLinker platform. However, co-occurrence-based approaches usually result in too many candidate links to manually validate. To address this issue, we introduce a generic feature-based correlation method that matches chemical compound classes between BGCs and MS/MS spectra. RESULTS To automatically reduce the long lists of potential BGC-MS/MS spectrum links, we match natural product (NP) ontologies previously independently developed for genomics and metabolomics and developed NPClassScore: an empirical class matching score that we also implemented in the NPLinker platform. By applying NPClassScore on three paired omics datasets totalling 189 bacterial strains, we show that the number of links is reduced by on average 63% as compared to using a co-occurrence-based strategy alone. We further demonstrate that 96% of experimentally validated links in these datasets are retained and prioritised when using NPClassScore. CONCLUSION The matching genome-metabolome class ontologies provide a starting point for selecting plausible candidates for BGCs and MS/MS spectra based on matching chemical compound class ontologies. NPClassScore expedites genome/metabolome data integration, as relevant BGC-metabolite links are prioritised, and researchers are faced with substantially fewer proposed BGC-MS/MS links to manually inspect. We anticipate that our addition to the NPLinker platform will aid integrative omics mining workflows in discovering novel NPs and understanding complex metabolic interactions in the microbiome. Video Abstract.
Collapse
Affiliation(s)
- Joris J. R. Louwen
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Justin J. J. van der Hooft
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Department of Biochemistry, University of Johannesburg, Johannesburg, 2006 South Africa
| |
Collapse
|
1416
|
Sirico M, D’Angelo A, Gianni C, Casadei C, Merloni F, De Giorgi U. Current State and Future Challenges for PI3K Inhibitors in Cancer Therapy. Cancers (Basel) 2023; 15:703. [PMID: 36765661 PMCID: PMC9913212 DOI: 10.3390/cancers15030703] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The phosphoinositide 3 kinase (PI3K)-protein kinase B (PKB/AKT)-mammalian target of the rapamycin (mTOR) axis is a key signal transduction system that links oncogenes and multiple receptor classes which are involved in many essential cellular functions. Aberrant PI3K signalling is one of the most commonly mutated pathways in cancer. Consequently, more than 40 compounds targeting key components of this signalling network have been tested in clinical trials among various types of cancer. As the oncogenic activation of the PI3K/AKT/mTOR pathway often occurs alongside mutations in other signalling networks, combination therapy should be considered. In this review, we highlight recent advances in the knowledge of the PI3K pathway and discuss the current state and future challenges of targeting this pathway in clinical practice.
Collapse
Affiliation(s)
- Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alberto D’Angelo
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
- Department of Oncology, Royal United Hospital, Bath BA1 3NG, UK
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
1417
|
Synthesis, Characterization, and Antiproliferative Properties of New Bio-Inspired Xanthylium Derivatives. Molecules 2023; 28:molecules28031102. [PMID: 36770768 PMCID: PMC9921969 DOI: 10.3390/molecules28031102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Xanthylium derivatives are curcumin analogs showing photochromic properties. Similarly, to anthocyanins, they follow the same multistate network of chemical species that are reversibly interconverted by external stimuli. In the present work, two new asymmetric monocarbonyl analogues of curcumin, 4-(4-hydroxy-3-metoxybenzylidene)-1,2,3,4-tetrahydroxanthylium chloride (compound 3) and 4-(4-hydroxybenzylidene)-6-methoxy-1,2,3,4-tetrahydroxanthylium chloride (compound 4) were synthesized, and their photochromic and biological properties were investigated. The UV-Vis spectroscopy and the direct and reverse pH-jumps studies confirmed the halochromic properties and the existence of different molecular species. A network of chemical reactions of these species was proposed. Furthermore, the antiproliferative properties of both compounds were evaluated using P19 murine embryocarcinoma cells and compared with each other. The results demonstrate that both new xanthylium derivatives modify the progression through the cell cycle of P19 cells, which translates into a significant antiproliferative effect. The effect of the methoxy group position is discussed and several checkpoint proteins are advanced as putative targets.
Collapse
|
1418
|
Natural Bioactive Compounds Targeting NADPH Oxidase Pathway in Cardiovascular Diseases. Molecules 2023; 28:molecules28031047. [PMID: 36770715 PMCID: PMC9921542 DOI: 10.3390/molecules28031047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, in both developed and developing countries. According to the WHO report, the morbidity and mortality caused by CVD will continue to rise with the estimation of death going up to 22.2 million in 2030. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) production induces endothelial nitric oxide synthase (eNOS) uncoupling and mitochondrial dysfunction, resulting in sustained oxidative stress and the development of cardiovascular diseases. Seven distinct members of the family have been identified of which four (namely, NOX1, 2, 4 and 5) may have cardiovascular functions. Currently, the treatment and management plan for patients with CVDs mainly depends on the drugs. However, prolonged use of prescribed drugs may cause adverse drug reactions. Therefore, it is crucial to find alternative treatment options with lesser adverse effects. Natural products have been gaining interest as complementary therapy for CVDs over the past decade due to their wide range of medicinal properties, including antioxidants. These might be due to their potent active ingredients, such as flavonoid and phenolic compounds. Numerous natural compounds have been demonstrated to have advantageous effects on cardiovascular disease via NADPH cascade. This review highlights the potential of natural products targeting NOX-derived ROS generation in treating CVDs. Emphasis is put on the activation of the oxidases, including upstream or downstream signalling events.
Collapse
|
1419
|
Chattaraj B, Nandi A, Das A, Sharma A, Dey YN, Kumar D, R M. Inhibitory activity of Enhydra fluctuans Lour. on calcium oxalate crystallisation through in silico and in vitro studies. Front Pharmacol 2023; 13:982419. [PMID: 36744215 PMCID: PMC9894874 DOI: 10.3389/fphar.2022.982419] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023] Open
Abstract
The decoction of the whole plant of Enhydra fluctuans is used ethno medicinally by various tribes for the treatment of kidney stones and urinary problems. However, no scientific studies were carried out to delineate its influence on urinary stone formation and crystallisation. Hence, the present study is proposed to investigate the effect of the aqueous extract of Enhydra fluctuans extract on in vitro crystallisation of calcium oxalate. The present study also evaluated. in silico studies of the metabolites with the target proteins present in the renal calcium oxalate stone matrix. The plant material was subjected to decoction to obtain an aqueous extract. The effect of the extract on calcium oxalate crystallization was evaluated by in vitro nucleation and aggregation assays. Further, the metabolites present in E. fluctuans were mined from the existing literature and their number was found to be 35. The selected 35 metabolites of E. fluctuans were subjected to molecular docking with the 5 proteins which are known to be responsible for calcium oxalate crystal growth. Results of in vitro studies indicated that the extract (50, 100, and 200 μg/mL) and standard drug cystone (1,000 μg/mL) exhibited an inhibitory role in the nucleation process where the percentage inhibitions were 52.69, 43.47, 21.98, and 31.67 μg/mL respectively. The results of molecular docking studies revealed that 2 out of 35 metabolites i.e. Baicalein-7-O-diglucoside and 4',5,6,7-Tetrahydroxy-8-methoxy isoflavone-7-O-beta-D- galactopyranosyl-(1→3)-O-beta-D-xylopyranosyl-(1→4)- O-alpha-L-rhamnopyranoside showed modulatory effects on the four renal stone matrix-associated protein (Human CTP: Phosphoethanolamine Cytidylyltransferase (Protein Data Bank ID: 3ELB), UDP glucose: glycoprotein glucosyltransferase 2 (Gene: UGGT2) (AlphaFold) and RIMS-binding protein 3A (Gene: RIMBP3) (AlphaFold), and Ras GTPase activating-like protein (PDB: 3FAY) based on their docking scores which indicates that they may inhibit the crystallization process. Findings from this study show that Enhydra fluctuans may be effective in the prevention of the crystallization of calcium oxalate. However, further, in vivo studies as well as molecular studies are needed to be conducted to confirm and strengthen its anti-urolithiatic activity and to elucidate the possible mechanism of action involved therein.
Collapse
Affiliation(s)
- Bornika Chattaraj
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, India
| | - Arijit Nandi
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, India
| | - Anwesha Das
- Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
| | - Amit Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Yadu Nandan Dey
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, India,*Correspondence: Yadu Nandan Dey, ; Mogana R,
| | - Dharmendra Kumar
- Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram, India
| | - Mogana R
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI Education SDN.BHD, UCSI University, Kuala Lumpur, Malaysia,*Correspondence: Yadu Nandan Dey, ; Mogana R,
| |
Collapse
|
1420
|
Li W, Xu H, Shao J, Chen J, Lin Y, Zheng Z, Wang Y, Luo W, Liang G. Discovery of alantolactone as a naturally occurring NLRP3 inhibitor to alleviate NLRP3-driven inflammatory diseases in mice. Br J Pharmacol 2023; 180:1634-1647. [PMID: 36668704 DOI: 10.1111/bph.16036] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE The NLR family pyrin domain-containing 3 (NLRP3) inflammasome is activated in many inflammatory conditions. So far, no low MW compounds inhibiting NLRP3 have entered clinical use. Identification of naturally occurring NLRP3 inhibitors may be beneficial to the design and development of compounds targeting NLRP3. Alantolactone is a phytochemical from a traditional Chinese medicinal plant with anti-inflammatory activity, but its precise target remains unclear. EXPERIMENTAL APPROACH A bank of phytochemicals was screened for inhibitors of NLRP3-driven production of IL-1β in cultures of bone-marrow-derived macrophages from female C57BL/6 mice. Models of gouty arthritis and acute lung injury in male C57BL/6J mice were used to determine the in vivo effects of the most potent compound. KEY RESULTS Among the 150 compounds screened in vitro, alantolactone exhibited the highest inhibitory activity against LPS + ATP-induced production of IL-1β in macrophages, suppressing IL-1β secretion, caspase-1 activation and pyroptosis. Alantolactone directly bound to the NACHT domain of NLRP3 to inhibit activation and assembly of NLRP3 inflammasomes. Molecular simulation analysis suggested that Arg335 in NLRP3 was a critical residue for alantolactone binding, leading to suppression of NLRP3-NEK7 interaction. In vivo studies confirmed significant alleviation by alantolactone of two NLRP3-driven inflammatory conditions, acute lung injury and gouty arthritis. CONCLUSION AND IMPLICATIONS The phytochemical alantolactone inhibited activity of NLRP3 inflammasomes by directly targeting the NACHT domain of NLRP3. Alantolactone shows great potential in the treatment of NLRP3-driven diseases and could lead to the development of novel NLRP3 inhibitors.
Collapse
Affiliation(s)
- Weifeng Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haowen Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingjing Shao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yimin Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
1421
|
Incorporating weekly carboplatin in anthracycline and paclitaxel-containing neoadjuvant chemotherapy for triple-negative breast cancer: propensity-score matching analysis and TIL evaluation. Br J Cancer 2023; 128:266-274. [PMID: 36396818 PMCID: PMC9902542 DOI: 10.1038/s41416-022-02050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The generation of data capturing the risk-benefit ratio of incorporating carboplatin (Cb) to neoadjuvant chemotherapy (NACT) for triple-negative breast cancer (TNBC) in a clinical practice setting is urgently needed. Tumour-infiltrating lymphocytes (TILs) have an established role in TNBC receiving NACT, however, the role of TIL dynamics under NACT exposure in patients receiving the current standard of care is largely uncharted. METHODS Consecutive TNBC patients receiving anthracycline-taxane [A-T] +/- Cb NACT at three Institutions were enrolled. Stromal-TILs were evaluated on pre-NACT and residual disease (RD) specimens. In the clinical cohort, propensity-score-matching was used to control selection bias. RESULTS In total, 247 patients were included (A-T = 40.5%, A-TCb = 59.5%). After propensity-score-matching, pCR was significantly higher for A-TCb vs A-T (51.9% vs 34.2%, multivariate: OR = 2.40, P = 0.01). No differences in grade ≥3 haematological toxicities were observed. TILs increased from baseline to RD in the overall population and across A-T/A-TCb subgroups. TIL increase from baseline to RD was positively and independently associated with distant disease-free survival (multivariate: HR = 0.43, P = 0.05). CONCLUSIONS We confirmed in a clinical practice setting of TNBC patients receiving A-T NACT that the incorporation of weekly Cb significantly improved pCR. In addition, A-T +/- Cb enhanced immune infiltration from baseline to RD. Finally, we reported a positive independent prognostic role of TIL increase after NACT exposure.
Collapse
|
1422
|
Świecimska M, Golińska P, Goodfellow M. Generation of a high quality library of bioactive filamentous actinomycetes from extreme biomes using a culture-based bioprospecting strategy. Front Microbiol 2023; 13:1054384. [PMID: 36741889 PMCID: PMC9893292 DOI: 10.3389/fmicb.2022.1054384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Filamentous actinomycetes, notably members of the genus Streptomyces, remain a rich source of new specialized metabolites, especially antibiotics. In addition, they are also a valuable source of anticancer and biocontrol agents, biofertilizers, enzymes, immunosuppressive drugs and other biologically active compounds. The new natural products needed for such purposes are now being sought from extreme habitats where harsh environmental conditions select for novel strains with distinctive features, notably an ability to produce specialized metabolites of biotechnological value. Methods A culture-based bioprospecting strategy was used to isolate and screen filamentous actinomycetes from three poorly studied extreme biomes. Actinomycetes representing different colony types growing on selective media inoculated with environmental suspensions prepared from high-altitude, hyper-arid Atacama Desert soils, a saline soil from India and from a Polish pine forest soil were assigned to taxonomically predictive groups based on characteristic pigments formed on oatmeal agar. One hundred and fifteen representatives of the colour-groups were identified based on 16S rRNA gene sequences to determine whether they belonged to validly named or to putatively novel species. The antimicrobial activity of these isolates was determined using a standard plate assay. They were also tested for their capacity to produce hydrolytic enzymes and compounds known to promote plant growth while representative strains from the pine forest sites were examined to determine their ability to inhibit the growth of fungal and oomycete plant pathogens. Results Comparative 16S rRNA gene sequencing analyses on isolates representing the colour-groups and their immediate phylogenetic neighbours showed that most belonged to either rare or novel species that belong to twelve genera. Representative isolates from the three extreme biomes showed different patterns of taxonomic diversity and characteristic bioactivity profiles. Many of the isolates produced bioactive compounds that inhibited the growth of one or more strains from a panel of nine wild strains in standard antimicrobial assays and are known to promote plant growth. Actinomycetes from the litter and mineral horizons of the pine forest, including acidotolerant and acidophilic strains belonging to the genera Actinacidiphila, Streptacidiphilus and Streptomyces, showed a remarkable ability to inhibit the growth of diverse fungal and oomycete plant pathogens. Discussion It can be concluded that selective isolation and characterization of dereplicated filamentous actinomyctes from several extreme biomes is a practical way of generating high quality actinomycete strain libraries for agricultural, industrial and medical biotechnology.
Collapse
Affiliation(s)
- Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
1423
|
Design, Synthesis, Biological Evaluation, and Preliminary Mechanistic Study of a Novel Mitochondrial-Targeted Xanthone. Molecules 2023; 28:molecules28031016. [PMID: 36770683 PMCID: PMC9920806 DOI: 10.3390/molecules28031016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
α-Mangostin, a natural xanthone, was found to have anticancer effects, but these effects are not sufficient to be effective. To increase anticancer potential and selectivity, a triphenylphosphonium cation moiety (TPP) was introduced to α-mangostin to specifically target cancer cell mitochondria. Compared to the parent compound, the cytotoxicity of the synthesized compound 1b increased by one order of magnitude. Mechanistic analysis revealed that the anti-tumor effects were involved in the mitochondrial apoptotic pathway by prompting apoptosis and arresting the cell cycle at the G0/G1 phase, increasing the production of reactive oxygen species (ROS), and reducing mitochondrial membrane potential (Δψm). More notably, the antitumor activity of compound 1b was further confirmed by zebrafish models, which remarkably inhibited cancer cell proliferation and migration, as well as zebrafish angiogenesis. Taken together, our results for the first time indicated that TPP-linked 1b could lead to the development of new mitochondrion-targeting antitumor agents.
Collapse
|
1424
|
Vanhersecke L, Bougouin A, Crombé A, Brunet M, Sofeu C, Parrens M, Pierron H, Bonhomme B, Lembege N, Rey C, Velasco V, Soubeyran I, Begueret H, Bessede A, Bellera C, Scoazec JY, Italiano A, Fridman CS, Fridman WH, Le Loarer F. Standardized Pathology Screening of Mature Tertiary Lymphoid Structures in Cancers. J Transl Med 2023; 103:100063. [PMID: 36801637 DOI: 10.1016/j.labinv.2023.100063] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Mature tertiary lymphoid structures (mTLSs) are organized lymphoid structures containing B lymphocytes admixed to CD23+ follicular dendritic cells. Their presence has been linked to improved survival and sensitivity to immune checkpoint inhibitors in several cancers, emerging as a promising pancancer biomarker. However, the requirements for any biomarker are clear methodology, proven feasibility, and reliability. In 357 patients' samples, we studied tertiary lymphoid structures (TLSs) parameters using multiplex immunofluorescence (mIF), hematoxylin-eosin-saffron (HES) staining, double CD20/CD23 staining, and single CD23 immunohistochemistry. The cohort included carcinomas (n = 211) and sarcomas (n = 146), gathering biopsies (n = 170), and surgical specimens (n = 187). mTLSs were defined as TLSs containing either a visible germinal center on HES staining or CD23+ follicular dendritic cells. Focusing on 40 TLSs assessed using mIF, double CD20/CD23 staining was less sensitive than mIF to assess maturity in 27.5% (n = 11/40) but was rescued by single CD23 staining in 90.9% (n = 10/11). In 97 patients, several samples (n = 240) were reviewed to characterize TLS distribution. The likelihood of finding TLSs in surgical material was 6.1 higher than in biopsy and 2.0 higher in primary samples than in metastasis after adjustment with a type of sample. Interrater agreement rates over 4 examiners were 0.65 (Fleiss kappa, 95% CI [0.46; 0.90]) for the presence of TLS and 0.90 for maturity (95% CI [0.83;0.99]). In this study, we propose a standardized method to screen mTLSs in cancer samples using HES staining and immunohistochemistry that can be applied to all specimens.
Collapse
Affiliation(s)
- Lucile Vanhersecke
- Department of Biopathology, Institut Bergonié, Bordeaux, France; University of Bordeaux, Bordeaux, France.
| | - Antoine Bougouin
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Sorbonne-Paris-Cité, Paris, France
| | - Amandine Crombé
- Department of Radiology, Centre Hospitalier Universitaire Bordeaux, Pessac, France
| | - Maxime Brunet
- University of Bordeaux, Bordeaux, France; Department of Oncology, Institut Bergonié, Bordeaux, France
| | - Casimir Sofeu
- Clinical Research and Clinical Epidemiology Unit, Institut Bergonié, Bordeaux, France
| | - Marie Parrens
- University of Bordeaux, Bordeaux, France; Department of Pathology, Centre Hospitalier Universitaire Bordeaux, Pessac, France
| | - Hugo Pierron
- Department of Biopathology, Institut Bergonié, Bordeaux, France
| | | | - Nicolas Lembege
- Department of Biopathology, Institut Bergonié, Bordeaux, France; University of Bordeaux, Bordeaux, France
| | | | - Valérie Velasco
- Department of Biopathology, Institut Bergonié, Bordeaux, France
| | | | - Hugues Begueret
- Department of Pathology, Centre Hospitalier Universitaire Bordeaux, Pessac, France
| | | | - Carine Bellera
- Clinical Research and Clinical Epidemiology Unit, Institut Bergonié, Bordeaux, France
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy, Villejuif, France; Faculté de Médecine, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Antoine Italiano
- University of Bordeaux, Bordeaux, France; Department of Oncology, Institut Bergonié, Bordeaux, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1218, Institut Bergonié, Bordeaux, France
| | - Catherine Sautès Fridman
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Sorbonne-Paris-Cité, Paris, France
| | - Wolf H Fridman
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Sorbonne-Paris-Cité, Paris, France
| | - François Le Loarer
- Department of Biopathology, Institut Bergonié, Bordeaux, France; University of Bordeaux, Bordeaux, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1218, Institut Bergonié, Bordeaux, France
| |
Collapse
|
1425
|
Chimento A, D’Amico M, De Luca A, Conforti FL, Pezzi V, De Amicis F. Resveratrol, Epigallocatechin Gallate and Curcumin for Cancer Therapy: Challenges from Their Pro-Apoptotic Properties. Life (Basel) 2023; 13:life13020261. [PMID: 36836619 PMCID: PMC9962739 DOI: 10.3390/life13020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Plant-derived bioactive compounds are gaining wide attention for their multiple health-promoting activities and in particular for their anti-cancer properties. Several studies have highlighted how they can prevent cancer initiation and progression, improve the effectiveness of chemotherapy, and, in some cases, limit some of the side effects of chemotherapy agents. In this paper, we provide an update of the literature on the anti-cancer effects of three extensively studied plant-derived compounds, namely resveratrol, epigallocatechin gallate, and curcumin, with a special focus on the anti-cancer molecular mechanisms inducing apoptosis in the major types of cancers globally.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria D’Amico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-0984-496204
| |
Collapse
|
1426
|
Khamto N, Utama K, Tateing S, Sangthong P, Rithchumpon P, Cheechana N, Saiai A, Semakul N, Punyodom W, Meepowpan P. Discovery of Natural Bisbenzylisoquinoline Analogs from the Library of Thai Traditional Plants as SARS-CoV-2 3CL Pro Inhibitors: In Silico Molecular Docking, Molecular Dynamics, and In Vitro Enzymatic Activity. J Chem Inf Model 2023; 63:2104-2121. [PMID: 36647612 DOI: 10.1021/acs.jcim.2c01309] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of SARS-CoV-2 in December 2019 has become a global issue due to the continuous upsurge in patients and the lack of drug efficacy for treatment. SARS-CoV-2 3CLPro is one of the most intriguing biomolecular targets among scientists worldwide for developing antiviral drugs due to its relevance in viral replication and transcription. Herein, we utilized computer-assisted drug screening to investigate 326 natural products from Thai traditional plants using structure-based virtual screening against SARS-CoV-2 3CLPro. Following the virtual screening, the top 15 compounds based on binding energy and their interactions with key amino acid Cys145 were obtained. Subsequently, they were further evaluated for protein-ligand complex stability via molecular dynamics simulation and binding free energy calculation using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches. Following drug-likeness and ADME/Tox assessments, seven bisbenzylisoquinolines were obtained, including neferine (3), liensinine (4), isoliensinine (5), dinklacorine (8), tiliacorinine (13), 2'-nortiliacorinine (14), and yanangcorinine (15). These compounds computationally showed a higher binding affinity than native N3 and GC-373 inhibitors and attained stable interactions on the active site of 3CLpro during 100 ns in molecular dynamics (MD) simulation. Moreover, the in vitro enzymatic assay showed that most bisbenzylisoquinolines could experimentally inhibit SARS-CoV-2 3CLPro. To our delight, isoliensinine (5) isolated from Nelumbo nucifera demonstrated the highest inhibition of protease activity with the IC50 value of 29.93 μM with low toxicity on Vero cells. Our findings suggested that bisbenzylisoquinoline scaffolds could be potentially used as an in vivo model for the development of effective anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand.,Graduate School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand
| | - Kraikrit Utama
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand.,Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand
| | - Suriya Tateing
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand.,Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand
| | - Puracheth Rithchumpon
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand
| | - Nathaporn Cheechana
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand.,Graduate School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand
| | - Aroonchai Saiai
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand.,Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand.,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand.,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai50200, Thailand
| |
Collapse
|
1427
|
Antibiofilm Activity and Synergistic Effects of Thymol-Loaded Poly (Lactic-Co-Glycolic Acid) Nanoparticles with Amikacin against Four Salmonella enterica Serovars. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:7274309. [PMID: 36698730 PMCID: PMC9870694 DOI: 10.1155/2023/7274309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/02/2022] [Accepted: 12/26/2022] [Indexed: 01/19/2023]
Abstract
Background Salmonella species are frequently linked to biofilm-associated infections. Biofilm formation intensively reduces the efficacy of antibiotics and the host immune system. Therefore, new therapeutic strategies are needed. Thymol, the main monoterpene phenol found in Thymus vulgaris, has been shown to possess potent antibiofilm activity. Our previous findings showed that thymol enhanced the antibiofilm activity of aminoglycosides against Salmonella enterica serovars. However, the clinical potential of thymol has not yet been realized due to its low aqueous solubility and high volatility. Nano-based drug delivery systems have emerged as a novel strategy to resolve these problems. This study aimed to investigate the antibiofilm activity of thymol-loaded poly (lactic-co-glycolic acid) nanoparticles (TH-NPs) and their synergism when used in combination with amikacin antibiotics. Methods The antibacterial activity of TH-NPs was evaluated using the broth microdilution method. Biofilm formation and antibiofilm assays were performed by the miniaturized microtiter plate method. Interaction studies between TH-NPs and amikacin against biofilm were determined using the checkerboard method. Results TH-NPs exhibited antibacterial activity against planktonic cells of S. enterica serovars that were more efficient (8 to 32 times) than free thymol alone. S. Typhimurium and S. Choleraesuis isolates were considered strong biofilm producers. The combination of TH-NPs with amikacin showed synergistic activity in the inhibition and eradication of S. enterica serovar biofilm. The minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC) of amikacin were reduced by 32 to 128-fold when used in combination with TH-NPs. Time-kill kinetic studies showed that the combination of TH-NPs with amikacin possesses bactericidal action. Conclusion This study suggests that the combination of TH-NPs with amikacin can be an alternative to overcome biofilm-associatedSalmonella diseases and therefore should be further explored as a model to search for new antibiofilm drugs.
Collapse
|
1428
|
Wei C, Sun D, Yuan W, Li L, Dai C, Chen Z, Zeng X, Wang S, Zhang Y, Jiang S, Wu Z, Liu D, Jiang L, Peng S. Metagenomics revealing molecular profiles of microbial community structure and metabolic capacity in Bamucuo lake, Tibet. ENVIRONMENTAL RESEARCH 2023; 217:114847. [PMID: 36402183 DOI: 10.1016/j.envres.2022.114847] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Microorganisms play critical ecological roles in the global biogeochemical cycles. However, extensive information on the microbial communities in Qinghai-Tibet Plateau (QTP), which is the highest plateau in the world, is still lacking, particularly in high elevation locations above 4500 m. Here, we performed a survey of th e soil and water microbial communities in Bamucuo Lake, Tibet, by using shotgun metagenomic methods. In the soil and water samples, we reconstructed 75 almost complete metagenomic assembly genomes, and 74 of the metagenomic assembly genomes from the water sample represented novel species. Proteobacteria and Actinobacteria were found to be the dominant bacterial phyla, while Euryarchaeota was the dominant archaeal phylum. The largest virus, Pandoravirus salinus, was found in the soil microbial community. We concluded that the microorganisms in Bamucuo Lake are most likely to fix carbon mainly through the 3-hydroxypropionic bi-cycle pathway. This study, for the first time, characterized the microbial community composition and metabolic capacity in QTP high-elevation locations with 4555 m, confirming that QTP is a vast and valuable resource pool, in which many microorganisms can be used to develop new bioactive substances and new antibiotics to which pathogenic microorganisms have not yet developed resistance.
Collapse
Affiliation(s)
- Cai Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Dan Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Wenliang Yuan
- College of Mathematics and Information Engineering, Jiaxing University, Jiaxing, 314033, PR China
| | - Lei Li
- Engineering Research Center of AI & Robotics, Ministry of Education, Academy for Engineering & Technology, Fudan University, Shanghai, 200433, PR China
| | - Chaoxu Dai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Zuozhou Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Xiaomin Zeng
- Central South University Xiangya Public Health School, Changsha, 410078, PR China
| | - Shihang Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Yuyang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Shouwen Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Dong Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China.
| | - Linhua Jiang
- Engineering Research Center of AI & Robotics, Ministry of Education, Academy for Engineering & Technology, Fudan University, Shanghai, 200433, PR China.
| | - Sihua Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China.
| |
Collapse
|
1429
|
Tsukamoto S, Mavrogenis AF, Alvarado RA, Traversari M, Akahane M, Honoki K, Tanaka Y, Donati DM, Errani C. Association between Inflammatory Markers and Local Recurrence in Patients with Giant Cell Tumor of Bone: A Preliminary Result. Curr Oncol 2023; 30:1116-1131. [PMID: 36661734 PMCID: PMC9857827 DOI: 10.3390/curroncol30010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Giant cell tumor of bone (GCTB) has a high local recurrence rate of approximately 20%. Systemic inflammatory markers, such as neutrophil-lymphocyte ratio (NLR), modified Glasgow prognostic score (mGPS), prognostic nutritional index (PNI), lymphocyte-monocyte ratio (LMR), platelet-lymphocyte ratio (PLR), hemoglobin (Hb), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH), have been reported as prognostic markers in patients with malignant tumors. This study aimed to investigate the correlation between these markers and the local recurrence rate of GCTB. In total, 103 patients with GCTB who underwent surgery at the authors' institutions between 1993 and 2021 were included. Thirty patients experienced local recurrence. Univariate and multivariate analysis showed that tumor site, preoperative and postoperative denosumab treatment, and surgery were significantly associated with local recurrence-free survival. LDH was associated with local recurrence-free survival on univariate analysis only. NLR, mGPS, PNI, LMR, and PLR score did not correlate with the local recurrence rate. In conclusion, NLR, mGPS, PNI, LMR, PLR score, Hb, ALP, and LDH levels are not correlated with the local recurrence rate of GCTB. However, due to the small number of patients included in this study, this result should be re-evaluated in a multicenter study with a larger sample size.
Collapse
Affiliation(s)
- Shinji Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Andreas F. Mavrogenis
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine,41 Ventouri Street, 15562 Athens, Greece
| | - Rebeca Angulo Alvarado
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| | - Matteo Traversari
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| | - Manabu Akahane
- Department of Health and Welfare Services, National Institute of Public Health, 2-3-6 Minami, Wako-shi 351-0197, Saitama, Japan
| | - Kanya Honoki
- Department of Orthopaedic Surgery, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Davide Maria Donati
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| | - Costantino Errani
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| |
Collapse
|
1430
|
Structural Basis of the Inhibition of L-Methionine γ-Lyase from Fusobacterium nucleatum. Int J Mol Sci 2023; 24:ijms24021651. [PMID: 36675166 PMCID: PMC9865163 DOI: 10.3390/ijms24021651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Fusobacterium nucleatum is a lesion-associated obligate anaerobic pathogen of destructive periodontal disease; it is also implicated in the progression and severity of colorectal cancer. Four genes (FN0625, FN1055, FN1220, and FN1419) of F. nucleatum are involved in producing hydrogen sulfide (H2S), which plays an essential role against oxidative stress. The molecular functions of Fn1419 are known, but their mechanisms remain unclear. We determined the crystal structure of Fn1419 at 2.5 Å, showing the unique conformation of the PLP-binding site when compared with L-methionine γ-lyase (MGL) proteins. Inhibitor screening for Fn1419 with L-cysteine showed that two natural compounds, gallic acid and dihydromyricetin, selectively inhibit the H2S production of Fn1419. The chemicals of gallic acid, dihydromyricetin, and its analogs containing trihydroxybenzene, were potentially responsible for the enzyme-inhibiting activity on Fn1419. Molecular docking and mutational analyses suggested that Gly112, Pro159, Val337, and Arg373 are involved in gallic acid binding and positioned close to the substrate and pyridoxal-5'-phosphate-binding site. Gallic acid has little effect on the other H2S-producing enzymes (Fn1220 and Fn1055). Overall, we proposed a molecular mechanism underlying the action of Fn1419 from F. nucleatum and found a new lead compound for inhibitor development.
Collapse
|
1431
|
Yu J, Hermann M, Smith R, Tomm H, Metwally H, Kolwich J, Liu C, Le Blanc JCY, Covey TR, Ross AC, Oleschuk R. Hyperspectral Visualization-Based Mass Spectrometry Imaging by LMJ-SSP: A Novel Strategy for Rapid Natural Product Profiling in Bacteria. Anal Chem 2023; 95:2020-2028. [PMID: 36634199 DOI: 10.1021/acs.analchem.2c04550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mass spectrometry imaging (MSI) has been widely used to discover natural products (NPs) from underexplored microbiological sources. However, the technique is limited by incompatibility with complicated/uneven surface topography and labor-intensive sample preparation, as well as lengthy compound profiling procedures. Here, liquid micro-junction surface sampling probe (LMJ-SSP)-based MSI is used for rapid profiling of natural products from Gram-negative marine bacteria Pseudoalteromonas on nutrient agar media without any sample preparation. A conductance-based autosampling platform with 1 mm spatial resolution and an innovative multivariant analysis-driven method was used to create one hyperspectral image for the sampling area. NP discovery requires general spatial correlation between m/z and colony location but not highly precise spatial resolution. The hyperspectral image was used to annotate different m/z by straightforward color differences without the need to directly interrogate the spectra. To demonstrate the utility of our approach, the rapid analysis of Pseudoalteromonas rubra DSM6842, Pseudoalteromonas tunicata DSM14096, Pseudoalteromonas piscicida JCM20779, and Pseudoalteromonas elyakovii ATCC700519 cultures was directly performed on Agar. Various natural products, including prodiginine and tambjamine analogues, were quickly identified from the hyperspectral image, and the dynamic extracellular environment was shown with compound heatmaps. Hyperspectral visualization-based MSI is an efficient and sensitive strategy for direct and rapid natural product profiling from different Pseudoalteromonas strains.
Collapse
Affiliation(s)
- Jian Yu
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Matthias Hermann
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Rachael Smith
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Hailey Tomm
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Haidy Metwally
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jennifer Kolwich
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Chang Liu
- SCIEX, Concord, Ontario L4K 4 V8, Canada
| | | | | | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Richard Oleschuk
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
1432
|
Wu S, Zhao K, Wang J, Liu N, Nie K, Qi L, Xia L. Recent advances of tanshinone in regulating autophagy for medicinal research. Front Pharmacol 2023; 13:1059360. [PMID: 36712689 PMCID: PMC9877309 DOI: 10.3389/fphar.2022.1059360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Initially described as an ancient and highly conserved catabolic biofunction, autophagy plays a significant role in disease pathogenesis and progression. As the bioactive ingredient of Salvia miltiorrhiza, tanshinone has recently shown profound effects in alleviating and treating various diseases by regulating autophagy. However, compared to the remarkable achievements in the known pharmacological effects of this traditional Chinese medicine, there is a lack of a concise and comprehensive review deciphering the mechanism by which tanshinone regulates autophagy for medicinal research. In this context, we concisely review the advances of tanshinone in regulating autophagy for medicinal research, including human cancer, the nervous system, and cardiovascular diseases. The pharmacological effects of tanshinone targeting autophagy involve the regulation of autophagy-related proteins, such as Beclin-1, LC3-II, P62, ULK1, Bax, ATG3, ATG5, ATG7, ATG9, and ATG12; the regulation of the PI3K/Akt/mTOR, MEK/ERK/mTOR, Beclin-1-related, and AMPK-related signaling pathways; the accumulation of reactive oxygen species (ROS); and the activation of AMPK. Notably, we found that tanshinone played a dual role in human cancers in an autophagic manner, which may provide a new avenue for potential clinical application. In brief, these findings on autophagic tanshinone and its derivatives provide a new clue for expediting medicinal research related to tanshinone compounds and autophagy.
Collapse
Affiliation(s)
- Sha Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kui Zhao
- College of Materials Science and Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Jie Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nannan Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kaidi Nie
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lina Xia
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
1433
|
Anti-HIV Potential of Beesioside I Derivatives as Maturation Inhibitors: Synthesis, 3D-QSAR, Molecular Docking and Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:ijms24021430. [PMID: 36674943 PMCID: PMC9867151 DOI: 10.3390/ijms24021430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
HIV-1 maturation is the final step in the retroviral lifecycle that is regulated by the proteolytic cleavage of the Gag precursor protein. As a first-in-class HIV-1 maturation inhibitor (MI), bevirimat blocks virion maturation by disrupting capsid-spacer peptide 1 (CA-SP1) cleavage, which acts as the target of MIs. Previous alterations of beesioside I (1) produced (20S,24S)-15ꞵ,16ꞵ-diacetoxy-18,24; 20,24-diepoxy-9,19-cyclolanostane-3ꞵ,25-diol 3-O-3′,3′-dimethylsuccinate (3, DSC), showing similar anti-HIV potency compared to bevirimat. To ascertain the binding modes of this derivative, further modification of compound 1 was conducted. Three-dimensional quantitative structure−activity relationship (3D-QSAR) analysis combined with docking simulations and molecular dynamics (MD) were conducted. Five new derivatives were synthesized, among which compound 3b showed significant activity against HIV-1NL4-3 with an EC50 value of 0.28 µM. The developed 3D-QSAR model resulted in great predictive ability with training set (r2 = 0.99, q2 = 0.55). Molecular docking studies were complementary to the 3D-QSAR analysis, showing that DSC was differently bound to CA-SP1 with higher affinity than that of bevirimat. MD studies revealed that the complex of the ligand and the protein was stable, with root mean square deviation (RMSD) values <2.5 Å. The above results provided valuable insights into the potential of DSC as a prototype to develop new antiviral agents.
Collapse
|
1434
|
Zhao F, Sun C, Liu Z, Cabrera A, Escobar M, Huang S, Yuan Q, Nie Q, Luo KL, Lin A, Vanegas JA, Zhu T, Hilton IB, Gao X. Multiplex Base-Editing Enables Combinatorial Epigenetic Regulation for Genome Mining of Fungal Natural Products. J Am Chem Soc 2023; 145:413-421. [PMID: 36542862 PMCID: PMC10162584 DOI: 10.1021/jacs.2c10211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genome mining of cryptic natural products (NPs) remains challenging, especially in filamentous fungi, owing to their complex genetic regulation. Increasing evidence indicates that several epigenetic modifications often act cooperatively to control fungal gene transcription, yet the ability to predictably manipulate multiple genes simultaneously is still largely limited. Here, we developed a multiplex base-editing (MBE) platform that significantly improves the capability and throughput of fungal genome manipulation, leading to the simultaneous inactivation of up to eight genes using a single transformation. We then employed MBE to inactivate three negative epigenetic regulators combinatorially in Aspergillus nidulans, enabling the activation of eight cryptic gene clusters compared to the wild-type strains. A group of novel NPs harboring unique cichorine and polyamine hybrid chemical scaffolds were identified, which were not reported previously. We envision that our scalable and efficient MBE platform can be readily applied in other filamentous fungi for the genome mining of novel NPs, providing a powerful approach for the exploitation of fungal chemical diversity.
Collapse
Affiliation(s)
- Fanglong Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Chunxiao Sun
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Zhiwen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Alan Cabrera
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Mario Escobar
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Shunyu Huang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Qichen Yuan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Kevin Lee Luo
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Angela Lin
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Jeffrey A Vanegas
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
1435
|
Ma S, Zhou M, Xu Y, Gu X, Zou M, Abudushalamu G, Yao Y, Fan X, Wu G. Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol Cancer 2023; 22:7. [PMID: 36627698 PMCID: PMC9832643 DOI: 10.1186/s12943-023-01715-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer (GC) is one of the most common tumors worldwide and the leading cause of tumor-related mortality. Endoscopy and serological tumor marker testing are currently the main methods of GC screening, and treatment relies on surgical resection or chemotherapy. However, traditional examination and treatment methods are more harmful to patients and less sensitive and accurate. A minimally invasive method to respond to GC early screening, prognosis monitoring, treatment efficacy, and drug resistance situations is urgently needed. As a result, liquid biopsy techniques have received much attention in the clinical application of GC. The non-invasive liquid biopsy technique requires fewer samples, is reproducible, and can guide individualized patient treatment by monitoring patients' molecular-level changes in real-time. In this review, we introduced the clinical applications of circulating tumor cells, circulating free DNA, circulating tumor DNA, non-coding RNAs, exosomes, and proteins, which are the primary markers in liquid biopsy technology in GC. We also discuss the current limitations and future trends of liquid biopsy technology as applied to early clinical biopsy technology.
Collapse
Affiliation(s)
- Shuo Ma
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Meiling Zhou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yanhua Xu
- grid.452743.30000 0004 1788 4869Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, 225000 Jiangsu China
| | - Xinliang Gu
- grid.440642.00000 0004 0644 5481Department of Laboratory Medicine, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001 Jiangsu China
| | - Mingyuan Zou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Gulinaizhaer Abudushalamu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yuming Yao
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Xiaobo Fan
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Guoqiu Wu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009 Jiangsu China
| |
Collapse
|
1436
|
Puls K, Wolber G. Solving an Old Puzzle: Elucidation and Evaluation of the Binding Mode of Salvinorin A at the Kappa Opioid Receptor. Molecules 2023; 28:718. [PMID: 36677775 PMCID: PMC9861206 DOI: 10.3390/molecules28020718] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
The natural product Salvinorin A (SalA) was the first nitrogen-lacking agonist discovered for the opioid receptors and exhibits high selectivity for the kappa opioid receptor (KOR) turning SalA into a promising analgesic to overcome the current opioid crisis. Since SalA's suffers from poor pharmacokinetic properties, particularly the absence of gastrointestinal bioavailability, fast metabolic inactivation, and subsequent short duration of action, the rational design of new tailored analogs with improved clinical usability is highly desired. Despite being known for decades, the binding mode of SalA within the KOR remains elusive as several conflicting binding modes of SalA were proposed hindering the rational design of new analgesics. In this study, we rationally determined the binding mode of SalA to the active state KOR by in silico experiments (docking, molecular dynamics simulations, dynophores) in the context of all available mutagenesis studies and structure-activity relationship (SAR) data. To the best of our knowledge, this is the first comprehensive evaluation of SalA's binding mode since the determination of the active state KOR crystal structure. SalA binds above the morphinan binding site with its furan pointing toward the intracellular core while the C2-acetoxy group is oriented toward the extracellular loop 2 (ECL2). SalA is solely stabilized within the binding pocket by hydrogen bonds (C210ECL2, Y3127.35, Y3137.36) and hydrophobic contacts (V1182.63, I1393.33, I2946.55, I3167.39). With the disruption of this interaction pattern or the establishment of additional interactions within the binding site, we were able to rationalize the experimental data for selected analogs. We surmise the C2-substituent interactions as important for SalA and its analogs to be experimentally active, albeit with moderate frequency within MD simulations of SalA. We further identified the non-conserved residues 2.63, 7.35, and 7.36 responsible for the KOR subtype selectivity of SalA. We are confident that the elucidation of the SalA binding mode will promote the understanding of KOR activation and facilitate the development of novel analgesics that are urgently needed.
Collapse
Affiliation(s)
| | - Gerhard Wolber
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| |
Collapse
|
1437
|
Lai Q, Yang CJ, zhang Q, Zhuang M, Ma YH, Lin CY, Zeng GZ, Yin JL. Alkaloid from Alstonia yunnanensis diels root against gastrointestinal cancer: Acetoxytabernosine inhibits apoptosis in hepatocellular carcinoma cells. Front Pharmacol 2023; 13:1085309. [PMID: 36712668 PMCID: PMC9873973 DOI: 10.3389/fphar.2022.1085309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Liver cancer belongs to Gastrointestinal (GI) malignancies which is a common clinical disease, a thorny public health problem, and one of the major diseases that endanger human health. Molecules from natural products (NPs) or their derivatives play an increasingly important role in various chronic diseases such as GI cancers. The chemical composition of the Alstonia yunnanensis Diels roots was studied using silica column chromatography, gel chromatography, recrystallization, and HPLC, and the compounds were structurally identified by modern spectral analysis using mass spectrometry (MS) and nuclear magnetic resonance (1H-, 13C-, HMQC-, HMBC-, and 1H-1HCOSY-NMR), ultraviolet and visible spectrum (UV), and electronic Circular Dichroism (ECD). Acetoxytabernosine (AC), an indole alkaloid with antitumor activity, was isolated from Alstonia yunnanensis Diels root. The current study aimed to investigate the influence of AC on the cell proliferation of BEL-7402 and SMMC7721 and to elucidate the underlying mechanism. The absolute configuration of AC was calculated by ECD (electronic circular dichroism). The effects of AC on the viability of different tumor cell lines were studied by the SRB method. The death mode of human hepatoma cells caused by AC was studied by TUNEL cell apoptosis detection and AnnexinV-FITC/PI double staining image. Mitochondrial membrane potential was detected by JC-1. The effects of AC on the expression of apoptosis-related proteins (Caspase9, Caspase3, and Parp-1) in SMMC7721 and BEL-7402 cells were detected by western blot. It was found that the absolute configuration of AC is 19(s), 20(s)-Acetoxytabernosine. AC could induce apoptosis of SMMC7721 and BEL-7402, and block the replication of DNA in the G1 phase. Under the treatment of AC, the total protein expression of apoptosis-related proteins (Caspase9, Caspase3, and Parp-1) significantly decreased in SMMC7721 and BEL-7402. The results suggested that AC induced apoptosis through a caspase-dependent intrinsic pathway in SMMC7721 and BEL-7402, and natural product-based drug development is an important direction in antitumor drug discovery and research.
Collapse
Affiliation(s)
- Qi Lai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Chun-Ju Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Qi zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Min Zhuang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong, China
| | - Yan-Hua Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong, China
| | - Cheng-Yuan Lin
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Guang-Zhi Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Jun-Lin Yin
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| |
Collapse
|
1438
|
Wu Q, Bell BA, Yan JX, Chevrette MG, Brittin NJ, Zhu Y, Chanana S, Maity M, Braun DR, Wheaton AM, Guzei IA, Ge Y, Rajski SR, Thomas MG, Bugni TS. Metabolomics and Genomics Enable the Discovery of a New Class of Nonribosomal Peptidic Metallophores from a Marine Micromonospora. J Am Chem Soc 2023; 145:58-69. [PMID: 36535031 PMCID: PMC10570848 DOI: 10.1021/jacs.2c06410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although microbial genomes harbor an abundance of biosynthetic gene clusters, there remain substantial technological gaps that impair the direct correlation of newly discovered gene clusters and their corresponding secondary metabolite products. As an example of one approach designed to minimize or bridge such gaps, we employed hierarchical clustering analysis and principal component analysis (hcapca, whose sole input is MS data) to prioritize 109 marine Micromonospora strains and ultimately identify novel strain WMMB482 as a candidate for in-depth "metabologenomics" analysis following its prioritization. Highlighting the power of current MS-based technologies, not only did hcapca enable the discovery of one new, nonribosomal peptide bearing an incredible diversity of unique functional groups, but metabolomics for WMMB482 unveiled 16 additional congeners via the application of Global Natural Product Social molecular networking (GNPS), herein named ecteinamines A-Q (1-17). The ecteinamines possess an unprecedented skeleton housing a host of uncommon functionalities including a menaquinone pathway-derived 2-naphthoate moiety, 4-methyloxazoline, the first example of a naturally occurring Ψ[CH2NH] "reduced amide", a methylsulfinyl moiety, and a d-cysteinyl residue that appears to derive from a unique noncanonical epimerase domain. Extensive in silico analysis of the ecteinamine (ect) biosynthetic gene cluster and stable isotope-feeding experiments helped illuminate the novel enzymology driving ecteinamine assembly as well the role of cluster collaborations or "duets" in producing such structurally complex agents. Finally, ecteinamines were found to bind nickel, cobalt, zinc, and copper, suggesting a possible biological role as broad-spectrum metallophores.
Collapse
Affiliation(s)
- Qihao Wu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Bailey A Bell
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jia-Xuan Yan
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Marc G Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States
| | - Nathan J Brittin
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Mitasree Maity
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Doug R Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Amelia M Wheaton
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Scott R Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Michael G Thomas
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- The Small Molecule Screening Facility, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792, United States
| |
Collapse
|
1439
|
Meckes-Fischer M, Nicasio-Torres P. The Journey of a Medicinal Plant throughout Science: Sphaeralcea angustifolia (Cav.) G. Don (Malvaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:321. [PMID: 36679034 PMCID: PMC9867394 DOI: 10.3390/plants12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Using herbal medicine is an ancestral cultural practice among Mexicans. A broad sector of society turns to plants to treat priority health problems, a reality that leads scientists to explore the healing value attributed to them. Advances in the experimental research of Sphaeralcea angustifolia confirmed the anti-inflammatory activity of the species; therefore, an analysis of the scope of these studies is now warranted. As such, this paper is a compendium of the advances published in the scientific literature (from 2004 to 2021) on the anti-inflammatory properties of this plant. The promise offered by the species as a potential therapeutic agent is also considered, without dismissing aspects necessary for the preservation of this resource and its cultural and physical environment. The chemical-pharmacological aspects of the wild plant and its in vitro culture are highlighted. The plant's anti-inflammatory properties support its clinical application as an anti-inflammatory phytopharmaceutical to treat arthritic conditions. The sustained therapeutic potential of S. angustifolia is reinforced by the biotechnological processes designed to conserve the resource, thus contributing to the protection of biodiversity and cultural diversity, aspects distinctive of a megadiverse country such as Mexico.
Collapse
Affiliation(s)
- Mariana Meckes-Fischer
- Centro para el Diagnóstico en Metabolismo Energético y Medicina Mitocondrial (CEDIMEMM), Tlacoquemecatl 71, Int.2, Col. Del Valle, Benito Juárez, Ciudad de México 03100, Mexico
| | - Pilar Nicasio-Torres
- Centro de Investigación Biomédica del Sur (CIBIS), Instituto Mexicano del Seguro Social, Argentina No. 1 Col. Centro, Xochitepec 62790, Mexico
| |
Collapse
|
1440
|
Schreier A, Zappasodi R, Serganova I, Brown KA, Demaria S, Andreopoulou E. Facts and Perspectives: Implications of tumor glycolysis on immunotherapy response in triple negative breast cancer. Front Oncol 2023; 12:1061789. [PMID: 36703796 PMCID: PMC9872136 DOI: 10.3389/fonc.2022.1061789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 01/11/2023] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive disease that is difficult to treat and portends a poor prognosis in many patients. Recent efforts to implement immune checkpoint inhibitors into the treatment landscape of TNBC have led to improved outcomes in a subset of patients both in the early stage and metastatic settings. However, a large portion of patients with TNBC remain resistant to immune checkpoint inhibitors and have limited treatment options beyond cytotoxic chemotherapy. The interplay between the anti-tumor immune response and tumor metabolism contributes to immunotherapy response in the preclinical setting, and likely in the clinical setting as well. Specifically, tumor glycolysis and lactate production influence the tumor immune microenvironment through creation of metabolic competition with infiltrating immune cells, which impacts response to immune checkpoint blockade. In this review, we will focus on how glucose metabolism within TNBC tumors influences the response to immune checkpoint blockade and potential ways of harnessing this information to improve clinical outcomes.
Collapse
Affiliation(s)
- Ashley Schreier
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States,Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| | - Inna Serganova
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States,Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Sandra Demaria
- Department of Radiation Oncology and Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Eleni Andreopoulou
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States,*Correspondence: Eleni Andreopoulou,
| |
Collapse
|
1441
|
Onkar SS, Carleton NM, Lucas PC, Bruno TC, Lee AV, Vignali DAA, Oesterreich S. The Great Immune Escape: Understanding the Divergent Immune Response in Breast Cancer Subtypes. Cancer Discov 2023; 13:23-40. [PMID: 36620880 PMCID: PMC9833841 DOI: 10.1158/2159-8290.cd-22-0475] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer, the most common type of cancer affecting women, encompasses a collection of histologic (mainly ductal and lobular) and molecular subtypes exhibiting diverse clinical presentation, disease trajectories, treatment options, and outcomes. Immunotherapy has revolutionized treatment for some solid tumors but has shown limited promise for breast cancers. In this review, we summarize recent advances in our understanding of the complex interactions between tumor and immune cells in subtypes of breast cancer at the cellular and microenvironmental levels. We aim to provide a perspective on opportunities for future immunotherapy agents tailored to specific features of each subtype of breast cancer. SIGNIFICANCE Although there are currently over 200 ongoing clinical trials testing immunotherapeutics, such as immune-checkpoint blockade agents, these are largely restricted to the triple-negative and HER2+ subtypes and primarily focus on T cells. With the rapid expansion of new in vitro, in vivo, and clinical data, it is critical to identify and highlight the challenges and opportunities unique for each breast cancer subtype to drive the next generation of treatments that harness the immune system.
Collapse
Affiliation(s)
- Sayali S. Onkar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Neil M. Carleton
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter C Lucas
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Adrian V Lee
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dario AA Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
1442
|
Belaabed S, Khalfaoui A, Parisi V, Santoro V, Russo D, Ponticelli M, Monné M, Rebbas K, Milella L, Donadio G. Rhanteriol, a New Rhanterium suaveolens Desf. Lignan with Pharmacological Potential as an Inhibitor of Enzymes Involved in Neurodegeneration and Type 2 Diabetes. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020301. [PMID: 36679017 PMCID: PMC9865629 DOI: 10.3390/plants12020301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 05/30/2023]
Abstract
Several specialized plant metabolites are reported to be enzyme inhibitors. In this investigation, the phytochemical composition and the biological activity of Rhanterium suaveolens Desf. were studied. One new lignan (rhanteriol 1) and seven known secondary metabolites were isolated from the aerial parts of R. suaveolens by using different chromatographic procedures. The biological properties of the R. suaveolens extracts and the new compound were evaluated by measuring their ability to inhibit the cholinesterase and carbohydrate-hydrolyzing enzymes, using cell-free in vitro methods. The new lignan, rhanteriol, was shown to inhibit α-amylase and α-glucosidase (IC50 = 46.42 ± 3.25 μM and 26.76 ± 3.29 μM, respectively), as well as butyrylcholinesterase (IC50 = 10.41 ± 0.03 μM), with an effect comparable to that of the respective standards, acarbose and galantamine. Furthermore, docking studies were performed suggesting the interaction mode of rhanteriol with the active sites of the investigated enzymes. The obtained data demonstrated that the aerial part of R. suaveolens could represent a source of active molecules, such as rhanteriol, usable in the development of treatments for preventing or treating type 2 diabetes mellitus and neurodegeneration.
Collapse
Affiliation(s)
- Soumia Belaabed
- Department of Chemistry, Research Unit, Development of Natural Resources, Bioactive Molecules, Physicochemical and Biological Analysis, University Mentouri, Route Ain ElBey, Constantine 25000, Algeria
| | - Ayoub Khalfaoui
- Department of Chemistry, Research Unit, Development of Natural Resources, Bioactive Molecules, Physicochemical and Biological Analysis, University Mentouri, Route Ain ElBey, Constantine 25000, Algeria
| | - Valentina Parisi
- Dipartimento di Farmacia, Università Degli Studi di Salerno, via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy
| | - Valentina Santoro
- Dipartimento di Farmacia, Università Degli Studi di Salerno, via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy
| | - Daniela Russo
- Dipartimento di Scienze, Università Degli Studi Della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
- BioActiPlant s.r.l., Viale Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Ponticelli
- Dipartimento di Scienze, Università Degli Studi Della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Magnus Monné
- Dipartimento di Scienze, Università Degli Studi Della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Khellaf Rebbas
- Natural and Life Sciences Department, Mohamed Boudiaf University, M’Sila 28000, Algeria
| | - Luigi Milella
- Dipartimento di Scienze, Università Degli Studi Della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giuliana Donadio
- Dipartimento di Farmacia, Università Degli Studi di Salerno, via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy
| |
Collapse
|
1443
|
Liang H, Sen MK, Gyengesi E, Münch GW, Ullah F. Editorial: Pharmacological approaches towards the resolution of neuroinflammation and neurodegeneration. Front Pharmacol 2023; 13:1132126. [PMID: 36699073 PMCID: PMC9868578 DOI: 10.3389/fphar.2022.1132126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Huazheng Liang
- School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Tongji University, Shanghai, China
| | - Monokesh K. Sen
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Gerald W. Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Faheem Ullah
- Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States,*Correspondence: Faheem Ullah,
| |
Collapse
|
1444
|
Nanoencapsulation of Vaccinium ashei Leaf Extract in Eudragit ® RS100-Based Nanoparticles Increases Its In Vitro Antioxidant and In Vivo Antidepressant-like Actions. Pharmaceuticals (Basel) 2023; 16:ph16010084. [PMID: 36678581 PMCID: PMC9866962 DOI: 10.3390/ph16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Depression is a major psychiatric disorder in Brazil and worldwide. Vaccinium ashei (V. ashei) leaves are cultivation by-products with high bioactive compound levels. Here, a hydroalcoholic extract of V. ashei leaves (HEV) was associated with Eudragit® RS100-based nanoparticles (NPHEV) to evaluate the in vitro antioxidant and in vivo antidepressant-like effects. Interfacial deposition of the preformed polymer method was used for NPHEV production. The formulations were evaluated regarding physicochemical characteristics, antioxidant activity (DPPH radical scavenging and oxygen radical absorbance capacity), and antidepressant-like action (1-25 mg/kg, single intragastric administration) assessed in forced swimming and tail suspension tests in male Balb-C mice. The NPHEV presented sizes in the nanometric range (144-206 nm), positive zeta potential values (8-15 mV), polydispersity index below 0.2, and pH in the acid range. The phenolic compound content was near the theoretical values, although the rutin presented higher encapsulation efficiency (~95%) than the chlorogenic acid (~60%). The nanoencapsulation improved the HEV antioxidant effect and antidepressant-like action by reducing the immobility time in both behavioral tests. Hence, Eudragit® RS100 nanoparticles containing HEV were successfully obtained and are a promising alternative to manage depression.
Collapse
|
1445
|
Andrade S, Nunes D, Dabur M, Ramalho MJ, Pereira MC, Loureiro JA. Therapeutic Potential of Natural Compounds in Neurodegenerative Diseases: Insights from Clinical Trials. Pharmaceutics 2023; 15:pharmaceutics15010212. [PMID: 36678841 PMCID: PMC9860553 DOI: 10.3390/pharmaceutics15010212] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative diseases are caused by the gradual loss of neurons' function. These neurological illnesses remain incurable, and current medicines only alleviate the symptoms. Given the social and economic burden caused by the rising frequency of neurodegenerative diseases, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compounds' therapeutic effects for neurodegenerative disease treatment have been investigated in numerous in vitro and in vivo studies, only few have moved to clinical trials. This article provides the first systematic review of the clinical trials evaluating natural compounds' safety and efficacy for the treatment of the five most prevalent neurodegenerative disorders: Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Débora Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Meghna Dabur
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria J. Ramalho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C. Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (M.C.P.); (J.A.L.)
| | - Joana A. Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (M.C.P.); (J.A.L.)
| |
Collapse
|
1446
|
Jo C, Kim B, Lee K, Choi HY. Vascular Relaxation and Blood Pressure Lowering Effects of Prunus mume in Rats. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010074. [PMID: 36671646 PMCID: PMC9854816 DOI: 10.3390/bioengineering10010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Prunus mume Siebold et Zuccarini is mainly consumed as processed fruits in beverages, vinegar, alcohol, or fruit syrup; studies have reported various functional effects. Many pharmacological and functional studies exist on fruit extracts or processed foods using fruits, however, efficacy studies on various parts of P. mume, including the bark, branches, flowers, and leaves, have not been sufficiently conducted. A previous study revealed that a 70% ethanol extract of P. mume branches induced vascular endothelium-dependent vasorelaxant effects in rat thoracic aortic rings. Therefore, we hypothesized that various parts (the fruits, flowers, leaves, and bark) might have vasorelaxant effects. We evaluated the effects of P. mume extracts on the vascular relaxation of isolated rat thoracic aorta and hypotensive effects in spontaneous hypertensive rats (SHR). A 70% ethanol extract of P. mume bark (PBaE) was the most effective, thus, we investigated its vasorelaxant mechanisms and hypotensive effects. PBaE lowered the blood pressure in SHR and induced the vascular endothelium-dependent relaxation of isolated rat aortic rings via the NO/sGC/cGMP and the PGI2 pathways in the vascular smooth muscle. Potassium channels, such as KCa, KATP, KV, and Kir, were partially associated with a PBaE-induced vasorelaxation. Therefore, PBaE might help prevent and treat hypertension.
Collapse
Affiliation(s)
- Cheolmin Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bumjung Kim
- Department of Oriental Health Management, Kyung Hee Cyber University, Seoul 02447, Republic of Korea
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho-Young Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: ; Tel.: +82-2-961-9372
| |
Collapse
|
1447
|
Pereira Filho AA, Cunha MM, Alves Stanton M, Fumiko Yamaguchi L, Jorge Kato M, Martins-Duarte ÉS. In Vitro Activity of Essential Oils from Piper Species (Piperaceae) against Tachyzoites of Toxoplasma gondii. Metabolites 2023; 13:metabo13010095. [PMID: 36677020 PMCID: PMC9861968 DOI: 10.3390/metabo13010095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Toxoplasmosis is a tropical and neglected disease caused by the parasitic protozoa Toxplasma gondii. Conventional treatment with sulfadiazine and pyrimethamine plus folinic acid, has some drawbacks, such as inefficacy in the chronic phase, toxic side effects, and potential cases of resistance have been observed. In this study, the activity of essential oils (EOs) from three Piper species and their main constituents, including α-Pinene (Piper lindbergii and P. cernuum), β-Pinene (P. cernuum), and dillapiole (P. aduncum), were evaluated against tachyzoites of T. gondii. α-Pinene was more active [(IC50 0.3265 (0.2958 to 0.3604) μg/mL)] against tachyzoites than P. lindbergii EO [0.8387 (0.6492 to 1.084) μg/mL]. Both α-Pinene and P. lindbergii EO exhibited low cytotoxicity against NHDF cells, with CC50 41.37 (37.64 to 45.09) µg/mL and 83.80 (75.42 to 91.34) µg/mL, respectively, suggesting they could be of potential use against toxoplasmosis.
Collapse
Affiliation(s)
- Adalberto Alves Pereira Filho
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Correspondence: (A.A.P.F.); (M.J.K.); (É.S.M.-D.)
| | - Mariana Maciel Cunha
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Mariana Alves Stanton
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Lydia Fumiko Yamaguchi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Massuo Jorge Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
- Correspondence: (A.A.P.F.); (M.J.K.); (É.S.M.-D.)
| | - Érica S. Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Correspondence: (A.A.P.F.); (M.J.K.); (É.S.M.-D.)
| |
Collapse
|
1448
|
Zhao H, Yang Y, Wang S, Yang X, Zhou K, Xu C, Zhang X, Fan J, Hou D, Li X, Lin H, Tan Y, Wang S, Chu XY, Zhuoma D, Zhang F, Ju D, Zeng X, Chen YZ. NPASS database update 2023: quantitative natural product activity and species source database for biomedical research. Nucleic Acids Res 2023; 51:D621-D628. [PMID: 36624664 PMCID: PMC9825494 DOI: 10.1093/nar/gkac1069] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
Quantitative activity and species source data of natural products (NPs) are important for drug discovery, medicinal plant research, and microbial investigations. Activity values of NPs against specific targets are useful for discovering targeted therapeutic agents and investigating the mechanism of medicinal plants. Composition/concentration values of NPs in individual species facilitate the assessments and investigations of the therapeutic quality of herbs and phenotypes of microbes. Here, we describe an update of the NPASS natural product activity and species source database previously featured in NAR. This update includes: (i) new data of ∼95 000 records of the composition/concentration values of ∼1 490 NPs/NP clusters in ∼390 species, (ii) extended data of activity values of ∼43 200 NPs against ∼7 700 targets (∼40% and ∼32% increase, respectively), (iii) extended data of ∼31 600 species sources of ∼94 400 NPs (∼26% and ∼32% increase, respectively), (iv) new species types of ∼440 co-cultured microbes and ∼420 engineered microbes, (v) new data of ∼66 600 NPs without experimental activity values but with estimated activity profiles from the established chemical similarity tool Chemical Checker, (vi) new data of the computed drug-likeness properties and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties for all NPs. NPASS update version is freely accessible at http://bidd.group/NPASS.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Yuan Yang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Shuaiqi Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xue Yang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Kaicheng Zhou
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Dongyue Hou
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xingxiu Li
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Hanbo Lin
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics & Key Laboratory of Chemical Biology, Tsinghua University Shenzhen Graduate School, Shenzhen Kivita Innovative Drug Discovery Institute, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Xin-Yi Chu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | | | - Fengying Zhang
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | | |
Collapse
|
1449
|
Criollo-Mendoza MS, Contreras-Angulo LA, Leyva-López N, Gutiérrez-Grijalva EP, Jiménez-Ortega LA, Heredia JB. Wound Healing Properties of Natural Products: Mechanisms of Action. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020598. [PMID: 36677659 PMCID: PMC9867334 DOI: 10.3390/molecules28020598] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
A wound is the loss of the normal integrity, structure, and functions of the skin due to a physical, chemical, or mechanical agent. Wound repair consists of an orderly and complex process divided into four phases: coagulation, inflammation, proliferation, and remodeling. The potential of natural products in the treatment of wounds has been reported in numerous studies, emphasizing those with antioxidant, anti-inflammatory, and antimicrobial properties, e.g., alkaloids, saponins, terpenes, essential oils, and polyphenols from different plant sources, since these compounds can interact in the various stages of the wound healing process. This review addresses the most current in vitro and in vivo studies on the wound healing potential of natural products, as well as the main mechanisms involved in this activity. We observed sufficient evidence of the activity of these compounds in the treatment of wounds; however, we also found that there is no consensus on the effective concentrations in which the natural products exert this activity. For this reason, it is important to work on establishing optimal treatment doses, as well as an appropriate route of administration. In addition, more research should be carried out to discover the possible side effects and the behavior of natural products in clinical trials.
Collapse
Affiliation(s)
- Marilyn S. Criollo-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - Laura A. Contreras-Angulo
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - Nayely Leyva-López
- Post-Doc. CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Col. Campo El Diez, Culiacán CP 80110, SI, Mexico
| | - Erick P. Gutiérrez-Grijalva
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Col. Campo El Diez, Culiacán CP 80110, SI, Mexico
| | - Luis Alfonso Jiménez-Ortega
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - J. Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
- Correspondence:
| |
Collapse
|
1450
|
Dar'in D, Kantin G, Glushakova D, Sharoyko V, Krasavin M. Diazo Tetramic Acids Provide Access to Natural-Like Spirocyclic Δ α,β-Butenolides through Rh(II)-Catalyzed O-H Insertion/Base-Promoted Cyclization. J Org Chem 2023. [PMID: 36603207 DOI: 10.1021/acs.joc.2c02600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
3-Diazotetramic acids were found to be valid substrates for the recently discovered approach toward natural-like Δα,β-spirobutenolides via Rh(II)-catalyzed O-H insertion into propiolic acids followed by base-promoted intramolecular Michael addition. The target Δα,β-spirobutenolides were obtained in generally high yields and, in the case of chiral 5-monosubstituted 3-diazotetramic acids, high diastereoselectivity. The synthesis of Δα,β-spirobutenolides that we report here was virtually insensitive to the structure of the propiolic acids though it was somewhat sensitive to the structure of the 3-diazotetramic acids, thereby demonstrating quite a large scope. Thus, a new class of α-diazocarbonyl compounds suitable for the realization of the approach outlined above was identified.
Collapse
Affiliation(s)
- Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetsky prospekt, Peterhof 198504 Russia
| | - Grigory Kantin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetsky prospekt, Peterhof 198504 Russia
| | - Daria Glushakova
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetsky prospekt, Peterhof 198504 Russia
| | - Vladimir Sharoyko
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetsky prospekt, Peterhof 198504 Russia
- The Pavlov First Medical University, 6-8 Lva Tolstogo ulitsa, Saint Petersburg 197022, Russia
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetsky prospekt, Peterhof 198504 Russia
- Immanuel Kant Baltic Federal University, 14 Aleksandra Nevskogo ulitsa, Kaliningrad 236041, Russia
| |
Collapse
|