101
|
Rodella G, Préat V, Gallez B, Malfanti A. Design Strategies for Hyaluronic Acid-based Drug Delivery Systems in Cancer Immunotherapy. J Control Release 2025; 383:113784. [PMID: 40294800 DOI: 10.1016/j.jconrel.2025.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Despite its robust therapeutic potential, cancer immunotherapy has provided little progress towards improved survival rates for patients bearing immunologically refractory tumors. The implementation of advanced drug delivery systems represents a powerful means of improving cancer immunotherapy by relieving immunosuppression and promoting immune response; however, the overall impact of these systems on immunotherapy currently remains modest. Hyaluronic acid represents a widely used polymer in drug delivery; meanwhile, recent studies linking hyaluronic acid to the immune system make this polymer an attractive component in the design of next-generation cancer immunotherapies. Herein, we review our current understanding of the immunological properties of hyaluronic acid and discuss them in the context of bioactive functions and immune-related interactions with receptors, immune, and cancer cells. We analyze the potential of hyaluronic acid as a component in advanced drug delivery systems, highlighting strategies for the design of more effective vaccines and cancer chemo-immunotherapies. Finally, we discuss critical considerations to facilitate design and clinical translation to overcome existing challenges and maximize therapeutic potential.
Collapse
Affiliation(s)
- Giulia Rodella
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium
| | - Bernard Gallez
- UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium.
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; Departement of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, 35131 Padova, Italy.
| |
Collapse
|
102
|
Tong Y, Wang Z, Wang Y, Chen Y, Zhang H, Lu Y, Xu L, Shen H, Huang C, Zhao M, Li W, Wang S, Shao Y, Fu Z. The E3 Ubiquitin Ligase ARIH1 Facilitates Colorectal Cancer Progression by Promoting Oxidative Phosphorylation via the Mitochondrial Translocation of K63-Linked Ubiquitinated PHB1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501017. [PMID: 40285603 DOI: 10.1002/advs.202501017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/05/2025] [Indexed: 04/29/2025]
Abstract
The RBR E3 ubiquitin ligase ARIH1 has been proven to induce specific ubiquitylation of substrates, thereby regulating cell proliferation and the cell cycle. However, the understanding of how ARIH1 influence cancer development is limited. This study revealed that ARIH1 is upregulated in colorectal cancer (CRC) cells and facilitates cell growth and metastasis. Clinically, high ARIH1 levels are linked to an unfavorable CRC prognosis. Mechanistically, ARIH1 directly interacts with PHB1 via its RING1+RBR+RING2 domains, catalyzing the K63-linked ubiquitination of PHB1 at lysine 186 (K186). The increased interaction between PHB1 and Akt through this modification results in PHB1 phosphorylation by Akt and its subsequent translocation into mitochondria, where it maintains mitochondrial stability and promotes oxidative phosphorylation (OXPHOS). Collectively, these findings demonstrate the role of ARIH1-mediated K63-linked ubiquitination of PHB1 in mitochondrial dynamics and OXPHOS, suggesting that it has potential as diagnostic biomarker and treatment target for CRC.
Collapse
Affiliation(s)
- Ying Tong
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhenling Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yong Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yunfei Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Lei Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hengyang Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Changzhi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Min Zhao
- The Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Wenjie Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shuai Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yu Shao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| |
Collapse
|
103
|
Ngo M, Dao T, Hoang T, Nguyen U, Stenman J, Duong H, Ho T. Accurate quantification of cell-free Ceruloplasmin mRNA as a biomarker for early detection of hepatocellular carcinoma. Sci Rep 2025; 15:14660. [PMID: 40287496 PMCID: PMC12033234 DOI: 10.1038/s41598-025-99302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Accurate and early detection of hepatocellular carcinoma (HCC) is critical for improving patient outcomes. Current biomarkers like AFP have limited sensitivity, necessitating novel diagnostic markers. A novel semi-nested RT-PCR assay was developed to quantify circulating Ceruloplasmin (CP) mRNA in peripheral blood. This method co-amplifies CP mRNA and an internal control (IC) gene, followed by DNA melting analysis to distinguish and quantify CP mRNA. CP mRNA levels were significantly higher in the HCC group (median: 3.37) compared to both the CLD group (0.24, p = 0.0066) and the HD group (0.17, p < 0.0001). Further analysis using ROC curves highlighted the diagnostic performance of the assay. For differentiating HCC from CLD, the area under the ROC curve (AUC) was 0.704, with 50.98% sensitivity and 95.24% specificity. In comparison to HD, the AUC was 0.812, with 74.51% sensitivity and 80.65% specificity. Against the combined control group (CLD and HD), the AUC was 0.768, with 50.98% sensitivity and 96.15% specificity. Additionally, in 59.1% of HCC cases with AFP levels below 20 ng/mL, CP mRNA levels were elevated, indicating that CP mRNA could help detect a substantial proportion of AFP-negative HCC cases. This study, the first comprehensive clinical investigation of cell-free CP mRNA for HCC diagnosis, demonstrates its potential as a sensitive and specific non-invasive biomarker. Further validation in larger cohorts is needed to confirm its clinical utility.
Collapse
Affiliation(s)
- Minh Ngo
- Department of Gastroenterology and Hepatology, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
- Radiology Center, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Trang Dao
- Department of Genomics and Cytogenetics, Institute of Biomedicine and Pharmacy (IBP), Vietnam Military Medical University, Hanoi, Vietnam
| | - Trang Hoang
- Department of Genomics and Cytogenetics, Institute of Biomedicine and Pharmacy (IBP), Vietnam Military Medical University, Hanoi, Vietnam
| | - Ung Nguyen
- Department of Genomics and Cytogenetics, Institute of Biomedicine and Pharmacy (IBP), Vietnam Military Medical University, Hanoi, Vietnam
| | - Jakob Stenman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Huy Duong
- Department of Gastroenterology and Hepatology, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Tho Ho
- Department of Genomics and Cytogenetics, Institute of Biomedicine and Pharmacy (IBP), Vietnam Military Medical University, Hanoi, Vietnam.
- Department of Microbiology, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam.
| |
Collapse
|
104
|
Chernov AN, Skliar SS, Yatskou MM, Skakun VV, Pyurveev SS, Batotsyrenova EG, Zheregelya SN, Liu G, Kashuro VA, Ivanov DO, Ivanov SD. Glioblastoma and Blood Microenvironment Predictive Model for Life Expectancy of Patients. Biomedicines 2025; 13:1040. [PMID: 40426873 PMCID: PMC12108703 DOI: 10.3390/biomedicines13051040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Glioblastoma multiforme (GBM) is a very malignant brain tumor. GBM exhibits cellular and molecular heterogeneity that can be exploited to improve patient outcomes by individually tailoring chemotherapy regimens. Objective: Our objective was to develop a predictive model of the life expectancy of GBM patients using data on tumor cells' sensitivity to chemotherapy drugs, as well as the levels of blood cells and proteins forming the tumor microenvironment. Methods: The investigation included 31 GBM patients from the Almazov Medical Research Centre (Saint Petersburg, Russia). The cytotoxic effects of chemotherapy drugs on GBM cells were studied by an MTT test using a 50% inhibitory concentration (IC50). We analyzed the data with life expectancy by a one-way ANOVA, principal component analysis (PCA), ROC, and Kaplan-Meier survival tests using GraphPad Prism and Statistica 10 software. Results: We determined in vitro the IC50 of six chemotherapy drugs for GBM and 32 clinical and biochemical blood indicators for these patients. This model includes an assessment of only three parameters: IC50 of tumor cells to carboplatin (CARB) higher than 4.115 μg/mL, as well as levels of band neutrophils (NEUT-B) below 2.5% and total protein (TP) above 64.5 g/L in the blood analysis, which allows predicting with 83.3% probability (sensitivity) the life expectancy of patients for 15 months or more. In opposite, a change in these parameters-CARB above 4115 μg/mL, NEUT-B below 2.5%, and TP above 64.5 g/L-predict with 83.3% probability (specificity) no survival rate of GBM patients for more than 15 months. The relative risk for CARB was 6.41 (95 CI: 4.37-8.47, p = 0.01); for NEUT-B, the RR was 0.40 (95 CI: 0.26-0.87, p = 0.09); and for TP, it was 2.88 (95 CI: 1.57-4.19, p = 0.09). Overall, the model predicted the risk of developing a positive event (an outcome with a life expectancy more than 10 months) eight times (95 CI 6.34-9.66, p < 0.01). Cross k-means validation on three clusters (n = 10) of the model showed that its average accuracy (sensitivity and specificity) for cluster 1 was 74.98%; for cluster 2, it was 66.7%; and for cluster 3, it was 60.0%. At the same time, the differences between clusters 1, 2, and 3 were not significant. The results of the Sobel test show that there are no interactions between the components of the model, and each component is an independent factor influencing the event (life expectancy, survival) of GBM patients. Conclusions: A simple predictive model for GBM patients' life expectancy has been developed using statistical analysis methods.
Collapse
Affiliation(s)
- Alexander N. Chernov
- Biological Chemistry Department, Federal State Budgetary Educational Institution of Higher Education Saint Petersburg State Pediatric Medical University of the Ministry of Health of Russia, 194100 Saint Petersburg, Russia; (S.S.P.); (E.G.B.); (S.N.Z.); (V.A.K.); (D.O.I.)
- Department of General Pathology and Pathophysiology, Federal State Budgetary Institution of Science “Institute of Experimental Medicine”, 197022 Saint Petersburg, Russia
| | - Sofia S. Skliar
- Laboratory of Neurooncology of Polenov Neurosurgical Institute, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia;
| | - Mikalai M. Yatskou
- Department of System Analysis and Computer Modeling, Belarussian State University, 220030 Minsk, Belarus; (M.M.Y.); (V.V.S.)
| | - Victor V. Skakun
- Department of System Analysis and Computer Modeling, Belarussian State University, 220030 Minsk, Belarus; (M.M.Y.); (V.V.S.)
| | - Sarng S. Pyurveev
- Biological Chemistry Department, Federal State Budgetary Educational Institution of Higher Education Saint Petersburg State Pediatric Medical University of the Ministry of Health of Russia, 194100 Saint Petersburg, Russia; (S.S.P.); (E.G.B.); (S.N.Z.); (V.A.K.); (D.O.I.)
- Department of General Pathology and Pathophysiology, Federal State Budgetary Institution of Science “Institute of Experimental Medicine”, 197022 Saint Petersburg, Russia
| | - Ekaterina G. Batotsyrenova
- Biological Chemistry Department, Federal State Budgetary Educational Institution of Higher Education Saint Petersburg State Pediatric Medical University of the Ministry of Health of Russia, 194100 Saint Petersburg, Russia; (S.S.P.); (E.G.B.); (S.N.Z.); (V.A.K.); (D.O.I.)
| | - Sergey N. Zheregelya
- Biological Chemistry Department, Federal State Budgetary Educational Institution of Higher Education Saint Petersburg State Pediatric Medical University of the Ministry of Health of Russia, 194100 Saint Petersburg, Russia; (S.S.P.); (E.G.B.); (S.N.Z.); (V.A.K.); (D.O.I.)
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
| | - Vadim A. Kashuro
- Biological Chemistry Department, Federal State Budgetary Educational Institution of Higher Education Saint Petersburg State Pediatric Medical University of the Ministry of Health of Russia, 194100 Saint Petersburg, Russia; (S.S.P.); (E.G.B.); (S.N.Z.); (V.A.K.); (D.O.I.)
- Department of Maxillofacial Surgery and Surgical Dentistry, Medical Institute of Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Department of Anatomy and Physiology of Humans and Animals, Herzen State Pedagogical University of Russia, 191186 Saint Petersburg, Russia
| | - Dmitry O. Ivanov
- Biological Chemistry Department, Federal State Budgetary Educational Institution of Higher Education Saint Petersburg State Pediatric Medical University of the Ministry of Health of Russia, 194100 Saint Petersburg, Russia; (S.S.P.); (E.G.B.); (S.N.Z.); (V.A.K.); (D.O.I.)
| | - Sergey D. Ivanov
- Federal State Budgetary Institution “National Medical Research Center of Oncology named after N.N. Petrov” of the Ministry of Health of the Russian Federation, 197758 Saint Petersburg, Russia;
| |
Collapse
|
105
|
Kusu Y, Furuta M, Kageyama S, Yamashita Y, Takeshita T. Mediating factors associated with alcohol intake and periodontal condition. FRONTIERS IN ORAL HEALTH 2025; 6:1524772. [PMID: 40342576 PMCID: PMC12058805 DOI: 10.3389/froh.2025.1524772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/04/2025] [Indexed: 05/11/2025] Open
Abstract
Background Alcohol consumption has been reported to increase the risk of periodontal disease and various health abnormalities such as obesity, hyperglycemia, and liver abnormalities. While the link between these health abnormalities and periodontal disease has been established, their potential mediating role in the association between alcohol consumption and periodontal disease remains unclear. Therefore, this study aims to investigate the multiple mediating roles of obesity, hyperglycemia, and liver abnormalities in this association. Methods A cross-sectional study was conducted on 6,529 individuals aged 35-64 years who underwent workplace health check-ups in 2003 (mean age: 45.7 ± 8.7 years). The periodontal condition was evaluated using the mean pocket depth (PD), and participants were classified into no, light/moderate (alcohol consumption 0.1-29.9 g/day), and heavy (≥30 g/day) drinking groups. Causal mediation analysis was performed. Results Heavy drinking had a direct effect on the mean PD. Light/moderate drinking had a indirect effect on the mean PD through the body mass index (BMI), glucose level, alanine aminotransferase level (ALT), with proportion mediated of 25.1%, 8.9%, and 18.9%, respectively. The mediating role of glucose level was found in the association between heavy drinking and the mean PD with proportion mediated of 32.7%. Conclusion This study confirmed that alcohol consumption was associated with worse periodontal condition among Japanese adults who received workplace health check-ups. This association was partially contributed by several factors such as BMI, glucose level, and ALT.
Collapse
Affiliation(s)
- Yuto Kusu
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Michiko Furuta
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shinya Kageyama
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yoshihisa Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Kyushu Dental University, Kitakyushu, Japan
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
106
|
Ha SE, Lee MH, Han SM, Kim SH, Hyun M, Heo JD. Comparative toxicity of eleven bisphenol analogs in the nematode Caenorhabditis elegans. Toxicol Lett 2025; 409:12-20. [PMID: 40287112 DOI: 10.1016/j.toxlet.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/09/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Bisphenol analogs are widely used as industrial substitutes for Bisphenol A (BPA) and are included in water bottles, food containers, and receipts commonly encountered daily. However, there are currently no specific regulations on these substitute substances, and reports on their harmful effects are also lacking. In this study, we examined the toxicity of eleven bisphenol analogs, including BPAP, BPB, BPC, BPC2, BPE, BPG, BPM, BPP, BPPH, BPZ, and TBBPA at 1 mM concentration using the C. elegans model. Our findings revealed that several bisphenol analogs, most notably BPB, BPC, BPE, and BPG, significantly increased lethality in embryonic and L1 larval stages. Additionally, developmental delays were observed with BPAP, BPB, BPC, and BPG, with a reduced fraction of animals reaching adulthood. Regarding reproductive toxicity, we found that BPAP, BPB, BPC, BPC2, and BPG reduced egg production. Furthermore, exposure to the analogs significantly shortened the lifespan of C. elegans, particularly with BPAP, BPB, BPC, and BPG, raising concerns about their potential impact on aging. This study suggests their potential harmful effects on development, reproduction, and longevity.
Collapse
Affiliation(s)
- Sang Eun Ha
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju 52834, Republic of Korea
| | - Myon Hee Lee
- Department of Internal Medicine, Hematology/Oncology Division, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, Institute on Aging, University of Florida, Gainesville, FL 32610, USA
| | - Sung-Hwan Kim
- Division of Jeonbuk Advanced Bio Research, Korea Institute of Toxicology (KIT), Jeongeup 56212, Republic of Korea
| | - Moonjung Hyun
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju 52834, Republic of Korea.
| | - Jeong Doo Heo
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju 52834, Republic of Korea.
| |
Collapse
|
107
|
Rodgers B, Cannes do Nascimento N, Cox A, Bailey TW, Sivasankar MP, Schaser AJ. Molecular changes, histopathology, and ultrasonic vocalization acoustic profiles of systemically dehydrated rats. PLoS One 2025; 20:e0322187. [PMID: 40261870 PMCID: PMC12013907 DOI: 10.1371/journal.pone.0322187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Systemic hydration is known to promote optimal functioning of bodily systems-including the vocal folds. The impact of systemic dehydration on the biology of the vocal folds and the downstream effects of dehydration on voice output are not well understood. An in vivo rat model of systemic dehydration was employed to investigate vocal fold gene expression, histological changes, and acoustic changes in vocalization. Ultrasonic vocalizations (USVs) were recorded every day for 5 days (baseline), in male and female Long-Evans rats (N = 36, ages: 3-4 months) using an anticipatory reward paradigm. Next, rats were dehydrated (N = 18) using a published water-restriction model for 5 days or euhydrated (N = 18) and provided ad libitum access to water for 5 days. USVs were recorded daily during the dehydration/euhydration period. The USV variables were averaged at baseline and following dehydration/euhydration for individual animals, and the difference between these time periods was used for statistical analysis. USV analysis included total USV count, complexity ratio, duration (s), frequency range (kHz), and maximum intensity (dB). At the end of dehydration/euhydration, animals were euthanized, and kidney and vocal fold tissue samples were dissected and processed for histology and gene expression analysis. Compared to euhydrated rats, dehydrated male and female rats had significantly up-regulated gene expression of kidney renin (male p = 0.047; female p = 0.018), indicating physiologic dehydration. There were no statistically significant differences in the USV acoustic profile or histopathology between the two groups. Differential expression (p < 0.05) of several genes related to extracellular matrix remodeling, inflammatory responses, and water ion transport in the vocal folds was present. Our results indicate that mild systemic dehydration impacts gene expression in the vocal fold mucosa; however, these gene expression changes are not evident in the acoustic profile of vocalizations.
Collapse
Affiliation(s)
- Brooke Rodgers
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Naila Cannes do Nascimento
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
| | - Taylor W. Bailey
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - M. Preeti Sivasankar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Allison J. Schaser
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
108
|
Harris CS, Conley YP, Bai J, Hammer MJ. The Use of Biomarkers in Precision Health Symptom Science-Opportunities and Challenges. Semin Oncol Nurs 2025:151886. [PMID: 40268586 DOI: 10.1016/j.soncn.2025.151886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVES Precision health symptom science applies person-centered approaches to elucidate interindividual differences in patients' symptom experiences and incorporates omics methods with social, societal, and environmental determinants of health to develop symptom management strategies. By filling scientific gaps related to patients' symptom experiences and their underlying mechanisms, interventions can be developed to improve quality of life and outcomes. The purposes of this article are to describe symptom phenotype development; review analytical approaches to identify a symptom phenotype; and discuss common and emerging methods for biomarker discovery and their implications in precision health symptom science. METHODS Peer-reviewed research studies, review articles, and scientific expertise were synthesized to provide a broad overview of several methods of biomarker discovery and their implications for precision health symptom science. RESULTS Approaches to symptom phenotype development and analytical methods for phenotype identification were reviewed. Common (ie, genomic, epigenomic, transcriptomic, proteomic, metabolomic, microbiome) and emerging (ie, polygenic risk scores, microRNA, epigenetic clocks, allostatic load, wearables) methods for biomarker discovery were described. Each method provides unique information to improve our understanding of the complex biological processes that underlie symptoms and may be used for risk prediction, screening, surveillance, and treatment response. CONCLUSIONS While the exemplar approaches to conducting precision health symptom science were shared through an oncology lens, they are generalizable across acute and chronic conditions. IMPLICATIONS FOR NURSING PRACTICE Symptom biomarker identification is inherently complex and the methods for biomarker collection, processing, measurement, and analysis are continually evolving. Therefore, symptom scientists need to form transdisciplinary teams with experts in omics methodologies and bioinformatics. Despite the challenges, symptom scientists are well suited to lead the way in precision health symptom science to reduce symptom burden and improve quality of life among patients with various chronic conditions.
Collapse
Affiliation(s)
| | | | - Jinbing Bai
- School of Nursing, Emory University, Atlanta, Georgia
| | | |
Collapse
|
109
|
Wang J, Fang J, Weng Z, Nan L, Chen Y, Shan J, Chen F, Liu J. Advanced development of conductive biomaterials for enhanced peripheral nerve regeneration: a review. RSC Adv 2025; 15:12997-13009. [PMID: 40271417 PMCID: PMC12013703 DOI: 10.1039/d5ra01107h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Peripheral nerve injury (PNI), as a major cause of disability worldwide, makes it difficult to achieve effective repair and regeneration. Including autologous nerve transplantation, traditional therapies are restricted by surgical intricacy, donor scarcity, and inconsistent recovery effects. As to nerve guidance conduits (NGCs), conductive materials have brought novel pathways for PNI repair. Such materials boost nerve regeneration via electrical stimulation and bring key mechanical stability and biophysical signaling. This review summarizes the progress in conductive materials for PNI therapy while emphasizing their functions in electrical stimulation (ES), bioelectric signal transmission, and cell behavior guidance, as well as revealing the design and function needs of nerve conduits. Additionally, our review highlights the demand for follow-up studies to accentuate material optimization and improve real-time electrical signal supervision. Accordingly, this research is insightful and contributes to developing PNI repair. This results in more efficacious therapies and enhanced outcomes.
Collapse
Affiliation(s)
- Jianguang Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Jiaqi Fang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Zhijie Weng
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Liping Nan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Yunfeng Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Junkuan Shan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Feng Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital, School of Stomatology, Fudan University Shanghai 201102 China
| | - Junjian Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| |
Collapse
|
110
|
Lee SH, Kim HJ, Kim SW, Lee H, Jung DW, Williams DR. Modulating phosphatase DUSP22 with BML-260 ameliorates skeletal muscle wasting via Akt independent JNK-FOXO3a repression. EMBO Mol Med 2025:10.1038/s44321-025-00234-2. [PMID: 40263624 DOI: 10.1038/s44321-025-00234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025] Open
Abstract
Skeletal muscle wasting results from numerous conditions, such as sarcopenia, glucocorticoid therapy or intensive care. It prevents independent living in the elderly, predisposes to secondary diseases, and ultimately reduces lifespan. There is no approved drug therapy and the major causative mechanisms are not fully understood. Dual specificity phosphatase 22 (DUSP22) is a pleiotropic signaling molecule that plays important roles in immunity and cancer. However, the role of DUSP22 in skeletal muscle wasting is unknown. In this study, DUSP22 was found to be upregulated in sarcopenia patients and models of skeletal muscle wasting. DUSP22 knockdown or treatment with BML-260 (a small molecule previously reported to target DUSP22) prevented multiple forms of muscle wasting. Mechanistically, targeting DUSP22 suppressed FOXO3a, a master regulator of skeletal muscle wasting, via downregulation of the stress-activated kinase JNK, which occurred independently of aberrant Akt activation. DUSP22 targeting was also effective in human skeletal muscle cells undergoing atrophy. In conclusion, phosphatase DUSP22 is a novel target for preventing skeletal muscle wasting and BML-260 treatment is therapeutically effective. The DUSP22-JNK-FOXO3a axis could be exploited to treat sarcopenia or related aging disorders.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- New Drug Targets Laboratory, Department of Life Sciences, College of Life Sciences and Medical Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyun-Jun Kim
- New Drug Targets Laboratory, Department of Life Sciences, College of Life Sciences and Medical Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seon-Wook Kim
- New Drug Targets Laboratory, Department of Life Sciences, College of Life Sciences and Medical Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyunju Lee
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, Department of Life Sciences, College of Life Sciences and Medical Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| | - Darren Reece Williams
- New Drug Targets Laboratory, Department of Life Sciences, College of Life Sciences and Medical Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
111
|
Clerkin S, Singh K, Davis JL, Treacy NJ, Krupa I, Reynaud EG, Lees RM, Needham SR, MacWhite-Begg D, Wychowaniec JK, Brougham DF, Crean J. Tuneable gelatin methacryloyl (GelMA) hydrogels for the directed specification of renal cell types for hiPSC-derived kidney organoid maturation. Biomaterials 2025; 322:123349. [PMID: 40315627 DOI: 10.1016/j.biomaterials.2025.123349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/14/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025]
Abstract
Diabetic Kidney Disease (DKD) represents a significant global health burden and is recognised as the leading cause of end-stage renal disease. Kidney organoids derived from human induced Pluripotent Stem Cells (hiPSCs) have the potential to transform how we model renal disease and may provide personalised replacement tissues for patients with renal failure. However, kidney organoids remain poorly reproducible, and are structurally and functionally immature. Three-dimensional cultures that more appropriately mimic the complexity of the in vivo microenvironment are required to improve organoid maturation and structural authenticity. Here, we describe the application of semi-synthetic Gelatin Methacryloyl (GelMA) hydrogels as extracellular support matrices for the differentiation of hiPSC-derived kidney organoids. Hydrogels of defined mechanical strengths were generated by varying the concentration of GelMA solution in the presence of low concentration photo-initiator. After confirming a high level of mechanical stability of the hydrogels over extended culture periods, their effect on kidney organoid maturation was investigated. Organoids differentiated within GelMA hydrogels generated typical renal cell types including podocytes, tubular epithelia, renal interstitial cells, and some nascent vascularisation. Interestingly, kidney organoids derived within hydrogels that closely approximate the stiffness of the adult human kidney (∼5000-10,000 Pa) demonstrated improved podocyte maturation and were shown to upregulate renal vesicle-associated genes at an earlier stage following encapsulation when compared to organoids derived within softer hydrogels (∼400 Pa). A model of TGFβ-induced injury was also developed to investigate the influence of the mechanical environment in propagating early, fibrotic-like features of DKD within organoids. Growth within the softer matrix was shown to reduce pSMAD3 expression following TGFβ1 treatment, and accordingly ameliorate the expression of the myofibroblast marker α-Smooth Muscle Actin (α-SMA). This work demonstrates the suitability of GelMA hydrogels as mechanically-stable, highly-tuneable, batch-to-batch reproducible three-dimensional supports for hiPSC-derived kidney organoid growth and differentiation, and further substantiates the role of the biophysical environment in guiding processes of cell fate determination and organoid maturation.
Collapse
Affiliation(s)
- Shane Clerkin
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Krutika Singh
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jessica L Davis
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niall J Treacy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ivan Krupa
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emmanuel G Reynaud
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Robert M Lees
- Science and Technology Research Council Central Laser Facility (STFC-CLF), Rutherford Appleton Laboratory, Harwell, Didcot, OX11 0DE, United Kingdom
| | - Sarah R Needham
- Science and Technology Research Council Central Laser Facility (STFC-CLF), Rutherford Appleton Laboratory, Harwell, Didcot, OX11 0DE, United Kingdom
| | - Delphi MacWhite-Begg
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jacek K Wychowaniec
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dermot F Brougham
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - John Crean
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
112
|
Kalsi P, Gupta N, Goyal G, Sharma H. Decoding the role of extracellular vesicles in pathogenesis of cystic fibrosis. Mol Cell Pediatr 2025; 12:5. [PMID: 40257719 PMCID: PMC12011702 DOI: 10.1186/s40348-025-00190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/05/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Intercellular communication is a critical process that ensures cooperation between distinct cell types and maintains homeostasis. In the past decades, extracellular vesicles (EVs) have been recognized as key components in cell-to-cell communication. These EVs carry multiple factors such as active enzymes, metabolites, nucleic acids and surface molecules that can alter the behavior of recipient cells. Thus, the role of EVs in exacerbating disease pathology by transporting inflammatory mediators, and other molecular signals that contribute to chronic inflammation and immune dysregulation in various diseases including cystic fibrosis (CF) is well documented. MAIN BODY CF is a genetic disorder characterized by chronic inflammation and persistent infections, primarily affecting the respiratory system. This review explores the multifaceted roles of EVs in CF lung disease, focusing on their biogenesis, cargo, and contributions to disease progression. It is well known that CF results from mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene, leading to defective ion transport, thick mucus secretion, and a propensity for bacterial infections. However, it has been observed that EVs derived from CF patients carry altered molecular cargo, including proteins, lipids, RNA, and DNA, which can exacerbate these conditions by promoting inflammation, and modulating immune responses. Beyond their pathogenic roles, EVs also hold significant therapeutic potential. Their natural ability to transfer bioactive molecules positions them as promising vectors for delivering therapeutic agents, such as gene therapy constructs and anti-inflammatory compounds. Accordingly, a study has shown that these EVs can act as a carrier molecule for transport of functional CFTR mRNA, helping to restore proper chloride ion channel function by correcting defective CFTR proteins in affected cells. CONCLUSION This review aims to summarize the role of EVs and their molecular cargo in pathogenesis of CF lung disease via modulation of intracellular signaling leading to persistent inflammation and increased disease severity. We also explored the mechanisms of EV biogenesis, cargo selection, and their effects on recipient cells which may provide novel insights into CF pathogenesis and open new avenues for EV-based therapies aimed at improving disease management.
Collapse
Affiliation(s)
- Priya Kalsi
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Nikhil Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Gitanjali Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Himanshu Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India.
| |
Collapse
|
113
|
Hammer MJ, Conley YP, Henderson WA, Lukkahatai N, Miaskowski C, Starkweather A, Wesmiller SW. Breaking the code: Using the Precision Health Model to guide research and clinical care. Nurs Outlook 2025; 73:102396. [PMID: 40262402 DOI: 10.1016/j.outlook.2025.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Precision health is a person-centered approach to health and well-being that is operationalized through evaluating omics-level profiles and their associations with the exposome. A precision health approach addresses the challenge that "one size does not fit all" in the management of an individual's health. PURPOSE The purpose of this white paper is to introduce a Precision Health Model and its application in research and clinical care. METHODS An expert panel reviewed and synthesized the extant literature related to precision health, the current state of omics' science, and common exposome factors that influence the health/illness continuum. A case study provides the framework for the application of the Precision Health Model. DISCUSSION Precision health and key domains are defined and serve as the platform for the development of the Precision Health Model. CONCLUSION Application of the Precision Health Model will provide inclusive, equitable, person-centered research and clinical care.
Collapse
Affiliation(s)
- Marilyn J Hammer
- Department of Nursing and Patient Care Services and Department of Medical Oncology, Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA.
| | | | | | | | | | | | | |
Collapse
|
114
|
Ni Lochlainn M, Cheetham NJ, Falchi M, Piazza P, Steves CJ. Comparing Venous vs. Capillary Blood Collection Methods for Proteomic Measurement in Peripheral Blood. Proteomics Clin Appl 2025:e70007. [PMID: 40249318 DOI: 10.1002/prca.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Capillary blood collection has a number of advantages over venous collection, especially in the context of increasing decentralized clinical trials and field-based testing. No studies are available comparing venous versus capillary blood collection for proteomics measurement. The aim of this study was to compare venous versus capillary blood collection methods for proteomic measurement in peripheral blood. METHODS The expression of 368 different proteins from the Olink Explore 384 Inflammation panel was measured in both venous and capillary blood samples collected from 22 individuals at a single time point. Protein levels from venous and capillary blood samples were compared with descriptive statistics and correlation calculations. Correlations were examined for a subset of proteins identified in recent reports as associated with morbidity and mortality. RESULTS Strong positive correlation (r ≥ 0.7) between protein concentrations measured in venous and capillary blood samples was observed for two in three proteins tested (215 of 327, 66%). A further 47 (14%) showed a moderate positive correlation (0.4 ≤ r < 0.7), with weak or very weak correlation (r < 0.4) observed for the remaining 65 (20%). Protein expression was consistently higher in capillary blood samples for proteins with lower correlation (r < 0.6) between sampling methods. Further work is required to understand the underlying reasons why proteins were consistently under-expressed in venous samples/over-expressed in capillary samples in a minority of proteins tested. CONCLUSIONS Proteomic measurement utilising capillary blood collection provides very similar results to using venous blood collection. This is a promising sign for the validity and reliability of studies using capillary blood collection, including decentralised and remote studies.
Collapse
Affiliation(s)
- Mary Ni Lochlainn
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Nathan J Cheetham
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Paolo Piazza
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
115
|
Ionescu C, Ghidersa M, Ciobica A, Mavroudis I, Kazis D, Petridis FE, Gorgan DL, Balmus IM. Potential Correlation Between Molecular Biomarkers and Oxidative Stress in Traumatic Brain Injury. Int J Mol Sci 2025; 26:3858. [PMID: 40332547 PMCID: PMC12027598 DOI: 10.3390/ijms26083858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Diagnosing traumatic brain injury (TBI) remains challenging due to an incomplete understanding of its neuropathological mechanisms. TBI is recognised as a complex condition involving both primary and secondary injuries. Although oxidative stress is a non-specific molecular phenomenon observed in various neuropathological conditions, it plays a crucial role in brain injury response and recovery. Due to these aspects, we aimed to evaluate the interaction between some known TBI molecular biomarkers and oxidative stress in providing evidence for its possible relevance in clinical diagnosis and outcome prediction. We found that while many of the currently validated molecular biomarkers interact with oxidative pathways, their patterns of variation could assist the diagnosis, prognosis, and outcomes prediction in TBI cases.
Collapse
Affiliation(s)
- Cătălina Ionescu
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
| | - Madalina Ghidersa
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
- “Ioan Haulica” Institute, Apollonia University, 700511 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 2 Teodor Codrescu Street, 700481 Iasi, Romania
| | - Ioannis Mavroudis
- Academy of Romanian Scientists, 050094 Bucharest, Romania
- Department of Neurosciences, Leeds Teaching Hospitals, Leeds LS9 7TF, UK
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.); (F.E.P.)
| | - Foivos E. Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.); (F.E.P.)
| | - Dragoș Lucian Gorgan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 700057 Iasi, Romania;
| |
Collapse
|
116
|
Taha MS, Akram A, Abdelbary GA. Unlocking the potential of remdesivir: innovative approaches to drug delivery. Drug Deliv Transl Res 2025:10.1007/s13346-025-01843-7. [PMID: 40244526 DOI: 10.1007/s13346-025-01843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
Given the recurrent waves of COVID-19 and the emergence of new viral infections, optimizing the potential of remdesivir as an antiviral agent is critical. While several reviews have explored the efficacy of remdesivir, few have comprehensively addressed its challenges, such as the necessity for intravenous infusion, suboptimal lung accumulation, and safety concerns related to its formulation. This review critically examines these challenges while proposing innovative solutions and effective combinations with other antiviral agents and repurposed drugs. By highlighting the role of complex generics, we aim to enhance therapeutic efficacy in ways not previously discussed in existing literature. Furthermore, we address the development of novel drug delivery systems which specifically aim to improve remdesivir's pharmacological profile. By analyzing recent findings, we assess both the successes and limitations of current approaches, providing insights into ongoing challenges and strategies for further optimization. This review uniquely focuses on targeted drug delivery systems and innovative formulations, thereby maximizing remdesivir's therapeutic benefits and broadening its application in combating emerging viral threats. In doing so, we fill a critical gap in literature, offering a comprehensive overview that informs future research and clinical strategies.
Collapse
Affiliation(s)
- Maie S Taha
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Alaa Akram
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ghada A Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
117
|
Michalak KP, Michalak AZ, Brenk-Krakowska A. Acute COVID-19 and LongCOVID syndrome - molecular implications for therapeutic strategies - review. Front Immunol 2025; 16:1582783. [PMID: 40313948 PMCID: PMC12043656 DOI: 10.3389/fimmu.2025.1582783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been recognized not only for its acute effects but also for its ability to cause LongCOVID Syndrome (LCS), a condition characterized by persistent symptoms affecting multiple organ systems. This review examines the molecular and immunological mechanisms underlying LCS, with a particular focus on autophagy inhibition, chronic inflammation, oxidative, nitrosative and calcium stress, viral persistence and autoimmunology. Potential pathophysiological mechanisms involved in LCS include (1) autoimmune activation, (2) latent viral persistence, where SARS-CoV-2 continues to influence host metabolism, (3) reactivation of latent pathogens such as Epstein-Barr virus (EBV) or cytomegalovirus (CMV), exacerbating immune and metabolic dysregulation, and (4) possible persistent metabolic and inflammatory dysregulation, where the body fails to restore post-infection homeostasis. The manipulation of cellular pathways by SARS-CoV-2 proteins is a critical aspect of the virus' ability to evade immune clearance and establish long-term dysfunction. Viral proteins such as NSP13, ORF3a and ORF8 have been shown to disrupt autophagy, thereby impairing viral clearance and promoting immune evasion. In addition, mitochondrial dysfunction, dysregulated calcium signaling, oxidative stress, chronic HIF-1α activation and Nrf2 inhibition create a self-sustaining inflammatory feedback loop that contributes to tissue damage and persistent symptoms. Therefore understanding the molecular basis of LCS is critical for the development of effective therapeutic strategies. Targeting autophagy and Nrf2 activation, glycolysis inhibition, and restoration calcium homeostasis may provide novel strategies to mitigate the long-term consequences of SARS-CoV-2 infection. Future research should focus on personalized therapeutic interventions based on the dominant molecular perturbations in individual patients.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Alicja Brenk-Krakowska
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
118
|
Rangel-López A, Mata-Rocha M, Pérez-González OA, López-Romero R, López-Sánchez DM, Juárez-Méndez S, Villegas-Ruiz V, Méndez-Tenorio A, Mejía-Araguré JM, Orihuela-Rodríguez O, Álvarez-Aguilar C, Majluf-Cruz A, Amato D, Zavala-Vega S, Melchor-Doncel de la Torre S, Paniagua-Sierra R, Arellano-Galindo J. Gene Expression Profile of Cultured Human Coronary Arterial Endothelial Cells Exposed to Serum from Chronic Kidney Disease Patients: Role of MAPK Signaling Pathway. Int J Mol Sci 2025; 26:3732. [PMID: 40332370 PMCID: PMC12027878 DOI: 10.3390/ijms26083732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Patients with end-stage renal disease (ESRD) are at increased risk of cardiovascular disease (CVD), such as myocardial infarction (MI). Uremic toxins and endothelial dysfunction are central to this process. In this exploratory study, we used the Affymetrix GeneChip microarray to investigate the gene expression profile in uremic serum-induced human coronary arterial endothelial cells (HCAECs) from ESRD patients with and without MI (UWI and UWOI groups) as an approach to its underlying mechanism. We also explored which pathways are involved in this process. We found 100 differentially expressed genes (DEGs) among the conditions of interest by supervised principal component analysis and hierarchical cluster analysis. The expressions of four major DEGs were validated by quantitative RT-PCR. Pathway analysis and molecular network were used to analyze the interaction and expression patterns. Ten pathways were identified as the main enriched metabolic pathways according to the transcriptome profiling analysis, which were, among others, positive regulation of inflammatory response, positive regulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) cascade, cardiac muscle cell development, highlighting positive regulation of mitogen-activated protein kinase (MAPK) activity (p = 0.00016). Up- and down-regulation of genes from HCAECs exposed to uremic serum could contribute to increased endothelial dysfunction and CVD in ESRD patients. Our study suggests that inflammation and the ERK-MAPK pathway are highly enriched in kidney disease patients with MI, suggesting their role in ESRD pathology. Further studies and approaches based on MAPK pathway interfering strategies are needed to confirm these data.
Collapse
Affiliation(s)
- Angélica Rangel-López
- Unidad de Investigación Médica en Enfermedades Nefrológicas, UMAE Hospital de Especialidades, Centro Médico Nacional (CMN) Siglo XXI (SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City 06720, Mexico;
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez-Secretaría de Salud (SS), Mexico City 06720, Mexico;
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, CMN SXXI IMSS, Mexico City 06720, Mexico;
| | - Oscar Alberto Pérez-González
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría-SS, Mexico City 04530, Mexico; (O.A.P.-G.); (S.J.-M.); (V.V.-R.)
| | - Ricardo López-Romero
- Unidad de Investigación en Biomedicina y Oncología Genómica, Hospital de Gineco-Pediatría 3A, IMSS, Mexico City 07760, Mexico;
| | - Dulce María López-Sánchez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, SS, Mexico City 14080, Mexico;
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB-Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Sergio Juárez-Méndez
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría-SS, Mexico City 04530, Mexico; (O.A.P.-G.); (S.J.-M.); (V.V.-R.)
| | - Vanessa Villegas-Ruiz
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría-SS, Mexico City 04530, Mexico; (O.A.P.-G.); (S.J.-M.); (V.V.-R.)
| | - Alfonso Méndez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB-Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Juan Manuel Mejía-Araguré
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico;
| | - Oscar Orihuela-Rodríguez
- Departamento Clínico de Cardiología-UMAE Hospital de Especialidades, CMN SXXI IMSS, Mexico City 06720, Mexico;
| | - Cleto Álvarez-Aguilar
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacán 58020, Mexico;
| | - Abraham Majluf-Cruz
- Unidad de Investigación Médica en Hemostasia, Trombosis y Aterogénesis, Hospital General Regional 1, IMSS, Mexico City 03103, Mexico;
| | - Dante Amato
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Clínico y Banco de Sangre, Instituto Nacional de Neurología y Neurocirugía, SS, Mexico City 14269, Mexico;
| | - Silvia Melchor-Doncel de la Torre
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez-Secretaría de Salud (SS), Mexico City 06720, Mexico;
| | - Ramón Paniagua-Sierra
- Unidad de Investigación Médica en Enfermedades Nefrológicas, UMAE Hospital de Especialidades, Centro Médico Nacional (CMN) Siglo XXI (SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City 06720, Mexico;
| | - José Arellano-Galindo
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez-Secretaría de Salud (SS), Mexico City 06720, Mexico;
| |
Collapse
|
119
|
Matesanz-Sánchez R, Peitzsch M, Lange I, Mircetic J, Seifert M, Cordes N, Vehlow A. A novel role of exostosin glycosyltransferase 2 (EXT2) in glioblastoma cell metabolism, radiosensitivity and ferroptosis. Cell Death Differ 2025:10.1038/s41418-025-01503-w. [PMID: 40234611 DOI: 10.1038/s41418-025-01503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/25/2025] [Accepted: 03/24/2025] [Indexed: 04/17/2025] Open
Abstract
Glioblastoma (GBM) employs various strategies to resist therapy, resulting in poor patient survival. A key aspect of its survival mechanisms lies in metabolic regulation, maintaining rapid growth and evading cell death. Recent studies revealed the connection between therapy resistance and ferroptosis, a lipid peroxidation-dependent cell death mechanism triggered by metabolic dysfunction. Our aim was to identify novel regulators of therapy resistance in GBM cells. We conducted a comprehensive analysis combining RNA-sequencing data from a panel of human GBM cell models and TCGA GBM patient datasets. We focused on the top-12 differentially expressed gene candidates associated with poor survival in GBM patients and performed an RNA interference-mediated screen to uncover the radiochemosensitizing potential of these molecules and their impact on metabolic activity, DNA damage, autophagy, and apoptosis. We identified exostosin glycosyltransferase 2 (EXT2), an enzyme previously described in heparan sulfate biosynthesis, as the most promising candidate. EXT2 depletion elicited reduced cell viability and proliferation as well as radiochemosensitization in various GBM cell models. Mechanistically, we explored EXT2 function by conducting untargeted and targeted metabolomics and detected that EXT2-depleted GBM cells exhibit a differential abundance of metabolites belonging to S-adenosylmethionine (SAM) metabolism. Considering these metabolic changes, we determined lipid peroxidation and found that the diminished antioxidant capacity resulting from decreased levels of metabolites in the transsulfuration pathway induces ferroptosis. Moreover, modifications of specific SAM and transsulfuration metabolism associated enzymes revealed a prosurvival and ferroptosis-reducing function when EXT2 is depleted. Collectively, our results uncover a novel role of EXT2 in GBM cell survival and response to X-ray radiation, which is controlled by modulation of ferroptosis. These findings expand our understanding of how GBM cells respond to radio(chemo)therapy and may contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Rocío Matesanz-Sánchez
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität, Dresden, 01307, Germany
| | - Inga Lange
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, 01328, Germany
| | - Jovan Mircetic
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, 69192, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany.
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, 01328, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, 69192, Germany.
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany.
| | - Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany.
| |
Collapse
|
120
|
Pan J, Li J, Zhang Q, Huang M, Wang Y, You M. Bezafibrate-driven mitochondrial targeting enhances antitumor immunity and prevents lung cancer via CD8+ T cell infiltration and MDSC reduction. Front Immunol 2025; 16:1539808. [PMID: 40303399 PMCID: PMC12037589 DOI: 10.3389/fimmu.2025.1539808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Bezafibrate (BEZ) is a drug used to treat hypertriglyceridemia and its long-term use has been associated with reduced risk of cancer in patients with coronary artery disease. Recent studies uncovered that BEZ is a potent modulator of mitochondrial biogenesis through activation of PGC-1α/PPAR complexes, resulting in modulation of lipid metabolism and fatty acid oxidation. Mitochondria impact virtually all processes linked to oncogenesis, and disruption of normal mitochondrial bioenergetics and oxidative phosphorylation (OXPHOS) occurs early during oncogenesis to change the energy metabolism of cancer cells as well as various cells in the tumor microenvironment (TME). Therefore, we synthesized a BEZ analog (Mito-BEZ) that preferentially localizes to mitochondria, thereby enabling lower doses of Mito-BEZ than BEZ to achieve greater efficacy. Our studies demonstrate that Mito-BEZ is significantly more potent than BEZ at inhibiting LUAD cell growth in vitro and inhibiting lung tumorigenesis in preclinical mouse models. Mito-BEZ was also >200-fold more potent than BEZ at inhibiting both complex I and III in LUAD cells. Furthermore, Mito-BEZ suppresses oxidative metabolism in cancer cells while markedly upregulating mitochondrial function in effector CD8+ T cells, resulting in activation of a potent T cell immune response in the TME. Our results show that Mito-BEZ, with its favorable toxicity profile, exhibited a striking inhibitory effect on lung cancer progression and metastasis by targeting a fundamental difference in metabolic plasticity between cancer cells and effector T cells in the TME.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming You
- Center for Cancer Prevention, Dr. Mary and Ron Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
121
|
Dingding H, Muhammad S, Manzoor I, Ghaffar SA, Alodaini HA, Moubayed NMS, Hatamleh AA, Songxiao X. Subtractive proteomics and reverse-vaccinology approaches for novel drug targets and designing a chimeric vaccine against Ruminococcus gnavus strain RJX1120. Front Immunol 2025; 16:1555741. [PMID: 40297578 PMCID: PMC12034673 DOI: 10.3389/fimmu.2025.1555741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Mediterraneibacter gnavus, also known as Ruminococcus gnavus, is a Gram-positive anaerobic bacterium that resides in the human gut microbiota. Notably, this bacterium plays dual roles in health and disease. On one side it supports nutrient metabolism essential for bodily functions and on the other it contributes to the development of Inflammatory Bowel Disease (IBD) and other gastrointestinal disorders. R. gnavus strain RJX1120 is an encapsulated strain and has been linked to develop IBD. Despite the advances made on its role in gut homeostasis, limited information is available on strain-specific virulence factors, metabolic pathways, and regulatory mechanisms. The study of such aspects is crucial to make microbiota-targeted therapy and understand its implications in host health. A multi-epitope vaccine against R. gnavus strain RJX1120 was designed using reverse vaccinology-based subtractive proteomics approach. Among the 3,219 proteins identified in the R. gnavus strain RJX1120, two critical virulent and antigenic proteins, a Single-stranded DNA-binding protein SSB (A0A2N5PT08) and Cell division ATP-binding protein FtsE (A0A2N5NK05) were screened and identified as potential targets. The predicted B-cell and T-cell epitopes from these proteins were screened for essential immunological properties such as antigenicity, allergenicity, solubility, MHC binding affinity, and toxicity. Epitopes chosen were cross-linked using suitable spacers and an adjuvant to develop a multi-epitope vaccine. Structural refinement of the construct revealed that 95.7% of the amino acid residues were located in favored regions, indicating a high-quality structural model. Molecular docking analysis demonstrated a robust interaction between the vaccine construct and the human Toll-like receptor 4 (TLR4), with a binding energy of -1277.0 kcal/mol. The results of molecular dynamics simulations further confirmed the stability of the vaccine-receptor complex under physiological conditions. In silico cloning of the vaccine construct yielded a GC content of 48% and a Codon Adaptation Index (CAI) value of 1.0, indicating optimal expression in the host system. These results indicate the possibility of the designed vaccine construct as a candidate for the prevention of R. gnavus-associated diseases. However, experimental validation is required to confirm its immunogenicity and protective efficacy.
Collapse
Affiliation(s)
- Hou Dingding
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Sher Muhammad
- Faculty of Agriculture and Veterinary Sciences, Superior University Lahore, Lahore, Pakistan
| | - Irfan Manzoor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Sana Abdul Ghaffar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | | | - Nadine MS. Moubayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Xu Songxiao
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
122
|
Matić M, Obradović A, Paunović M, Ognjanović B, Mihailović V, Srećković N, Stanković M. Green-Synthesized Silver Nanoparticles Using Filipendula ulmaria (L.) Maxim. and Salvia verticillata L. Extracts Inhibit Migration and Modulate Redox Homeostasis in Human Breast Cancer Cells via Nrf-2 Signaling Pathway. Antioxidants (Basel) 2025; 14:469. [PMID: 40298802 PMCID: PMC12024124 DOI: 10.3390/antiox14040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Breast cancer is a leading cancer diagnosis for women around the world, with a variable degree of curability. Conventional chemotherapeutic treatments often induce toxicity and damage to healthy tissues, as well as the development of drug resistance, which is why an increasing number of new therapeutic regimens focus on the use of natural products and various modifications of their delivery to target tissues. Silver nanoparticles possess unique physicochemical characteristics, notably their increased surface area, suggesting that they hold significant potential for biomedical applications. This research evaluates the capacity of silver nanoparticles green synthesized with aqueous extracts of Filipendula ulmaria (FUAgNPs) and Salvia verticillata (SVAgNPs) to alter migration and redox homeostasis in the human breast cancer cell line MDA-MB-231. To determine the values of redox homeostasis parameters, the cells were treated with five different concentrations (5, 10, 20, 50, and 100 μg/mL) for 24 h and 72 h, while to test the migratory potential and concentrations of matrix metalloproteinase-9 (MMP-9) and nuclear factor erythroid 2-related factor 2 (Nrf-2), the cells were treated at two concentrations (5 and 50 µg/mL) for 72 h. The obtained results indicate increased production of superoxide anion radicals, malondialdehyde (MDA), and nitrites after the investigated treatment on MDA-MB-231 cells. The treatments induced only a slight elevation in Nrf-2 levels, which correlates with weak de novo synthesis of reduced glutathione (GSH), suggesting that the tested nanoparticles weaken the inherent antioxidative systems of the tested cells. The migration potential of cells was significantly reduced, and MMP-9 concentration was significantly inhibited. Based on the demonstrated antitumor effect, confirmed by the reduced migratory potential of the examined cells and disrupted redox balance, these nanoparticles have potential for additional investigation with the aim of improving the efficacy of antitumor therapy. Also, FUAgNPs and SVAgNPs possess the capacity to be potentially promising novel chemotherapeutic agents against breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Miloš Matić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (M.P.); (B.O.); (M.S.)
| | - Ana Obradović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (M.P.); (B.O.); (M.S.)
| | - Milica Paunović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (M.P.); (B.O.); (M.S.)
| | - Branka Ognjanović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (M.P.); (B.O.); (M.S.)
| | - Vladimir Mihailović
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.S.)
| | - Nikola Srećković
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (V.M.); (N.S.)
| | - Milan Stanković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (M.P.); (B.O.); (M.S.)
| |
Collapse
|
123
|
Agnusdei A, González-García A, Gerin D, Pollastro S, Faretra F, González-Candelas L, Ballester AR. Histone Methyltransferases AcDot1 and AcRmtA Are Involved in Growth Regulation, Secondary Metabolism, and Stress Response in Aspergillus carbonarius. Toxins (Basel) 2025; 17:196. [PMID: 40278694 PMCID: PMC12031602 DOI: 10.3390/toxins17040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Histone post-translational modifications (HPTMs) can affect gene expression by rearranging chromatin structure. Between these, histone methylation is one of the most studied in filamentous fungi, and different conserved domains coding for methyltransferase were found in Aspergillus spp. genomes. In this work, the role of the histone methyltransferases AcDot1 and AcRmtA in the mycotoxigenic fungus Aspergillus carbonarius was investigated, obtaining knockout or overexpression mutants through Agrobacterium tumefaciens-mediated transformation (ATMT). A. carbonarius is responsible for grape-bunch rot, representing the major source of ochratoxin A (OTA) contamination on grapes. In vivo conditions, the deletion of Acdot1 or AcrmtA resulted in upregulation of growth when the isolates were cultivated on a minimal medium. The influence of Acdot1 on the OTA biosynthesis was differently affected by culture conditions. On rich media, an increase in OTA accumulation was observed, while on minimal medium, lower OTA concentrations were reported. The deletion of AcrmtA always resulted in lower OTA accumulation. However, the expression of OTA biosynthesis genes was regulated by both histone methyltransferases. Of the six analyzed OTA genes, three of them showed altered expression in the knockout mutants, and otaB and otaR1 were common between both mutants. Furthermore, both AcDot1 and AcRmtA play a role in oxidative stress response, induced by 1 mM hydrogen peroxide, by modulating growth, conidiation and OTA biosynthesis. Neither the deletion nor the overexpression of the Acdot1 or AcrmtA affected virulence, while both the sporulation and OTA production were negatively affected in vivo by the deletion of AcrmtA.
Collapse
Affiliation(s)
- Angelo Agnusdei
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Giovanni Amendola, 165/A, 70126 Bari, Italy; (A.A.); (S.P.); (F.F.)
| | - Adrián González-García
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (A.G.-G.); (L.G.-C.)
| | - Donato Gerin
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Giovanni Amendola, 165/A, 70126 Bari, Italy; (A.A.); (S.P.); (F.F.)
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Giovanni Amendola, 165/A, 70126 Bari, Italy; (A.A.); (S.P.); (F.F.)
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Giovanni Amendola, 165/A, 70126 Bari, Italy; (A.A.); (S.P.); (F.F.)
| | - Luis González-Candelas
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (A.G.-G.); (L.G.-C.)
| | - Ana-Rosa Ballester
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (A.G.-G.); (L.G.-C.)
| |
Collapse
|
124
|
Murtazina A, Jimenez-Martinez Y, Ruiz Alcala G, Marchal JA, Tarabayeva A, Bitanova E, Rakhimbayev I, McDougall GJ, Bishimbayeva N, Boulaiz H. In Vitro Inhibition of Colon Cancer Stem Cells by Natural Polysaccharides Obtained from Wheat Cell Culture. Polymers (Basel) 2025; 17:1048. [PMID: 40284312 PMCID: PMC12030112 DOI: 10.3390/polym17081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Natural polysaccharides (PSs) have shown inhibitory effects on differentiated cancer cells (DCCs), but their activity against cancer stem cells (CSCs) remains poorly understood. Here, we report that PSs from wheat cell cultures (WCCPSs) inhibit the proliferation of both DCCs and CSCs derived from HCT-116 colorectal cancer cells. Among them, NA and DC fractions showed the strongest anti-CSC activity. NA, rich in xylose, was effective at lower concentrations, while DC, enriched in xylose and galacturonic acid (GalUA), exhibited higher potency, with a lower IC50 and preferential activity against CSCs at higher doses. WCCPSs reduced β-catenin levels, and some fractions also downregulated Ep-CAM, CD44, and c-Myc. Notably, DC increased caspase-3 without inducing cytochrome C and caspase-8 overexpression, suggesting a mechanism promoting CSC differentiation rather than apoptosis. Correlation analysis linked xylose content to reduced c-Myc expression, and GalUA levels to increased caspase-3. These results suggest that WCCPS bioactivity may be related to their monosaccharide composition. Overall, our findings support the potential of wheat-derived PSs as CSC-targeting agents that suppress self-renewal and promote differentiation, offering a promising approach to reduce tumor aggressiveness and recurrence.
Collapse
Affiliation(s)
- Alima Murtazina
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.M.); (A.T.); (E.B.)
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Research Center “Bioscience Technologies”, Almaty 050057, Kazakhstan
| | - Yaiza Jimenez-Martinez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
| | - Gloria Ruiz Alcala
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Anel Tarabayeva
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.M.); (A.T.); (E.B.)
| | - Elmira Bitanova
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.M.); (A.T.); (E.B.)
| | | | - Gordon J. McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Nazira Bishimbayeva
- Research Center “Bioscience Technologies”, Almaty 050057, Kazakhstan
- Research Institute for Problems of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Research Center “Bioscience Technologies”, Almaty 050057, Kazakhstan
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
125
|
Rosic N. Unveiling the Anti-Aging Potential of Marine Natural Bioproducts. Mar Drugs 2025; 23:165. [PMID: 40278286 PMCID: PMC12028505 DOI: 10.3390/md23040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Aging is a natural process resulting in the progressive impairment of multiple functions in the human body, leading to a decline in cellular functionality and the development of aging-related diseases. External stress factors, such as ultraviolet (UV) radiation, pollution, and toxin exposure, increase oxidative stress, damage cellular repair mechanisms, and speed up aging processes. With the rise in the world's aging population, there are enlarged demands for the use of sustainable natural products in food, nutrient supplements and cosmetics that can slow down aging and prolong healthy life and longevity. Algae, including both macroalgae and microalgae, have been recognised as a source of valuable proteins, amino acids, fatty acids, vitamins, and minerals useful for human consumption and medical applications. With increasing demands for nutraceutical and pharmaceutical bioproducts from environmentally friendly resources, the biotechnological industry, over recent decades, has had to provide new, advanced solutions using modern high-throughput omics technologies. The application of proteomics in the area of discoveries of natural products with anti-aging properties has become more popular for wide industry applications. New proteomics profiling provides a better understanding of changes occurring in protein and peptide content, their structure, function and interactions, as well as the regulatory processes and molecular pathways. Mass spectrometry-based proteomics has been used for a wide range of applications including protein identification, characterisation, as well as quantification of proteins within the proteome and sub-proteome. The application of chemical proteomics facilitated the identification of natural products approach and included the synthesis of probes and target fishing, allowing the advanced identification of proteins of interest. This review focuses on marine macro- and microalgal anti-aging compounds and novel proteomics approaches, providing recent experimental evidence of their involvement in anti-aging processes that should facilitate their use in innovative approaches and sustainable biotechnological applications.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia;
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
126
|
Erlitz KS, Prinz AK, Wagner S, Massa J, Dunker C, Höhl M, Griep A, McManus RM, Schelhaas S, Koch O, Junker A. Naphtho[1,2- b][1,4]diazepinedione-Based P2X4 Receptor Antagonists from Structure-Activity Relationship Studies toward PET Tracer Development. J Med Chem 2025; 68:6965-7002. [PMID: 39805099 DOI: 10.1021/acs.jmedchem.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The P2X4 receptor is implicated in various pathological conditions, including neuropathic pain and cancer. This study reports the development of 1,4-naphthodiazepinedione-based P2X4 receptor antagonists aimed at both therapeutic applications and potential use as PET tracers for imaging P2X4 receptor expression in cancer. Structure-activity relationship studies aided by docking studies and molecular dynamics simulations led to a series of compounds with potent P2X4 receptor antagonism, promising in vitro inhibition of interleukin-1β release in THP-1 cells and suitability for radiolabeling with fluorine-18. The most potent compounds were further evaluated for their physicochemical properties, metabolic stability, and in vivo biodistribution using PET imaging in mice. While these antagonists exhibited strong receptor binding and serum stability, rapid in vivo metabolism limited their potential as PET tracers, highlighting the need for further structural optimization. This study advances the understanding of P2X4 receptor antagonism and underscores the challenges in developing effective PET tracers for this target.
Collapse
Affiliation(s)
- Katharina Sophie Erlitz
- European Institute for Molecular Imaging (EIMI), University of Muenster, Roentgenstr. 16, 48149 Muenster, Germany
- Department of Preclinical Imaging and Radiopharmacy, University of Tuebingen, Roentgenweg 1372076Tuebingen, Germany
| | - Ann-Kathrin Prinz
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A148149 Münster, Germany
| | - Joana Massa
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Calvin Dunker
- European Institute for Molecular Imaging (EIMI), University of Muenster, Roentgenstr. 16, 48149 Muenster, Germany
- Department of Preclinical Imaging and Radiopharmacy, University of Tuebingen, Roentgenweg 1372076Tuebingen, Germany
| | - Meike Höhl
- European Institute for Molecular Imaging (EIMI), University of Muenster, Roentgenstr. 16, 48149 Muenster, Germany
- Department of Preclinical Imaging and Radiopharmacy, University of Tuebingen, Roentgenweg 1372076Tuebingen, Germany
| | - Angelika Griep
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University of Muenster, Roentgenstr. 16, 48149 Muenster, Germany
| | - Oliver Koch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI), University of Muenster, Roentgenstr. 16, 48149 Muenster, Germany
- Department of Preclinical Imaging and Radiopharmacy, University of Tuebingen, Roentgenweg 1372076Tuebingen, Germany
| |
Collapse
|
127
|
Kim N, Lukong KE. Treating ER-positive breast cancer: a review of the current FDA-approved SERMs and SERDs and their mechanisms of action. Oncol Rev 2025; 19:1564642. [PMID: 40275985 PMCID: PMC12018393 DOI: 10.3389/or.2025.1564642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Breast cancer is one of the most significant causes of mortality among women and the second most prevalent cancer worldwide. Estrogen receptor (ER)-positive breast cancers are the most common molecular subtype of breast cancer, comprising about 70% of breast carcinoma diagnoses worldwide. Endocrine therapy is the foremost strategy for the treatment of ER-positive breast cancer. In the United States, the Food and Drug Administration (FDA) has approved endocrine therapies for ER-positive breast cancers that include selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators/degraders (SERDs) and aromatase inhibitors (AIs). The approved SERMS, tamoxifen, toremifene and raloxifene, are the gold-standard treatments. The only FDA-approved SERD available for treating ER and hormone-positive breast cancers is fulvestrant, and various generations of AIs, including exemestane, letrozole, and anastrozole, have also received FDA approval. Herein, we review the major FDA-approved SERMs and SERDs for treating ER-positive breast cancer, focusing on their mechanisms of action. We also explore molecular events that contribute to the resistance of these drugs to endocrine therapies and combinational strategies with drugs such as cyclin-dependant kinases 4/6 (CDK4/6) inhibitors in clinical trials to combat endocrine drug resistance.
Collapse
Affiliation(s)
| | - Kiven Erique Lukong
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
128
|
Adnan M, Khan KU, Raza S, Rehman SR, Ahmed M. Letter to Editor: Comments on NLRP3 and Gut-Liver Axis: New Possibility for the Treatment of Alcohol-Associated Liver Disease. J Gastroenterol Hepatol 2025. [PMID: 40204664 DOI: 10.1111/jgh.16979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Affiliation(s)
| | | | - Sohaib Raza
- Sharif Medical and Dental College, Lahore, Pakistan
| | | | | |
Collapse
|
129
|
Khalilian S, Fathi M, Jamshidi S, Madannejad R, Sayad A, Ghafouri-Fard S, Miryounesi M. Spectrum of genetic alterations in patients with peroxisome biogenesis defects in the Iranian population: a case series study. BMC Med Genomics 2025; 18:67. [PMID: 40205409 PMCID: PMC11984031 DOI: 10.1186/s12920-025-02126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Peroxisomal disorders are a group of hereditary metabolic disorders that happen when peroxisomes are defective. Around 80% of individuals affected by peroxisomal disorders are classified within the spectrum of Zellweger syndromes with autosomal recessive inheritance pattern that results from mutations in one of the 13 PEX genes. Clinical exome sequencing plays a vital role in the diagnosis where the symptoms are atypical. In the current study, we used this technique to find the underlying genetic cause in 14 Iranian patients with peroxisomal disorders. PEX1 variants were detected in five patients. PEX2, PEX5, PEX6 and PEX7 variants were detected in three, one, one, and two cases, respectively. Finally, ACOX1 variants were identified in two cases. All cases except two cases were homozygote for the suspected variants in Zellweger syndrome-related genes. Two cases were compound heterozygote for variants in the PEX1 gene. In total, two novel variants were identified, including c.313 C > T (p.Gln105*) and c.961 A > T (p.Ile321Phe) in the PEX1 and ACOX1 genes, respectively. The present research expands the range of genetic variations observed in Iranian individuals diagnosed with various forms of Zellweger spectrum disorders.
Collapse
Affiliation(s)
- Sheyda Khalilian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Jamshidi
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Madannejad
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Miryounesi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
130
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
131
|
Peckham H, Radziszewska A, Sikora J, de Gruijter NM, Restuadi R, Kartawinata M, Martin-Gutierrez L, Robinson GA, Deakin CT, Wedderburn LR, Jury EC, Butler G, Chambers ES, Rosser EC, Ciurtin C. Estrogen influences class-switched memory B cell frequency only in humans with two X chromosomes. J Exp Med 2025; 222:e20241253. [PMID: 40049222 PMCID: PMC11893172 DOI: 10.1084/jem.20241253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 03/12/2025] Open
Abstract
Sex differences in immunity are well-documented, though mechanisms underpinning these differences remain ill-defined. Here, in a human-only ex vivo study, we demonstrate that postpubertal cisgender females have higher levels of CD19+CD27+IgD- class-switched memory B cells compared with age-matched cisgender males. This increase is only observed after puberty and before menopause, suggesting a strong influence for sex hormones. Accordingly, B cells express high levels of estrogen receptor 2 (ESR2), and class-switch-regulating genes are enriched for ESR2-binding sites. In a gender-diverse cohort, blockade of natal estrogen in transgender males (XX karyotype) reduced class-switched memory B cell frequency, while gender-affirming estradiol treatment in transgender females (XY karyotype) did not increase these levels. In postmenopausal cis-females, class-switched memory B cells were increased in those taking hormone replacement therapy (HRT) compared with those who were not. These data demonstrate that sex hormones and chromosomes work in tandem to impact immune responses, with estrogen only influencing the frequency of class-switched memory B cells in individuals with an XX chromosomal background.
Collapse
Affiliation(s)
- Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Justyna Sikora
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Nina M. de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Restuadi Restuadi
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
| | - Melissa Kartawinata
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lucia Martin-Gutierrez
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - George A. Robinson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Claire T. Deakin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
- School of Population Health, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Lucy R. Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Elizabeth C. Jury
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Gary Butler
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
- University College London Hospital, London, UK
| | - Emma S. Chambers
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Elizabeth C. Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
- University College London Hospital, London, UK
| |
Collapse
|
132
|
Zhuravleva E, Lewinska M, O'Rourke CJ, Pea A, Rashid A, Hsing AW, Taranta A, Chang D, Gao YT, Koshiol J, Oliveira RC, Andersen JB. Mutational signatures define immune and Wnt-associated subtypes of ampullary carcinoma. Gut 2025; 74:804-814. [PMID: 39725462 PMCID: PMC12013699 DOI: 10.1136/gutjnl-2024-333368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Ampullary carcinoma (AMPAC) taxonomy is based on morphology and immunohistochemistry. This classification lacks prognostic reliability and unique genetic associations. We applied an approach of integrative genomics characterising patients with AMPAC exploring molecular subtypes that may guide personalised treatments. DESIGN We analysed the mutational landscapes of 170 patients with AMPAC. The discovery included 110 tumour/normal pairs and the validation comprised 60 patients. In a tumour subset, we interrogated the transcriptomes and DNA methylomes. Patients were stratified based on mutational signatures and associated with molecular and clinical features. To evaluate tumour and immune cellularity, 22 tumours were independently assessed histomorphologically and by digital pathology. RESULTS We defined three patient clusters by mutational signatures independent of histomorphology. Cluster 1 (C1) was defined by spontaneous deamination of DNA 5-methylcytosine and defective mismatch repair. C2 and C3 were related to the activity of transcription-coupled nucleotide excision repair but C3 was further defined by the polymerase eta mutational process. C1-2 showed enrichment of Wnt pathway alterations, aberrant DNA methylation profiles, immune cell exclusion and patients with poor prognosis. These features were associated with a hypermutator phenotype caused by C>T alterations at CpGs. C3 patients with improved overall survival were associated with activation of immune-related pathways, immune infiltration and elevated expression of immunoinhibitory checkpoint genes. CONCLUSION Immunogenicity and Wnt pathway associations, emphasised by the mutational signatures, defined patients with prospective sensitivity to either immunotherapy or Wnt pathway inhibitors. This emphasises a novel mutational signature-based AMPAC classification with prognostic potential, suggesting prospective implications for subgroup-specific management of patients with AMPAC.
Collapse
Affiliation(s)
- Ekaterina Zhuravleva
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Monika Lewinska
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Colm J O'Rourke
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Antonio Pea
- University of Glasgow, Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, Glasgow, UK
- University of Verona, Verona, Italy
| | - Asif Rashid
- Department of Pathology, Division of Pathology/Lab Medicine, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - Ann W Hsing
- Stanford Cancer Institute and Stanford Prevention Research Center, Department of Medicine, Stanford School of Medicine, Stanford University, Palo Alto, California, USA
| | - Andrzej Taranta
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Chang
- University of Glasgow, Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, Glasgow, UK
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, Shanghai, China
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, NIH, Rockville, Maryland, USA
| | | | - Jesper B Andersen
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
133
|
Ferrari P, Schiavone ML, Scatena C, Nicolini A. Molecular Mechanisms and Therapeutic Strategies to Overcome Resistance to Endocrine Therapy and CDK4/6 Inhibitors in Advanced ER+/HER2- Breast Cancer. Int J Mol Sci 2025; 26:3438. [PMID: 40244377 PMCID: PMC11989623 DOI: 10.3390/ijms26073438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Approximately 70-80% of breast cancers are estrogen receptor-positive (ER+), with 65% of these cases also being progesterone receptor-positive (ER+PR+). In most cases of ER+ advanced breast cancer, endocrine therapy (ET) serves as the first-line treatment, utilizing various drugs that inhibit ER signaling. These include tamoxifen, a selective estrogen receptor modulator (SERM); fulvestrant, a selective estrogen receptor degrader (SERD); and aromatase inhibitors (AIs), which block estrogen synthesis. However, intrinsic or acquired hormone resistance eventually develops, leading to disease progression. The combination of ET with cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6is) has been shown to significantly increase progression-free survival (PFS) and, in some cases, overall survival (OS). CDK4/6is works by arresting the cell cycle in the G1 phase, preventing DNA synthesis, and enhancing the efficacy of ET. This review highlights the key mechanisms of resistance to ET, whether used alone or in combination with biological agents, as well as emerging therapeutic strategies aimed at overcoming resistance. Addressing ET resistance remains a work in progress, and in the near future, better patient selection for different therapeutic approaches is expected through the identification of more precise biological and genetic markers. In particular, liquid biopsy may provide a real-time portrait of the disease, offering insights into mechanisms driving ET resistance and cancer progression.
Collapse
Affiliation(s)
- Paola Ferrari
- Department of Oncology, Pisa University Hospital, Via Roma 57, 56126 Pisa, Italy; (C.S.); (A.N.)
| | - Maria Luisa Schiavone
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Cristian Scatena
- Department of Oncology, Pisa University Hospital, Via Roma 57, 56126 Pisa, Italy; (C.S.); (A.N.)
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Andrea Nicolini
- Department of Oncology, Pisa University Hospital, Via Roma 57, 56126 Pisa, Italy; (C.S.); (A.N.)
| |
Collapse
|
134
|
Ma X, Lin Y, Zhang L, Huang Z, Zhang Y, Fu X, Li P. The dual missions of FoxO3a in inflammatory diseases: Regulation of antioxidant enzymes and involvement in programmed cell death. Int Immunopharmacol 2025; 151:114369. [PMID: 40031428 DOI: 10.1016/j.intimp.2025.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/05/2025]
Abstract
The transcription factor FoxO3a plays a crucial role in the process of cells adapting to various stress conditions. Multiple post - translational modifications and epigenetic mechanisms work together to precisely regulate the activity of FoxO3a, influencing its subcellular localization, stability, interactions with other proteins, DNA - binding affinity, and transcriptional regulatory capacity. Under different chemical signal stimuli and subcellular environments, the activation of FoxO3a triggered by oxidative stress can initiate diverse transcriptional programs, which are essential for the body to resist oxidative damage. In the development and progression of inflammatory diseases, FoxO3a exerts an important function by regulating the expression levels of antioxidant enzymes and participating in key physiological processes such as programmed cell death. This article comprehensively reviews the structural characteristics, mechanism of action of FoxO3a, as well as its functions in regulating antioxidant enzymes and programmed cell death. The aim is to deeply explore the potential of FoxO3a as a potential therapeutic target for preventing and treating damages such as inflammatory diseases caused by cellular stress.
Collapse
Affiliation(s)
- Xiangli Ma
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Yujie Lin
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Ling Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhenzhen Huang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Yurong Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Peiwu Li
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
135
|
Giannopoulos AJ, Kottaras S, Allanigue B, Coish JM, Ditor DS, Fajardo VA, Klentrou P. A Pilot 24-Week 'Bulk and Cut' Dietary Protocol Combined with Resistance Training Is Feasible and Improves Body Composition and TNF-α Concentrations in Untrained Adult Males. Nutrients 2025; 17:1265. [PMID: 40219022 PMCID: PMC11990763 DOI: 10.3390/nu17071265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: This study piloted a 24-week bodybuilding program combining resistance training (RT) with a dietary bulk-and-cut protocol in middle-aged adult males. Methods: Seven untrained males (33 ± 3.0 years; BMI = 35.0 ± 4.6 kg/m2; body fat = 36 ± 5%) completed a 24-week intervention combining RT with a dietary protocol consisting of 12-week cycles of caloric bulking (0-12 weeks) and cutting (12-24 weeks). The participant retention rate was 64%, while compliance with training was 96.7%, and adherence to dietary cycles was over 93%. To assess the preliminary efficacy of the intervention, venous blood samples and measurements of body composition (BodPod), muscle strength, and VO2max (cycle ergometer) were collected at baseline (week 0) and following the bulking (week 12) and cutting (week 24) cycles. Circulating lipids (triglycerides, total, low-density, and high-density cholesterol), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) were measured in serum. Results: The training led to significant increases in muscle strength, especially in the deadlift (+46%, p < 0.001) and squat (+65%, p < 0.001). Improvements in body composition were characterized by an increase in fat-free mass and a decrease in body fat percentage over the 24-week intervention (+3% and -6%, respectively, p < 0.05). Lipids, CRP, IL-6, and IL-10 did not change significantly, but there was a notable reduction in TNF-α (time effect p = 0.05, pη2 = 0.39), with 15% lower concentrations at week 24 compared to baseline, indicating reduced inflammation. Conclusions: Overall, the pilot intervention achieved high compliance and adherence rates, leading to improvements in body composition and lower resting TNF-α concentrations in a group of middle-aged males with obesity.
Collapse
Affiliation(s)
- Anthony J. Giannopoulos
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada (S.K.); (D.S.D.); (V.A.F.)
| | - Steve Kottaras
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada (S.K.); (D.S.D.); (V.A.F.)
| | | | - Jeremia M. Coish
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - David S. Ditor
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada (S.K.); (D.S.D.); (V.A.F.)
| | - Val A. Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada (S.K.); (D.S.D.); (V.A.F.)
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada (S.K.); (D.S.D.); (V.A.F.)
| |
Collapse
|
136
|
Haddadin L, Sun X. Stem Cells in Cancer: From Mechanisms to Therapeutic Strategies. Cells 2025; 14:538. [PMID: 40214491 PMCID: PMC11988674 DOI: 10.3390/cells14070538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Stem cells have emerged as a pivotal area of research in the field of oncology, offering new insights into the mechanisms of cancer initiation, progression, and resistance to therapy. This review provides a comprehensive overview of the role of stem cells in cancer, focusing on cancer stem cells (CSCs), their characteristics, and their implications for cancer therapy. We discuss the origin and identification of CSCs, their role in tumorigenesis, metastasis, and drug resistance, and the potential therapeutic strategies targeting CSCs. Additionally, we explore the use of normal stem cells in cancer therapy, focusing on their role in tissue regeneration and their use as delivery vehicles for anticancer agents. Finally, we highlight the challenges and future directions in stem cell research in cancer.
Collapse
Affiliation(s)
| | - Xueqin Sun
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
137
|
Dastgheib SA, Bahrami R, Golshan-Tafti M, Danaei M, Azizi S, Shahbazi A, Yeganegi M, Shiri A, Masoudi A, Neamatzadeh H. Decoding bronchopulmonary dysplasia in premature infants through an epigenetic lens. Front Med (Lausanne) 2025; 12:1531169. [PMID: 40248086 PMCID: PMC12003331 DOI: 10.3389/fmed.2025.1531169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 04/19/2025] Open
Abstract
This review provides a comprehensive overview of the evolving insights into the epigenetic mechanisms associated with bronchopulmonary dysplasia (BPD). It specifically highlights the roles of DNA methylation, histone modifications, and RNA regulation in the development of BPD in premature infants. BPD results from complex interactions among genetic factors, environmental exposures, and neonatal stressors. Key findings suggest that intrauterine hypoxia, hyperoxia, and nutrition can lead to epigenetic alterations, affecting gene expression and methylation, which may serve as biomarkers for early BPD detection. RUNX3 is identified as a critical transcription factor influencing lung development and inflammation, while changes in DNA methylation and histone dynamics in cord blood are linked to immune dysregulation associated with BPD. The role of m6A RNA methylation regulators from the IGF2BP family affects mRNA stability and gene expression relevant to BPD. Additionally, specific histones and microRNAs, particularly from the miR-17∼92 cluster, are implicated in pulmonary development and vascular regulation. Long non-coding RNAs (lncRNAs), such as MALAT1, also play a role in gene regulation via competitive endogenous RNA networks, indicating their potential as biomarkers and therapeutic targets. The interplay of these epigenetic mechanisms underscores the need for further research to develop targeted interventions aimed at reducing BPD severity and enhancing health outcomes for at-risk neonates.
Collapse
Affiliation(s)
- Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahsa Danaei
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Azizi
- Shahid Akbarabadi Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Yeganegi
- Department of Obstetrics and Gynecology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Amirmasoud Shiri
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Masoudi
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
138
|
Mitic DD, Milosevic Markovic MS, Jovanovic ID, Mancic DD, Orhan K, Jokanovic VR, Markovic DL. A Biomimetic Approach to Diode Laser Use in Endodontic Treatment of Immature Teeth: Thermal, Structural, and Biological Analysis. Biomimetics (Basel) 2025; 10:216. [PMID: 40277616 PMCID: PMC12025333 DOI: 10.3390/biomimetics10040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
The root walls of immature permanent teeth are often weak, thin, and short, making regenerative endodontic treatment (RET) necessary. The goal of RET is to create a favorable environment for further root development. A biomimetic approach is essential for thorough disinfection, followed by the preservation and potential stimulation of stem cells from surrounding tissue to enable root regeneration and continued development. The objective of this study was to assess temperature changes on the external root surface, structural alterations in the internal root walls following irradiation with a 940 nm diode laser, and the biocompatibility of stem cells from the apical papilla (SCAPs). Irradiation was performed with varying output powers (0.5 W, 1 W, 1.5 W, and 2 W) in continuous mode for 5 s over four consecutive cycles. Thermographic measurements during irradiation, the micro-CT analysis of root samples, and mitochondrial activity of SCAPs were evaluated. The heating effect correlated directly with a higher output power and thinner root walls. A 1 W output power was found to be safe for immature teeth, particularly in the apical third of the root, while 1.5 W could be safely used for mature mandibular incisors. Diode laser irradiation at 1 W and 1.5 W significantly stimulated SCAPs' mitochondrial activity within 24 h post-irradiation, indicating a potential photobiostimulatory effect. However, no significant changes were observed at lower (0.5 W) and higher (2 W) output powers. The area of open tubular space inside the root canal was significantly reduced after irradiation, regardless of the applied power. Additionally, irradiation contributed to the demineralization of the dentin on the inner root walls. Future studies should explore the impact of irrigants used between irradiation cycles, the potential benefits of conical laser tips for more even energy distribution, and a thorough analysis of how disinfection protocols affect both the dentin structure and stem cell viability.
Collapse
Affiliation(s)
- Dijana D. Mitic
- School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.S.M.M.); (D.L.M.)
| | | | - Igor D. Jovanovic
- Faculty of Electronic Engineering, University of Nis, 18000 Nis, Serbia; (I.D.J.); (D.D.M.)
| | - Dragan D. Mancic
- Faculty of Electronic Engineering, University of Nis, 18000 Nis, Serbia; (I.D.J.); (D.D.M.)
| | - Kaan Orhan
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, 06000 Ankara, Turkey;
| | - Vukoman R. Jokanovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dejan Lj. Markovic
- School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.S.M.M.); (D.L.M.)
| |
Collapse
|
139
|
Mirabedini Z, Mohebali M, Mirjalali H, Hajjaran H, Goudarzi F, Rahimi HM. The expression profile of inflammatory microRNAs in Leishmania major infected human macrophages; mining the effects of Leishmania RNA virus. BMC Microbiol 2025; 25:187. [PMID: 40169974 PMCID: PMC11963528 DOI: 10.1186/s12866-025-03901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/18/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Leishmaniasis is a disease caused by the Leishmania parasite. Recent studies suggest a critical role for double-stranded RNA virus (LRV) in the disease outcome. MicroRNAs (miRs) are small, non-coding RNA molecules that may also contribute to the outcome of infection and the pattern of disease. This study aimed to investigate the influence of L. major infected with LRV2 + on the expression profile of microRNAs compared to LRV2-. METHODS Samples were collected from cutaneous leishmaniasis (CL) patients in a leishmaniasis-endemic area of Iran. Leishmania species were determined using PCR (kDNA gene), and the presence of LRV2 was identified with semi-nested PCR (RdRp gene). The expression of miRs (miR-155, miR-146b, and miR-133a) was determined through quantitative real-time PCR analysis in human monocytes cell line (THP-1) infected with both LRV2 + and LRV2- isolates of L. major during 0, 12, 24, and 36 h post-co-infection. RESULTS The expression of miR-155 showed a significant decrease in the LRV2 + isolate compared to LRV2- at zero hours, but exhibited upregulation at 12, 24, and 36 h post-infection for both LRV2 + and LRV2- isolates compared to the control group. The expression of miR-146b was upregulated in both LRV2 + and LRV2- isolates compared to the control group at zero, 24, and 36 h post-infection. Conversely, miR-133a showed significant increases at zero and 12 h in both LRV2 + and LRV2- isolates compared to the control group, but it was downregulated in LRV2 + at 24 and 36 h compared to LRV2-. CONCLUSION In this study, significant differences were observed in the expression profiles of miR-155, miR-146b, and miR-133a about the presence of LRV2. Our data suggest a potential determinative role for these miRs in the pathogenesis of CL.
Collapse
Affiliation(s)
- Zahra Mirabedini
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Goudarzi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
140
|
Shende S, Rathored J, Budhbaware T. Role of metabolic transformation in cancer immunotherapy resistance: molecular mechanisms and therapeutic implications. Discov Oncol 2025; 16:453. [PMID: 40175681 PMCID: PMC11965038 DOI: 10.1007/s12672-025-02238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Immunotherapy in the treatment of cancer, with immune inhibitors helps in many cancer types. Many patients still encounter resistance to these treatments, though. This resistance is mediated by metabolic changes in the tumour microenvironment and cancer cells. The development of novel treatments to overcome resistance and boost immunotherapy's effectiveness depends on these metabolic changes. OBJECTIVE This review concentrates on the molecular mechanisms through which metabolic transformation contributes to cancer immunotherapy resistance. Additionally, research therapeutic approaches that target metabolic pathways to enhance immunotherapy for resistance. METHODS We used databases available on PubMed, Scopus, and Web of Science to perform a thorough review of peer-reviewed literature. focusing on the tumor microenvironment, immunotherapy resistance mechanisms, and cancer metabolism. The study of metabolic pathways covers oxidative phosphorylation, glycolysis, lipid metabolism, and amino acid metabolism. RESULTS An immunosuppressive tumour microenvironment is produced by metabolic changes in cancer cells, such as dysregulated lipid metabolism, enhanced glutaminolysis, and increased glycolysis (Warburg effect). Myeloid-derived suppressor cells and regulatory T cells are promoted, immune responses are suppressed, and T cell activity is impaired when lactate and other metabolites build up. changes in the metabolism of amino acids in the pathways for arginine and tryptophan, which are nutrients crucial for immune function. By enhancing their function in the tumour microenvironment, these metabolic alterations aid in resistance to immune checkpoint inhibitors. CONCLUSION Metabolic change plays a key role in cancer immunotherapy resistance. Gaining knowledge of metabolic processes can help develop efficient treatments that improve immunotherapy's effectiveness. In order to determine the best targets for therapeutic intervention, future studies should concentrate on patient-specific metabolic profiling.
Collapse
Affiliation(s)
- Sandesh Shende
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| | - Jaishriram Rathored
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India.
| | - Tanushree Budhbaware
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| |
Collapse
|
141
|
Reghukumar SK, Inkielewicz-Stepniak I. Tumour cell-induced platelet aggregation in breast cancer: Scope of metal nanoparticles. Biochim Biophys Acta Rev Cancer 2025; 1880:189276. [PMID: 39921012 DOI: 10.1016/j.bbcan.2025.189276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Breast cancer is a major cause of cancer-related mortality among the female population worldwide. Among the various factors promoting breast cancer metastasis, the role of cancer-cell platelet interactions leading to tumour cell-induced platelet aggregation (TCIPA) has garnered significant attention recently. Our state-of-the-art literature review verifies the implications of metal nanoparticles in breast cancer research and TCIPA-specific breast cancer metastasis. We have evaluated in vitro and in vivo research data as well as clinical investigations within the scope of this topic presented in the last ten years. Nanoparticle-based drug delivery platforms in cancer therapy can combat the growing concerns of multi-drug resistance, the alarming rates of chemotherapy-induced toxicities and cancer progression. Metal nanoparticles conjugated with chemotherapeutics can outperform their free drug counterparts in achieving targeted drug delivery and desired drug concentration inside the tumour tissue with minimal toxic effects. Existing data highlights the potential of metal nanoparticles as a promising tool for targeting the platelet-specific interactions associated with breast cancer metastasis including TCIPA.
Collapse
|
142
|
Billington CJ, Rayannavar A, Tryon R, Kaye T, Gupta A, Lund TC, Lteif A, Adriatico KL, Orchard PJ, Miller BS, Pillai NR. Prognostication and Biomarker Potential of C26:0 Lysophosphatidylcholine in Adrenoleukodystrophy. JAMA Pediatr 2025; 179:465-467. [PMID: 39928311 PMCID: PMC11811846 DOI: 10.1001/jamapediatrics.2024.6774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/03/2024] [Indexed: 02/11/2025]
Abstract
This cohort study conducted among Minnesota children diagnosed with adrenoleukodystrophy through newborn screening examines correlation of C26:0 lysophosphatidylcholine (C26LPC) with clinical phenotype over 5 years and recommends adjusting early childhood surveillance regimens in children with lower C26LPC levels.
Collapse
Affiliation(s)
- Charles J. Billington
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis
| | - Arpana Rayannavar
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis
| | - Rebecca Tryon
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis
| | - Tory Kaye
- Minnesota Department of Health, St Paul
| | - Ashish Gupta
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis
| | - Troy C. Lund
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis
| | - Aida Lteif
- Division of Pediatric Endocrinology and Metabolism, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Katherine L. Adriatico
- Department of Genetics and Genomic Medicine, Children’s Minnesota, Minneapolis, Minnesota
| | - Paul J. Orchard
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis
| | - Bradley S. Miller
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis
| | - Nishitha R. Pillai
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis
| |
Collapse
|
143
|
Lee WS, Choi SJ, Shin YH, Kim JK. Mesenchymal Stem Cells Expressing Baculovirus-Engineered Brain-Derived Neurotrophic Factor Improve Peripheral Nerve Regeneration in a Rat Model. Tissue Eng Regen Med 2025; 22:351-362. [PMID: 39962026 PMCID: PMC11926320 DOI: 10.1007/s13770-025-00703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUND Peripheral nerve injuries are a major clinical challenge because of their complex nature and limited regenerative capacity. This study aimed to improve peripheral nerve regeneration using Wharton's jelly mesenchymal stem cells (WJ-MSCs) engineered to express brain-derived neurotrophic factor (BDNF) via a baculovirus (BV) vector. The cells were evaluated for efficacy when seeded into acellular nerve grafts (ANGs) in a rat sciatic nerve defect model. METHODS WJ-MSCs were transfected with recombinant BV to upregulate BDNF expression. Conditioned medium (CM) from these cells was utilized to treat Schwann cells (SCs), and the impact on myelination-related markers, including KROX20, myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and S100 calcium-binding protein β (S100β), and the activation of the mammalian target of rapamycin (mTOR)/ protein kinase B (AKT)/p38 signaling pathways were evaluated. In vivo, BDNF-expressing WJ-MSCs were seeded into ANGs and implanted into a rat sciatic nerve defect model. Functional recovery was evaluated via video gait analysis, isometric tetanic force measurement, muscle weight evaluation, ankle contracture angle measurement, and histological analysis using toluidine blue staining. RESULTS BDNF expression was significantly upregulated in WJ-MSCs post-transfection. BDNF-MSC CM substantially promoted the expression of myelination markers in SCs and activated the mTOR/AKT/p38 signaling pathway. In the rat model, seeding of ANGs with BDNF-expressing WJ-MSCs resulted in improved functional outcomes, including enhanced toe-off angles, increased isometric tetanic force, greater muscle weight recovery, and a higher total number of myelinated axons compared with controls. CONCLUSION WJ-MSCs engineered to express BDNF significantly enhanced peripheral nerve regeneration when utilized in conjunction with ANGs. These findings indicate BDNF-expressing WJ-MSCs are a promising therapeutic approach for treating peripheral nerve injuries.
Collapse
Affiliation(s)
- Won Sun Lee
- Department of Orthopedic Surgery Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Soon Jin Choi
- Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Young Ho Shin
- Department of Orthopedic Surgery Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jae Kwang Kim
- Department of Orthopedic Surgery Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
144
|
Tomar MS, Mohit, Kumar A, Shrivastava A. Circadian immunometabolism: A future insight for targeted therapy in cancer. Sleep Med Rev 2025; 80:102031. [PMID: 39603026 DOI: 10.1016/j.smrv.2024.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Circadian rhythms send messages to regulate the sleep-wake cycle in living beings, which, regulate various biological activities. It is well known that altered sleep-wake cycles affect host metabolism and significantly deregulate the host immunity. The dysregulation of circadian-related genes is critical for various malignancies. One of the hallmarks of cancer is altered metabolism, the effects of which spill into surrounding microenvironments. Here, we review the emerging literature linking the circadian immunometabolic axis to cancer. Small metabolites are the products of various metabolic pathways, that are usually perturbed in cancer. Genes that regulate circadian rhythms also regulate host metabolism and control metabolite content in the tumor microenvironment. Immune cell infiltration into the tumor site is critical to perform anticancer functions, and altered metabolite content affects their trafficking to the tumor site. A compromised immune response in the tumor microenvironment aids cancer cell proliferation and immune evasion, resulting in metastases. The role of circadian rhythms in these processes is largely overlooked and demands renewed attention in the search for targets against cancer growth and spread. The precision medicine approach requires targeting the circadian immune metabolism in cancer.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Mohit
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India; Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India.
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
145
|
Clouser PR, Riggs CL, Romney ALT, Podrabsky JE. Diapause and Anoxia-Induced Quiescence Are Unique States in Embryos of the Annual Killifish, Austrofundulus limnaeus. Biomolecules 2025; 15:515. [PMID: 40305273 PMCID: PMC12024583 DOI: 10.3390/biom15040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025] Open
Abstract
Diapause is a state of developmental and metabolic dormancy that precedes exposure to environmental stresses. Yet, diapausing embryos are typically stress-tolerant. Evidence suggests that diapausing embryos "prepare" for stress as part of a gene expression program as they enter dormancy. Here, we investigate if diapause II embryos of the annual killifish Austrofundulus limnaeus, which can survive for hundreds of days of anoxia, can mount a transcriptomic response to anoxic insult. Bulk RNAseq was used to characterize the transcriptomes of diapause II embryos exposed to normoxia, 4 h and 24 h anoxia, and 2 h and 24 h normoxic recovery from anoxia. Differential expression and gene ontology analyses were used to probe for pathways that may mitigate survival. Transcriptional factor analysis was used to predict potential mediators of this response. Diapausing embryos exhibited a robust transcriptomic response to anoxia and recovery that returns to near baseline conditions after 24 h. Anoxia induced an upregulation of genes involved in the integrated stress response, lipid metabolism, p38mapk kinase signaling, and apoptosis. Developmental and mitochondrial genes decreased. We conclude that diapause II embryos mount a robust transcriptomic stress response when faced with anoxic insult. This response is consistent with mediating expected challenges to cellular homeostasis in anoxia.
Collapse
Affiliation(s)
- Patrick R. Clouser
- Department of Biology, Center for Life in Extreme Environments, Portland State University, P.O. Box 751, Portland, OR 97201, USA;
| | - Claire L. Riggs
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Amie L. T. Romney
- Department of Biology, Center for Life in Extreme Environments, Portland State University, P.O. Box 751, Portland, OR 97201, USA;
| | - Jason E. Podrabsky
- Department of Biology, Center for Life in Extreme Environments, Portland State University, P.O. Box 751, Portland, OR 97201, USA;
| |
Collapse
|
146
|
Zhang H, Cao Y, Jiao L, Wan J. Apigenin Inhibits Cell Ferroptosis by Activating the PI3K/Akt Pathway and Alleviates Renal Injury Caused by Hypertension. Dose Response 2025; 23:15593258251335814. [PMID: 40416644 PMCID: PMC12103689 DOI: 10.1177/15593258251335814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 05/27/2025] Open
Abstract
Objectives: We aimed to explore the protective role of apigenin (API) and its underlying mechanisms in angiotensin II (Ang II)-induced hypertensive renal injury using both in vivo and in vitro models. Methods: In this study, we developed an Ang II-induced hypertensive renal injury mouse model and a recombinant IFN-γ-triggered murine podocyte clone 5 (MPC5) model in vitro. Results: API treatment reduced serum creatinine (Scr), blood urea nitrogen (BUN), and serum cystatin C (Cys-C) levels in Ang II-infused mice (all, P < .001). API reduced renal fibrosis and the expression of related molecules, including collagen I, collagen IV, fibronectin, transforming growth factor beta 1 (TGF-β1), and α-smooth muscle actin (α-SMA) (all, P < .001). The p-P13 K and p-Akt protein expression levels were improved by API treatment. API decreased the apoptotic rate, malondialdehyde (MDA) content, and mitochondrial ferrous iron, while increasing superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), which were reversed by treatment with the PI3K/Akt pathway inhibitor LY294002 (all, P < .001). In addition, API treatment reduced the expression of glutathione peroxidase 4 (GPX4) while enhancing SLC7A11 and ACSL4 expression, which was reversed by LY294002 treatment (all, P < .001). Conclusion: Our experimental data suggest that API inhibits cell ferroptosis by activating the PI3K/Akt pathway and alleviates renal injury caused by hypertension.
Collapse
Affiliation(s)
- Haina Zhang
- Department of General Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Yanhua Cao
- Department of General Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Liting Jiao
- Department of General Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Jianwei Wan
- Department of Pharmacy, Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, Shanghai, People’s Republic of China
| |
Collapse
|
147
|
Ghisalberti CA, Tezze C. Assessing the Noninferiority of the Spermidine Hyaluronate Complex Relative to 17β-Estradiol Treatment in the Ovariectomized Murine Model of Vulvovaginal Atrophy. J Menopausal Med 2025; 31:35-44. [PMID: 40347164 PMCID: PMC12070118 DOI: 10.6118/jmm.24022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/20/2024] [Accepted: 12/22/2024] [Indexed: 05/12/2025] Open
Abstract
OBJECTIVES Vulvovaginal atrophy (VVA) presents significant challenges in postmenopausal women. VVA is typically managed either with hormonal-estrogenic therapy or nonpharmacologically with hyaluronic acid (HA) treatments. This study has investigated an advanced formulation, Ubigel Donna™, consisting of an spermidine hyaluronate (Spd-HA) complex formed by combining spermidine and HA. Initial clinical trials have demonstrated promising outcomes for this formulation. METHODS Local administrations of Spd-HA gel, HA gel, and 17β-estradiol (E2) gel were evaluated under a pulsatile regimen in ovariectomized Wistar female rats for assessing therapeutic efficacy. RESULTS While E2 treatment demonstrated robust tissue revitalization through restored endometrial thickness and estrus-like vaginal epithelia, the HA gel yielded contradicting atrophic conditions (metestrus). The Spd-HA gel demonstrated an intermediate mucosal status with enhanced differentiation. All three treatments demonstrated similar regulation of the vaginal pH. CONCLUSIONS This study reaffirmed the efficacy of the estrogen replacement therapy. More importantly, the Spd-HA approach can be considered as a promising alternative for patients unable to use hormonal treatments. Thus, Ubigel Donna™ can be considered as an enhanced nonpharmacological solution for the widespread burden of postmenopausal VVA.
Collapse
Affiliation(s)
- Carlo Angelo Ghisalberti
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Research Department, Tixupharma Srl, Milan, Italy.
| | - Caterina Tezze
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Research Department, Tixupharma Srl, Milan, Italy.
| |
Collapse
|
148
|
Salmazo MIDBF, Alonso JCC, de Arruda Camargo GC, de Oliveira G, da Silva Santos A, Ávila M, Roberto IM, de Freitas LLL, Bottene MC, Lestingi JFP, Caria PHF, Durán N, Kobarg J, Fávaro WJ. Clinical and immunohistochemical effects of OncoTherad (MRB-CFI-1) nanoimmunotherapy on SERBP1, HABP4, CD44 and Ki-67 in BCG-unresponsive non-muscle invasive bladder cancer. Tissue Cell 2025; 93:102783. [PMID: 39938427 DOI: 10.1016/j.tice.2025.102783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Non-muscle-invasive bladder cancer (NMIBC) is a malignancy with a high recurrence and progression rate, particularly in patients who fail to respond to standard Bacillus Calmette-Guérin (BCG) therapy. OncoTherad (MRB-CFI-1) nanoimmunotherapy has emerged as a promising therapeutic option, with potential to modulate immune responses and inhibit tumor progression. This study evaluated the clinical efficacy of OncoTherad (MRB-CFI-1) nanoimmunotherapy in patients with BCG-unresponsive NMIBC and investigated correlations between therapeutic outcomes and histopathological and molecular findings. In this retrospective cross-sectional study, 20 patients with BCG-unresponsive NMIBC were treated with OncoTherad (MRB-CFI-1) across two clinical centers. Bladder tissue samples were collected before and after treatment, and immunohistochemical analyses were performed to assess the expression of SERBP1, HABP4, CD44, and Ki-67. Primary endpoints included pathological complete response (pCR), recurrence-free survival (RFS), and duration of response (DoR), which were analyzed in relation to immunohistochemical biomarker findings. Our results demonstrated that high Ki-67 proliferative index and elevated immunoreactivity for CD44 and SERBP1 were associated with shorter RFS. Treatment with OncoTherad (MRB-CFI-1) significantly reduced (p < 0.05) the immunoreactivity of SERBP1 and CD44, which was accompanied by a marked decrease in Ki-67 proliferative index, indicating effective suppression of tumor activity. Conversely, a significant increase (p < 0.05) in HABP4 immunoreactivity was observed, suggesting a protective role against NMIBC recurrence and progression. A pCR was achieved in 65 % of patients, with a median RFS of 21.1 months and a median DoR of 15.7 months, underscoring the clinical efficacy of OncoTherad (MRB-CFI-1). These findings suggest that OncoTherad (MRB-CFI-1) nanoimmunotherapy offers a novel and effective treatment strategy for patients with BCG-unresponsive NMIBC, providing a promising alternative to radical cystectomy and significantly improving patient outcomes.
Collapse
Affiliation(s)
- Maria Izabel de Barros Frazão Salmazo
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - João Carlos Cardoso Alonso
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil; Paulínia Municipal Hospital, Paulínia City, São Paulo State, Brazil
| | - Gabriela Cardoso de Arruda Camargo
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Gabriela de Oliveira
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - André da Silva Santos
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Monaliza Ávila
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Isadora Manzato Roberto
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Leandro Luiz Lopes de Freitas
- Pathology Department, Medical School, Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | | | - Jean Felipe Prodocimo Lestingi
- São Vicente de Paulo Charity Hospital, Jundiaí City, São Paulo State, Brazil; Division of Urology, University of Sao Paulo Medical School, São Paulo City, São Paulo State, Brazil
| | - Paulo Henrique Ferreira Caria
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Jörg Kobarg
- Laboratory of Signal Mechanisms, School of Pharmaceutical Sciences (FCF), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Wagner José Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil.
| |
Collapse
|
149
|
Bindu B, Manikandan A, Jeevitha S, Kunju JJ, Vijayalakshmi S. Imidazolidine-Based Aspartate Inhibitors for Candida Infections. Drug Dev Res 2025; 86:e70074. [PMID: 40159997 DOI: 10.1002/ddr.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
The fungal infection gradually poses a life threat to mankind, candidiasis caused by Candida sp. is one among them. We describe the aspartate protease inhibition potentials of 12 sulfonyl-containing imidazolidines (5a-l) anti-candidal agents. Candida Albicans secretes aspartic proteases (Saps), one of its most important virulent agents. These hydrolytic enzymes are critical for both fungal physiological processes and host-fungus interactions. Compounds 5a-l were examined for their fungal aspartate protease inhibition apart from their anti-candida activity. These findings were equipped and validated in silico using molecular docking and in vitro enzyme inhibition assays. The study found that imidazolidine derivatives inhibited aspartic protease and exhibited anti-candida action. Conclusively, imidazolidines 5g, 5h, and 5j were perceived as the most potent anti-candida compounds and are presently being evaluated for their preclinical studies.
Collapse
Affiliation(s)
- B Bindu
- Department of Chemistry, Government Arts College, Coimbatore, India
| | - A Manikandan
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College and Hospital, Chennai, India
| | - S Jeevitha
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College and Hospital, Chennai, India
| | - Joe Jacob Kunju
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College and Hospital, Chennai, India
| | - S Vijayalakshmi
- Department of Chemistry, Government Arts College, Coimbatore, India
| |
Collapse
|
150
|
Laowtammathron C, Chingsuwanrote P, Srisook P, Klaihmon P, Meaunpim P, Lorthongpanich C, Kheolamai P, Issaragrisil S. The novel combination of small-molecule inhibitors increases the survival and colony formation capacity of human induced pluripotent stem cells after single-cell dissociation. Sci Prog 2025; 108:368504251330956. [PMID: 40356532 PMCID: PMC12075979 DOI: 10.1177/00368504251330956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
ObjectivesHuman induced pluripotent stem cells (hiPSCs) hold significant promise in regenerative medicine and drug discovery. However, single-cell dissociation, essential for genetic modification and clonal selection, often reduces hiPSC viability and colony formation. While various methods, including small molecules and feeder cells, have been developed to address this, their outcomes remain inconsistent. This study aims to develop more efficient methods to enhance hiPSC survival post-dissociation using a novel combination of well-characterized small-molecule inhibitors.MethodsHuman induced pluripotent stem cells were pretreated with Rho-associated protein kinase inhibitor (Y27632), SMC4 (PD0325901 + CHIR99021 + thiazovivin + SB431542), or SiM5 (PD0325901 + CHIR99021 + Thiazovivin + SB431542 + Pifithrin-α) for 1 h before subjected to single-cell dissociation by accutase. The dissociated single hiPSCs were then cultured in NutriStem or StemFlex medium supplemented with Y27632, SMC4, or SiM5. Cell viability, pluripotency marker expression, colony formation capacity, and karyotype were then compared between various treatments. The effect of SiM5 treatment on hiPSCs survival and colony formation capacity was also tested under hypoxic conditions and after fluorescence-activated cell sorting.ResultsThe results show that SiM5 treatment significantly increases hiPSCs survival by approximately 2.5 and 25 times compared to those treated with SMC4 and Y27632, respectively. These results were consistently observed across different cell lines and culture media. Furthermore, SiM5 treatment also increased hiPSCs survival and proliferation after single-cell dissociation under hypoxic conditions. The withdrawal of SiM5 after treatment only temporarily hinders hiPSCs cell cycle progression, without impairing their subsequent expansion. Fluorescence-activated cell sorting analysis revealed that SiM5 does not affect the pluripotency of hiPSCs following treatment. Additionally, it was found that SiM5 has no effect on the colony-forming ability or chromosomal stability of hiPSCs.ConclusionSiM5 treatment significantly improves hiPSCs survival and colony formation after single-cell dissociation across various conditions. This approach could enhance the efficiency of genetic manipulation and single-cell cloning, advancing hiPSCs applications in research and clinical settings.
Collapse
Affiliation(s)
- Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pimjai Chingsuwanrote
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pimonwan Srisook
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patcharee Meaunpim
- Flow Cytometry Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- BDMS Center of Excellence for Hematology, Wattanosoth Cancer Hospital, Bangkok, Thailand
| |
Collapse
|