101
|
Wu JN, Jordan MS, Silverman MA, Peterson EJ, Koretzky GA. Differential requirement for adapter proteins Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa and adhesion- and degranulation-promoting adapter protein in FcepsilonRI signaling and mast cell function. THE JOURNAL OF IMMUNOLOGY 2004; 172:6768-74. [PMID: 15153494 DOI: 10.4049/jimmunol.172.11.6768] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adapter molecule Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is essential for FcepsilonRI-mediated signaling, degranulation and IL-6 production in mast cells. To test the structural requirements of SLP-76 in mast cell signaling and function, we have studied the functional responses of murine bone marrow-derived mast cells (BMMCs) expressing mutant forms of SLP-76. We found that the N-terminal tyrosines as well as the central proline-rich region of SLP-76 are required for participation of SLP-76 in FcepsilonRI-mediated signaling and function. The C-terminal SH2 domain of SLP-76 also contributes to optimal function of SLP-76 in mast cells. Another adapter molecule, adhesion- and degranulation-promoting adapter protein (ADAP), is known to bind the SH2 domain of SLP-76, and cell line studies have implicated ADAP in mast cell adhesion and FcepsilonRI-induced degranulation. Surprisingly, we found that mast cells lacking ADAP expression demonstrate no defects in FcepsilonRI-induced adhesion, granule release, or IL-6 production, and that ADAP-deficient mice produce a normal passive systemic anaphylactic response. Thus, failure to bind ADAP does not underlie the functional defects exhibited by SLP-76 SH2 domain mutant-expressing mast cells.
Collapse
Affiliation(s)
- Jennifer N Wu
- Abramson Family Cancer Research Institute and Department of Laboratory Medicine and Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
102
|
Horejsí V, Zhang W, Schraven B. Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat Rev Immunol 2004; 4:603-16. [PMID: 15286727 DOI: 10.1038/nri1414] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Václav Horejsí
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | | | | |
Collapse
|
103
|
Blois JT, Mataraza JM, Mecklenbraüker I, Tarakhovsky A, Chiles TC. B cell receptor-induced cAMP-response element-binding protein activation in B lymphocytes requires novel protein kinase Cdelta. J Biol Chem 2004; 279:30123-32. [PMID: 15138267 DOI: 10.1074/jbc.m402793200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP-response element-binding protein (CREB) is activated by phosphorylation on Ser-133 and plays a key role in the proliferative and survival responses of mature B cells to B cell receptor (BCR) signaling. The signal link between the BCR and CREB activation depends on a phorbol ester (phorbol 12-myristate 13-acetate)-sensitive protein kinase C (PKC) activity and not protein kinase A or calmodulin kinase; however, the identity and role of the PKC(s) activity has not been elucidated. We found the novel PKCdelta (nPKCdelta) activator bistratene A is sufficient to induce CREB phosphorylation in murine splenic B cells. The pharmacological inhibitor Gö6976, which targets conventional PKCs and PKCmu, has no effect on CREB phosphorylation, whereas the nPKCdelta inhibitor rottlerin blocks CREB phosphorylation following BCR cross-linking. Bryostatin 1 selectively prevents nPKCdelta depletion by phorbol 12-myristate 13-acetate when coapplied, coincident with protection of BCR-induced CREB phosphorylation. Ectopic expression of a kinase-inactive nPKCdelta blocks BCR-induced CREB phosphorylation in A20 B cells. In addition, BCR-induced CREB phosphorylation is significantly diminished in nPKCdelta-deficient splenic B cells in comparison with wild type mice. Consistent with the essential role for Bruton's tyrosine kinase and phospholipase Cgamma2 in mediating PKC activation, Bruton's tyrosine kinase- and phospholipase Cgamma2-deficient B cells display defective CREB phosphorylation by the BCR. We also found that p90 RSK directly phosphorylates CREB on Ser-133 following BCR cross-linking and is positioned downstream of nPKCdelta. Taken together, these results suggest a model in which BCR engagement leads to the phosphorylation of CREB via a signaling pathway that requires nPKCdelta and p90 RSK in mature B cells.
Collapse
Affiliation(s)
- Joseph T Blois
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
104
|
Schmidt U, Boucheron N, Unger B, Ellmeier W. The role of Tec family kinases in myeloid cells. Int Arch Allergy Immunol 2004; 134:65-78. [PMID: 15133303 DOI: 10.1159/000078339] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Members of the Tec kinase family (Bmx, Btk, Itk, Rlk and Tec) are primarily expressed in the hematopoietic system and form, after the Src kinase family, the second largest class of non-receptor protein tyrosine kinases. During lymphocyte development and activation Tec kinases have important functions in signaling pathways downstream of the antigen receptors. Tec family kinases are also expressed in cells of the myeloid lineage. However, with the exception of mast cells and platelets, their biological role in the myeloid system is only poorly understood. This review summarizes the current knowledge about the function of Tec family kinases in hematopoietic cells of the myeloid lineage.
Collapse
Affiliation(s)
- Uwe Schmidt
- Medical University of Vienna, Institute of Immunology, Vienna, Austria
| | | | | | | |
Collapse
|
105
|
Fischer AM, Mercer JC, Iyer A, Ragin MJ, August A. Regulation of CXC chemokine receptor 4-mediated migration by the Tec family tyrosine kinase ITK. J Biol Chem 2004; 279:29816-20. [PMID: 15123627 DOI: 10.1074/jbc.m312848200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemokines are critical in controlling lymphocyte traffic and migration. The CXC chemokine CXCL12/SDF-1alpha interacts with its receptor CXCR4 to induce the migration of a number of different cell types. Although an understanding of the physiological functions of this chemokine is emerging, the mechanism by which it regulates T cell migration is still unclear. We show here that the Tec family kinase ITK is activated rapidly following CXCL12/SDF-1alpha stimulation, and this requires Src and phosphatidylinositol 3-kinase activities. ITK regulates the ability of CXCL12/SDF-1alpha to induce T cell migration as overexpression of wild-type ITK-enhanced migration, and T cells lacking ITK exhibit reduced migration as well as adhesion in response to CXCL12/SDF-1alpha. Further analysis suggests that ITK may regulate CXCR4-mediated migration and adhesion by altering the actin cytoskeleton, as ITK null T cells were significantly defective in CXCL12/SDF-1a-mediated actin polymerization. Our data suggest that ITK may regulate the ability of CXCR4 to induce T cell migration.
Collapse
Affiliation(s)
- Angela M Fischer
- Department of Veterinary Science, Pathobiology Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
106
|
Abstract
AbstractThe nuclear factor of activated T cells (NFAT) proteins are a family of transcription factors whose activation is controlled by calcineurin, a Ca2+-dependent phosphatase. Once dephosphorylated, these proteins move to the nucleus where they interact with cofactors to form transcription factor complexes. Inhibition of NFAT proteins by immunosuppressants, such as cyclosporin A (CsA) and FK506, is used clinically to prevent transplant rejection. Although these drugs have revolutionized organ transplantation, their use is associated with severe side effects in other organs in which NFAT proteins are important. One of the signal transducers that controls NFAT activity is Vav1, which is exclusively expressed in the hematopoietic system. Vav1 contains numerous modular domains that enable its function as a guanine exchange factor (GEF) toward RhoGTPases as well as participate in protein-protein interactions. This review focuses on the mechanisms by which Vav1 regulates NFAT through GEF-dependent and -independent cascades, emphasizing the newly assigned role of Vav1 in the regulation of Ca2+ release. Because of its restriction to hematopoietic cell lineages and its importance in the regulation of NFAT, targeting Vav1 and, in particular, its association with other proteins may offer a highly selective means of modifying T-cell behavior, thus allowing the development of more specific immunosuppressive therapies.
Collapse
Affiliation(s)
- Shulamit Katzav
- Hubert H Humphrey Center for Experimental Medicine & Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
107
|
Singer AL, Bunnell SC, Obstfeld AE, Jordan MS, Wu JN, Myung PS, Samelson LE, Koretzky GA. Roles of the Proline-rich Domain in SLP-76 Subcellular Localization and T Cell Function. J Biol Chem 2004; 279:15481-90. [PMID: 14722089 DOI: 10.1074/jbc.m313339200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adaptor protein Src homology (SH)2 domain-containing and leukocyte-specific phosphoprotein of 76 kDa (SLP-76) is critical for signal transduction in multiple hematopoietic lineages. It links proximal and distal T cell receptor signaling events through its function as a molecular scaffold in the assembly of multimolecular signaling complexes. Here we studied the functional roles of sub-domains within the SLP-76 proline-rich region, specifically the Gads binding domain and the recently defined P1 domain. To gain a further understanding of the functions mediated by this region, we used three complementary approaches as follows: reconstitution of SLP-76-deficient cells with functional domain deletion mutants, blocking molecular associations through the expression of a dominant negative protein fragment, and directed localization of SLP-76 to assess the role of the domains in SLP-76 recruitment. We find the Gads binding domain and the P1 domain are both necessary for optimal SLP-76 function, and in the absence of these two regions, SLP-76 is functionally inert. Furthermore, we provide direct evidence that SLP-76 localization and, in turn, function are dependent upon association with Gads.
Collapse
Affiliation(s)
- Andrew L Singer
- Signal Transduction Program, Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Jefferies CA, O'Neill LAJ. Bruton’s tyrosine kinase (Btk)—the critical tyrosine kinase in LPS signalling? Immunol Lett 2004; 92:15-22. [PMID: 15081522 DOI: 10.1016/j.imlet.2003.11.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Accepted: 11/17/2003] [Indexed: 10/26/2022]
Abstract
The discovery of the Toll-like receptors (TLRs) has revolutionised the field of innate immunity. One unresolved question regarding LPS signalling is whether there is a role for tyrosine kinases downstream of the LPS receptor. Studies in mice deficient in Bruton's tyrosine kinase have previously shown that they are defective in their responses to LPS. Further investigation into the role of Btk in LPS signalling has directly implicated Btk downstream of TLR4, both with respect to p38 MAPK activation and activation of the transcription factor NFkappaB. In fact Btk is activated by LPS and has been shown to directly bind TLR4 and the key proximal signalling proteins involved in LPS-induced NFkappaB activation, MyD88, Mal and IRAK-1. These recent findings point to a direct role for Btk in LPS signal transduction and raise interesting questions regarding the mode of activation of Btk following LPS stimulation and the precise nature of the pathways activated downstream of Btk. A better understanding of how Btk functions in LPS signalling will have important implications for inflammatory and autoimmune disorders and therapies thereof.
Collapse
Affiliation(s)
- Caroline A Jefferies
- Department of Biochemistry and Biotechnology Institute, Cytokine Research Group, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
109
|
Nichols KE, Haines K, Myung PS, Newbrough S, Myers E, Jumaa H, Shedlock DJ, Shen H, Koretzky GA. Macrophage activation and Fcγ receptor-mediated signaling do not require expression of the SLP-76 and SLP-65 adaptors. J Leukoc Biol 2003; 75:541-52. [PMID: 14694181 DOI: 10.1189/jlb.0703312] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The Src-homology 2 domain-containing, leukocyte-specific phosphoprotein of 76 kDa (SLP-76) is a hematopoietic adaptor that plays a central role during immunoreceptor-mediated activation of T lymphocytes and mast cells and collagen receptor-induced activation of platelets. Despite similar levels of expression in macrophages, SLP-76 is not required for Fc receptor for immunoglobulin G (IgG; FcgammaR)-mediated activation. We hypothesized that the related adaptor SLP-65, which is also expressed in macrophages, may compensate for the loss of SLP-76 during FcgammaR-mediated signaling and functional events. To address this hypothesis, we examined bone marrow-derived macrophages (BMM) from wild-type (WT) mice or mice lacking both of these adaptors. Contrary to our expectations, SLP-76(-/-) SLP-65(-/-) BMM demonstrated normal FcgammaR-mediated activation, including internalization of Ig-coated sheep red blood cells and production of reactive oxygen intermediates. FcgammaR-induced biochemical events were normal in SLP-76(-/-) SLP-65(-/-) BMM, including phosphorylation of phospholipase C and the extracellular signaling-regulated kinases 1 and 2. To determine whether macrophages functioned normally in vivo, we infected WT and SLP-76(-/-) SLP-65(-/-) mice with sublethal doses of Listeria monocytogenes (LM), a bacterium against which the initial host defense is provided by activated macrophages. WT and SLP-76(-/-) SLP-65(-/-) mice survived acute, low-dose infection and showed no difference in the number of liver or spleen LM colony-forming units, a measure of the total body burden of this organism. Taken together, these data suggest that neither SLP-76 nor SLP-65 is required during FcgammaR-dependent signaling and functional events in macrophages.
Collapse
Affiliation(s)
- Kim E Nichols
- Pediatric Oncology, Children's Hospital of Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Wang LD, Clark MR. B-cell antigen-receptor signalling in lymphocyte development. Immunology 2003; 110:411-20. [PMID: 14632637 PMCID: PMC1783068 DOI: 10.1111/j.1365-2567.2003.01756.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 09/15/2003] [Accepted: 09/15/2003] [Indexed: 12/11/2022] Open
Abstract
Signalling through the B-cell antigen receptor (BCR) is required throughout B-cell development and peripheral maturation. Targeted disruption of BCR components or downstream effectors indicates that specific signalling mechanisms are preferentially required for central B-cell development, peripheral maturation and repertoire selection. Additionally, the avidity and the context in which antigen is encountered determine both cell fate and differentiation in the periphery. Although the signalling and receptor components required at each stage have been largely elucidated, the molecular mechanisms through which specific signalling are evoked at each stage are still obscure. In particular, it is not known how the pre-BCR initiates the signals required for normal development or how immature B cells regulate the signalling pathways that determine cell fate. In this review, we will summarize the recent studies that have defined the molecules required for B-cell development and maturation as well as the theories on how signals may be regulated at each stage.
Collapse
Affiliation(s)
- Leo D Wang
- Section of Rheumatology and Committee on Immunology, Biological Sciences Division and Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
111
|
Su YW, Flemming A, Wossning T, Hobeika E, Reth M, Jumaa H. Identification of a pre-BCR lacking surrogate light chain. ACTA ACUST UNITED AC 2003; 198:1699-706. [PMID: 14638847 PMCID: PMC2194143 DOI: 10.1084/jem.20031428] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SLP-65−/− pre-B cells show a high proliferation rate in vitro. We have shown previously that λ5 expression and consequently a conventional pre-B cell receptor (pre-BCR) are essential for this proliferation. Here, we show that pre-B cells express a novel receptor complex that contains a μ heavy chain (μHC) but lacks any surrogate (SL) or conventional light chain (LC). This SL-deficient pre-BCR (SL−pre-BCR) requires Ig-α for expression on the cell surface. Anti-μ treatment of pre-B cells expressing the SL−pre-BCR induces tyrosine phosphorylation of substrate proteins and a strong calcium (Ca2+) release. Further, the expression of the SL−pre-BCR is associated with a high differentiation rate toward κLC-positive cells. Given that B cell development is only partially blocked and allelic exclusion is unaffected in SL-deficient mice, we propose that the SL−pre-BCR is involved in these processes and therefore shares important functions with the conventional pre-BCR.
Collapse
Affiliation(s)
- Yu-Wen Su
- Institute for Biology III, Albert-Ludwigs University of Freiburg, Max Planck Institute for Immunobiology, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
112
|
Wilcox HM, Berg LJ. Itk phosphorylation sites are required for functional activity in primary T cells. J Biol Chem 2003; 278:37112-21. [PMID: 12842872 DOI: 10.1074/jbc.m304811200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tec family kinase Itk plays a critical role in signal transduction downstream of the T cell antigen receptor and has been implicated in the activation of phospholipase C-gamma1, a key regulator of calcium mobilization and extracellular signal-regulated kinase (ERK) activation. We have shown previously that Itk is regulated by an activating transphosphorylation event in which Tyr-511 in the kinase domain is phosphorylated by Lck (Heyeck, S. D., Wilcox, H. M., Bunnell, S. C., and Berg, L. J. (1997) J. Biol. Chem. 272, 25401-25408). In this study, we present evidence for another mode of regulation for Itk, the autophosphorylation of Tyr-180 in the Src homology 3 (SH3) domain. To investigate the role of Itk trans- and autophosphorylation in T cell signaling, a retroviral transduction system was used to introduce different versions of Itk into Itk-deficient primary T cells. We report that Itk mutated at either the trans- or the autophosphorylation site is unable to fully restore cytokine production and ERK activation in the Itk-deficient cells; Itk-Y511F is severely defective, whereas Itk-Y180F has partial activity. Because phosphorylation at Tyr-180 is predicted to interfere with ligand binding by the SH3 domain, an SH3 point mutant that cannot bind ligand was also examined and found to be unable to restore function to the Itk-/- cells. These data provide new insights into the complex regulation of Itk in primary T cells.
Collapse
Affiliation(s)
- Heather M Wilcox
- Division of Medical Sciences, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
113
|
Yokozeki T, Adler K, Lankar D, Bonnerot C. B cell receptor-mediated Syk-independent activation of phosphatidylinositol 3-kinase, Ras, and mitogen-activated protein kinase pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1328-35. [PMID: 12874222 DOI: 10.4049/jimmunol.171.3.1328] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Syk tyrosine kinase is a key molecule in the development of the B cell lineage and the activation of B lymphocytes after Ag recognition by the B cell Ag receptor (BCR). Several genetic studies with chicken B cells have reported that the recruitment of Syk by BCR is essential for activation of a cascade of signaling molecules including phosphatidylinositol 3-kinase, mitogen-activated protein kinases, Ras signaling pathways, phospholipase C-gamma2 activation, and calcium mobilization. The identification of a Syk-deficient mouse IIA1.6/A20 B cell line provided us the opportunity to investigate Syk-mediated signaling in mouse. Surprisingly, phosphatidylinositol 3-kinase, Ras, and mitogen-activated protein kinases were activated upon BCR cross-linking in these Syk-deficient mouse B cells, whereas, as expected from results obtained in chicken B cells, phospholipase C-gamma2 activation and calcium mobilization were impaired as well as the NF-kappaB pathway. These results indicate that BCR signaling is not strictly dependent on Syk expression in mouse IIA1.6/A20 B cells. Thus, B lymphocyte activation may be initiated by Syk-dependent and Syk-independent signaling cascades.
Collapse
Affiliation(s)
- Takeaki Yokozeki
- Institut National de la Santé et de la Recherche Médicale Unité 520, Institut Curie, Paris, France
| | | | | | | |
Collapse
|
114
|
Abstract
SLP-65(-/-) mice display a partial block at the pre-B cell stage of development. Here, we show that LAT is required for the differentiation of SLP-65(-/-) pre-B cells. We show that LAT and SLP-76 are recruited to the pre-BCR and associated with Ig-alpha upon pre-BCR engagement, whereas LAT interaction with SLP-76 is already detected in untreated pre-B cells. Reconstitution of LAT or SLP-65 expression in SLP-65/LAT(-/-) pre-B cells restored their calcium (Ca2+) mobilization capacity, led to downregulation of surface pre-BCR, and induced differentiation to BCR+ cells. Together, our results suggest that the adaptor proteins LAT and SLP-76 are involved in pre-BCR signaling, thereby rescuing arrested murine SLP-65(-/-) pre-B cells.
Collapse
Affiliation(s)
- Yu-wen Su
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, Freiburg, Germany
| | | |
Collapse
|
115
|
Kremer KN, Humphreys TD, Kumar A, Qian NX, Hedin KE. Distinct role of ZAP-70 and Src homology 2 domain-containing leukocyte protein of 76 kDa in the prolonged activation of extracellular signal-regulated protein kinase by the stromal cell-derived factor-1 alpha/CXCL12 chemokine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:360-7. [PMID: 12817019 DOI: 10.4049/jimmunol.171.1.360] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stimulation of T lymphocytes with the ligand for the CXCR4 chemokine receptor stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12), results in prolonged activation of the extracellular signal-regulated kinases (ERK) ERK1 and ERK2. Because SDF-1alpha is unique among several chemokines in its ability to stimulate prolonged ERK activation, this pathway is thought to mediate special functions of SDF-1alpha that are not shared with other chemokines. However, the molecular mechanisms of this response are poorly understood. In this study we show that SDF-1alpha stimulation of prolonged ERK activation in Jurkat T cells requires both the ZAP-70 tyrosine kinase and the Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) scaffold protein. This pathway involves ZAP-70-dependent tyrosine phosphorylation of SLP-76 at one or more of its tyrosines, 113, 128, and 145. Because TCR activates ERK via SLP-76-mediated activation of the linker of activated T cells (LAT) scaffold protein, we examined the role of LAT in SDF-1alpha-mediated ERK activation. However, neither the SLP-76 proline-rich domain that links to GADS and LAT, nor LAT, itself are required for SDF-1alpha to stimulate SLP-76 tyrosine phosphorylation or to activate ERK. Together, our results describe the distinct mechanism by which SDF-1alpha stimulates prolonged ERK activation in T cells and indicate that this pathway is specific for cells expressing both ZAP-70 and SLP-76.
Collapse
Affiliation(s)
- Kimberly N Kremer
- Department of Surgery, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
116
|
Graham LJ, Verí MC, DeBell KE, Noviello C, Rawat R, Jen S, Bonvini E, Rellahan B. 70Z/3 Cbl induces PLC gamma 1 activation in T lymphocytes via an alternate Lat- and Slp-76-independent signaling mechanism. Oncogene 2003; 22:2493-503. [PMID: 12717426 DOI: 10.1038/sj.onc.1206318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The oncoprotein 70Z/3 Cbl signals in an autonomous fashion or through blockade of endogenous c-Cbl, a negative regulator of signaling. The mechanism of 70Z/3 Cbl-induced signaling was investigated by comparing the molecular requirements for 70Z/3 Cbl- and TCR-induced phospholipase C gamma 1 (PLC gamma 1) activation. 70Z/3 Cbl-induced PLC gamma 1 tyrosine phosphorylation required, in addition to the PLC gamma 1 N-terminal SH2 domain, the C-terminal SH2 and SH3 domains that were dispensable for TCR-induced phosphorylation. Deletion of the leucine zipper of 70Z/3 Cbl did not eliminate 70Z/3 Cbl-induced PLC gamma 1 phosphorylation, suggesting that blockage of c-Cbl via dimerization with 70Z/3 Cbl cannot fully explain 70Z/3 Cbl activating characteristics. The complete elimination of PLC gamma 1 phosphorylation required deleting the SH3 domain-binding region of 70Z/3 Cbl, consistent with 70Z/3 Cbl binding the PLC gamma 1 SH3 domain. 70Z/3 Cbl-induced PLC gamma 1 phosphorylation required Zap-70, as for the TCR, and the tyrosine kinase binding domain of 70Z/3 Cbl, which binds Zap-70, but did not require PLC gamma 1 binding to Lat, a crucial interaction in TCR-induced PLC gamma 1 phosphorylation. Furthermore, 70Z/3 Cbl-induced activation of NFAT, a PLC gamma 1/Ca(2+)-dependent transcriptional event, required Zap-70, but was independent of Slp-76, an adapter required for TCR-induced NFAT activation. These results suggest that 70Z/3 Cbl and PLC gamma 1 form a TCR-, Lat- and Slp-76-independent complex that leads to PLC gamma 1 phosphorylation and activation.
Collapse
Affiliation(s)
- Laurie J Graham
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, Center for Biologics Evaluation and Research, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Kettner A, Pivniouk V, Kumar L, Falet H, Lee JS, Mulligan R, Geha RS. Structural requirements of SLP-76 in signaling via the high-affinity immunoglobulin E receptor (Fc epsilon RI) in mast cells. Mol Cell Biol 2003; 23:2395-406. [PMID: 12640123 PMCID: PMC150723 DOI: 10.1128/mcb.23.7.2395-2406.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adapter SLP-76 plays an essential role in Fc epsilon RI signaling, since SLP-76(-/-) bone marrow-derived mast cells (BMMC) fail to degranulate and release interleukin-6 (IL-6) following Fc epsilon RI ligation. To define the role of SLP-76 domains and motifs in Fc epsilon RI signaling, SLP-76(-/-) BMMC were retrovirally transduced with SLP-76 and SLP-76 mutants. The SLP-76 N-terminal and Gads binding domains, but not the SH2 domain, were critical for Fc epsilon RI-mediated degranulation and IL-6 secretion, whereas all three domains are essential for T-cell proliferation following T-cell receptor (TCR) ligation. Unexpectedly, the three tyrosine residues in SLP-76 critical for TCR signaling, Y112, Y128, and Y145, were not essential for IL-6 secretion, but were required for degranulation and mitogen-activated protein kinase activation. Furthermore, a Y112/128F SLP-76 mutant, but not a Y145F mutant, strongly reconstituted mast cell degranulation, suggesting a critical role for Y145 in Fc epsilon RI-mediated exocytosis. These results point to important differences in the function of SLP-76 between T cells and mast cells.
Collapse
Affiliation(s)
- Alexander Kettner
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Mustelin T, Taskén K. Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 2003; 371:15-27. [PMID: 12485116 PMCID: PMC1223257 DOI: 10.1042/bj20021637] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 12/12/2002] [Accepted: 12/16/2002] [Indexed: 11/17/2022]
Abstract
The sequence of events in T-cell antigen receptor (TCR) signalling leading to T-cell activation involves regulation of a number of protein tyrosine kinases (PTKs) and the phosphorylation status of many of their substrates. Proximal signalling pathways involve PTKs of the Src, Syk, Csk and Tec families, adapter proteins and effector enzymes in a highly organized tyrosine-phosphorylation cascade. In intact cells, tyrosine phosphorylation is rapidly reversible and generally of a very low stoichiometry even under induced conditions due to the fact that the enzymes removing phosphate from tyrosine-phosphorylated substrates, the protein tyrosine phosphatases (PTPases), have a capacity that is several orders of magnitude higher than that of the PTKs. It follows that a relatively minor change in the PTK/PTPase balance can have a major impact on net tyrosine phosphorylation and thereby on activation and proliferation of T-cells. This review focuses on the involvement of PTKs and PTPases in positive and negative regulation of T-cell activation, the emerging theme of reciprocal regulation of each type of enzyme by the other, as well as regulation of phosphotyrosine turnover by Ser/Thr phosphorylation and regulation of localization of signal components.
Collapse
Affiliation(s)
- Tomas Mustelin
- Program of Signal Transduction, Cancer Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
119
|
Seminario MC, Wange RL. Lipid phosphatases in the regulation of T cell activation: living up to their PTEN-tial. Immunol Rev 2003; 192:80-97. [PMID: 12670397 DOI: 10.1034/j.1600-065x.2003.00013.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The initiating events associated with T activation in response to stimulation of the T cell antigen receptor (TCR) and costimulatory receptors, such as CD28, are intimately associated with the enzymatically catalyzed addition of phosphate not only to key tyrosine, threonine and serine residues in proteins but also to the D3 position of the myo-inositol ring of phosphatidylinositol (PtdIns). This latter event is catalyzed by the lipid kinase phosphoinositide 3-kinase (PI3K). The consequent production of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 serves both to recruit signaling proteins to the plasma membrane and to induce activating conformational changes in proteins that contain specialized domains for the binding of these phospholipids. The TCR signaling proteins that are subject to regulation by PI3K include Akt, phospholipase Cgamma1 (PLCgamma1), protein kinase C zeta (PKC-zeta), Itk, Tec and Vav, all of which play critical roles in T cell activation. As is the case for phosphorylation of protein substrates, the phosphorylation of PtdIns is under dynamic regulation, with the D3 phosphate being subject to hydrolysis by the 3-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10), thereby placing PTEN in direct opposition to PI3K. In this review we consider recent data concerning how PTEN may act in regulating the process of T cell activation.
Collapse
Affiliation(s)
- Maria-Cristina Seminario
- Laboratory of Cellular and Molecular Biology, National Institutes on Aging/IRP/NIH/DHHS, Baltimore, MD 21224, USA.
| | | |
Collapse
|
120
|
Clements JL. Known and potential functions for the SLP-76 adapter protein in regulating T-cell activation and development. Immunol Rev 2003; 191:211-9. [PMID: 12614362 DOI: 10.1034/j.1600-065x.2003.00002.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The hematopoietic adapter protein SLP-76 is a critical component of multiple biochemical signaling 'circuits' in T cells that integrate proximal signaling events initiated by ligation of the T-cell receptor (TCR) into more distal pathways. Given the important role ascribed to TCR signaling in directing the outcome of thymocyte selection, it seems likely that SLP-76 may also function in signaling pathways that ultimately impact the establishment of the peripheral T-cell repertoire. It is generally accepted that the peripheral T-cell repertoire is selected in large part during T-cell development in the thymus. Molecular interactions between the TCR and self-peptide/major histocompatibility complexes expressed on thymic stromal elements dictate the fate of developing thymocytes. Thymocyte survival and further maturation (positive selection) require an active signal delivered to the cell as a consequence of TCR ligation. This raises the intriguing question of how a thymocyte can, for a narrow window of developmental time, obtain responsiveness to self while maintaining tolerance to these same determinants upon export to the periphery. This article reviews the current literature describing SLP-76-dependent signaling pathways in mature T cells and developing thymocytes. A potential role for this critical signaling intermediate in integrating signals leading to positive and negative selection of the peripheral T-cell repertoire is also discussed.
Collapse
Affiliation(s)
- James L Clements
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
121
|
Jordan MS, Singer AL, Koretzky GA. Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 2003; 4:110-6. [PMID: 12555096 DOI: 10.1038/ni0203-110] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptors are molecular scaffolds that recruit effectors, which are critical for immune cell activation. Recent work has underscored the requirement for adaptors in propagating stimulatory signals as well as their ability to inhibit immune cell function. The mechanisms by which adaptors function rely not only on the intermolecular interactions they mediate, but also on where they are localized within the cell. The use of sophisticated genetic, biochemical, cellular and imaging approaches has provided important new insights into the biology of adaptor protein function. Here we focus on T lymphocytes as a model to illustrate the critical roles adaptors play as regulators of cellular activation.
Collapse
Affiliation(s)
- Martha S Jordan
- Signal Transduction Program, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
122
|
Lucas JA, Miller AT, Atherly LO, Berg LJ. The role of Tec family kinases in T cell development and function. Immunol Rev 2003; 191:119-38. [PMID: 12614356 DOI: 10.1034/j.1600-065x.2003.00029.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three members of the Tec family kinases, Itk, Rlk and Tec, have been implicated in signaling downstream of the T cell receptor (TCR). The activity of these kinases in T cells has been shown to be important for the full activation of phospholipase C-gamma1 (PLC-gamma1). Disruption of Tec family signaling in Itk-/- and Rlk-/-Itk-/- mice has multiple effects on T cell development, cytokine production and T-helper cell differentiation. Furthermore, mice possessing mutations in signaling molecules upstream of PLC-gamma1, such as Src homology 2 (SH2) domain-containing phosphoprotein of 76 kDa (SLP-76), linker for activation of T cells (LAT) and Vav1, or in members of the nuclear factor for activated T cells (NFAT) family of transcription factors, which are downstream of PLC-gamma1, have been found to have similar phenotypes to Tec family-deficient mice, emphasizing the importance of this pathway in regulating T cell activation, differentiation and homeostasis.
Collapse
Affiliation(s)
- Julie A Lucas
- University of Massachussets Medical School Department of Pathology, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
123
|
Flemming A, Brummer T, Reth M, Jumaa H. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat Immunol 2003; 4:38-43. [PMID: 12436112 DOI: 10.1038/ni862] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Accepted: 10/16/2002] [Indexed: 11/08/2022]
Abstract
Mice deficient in the adaptor protein SLP-65 (also known as BLNK) have reduced numbers of mature B cells, but an increased pre-B cell compartment. We show here that compared to wild-type cells, SLP-65(-/-) pre-B cells show an enhanced ex vivo proliferative capacity. This proliferation requires interleukin 7 and expression of the pre-B cell receptor (pre-BCR). In addition, SLP-65(-/-) mice have a high incidence of pre-B cell lymphoma. Reintroduction of SLP-65 into SLP-65(-/-) pre-B cells led to pre-BCR down-regulation and enhanced differentiation. Our results indicate that SLP-65 regulates a developmental program that promotes differentiation and limits pre-B cell expansion, thereby acting as a tumor suppressor.
Collapse
Affiliation(s)
- Alexandra Flemming
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany
| | | | | | | |
Collapse
|
124
|
Sechi AS, Buer J, Wehland J, Probst-Kepper M. Changes in actin dynamics at the T-cell/APC interface: implications for T-cell anergy? Immunol Rev 2002; 189:98-110. [PMID: 12445268 DOI: 10.1034/j.1600-065x.2002.18909.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Over the past 20 years the role of the actin cytoskeleton in the formation of the immunological synapse and in T-cell activation has been the subject of intense scrutiny. T-cell receptor (TCR) signaling leads to tyrosine phosphorylation of numerous adapter proteins whose function is to relay signals to downstream components of the TCR signaling pathway and, in particular, to molecules implicated in remodeling the actin cytoskeleton. Here, we discuss how signals from the TCR converge on two key regulators of the actin cytoskeleton, Ena/vasodilator-stimulated phosphoproteins (VASPs) and the actin-related protein (ARP2/3) complex. We also discuss the implications of TCR signaling in the process of T-cell anergy with particular emphasis on the actin remodeling and molecules involved in the control of T-cell proliferation.
Collapse
Affiliation(s)
- Antonio S Sechi
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany
| | | | | | | |
Collapse
|
125
|
Rolli V, Gallwitz M, Wossning T, Flemming A, Schamel WWA, Zürn C, Reth M. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell 2002; 10:1057-69. [PMID: 12453414 DOI: 10.1016/s1097-2765(02)00739-6] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have established a protocol allowing transient and inducible coexpression of many foreign genes in Drosophila S2 Schneider cells. With this powerful approach of reverse genetics, we studied the interaction of the protein tyrosine kinases Syk and Lyn with the B cell antigen receptor (BCR). We find that Lyn phosphorylates only the first tyrosine whereas Syk phosphorylates both tyrosines of the BCR immunoreceptor tyrosine-based activation motif (ITAM). Furthermore, we show that Syk is a positive allosteric enzyme, which is strongly activated by the binding to the phosphorylated ITAM tyrosines, thus initiating a positive feedback loop at the receptor. The BCR-dependent Syk activation and signal amplification is efficiently counterbalanced by protein tyrosine phosphatases, the activity of which is regulated by H(2)O(2) and the redox equilibrium inside the cell.
Collapse
Affiliation(s)
- Véronique Rolli
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
126
|
Dauvillier S, Mérida P, Visintin M, Cattaneo A, Bonnerot C, Dariavach P. Intracellular single-chain variable fragments directed to the Src homology 2 domains of Syk partially inhibit Fc epsilon RI signaling in the RBL-2H3 cell line. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2274-83. [PMID: 12193692 DOI: 10.4049/jimmunol.169.5.2274] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intracellular expression of Ab fragments has been efficiently used to inactivate therapeutic targets, oncogene products, and to induce viral resistance in plants. Ab fragments expressed in the appropriate cell compartment may also help to elucidate the functions of a protein of interest. We report in this study the successful targeting of the protein tyrosine kinase Syk in the RBL-2H3 rat basophilic leukemia cell line. We isolated from a phage display library human single-chain variable fragments (scFv) directed against the portion of Syk containing the Src homology 2 domains and the linker region that separates them. Among them, two scFv named G4G11 and G4E4 exhibited the best binding to Syk in vivo in a yeast two-hybrid selection system. Stable transfectants of RBL-2H3 cells expressing cytosolic G4G11 and G4E4 were established. Immunoprecipitation experiments showed that intracellular G4G11 and G4E4 bind to Syk, but do not inhibit the activation of Syk following FcepsilonRI aggregation, suggesting that the scFv do not affect the recruitment of Syk to the receptor. Nevertheless, FcepsilonRI-mediated calcium mobilization and the release of inflammatory mediators are inhibited, and are consistent with a defect in Bruton's tyrosine kinase and phospholipase C-gamma2 tyrosine phosphorylation and activation. Interestingly, FcepsilonRI-induced mitogen-activated protein kinase phosphorylation is not altered, suggesting that intracellular G4G11 and G4E4 do not prevent the coupling of Syk to the Ras pathway, but they selectively inhibit the pathway involving phospholipase C-gamma2 activation.
Collapse
Affiliation(s)
- Stéphanie Dauvillier
- Institut de Génétique Moléculaire de Montpellier, Unité Mixte de Recherche 5535 Centre National de la Recherche Scientifique, Montpellier, France
| | | | | | | | | | | |
Collapse
|
127
|
Abstract
Among the myriad receptors expressed by T cells, the sine qua non is the CD3/T cell receptor (CD3/TCR) complex, because it is uniquely capable of translating the presence of a specific antigen into intracellular signals necessary to trigger an immune response against a pathogen or tumor. Much work over the past 2 decades has attempted to define the signaling pathways leading from the CD3/TCR complex that culminate ultimately in the functions necessary for effective T cell immune responses, such as cytokine production. Here, we summarize recent advances in our understanding of the mechanisms by which the CD3/TCR complex controls integrin-mediated T cell adhesion, and discuss new information that suggests that there may be unexpected facets to this pathway that distinguish it from those previously defined.
Collapse
Affiliation(s)
- Sirid-Aimée Kellermann
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
128
|
Parravicini V, Gadina M, Kovarova M, Odom S, Gonzalez-Espinosa C, Furumoto Y, Saitoh S, Samelson LE, O'Shea JJ, Rivera J. Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat Immunol 2002; 3:741-8. [PMID: 12089510 DOI: 10.1038/ni817] [Citation(s) in RCA: 362] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fc epsilon RI activation of mast cells is thought to involve Lyn and Syk kinases proximal to the receptor and the signaling complex organized by the linker for activation of T cells (LAT). We report here that Fc epsilon RI also uses a Fyn kinase-dependent pathway that does not require Lyn kinase or the adapter LAT for its initiation, but is necessary for mast cell degranulation. Lyn-deficiency enhanced Fyn-dependent signals and degranulation, but inhibited the calcium response. Fyn-deficiency impaired degranulation, whereas Lyn-mediated signaling and calcium was normal. Thus, Fc epsilon RI-dependent mast cell degranulation involves cross-talk between Fyn and Lyn kinases.
Collapse
Affiliation(s)
- Valentino Parravicini
- Molecular Inflammation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Takesono A, Finkelstein LD, Schwartzberg PL. Beyond calcium: new signaling pathways for Tec family kinases. J Cell Sci 2002; 115:3039-48. [PMID: 12118060 DOI: 10.1242/jcs.115.15.3039] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Tec kinases represent the second largest family of mammalian non-receptor tyrosine kinases and are distinguished by the presence of distinct proline-rich regions and pleckstrin homology domains that are required for proper regulation and activation. Best studied in lymphocyte and mast cells, these kinases are critical for the full activation of phospholipase-C γ (PLC-γ) and Ca2+ mobilization downstream of antigen receptors. However, it has become increasingly clear that these kinases are activated downstream of many cell-surface receptors,including receptor tyrosine kinases, cytokine receptors, integrins and G-protein-coupled receptors. Evidence suggests that the Tec kinases influence a wide range of signaling pathways controlling activation of MAP kinases,actin reorganization, transcriptional regulation, cell survival and cellular transformation. Their impact on cellular physiology suggests that the Tec kinases help regulate multiple cellular processes beyond Ca2+mobilization.
Collapse
Affiliation(s)
- Aya Takesono
- National Human Genome Research Institute, 49 Convent Drive, 49/4A38, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
130
|
Xu S, Lam KP. Delayed cellular maturation and decreased immunoglobulin kappa light chain production in immature B lymphocytes lacking B cell linker protein. J Exp Med 2002; 196:197-206. [PMID: 12119344 PMCID: PMC2193924 DOI: 10.1084/jem.20020172] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
B cell linker (BLNK) protein is a component of the B cell receptor (BCR) signaling pathway and BLNK(-/-) mice have a block in B lymphopoiesis at the pro-B/pre-B cell stage. To study the effect of BLNK mutation at later stages of B cell development, we introduce an innocuous transgenic BCR into BLNK(-/-) mice and show that two populations of immature B cells distinguishable by their IgM(low (lo)) and IgM(high (hi)) phenotypes are found in the bone marrow of these mice in contrast to a single population of IgM(hi) cells found in control BCR-transgenic BLNK(+/+) mice. The mutant IgM(lo) and IgM(hi) cells are at an earlier developmental stage compared with the control IgM(hi) cells as indicated by their differential expression of CD43, B220, and major histocompatibility complex class II antigens and their timing of generation in culture. Thus, in the absence of BLNK the differentiation of immature B cells is delayed. Furthermore, mutant IgM(lo) cells produce equivalent level of immunoglobulin (Ig) mu but less Ig kappa proteins than control and mutant IgM(hi) cells and this defect is attributed to a decrease in the amount of kappa transcripts being generated. Finally, splenic B cells in BCR-transgenic BLNK(-/-) mice are predominantly of the transitional B cell phenotype and are rapidly lost from the peripheral B cell pool. Taken together, the data suggest a role for BLNK and perhaps BCR signaling, in the regulation of kappa light chain expression and continued immature B cell differentiation.
Collapse
Affiliation(s)
- Shengli Xu
- Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | |
Collapse
|
131
|
Kurosaki T, Okada T. Regulation of phospholipase C-gamma2 and phosphoinositide 3-kinase pathways by adaptor proteins in B lymphocytes. Int Rev Immunol 2002; 20:697-711. [PMID: 11913946 DOI: 10.3109/08830180109045586] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The importance of phosphoinositide 3-kinase (PI3K) and phospholipase C (PLC)-gamma2 in B cell function and development has been highlighted by gene targeting experiments in mice. In fact, these knockout mice exhibit a profound inhibition of proliferative responses upon B cell receptor (BCR) engagement. The molecular connections between these effectors and upstream tyrosine kinases such as Syk have been studied intensively in the past few years. This mechanism involves the action of cytoplasmic adaptor molecules, which participate in forming multicomponent signaling complexes, thereby directing the appropriate subcellular localization of effector enzymes. In addition to these cytoplasmic adaptor proteins, cell surface coreceptors can be viewed as transmembrane adaptor proteins, because coreceptors can also change the localization of effector enzymes, which in turn modulates the BCR-initiated signals.
Collapse
Affiliation(s)
- T Kurosaki
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan.
| | | |
Collapse
|
132
|
Wienands J, Engels N. Multitasking of Ig-alpha and Ig-beta to regulate B cell antigen receptor function. Int Rev Immunol 2002; 20:679-96. [PMID: 11913945 DOI: 10.3109/08830180109045585] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Since their discovery as signaling subunits of the B cell antigen receptor (BCR), Ig-alpha and Ig-beta are discussed to serve either a redundant or distinct function for B cell development, maintenance, and activation. Dependent upon the experimental system that has been used to address this issue, evidence could be provided to support both possibilities. Only recently has it become clear that Ig-alpha and Ig-beta possess a unique signaling identity but that both together are required to orchestrate proper B cell function in vivo. Here we discuss some of the underlying mechanisms that may involve direct coupling to discrete subsets of BCR effector proteins, such as protein tyrosine kinases or the intracellular adaptor SLP-65/BLNK.
Collapse
Affiliation(s)
- J Wienands
- Department of Biochemistry and Molecular Immunology, University of Bielefeld, Germany.
| | | |
Collapse
|
133
|
Abstract
Engagement of the T cell antigen receptor (TCR) leads to a complex series of molecular changes at the plasma membrane, in the cytoplasm, and at the nucleus that lead ultimately to T cell effector function. Activation at the TCR of a set of protein tyrosine kinases (PTKs) is an early event in this process. This chapter reviews some of the critical substrates of these PTKs, the adapter proteins that, following phosphorylation on tyrosine residues, serve as binding sites for many of the critical effector enzymes and other adapter proteins required for T cell activation. The role of these adapters in binding various proteins, the interaction of adapters with plasma membrane microdomains, and the function of adapter proteins in control of the cytoskeleton are discussed.
Collapse
Affiliation(s)
- Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 1E24, Bethesda, Maryland, 20892-4255, USA.
| |
Collapse
|
134
|
Abstract
Recent results obtained in mice harboring cytoplasmic mutations of Igalpha and/or Igbeta have reinforced the concept that the strength of BCR signaling is important for ensuring appropriate developmental outcomes as well as antigen-specific responses. To establish the optimal signaling intensity and duration, the BCR utilizes positive and negative regulatory molecules. Studies are beginning to reveal how these molecules maintain immunological homeostasis and tolerance.
Collapse
Affiliation(s)
- Tomohiro Kurosaki
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, and Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, 570-8506, Moriguchi, Japan.
| |
Collapse
|
135
|
Yablonski D, Weiss A. Mechanisms of signaling by the hematopoietic-specific adaptor proteins, SLP-76 and LAT and their B cell counterpart, BLNK/SLP-65. Adv Immunol 2002; 79:93-128. [PMID: 11680012 DOI: 10.1016/s0065-2776(01)79003-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adaptor proteins lack catalytic activity and contain only protein-protein interaction domains. They have been shown to interact with an ever-growing number of signaling proteins and to play essential roles in many signaling pathways. SLP-76 and LAT are cell-type-specific adaptor proteins expressed in T cells, NK cells, platelets, and mast cells. In these cell types, SLP-76 and LAT are required for signaling by immunoreceptor tyrosine-based activation motif(ITAM)-containing receptors, including the T cell receptor (TCR), the pre-TCR, the high-affinity Fc epsilon receptor, and the platelet GPVI collagen receptor. In B cells, an analogous adaptor, BLNK/SLP-65, is required for signaling by the ITAM-containing B cell receptor. This review summarizes recent research on SLP-76, LAT, and BLNK. A major challenge in understanding adaptor protein function has been to sort out the many interactions mediated by adaptor proteins and to define the mechanisms by which adaptors mediate critical signaling events. In the case of LAT, SLP-76, and BLNK, the availability of tractable genetic systems, deficient in expression of each of these adaptor proteins, has facilitated in-depth investigation of their signaling functions and mechanisms of action. The picture that has emerged is one in which multiple adaptor proteins cooperate to bring about the formation of a large signaling complex, localized to specialized lipid microdomains within the cell membrane and known as GEMs. Adaptors not only recruit signaling proteins, but also play an active role in regulating the conformation and activation of many of the proteins recruited to the complex. In particular, recent research has shed light on the mechanisms by which multiple adaptor proteins cooperate to bring about the recruitment and activation of phospholipase C gamma in response to the activation of ITAM-containing receptors.
Collapse
Affiliation(s)
- D Yablonski
- Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | | |
Collapse
|
136
|
Abstract
An important role has emerged for adaptor molecules in linking cell-surface receptors, such as the B-cell antigen receptor, with effector enzymes. Adaptor proteins direct the appropriate subcellular localization of effectors and regulate their activity by inducing conformational changes, both of which, in turn, contribute to the spatio-temporal precision of B-cell signal-transduction events. In addition, adaptor molecules participate in establishing negative- or positive-feedback regulatory loops in signalling networks, thereby fine-tuning the B-cell response.
Collapse
Affiliation(s)
- Tomohiro Kurosaki
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Japan.
| |
Collapse
|
137
|
Judd BA, Myung PS, Obergfell A, Myers EE, Cheng AM, Watson SP, Pear WS, Allman D, Shattil SJ, Koretzky GA. Differential requirement for LAT and SLP-76 in GPVI versus T cell receptor signaling. J Exp Med 2002; 195:705-17. [PMID: 11901197 PMCID: PMC2193740 DOI: 10.1084/jem.20011583] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mice deficient in the adaptor Src homology 2 domain-containing leukocyte phosphoprotein of 76 kD (SLP-76) exhibit a bleeding disorder and lack T cells. Linker for activation of T cells (LAT)-deficient mice exhibit a similar T cell phenotype, but show no signs of hemorrhage. Both SLP-76 and LAT are important for optimal platelet activation downstream of the collagen receptor, GPVI. In addition, SLP-76 is involved in signaling mediated by integrin alphaIIbbeta3. Because SLP-76 and LAT function coordinately in T cell signal transduction, yet their roles appear to differ in hemostasis, we investigated in detail the functional consequences of SLP-76 and LAT deficiencies in platelets. Previously we have shown that LAT(-/-) platelets exhibit defective responses to the GPVI-specific agonist, collagen-related peptide (CRP). Consistent with this, we find that surface expression of P-selectin in response to high concentrations of GPVI ligands is reduced in both LAT- and SLP-76-deficient platelets. However, platelets from LAT(-/-) mice, but not SLP-76(-/-) mice, aggregate normally in response to high concentrations of collagen and convulxin. Additionally, unlike SLP-76, LAT is not tyrosine phosphorylated after fibrinogen binding to integrin alphaIIbbeta3, and collagen-stimulated platelets deficient in LAT spread normally on fibrinogen-coated surfaces. Together, these findings indicate that while LAT and SLP-76 are equally required for signaling via the T cell antigen receptor (TCR) and pre-TCR, platelet activation downstream of GPVI and alphaIIbbeta3 shows a much greater dependency on SLP-76 than LAT.
Collapse
Affiliation(s)
- Barbi A Judd
- Program in Molecular Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Miller AT, Berg LJ. Defective Fas ligand expression and activation-induced cell death in the absence of IL-2-inducible T cell kinase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2163-72. [PMID: 11859102 DOI: 10.4049/jimmunol.168.5.2163] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Tec family tyrosine kinase, IL-2-inducible T cell kinase (Itk), plays an important role in TCR signaling. Studies of T cells from Itk-deficient mice have demonstrated that Itk is critical for the activation of phospholipase-Cgamma1, leading to calcium mobilization in response to TCR stimulation. This biochemical defect results in reduced IL-2 production by Itk-deficient T cells. To further characterize the downstream effects of the Itk deficiency, we crossed Itk-/- mice to a TCR-transgenic line and examined T cell responses to stimulation by peptide plus APC. These studies show that Itk is required for maximal activation of early growth responses 2 and 3 and Fas ligand transcription after TCR stimulation. These transcriptional defects lead to reduced activation-induced cell death of stimulated Itk-/- T cells, both in vitro and in vivo. Together these studies define an important role for Itk in TCR signaling, leading to cytokine gene expression and activation-induced cell death.
Collapse
Affiliation(s)
- Andrew T Miller
- Department of Pathology, Program in Immunology and Virology, University of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|
139
|
Leo A, Wienands J, Baier G, Horejsi V, Schraven B. Adapters in lymphocyte signaling. J Clin Invest 2002; 109:301-9. [PMID: 11827988 PMCID: PMC150865 DOI: 10.1172/jci14942] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Albrecht Leo
- Institute for Immunology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
140
|
Leo A, Wienands J, Baier G, Horejsi V, Schraven B. Adapters in lymphocyte signaling. J Clin Invest 2002. [DOI: 10.1172/jci0214942] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
141
|
Affiliation(s)
- Liping Geng
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
142
|
Myung PS, Derimanov GS, Jordan MS, Punt JA, Liu QH, Judd BA, Meyers EE, Sigmund CD, Freedman BD, Koretzky GA. Differential requirement for SLP-76 domains in T cell development and function. Immunity 2001; 15:1011-26. [PMID: 11754821 DOI: 10.1016/s1074-7613(01)00253-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The hematopoietic cell-specific adaptor protein, SLP-76, is critical for T cell development and mature T cell receptor (TCR) signaling; however, the structural requirements of SLP-76 for mediating thymopoiesis and mature T cell function remain largely unknown. In this study, transgenic mice were generated to examine the requirements for specific domains of SLP-76 in thymocytes and peripheral T cells in vivo. Examination of mice expressing various mutants of SLP-76 on the null background demonstrates a differential requirement for specific domains of SLP-76 in thymocytes and T cells and provides new insight into the molecular mechanisms underlying SLP-76 function.
Collapse
Affiliation(s)
- P S Myung
- Graduate Program in Immunology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Watanabe D, Hashimoto S, Ishiai M, Matsushita M, Baba Y, Kishimoto T, Kurosaki T, Tsukada S. Four tyrosine residues in phospholipase C-gamma 2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling. J Biol Chem 2001; 276:38595-601. [PMID: 11507089 DOI: 10.1074/jbc.m103675200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of phospholipase C-gamma2 (PLCgamma2) is the critical step in B cell antigen receptor (BCR)-coupled calcium signaling. Although genetic dissection experiments on B cells have demonstrated that Bruton's tyrosine kinase (Btk) and Syk are required for activating PLCgamma2, the exact activation mechanism of PLCgamma2 by these kinases has not been established. We identify the tyrosine residues 753, 759, 1197, and 1217 in rat PLCgamma2 as Btk-dependent phosphorylation sites by using an in vitro kinase assay. To evaluate the role of these tyrosine residues in phosphorylation-dependent activation of PLCgamma2, PLCgamma2-deficient DT40 cells were reconstituted with a series of mutant PLCgamma2s in which the phenylalanine was substituted for tyrosine. Substitution of all four tyrosine residues almost completely eliminated the BCR-induced PLCgamma2 phosphorylation, indicating that these residues include the major phosphorylation sites upon BCR engagement. Cells expressing PLCgamma2 with a single substitution exhibited some extent of reduction in calcium mobilization, whereas those expressing quadruple mutant PLCgamma2 showed greatly reduced calcium response. These findings indicate that the phosphorylations of the tyrosine residues 753, 759, 1197, and 1217, which have been identified as Btk-dependent phosphorylation sites in vitro, coordinately contribute to BCR-induced activation of PLCgamma2.
Collapse
Affiliation(s)
- D Watanabe
- Osaka University Medical School, Department of Molecular Medicine, 2-2 Yamada-oka, Suita City, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Following vascular injury, one of the most critical initial events is activation of platelets followed by formation of a hemostatic plug. Platelets are capable of responding to a diverse array of agonists resulting in adhesion and granule release. The biochemical events underlying platelet activation are just beginning to be understood. One class of molecules shown to play important roles in this process is adapters. Adapter molecules contain distinct modular domains which mediate protein-protein or protein-lipid interactions giving these proteins the ability to nucleate signal transduction complexes. In this review we will discuss the function of the hematopoietic cell specific adapter molecule, SLP-76 in both platelet activation and hemostasis. Because many parallels exist between signal transduction pathways in platelets and lymphocytes, we will also review the function of SLP-76 in coordinating signal transduction pathways following antigen bind to the T cell receptor.
Collapse
Affiliation(s)
- B A Judd
- Signal Transduction Program, Abramson Family Cancer Research Institute University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
145
|
Wilde JI, Watson SP. Regulation of phospholipase C gamma isoforms in haematopoietic cells: why one, not the other? Cell Signal 2001; 13:691-701. [PMID: 11602179 DOI: 10.1016/s0898-6568(01)00191-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phospholipase C gamma (PLCgamma) isoforms are critical for the generation of calcium signals in haematopoietic systems in response to the stimulation of immune receptors. PLCgamma is unique amongst phospholipases in that it is tightly regulated by the action of a number of tyrosine kinases. It is itself directly phosphorylated on a number of tyrosines and contains several domains through which it can interact with other signalling proteins and lipid products such as phosphatidylinositol 3,4,5-trisphosphate. Through this network of interactions, PLCgamma is activated and recruited to its substrate, phosphatidylinositol 4,5-bisphosphate, at the membrane. Both isoforms of PLCgamma, PLCgamma1 and PLCgamma2, are present in haematopoietic cells. The signalling cascade involved in the regulation of these two isoforms varies between cells, though the systems are similar for both PLCgamma1 and PLCgamma2. We will compare these cascades for both PLCgamma1 and PLCgamma2 and discuss possible reasons as to why one form of PLCgamma and not the other is required for signalling in specific haematopoietic cells, including T lymphocytes, B lymphocytes, platelets, and mast cells.
Collapse
Affiliation(s)
- J I Wilde
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | |
Collapse
|
146
|
Abstract
Gads is a member of the family of SH2 and SH3 domain containing adaptor proteins that is expressed specifically in hematopoietic cells and functions in the coordination of tyrosine kinase mediated signal transduction. Gads plays a critical role in signalling from the T cell receptor by promoting the formation of a complex between SLP-76 and LAT. This complex couples the T cell receptor to Ras through a novel pathway involving PLC-gamma1, Tec family kinases, and RasGRP. Studies with Gads-deficient mice have highlighted its importance for thymocyte proliferation during T cell maturation. Emerging evidence suggests that Gads may also play additional roles in antigen-receptor signalling and receptor tyrosine kinase mediated signalling in other hematopoietic lineages. Gads is a unique member of the Grb2 adaptor family, because its activity can be regulated by caspase cleavage. Gads nucleates multi-protein complexes that are required for tyrosine kinase-dependent signalling in immune cells and may also represent a point of modulation for these pathways through the activation of caspase-dependent signalling events.
Collapse
Affiliation(s)
- S K Liu
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children and Department of Medical Biophysics, University of Toronto, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
147
|
Verí MC, DeBell KE, Seminario MC, DiBaldassarre A, Reischl I, Rawat R, Graham L, Noviello C, Rellahan BL, Miscia S, Wange RL, Bonvini E. Membrane raft-dependent regulation of phospholipase Cgamma-1 activation in T lymphocytes. Mol Cell Biol 2001; 21:6939-50. [PMID: 11564877 PMCID: PMC99870 DOI: 10.1128/mcb.21.20.6939-6950.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous signaling molecules associate with lipid rafts, either constitutively or after engagement of surface receptors. One such molecule, phospholipase Cgamma-1 (PLCgamma1), translocates from the cytosol to lipid rafts during T-cell receptor (TCR) signaling. To investigate the role played by lipid rafts in the activation of this molecule in T cells, an influenza virus hemagglutinin A (HA)-tagged PLCgamma1 was ectopically expressed in Jurkat T cells and targeted to these microdomains by the addition of a dual-acylation signal. Raft-targeted PLCgamma1 was constitutively tyrosine phosphorylated and induced constitutive NF-AT-dependent transcription and interleukin-2 secretion in Jurkat cells. Tyrosine phosphorylation of raft-targeted PLCgamma1 did not require Zap-70 or the interaction with the adapters Lat and Slp-76, molecules that are necessary for TCR signaling. In contrast, the Src family kinase Lck was required. Coexpression in HEK 293T cells of PLCgamma1-HA with Lck or the Tec family kinase Rlk resulted in preferential phosphorylation of raft-targeted PLCgamma1 over wild-type PLCgamma1. These data show that localization of PLCgamma1 in lipid rafts is sufficient for its activation and demonstrate a role for lipid rafts as microdomains that dynamically segregate and integrate PLCgamma1 with other signaling components.
Collapse
Affiliation(s)
- M C Verí
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, Center for Biologics Evaluation & Research, National Institute o f Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Goitsuka R, Tatsuno A, Ishiai M, Kurosaki T, Kitamura D. MIST functions through distinct domains in immunoreceptor signaling in the presence and absence of LAT. J Biol Chem 2001; 276:36043-50. [PMID: 11463797 DOI: 10.1074/jbc.m106390200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MIST (also termed Clnk) is an adaptor protein structurally related to SLP-76 and BLNK/BASH/SLP-65 hematopoietic cell-specific adaptor proteins. By using the BLNK-deficient DT40 chicken B cell system, we demonstrated MIST functions through distinct intramolecular domains in immunoreceptor signaling depending on the availability of linker for activation of T cells (LAT). MIST can partially restore the B cell antigen receptor (BCR) signaling in the BLNK-deficient cells, which requires phosphorylation of the two N-terminal tyrosine residues. Co-expression of LAT with MIST fully restored the BCR signaling and dispenses with the requirement of the two tyrosines in MIST for BCR signaling. However, some other tyrosine(s), as well as the Src homology (SH) 2 domain and the two proline-rich regions in MIST, is still required for full reconstitution of the BCR signaling, in cooperation with LAT. The C-terminal proline-rich region of MIST is dispensable for the LAT-aided full restoration of MAP kinase activation, although it is responsible for the interaction with LAT and for the localization in glycolipid-enriched microdomains. On the other hand, the N-terminal proline-rich region, which is a binding site of the SH3 domain of phospholipase Cgamma, is essential for BCR signaling. These results revealed a marked plasticity of MIST function as an adaptor in the cell contexts with or without LAT.
Collapse
Affiliation(s)
- R Goitsuka
- Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, 2669 Yamazaki, Noda, Chiba 278-0022, Japan.
| | | | | | | | | |
Collapse
|
149
|
Affiliation(s)
- S Tsukada
- Department of Molecular Medicine, Osaka University Medical School, Yamadaoka, Suita City, Osaka 565-0871, Japan
| | | | | |
Collapse
|
150
|
Engels N, Merchant M, Pappu R, Chan AC, Longnecker R, Wienands J. Epstein-Barr virus latent membrane protein 2A (LMP2A) employs the SLP-65 signaling module. J Exp Med 2001; 194:255-64. [PMID: 11489945 PMCID: PMC2193464 DOI: 10.1084/jem.194.3.255] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Accepted: 06/20/2001] [Indexed: 11/29/2022] Open
Abstract
In latently infected B lymphocytes, the Epstein-Barr virus (EBV) suppresses signal transduction from the antigen receptor through expression of the integral latent membrane protein 2A (LMP2A). At the same time, LMP2A triggers B cell survival by a yet uncharacterized maintenance signal that is normally provided by the antigen receptor. The molecular mechanisms are unknown as LMP2A-regulated signaling cascades have not been described so far. Using a novel mouse model we have identified the intracellular adaptor protein Src homology 2 (SH2) domain-containing leukocyte protein (SLP)-65 as a critical downstream effector of LMP2A in vivo. Biochemical analysis of the underlying signaling pathways revealed that EBV infection causes constitutive tyrosine phosphorylation of one of the two SLP-65 isoforms and complex formation between SLP-65 and the protooncoprotein CrkL (CT10 regulator of kinase like). This leads to antigen receptor-independent phosphorylation of Cbl (Casitas B lineage lymphoma) and C3G. In contrast, phospholipase C-gamma2 (PLC-gamma2) activation is completely blocked. Our data show that in order to establish a latent EBV infection, LMP2A selectively activates or represses SLP-65-regulated signaling pathways.
Collapse
Affiliation(s)
- Niklas Engels
- Department of Biochemistry I, University of Bielefeld, Bielefeld D-33615, Germany
| | - Mark Merchant
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611
| | - Rajita Pappu
- Center for Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew C. Chan
- Center for Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Richard Longnecker
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611
| | - Jürgen Wienands
- Department of Biochemistry I, University of Bielefeld, Bielefeld D-33615, Germany
| |
Collapse
|