101
|
Huang D, Ying F, Chen S, Zhou C, Su P, Wu W. Metal-Ligand Bonds in Rare Earth Metal-Biphenyl Complexes. Inorg Chem 2022; 61:8135-8143. [PMID: 35588219 DOI: 10.1021/acs.inorgchem.2c00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of theoretical methods, including density functional theory, multiconfiguration molecular orbital theory, and ab initio valence bond theory, are devoted to understanding the metal-ligand bonds in M-BP (BP = biphenyl; M = Sc, Y, or La) complexes. Different from most transition metal-BP complexes, the most stable metal-biphenyl conformers are not half-sandwich but clamshell. Energy decomposition analysis results reveal that the M-BP bonds in the clamshell conformers possess extra-large orbital relaxation. According to the wave function analysis, 2-fold donations and 2-fold back-donations exist in the clamshell M-BP bonds. The back-donations from M to BP are quite strong, while donations from BP to M are quite weak. Our work improves our understanding of the metal-ligand bonds, which can be considered as the "reversed" Dewar-Chatt-Duncanson model.
Collapse
Affiliation(s)
- Dajiang Huang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Fuming Ying
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sifeng Chen
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chen Zhou
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
102
|
Lee IS, Min SK. Generalized Formulation of the Density Functional Tight Binding-Based Restricted Ensemble Kohn-Sham Method with Onsite Correction to Long-Range Correction. J Chem Theory Comput 2022; 18:3391-3409. [PMID: 35549266 DOI: 10.1021/acs.jctc.2c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a generalized formulation for the combination of the density functional tight binding (DFTB) approach and the state-interaction state-average spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS or SSR) method by considering onsite correction (OC) as well as the long-range corrected (LC) functional. The OC contribution provides more accurate energies and analytic gradients for individual microstates, while the multireference character of the SSR provides the correct description for conical intersections. We benchmark the LC-OC-DFTB/SSR method against various DFTB calculation methods for excitation energies and conical intersection structures with π/π* or n/π* characters. Furthermore, we perform excited-state molecular dynamics simulations with a molecular rotary motor with variations of LC-OC-DFTB/SSR approaches. We show that the OC contribution to the LC functional is crucial to obtain the correct geometry of conical intersections.
Collapse
Affiliation(s)
- In Seong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| |
Collapse
|
103
|
Magoulas I, Shen J, Piecuch P. Addressing strong correlation by approximate coupled-pair methods with active-space and full treatments of three-body clusters. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2057365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ilias Magoulas
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
104
|
Shirai S, Horiba T, Hirai H. Calculation of Core-Excited and Core-Ionized States Using Variational Quantum Deflation Method and Applications to Photocatalyst Modeling. ACS OMEGA 2022; 7:10840-10853. [PMID: 35382310 PMCID: PMC8973155 DOI: 10.1021/acsomega.2c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The possibility of performing quantum-chemical calculations using quantum computers has attracted much interest. Variational quantum deflation (VQD) is a quantum-classical hybrid algorithm for the calculation of excited states with noisy intermediate-scale quantum devices. Although the validity of this method has been demonstrated, there have been few practical applications, primarily because of the uncertain effect of calculation conditions on the results. In the present study, calculations of the core-excited and core-ionized states for common molecules based on the VQD method were examined using a classical computer, focusing on the effects of the weighting coefficients applied in the penalty terms of the cost function. Adopting a simplified procedure for estimating the weighting coefficients based on molecular orbital levels allowed these core-level states to be successfully calculated. The O 1s core-ionized state for a water molecule was calculated with various weighting coefficients, and the resulting ansatz states were systematically examined. The application of this technique to functional materials was demonstrated by calculating the core-level states for titanium dioxide (TiO2) and nitrogen-doped TiO2 models. The results demonstrate that VQD calculations employing an appropriate cost function can be applied to the analysis of functional materials in conjunction with an experimental approach.
Collapse
|
105
|
Via-Nadal M, Rodríguez Mayorga MA, Ramos Cordoba E, Matito E. Natural Range Separation of the Coulomb Hole. J Chem Phys 2022; 156:184106. [DOI: 10.1063/5.0085284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A natural range separation of the Coulomb hole into two components, one of them being predominant at long interelectronic separations (hcI ) and the other at short distances (hcII ), is exhaustively analyzed throughout various examples that put forward the most relevant features of this approach and how they can be used to develop efficient ways to capture electron correlation. We show that hcI, which only depends on the first-order reduced density matrix, can be used to identify molecules with a predominant nondynamic correlation regime and differentiate between two types of nondynamic correlation, types A and B. Through the asymptotic properties of the hole components, we explain how hcI can retrieve the long-range part of electron correlation. We perform an exhaustive analysis of the hydrogen molecule in a minimal basis set, dissecting the hole contributions into spin components. We also analyze the simplest molecule presenting a dispersion interaction and how hcII helps identify it. The study of several atoms in different spin states reveals that the Coulomb hole components distinguish correlation regimes that are not apparent from the entire hole. The results of this work hold out the promise to aid in developing new electronic structure methods that efficiently capture electron correlation.
Collapse
Affiliation(s)
| | | | - Eloy Ramos Cordoba
- Theoretical Chemistry Group, Donostia International Physics Center, Spain
| | - Eduard Matito
- Donostia International Physics Center, Donostia International Physics Center, Spain
| |
Collapse
|
106
|
Wu D, Zhou C, Bao JJ, Gagliardi L, Truhlar DG. Zero-Field Splitting Calculations by Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2022; 18:2199-2207. [PMID: 35319874 DOI: 10.1021/acs.jctc.1c01115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Zero-field splitting (ZFS) is a fundamental molecular property that is especially relevant for single-molecule magnets (SMMs), electron paramagnetic resonance spectra, and quantum computing. Developing a method that can accurately predict ZFS parameters can be very powerful for designing new SMMs. One of the challenges is to include external correlation in an inherently multiconfigurational open-shell species for the accurate prediction of magnetic properties. Previously available methods depend on expensive multireference perturbation theory calculations to include external correlation. In this paper, we present spin-orbit-inclusive multiconfiguration and multistate pair-density functional theory (MC-PDFT) calculations of ZFSs; these calculations have a cost comparable to complete-active-space self-consistent field (CASSCF) theory, but they include correlation external to the active space. We found that combining a multistate formulation of MC-PDFT, namely, compressed-state multistate pair-density functional theory, with orbitals optimized by weighted-state-averaged CASSCF, yields reasonably accurate ZFS results.
Collapse
Affiliation(s)
- Dihua Wu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Chen Zhou
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Jie J Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
107
|
Auth T, Stein CJ, O'Hair RAJ, Koszinowski K. Origin of the different reactivity of the high-valent coinage-metal complexes [RCu iii Me 3 ] - and [RAg iii Me 3 ] - (R=allyl). Chemistry 2022; 28:e202103130. [PMID: 34773654 PMCID: PMC9304237 DOI: 10.1002/chem.202103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/27/2022]
Abstract
High-valent tetraalkylcuprates(iii) and -argentates(iii) are key intermediates of copper- and silver-mediated C-C coupling reactions. Here, we investigate the previously reported contrasting reactivity of [RMiii Me3 ]- complexes (M=Cu, Ag and R=allyl) with energy-dependent collision-induced dissociation experiments, advanced quantum-chemical calculations and kinetic computations. The gas-phase fragmentation experiments confirmed the preferred formation of the [RCuMe]- anion upon collisional activation of the cuprate(iii) species, consistent with a homo-coupling reaction, whereas the silver analogue primarily yielded [AgMe2 ]- , consistent with a cross-coupling reaction. For both complexes, density functional theory calculations identified one mechanism for homo coupling and four different ones for cross coupling. Of these pathways, an unprecedented concerted outer-sphere cross coupling is of particular interest, because it can explain the formation of [AgMe2 ]- from the argentate(iii) species. Remarkably, the different C-C coupling propensities of the two [RMiii Me3 ]- complexes become only apparent when properly accounting for the multi-configurational character of the wave function for the key transition state of [RAgMe3 ]- . Backed by the obtained detailed mechanistic insight for the gas-phase reactions, we propose that the previously observed cross-coupling reaction of the silver complex in solution proceeds via the outer-sphere mechanism.
Collapse
Affiliation(s)
- Thomas Auth
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstr. 237077GöttingenGermany
| | - Christopher J. Stein
- Theoretical Physics and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-Essen47048DuisburgGermany
| | - Richard A. J. O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology InstituteUniversity of Melbourne30 Flemington RdParkvilleVictoria3010Australia
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstr. 237077GöttingenGermany
| |
Collapse
|
108
|
Bozkaya U, Ermiş B, Alagöz Y, Ünal A, Uyar AK. MacroQC 1.0: An electronic structure theory software for large-scale applications. J Chem Phys 2022; 156:044801. [DOI: 10.1063/5.0077823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Uğur Bozkaya
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Betül Ermiş
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Yavuz Alagöz
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Aslı Ünal
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Ali Kaan Uyar
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
109
|
Kollmar C, Sivalingam K, Guo Y, Neese F. An efficient implementation of the NEVPT2 and CASPT2 methods avoiding higher-order density matrices. J Chem Phys 2021; 155:234104. [PMID: 34937355 DOI: 10.1063/5.0072129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A factorization of the matrix elements of the Dyall Hamiltonian in N-electron valence state perturbation theory allowing their evaluation with a computational effort comparable to the one needed for the construction of the third-order reduced density matrix at the most is presented. Thus, the computational bottleneck arising from explicit evaluation of the fourth-order density matrix is avoided. It is also shown that the residual terms arising in the case of an approximate complete active space configuration interaction solution and containing even the fifth-order density matrix for two excitation classes can be evaluated with little additional effort by choosing again a favorable factorization of the corresponding matrix elements. An analogous argument is also provided for avoiding the fourth-order density matrix in complete active space second-order perturbation theory. Practical calculations indicate that such an approach leads to a considerable gain in computational efficiency without any compromise in numerical accuracy or stability.
Collapse
Affiliation(s)
- Christian Kollmar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
110
|
Guo Y, Zhang N, Lei Y, Liu W. iCISCF: An Iterative Configuration Interaction-Based Multiconfigurational Self-Consistent Field Theory for Large Active Spaces. J Chem Theory Comput 2021; 17:7545-7561. [PMID: 34757746 DOI: 10.1021/acs.jctc.1c00781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An iterative configuration interaction (iCI)-based multiconfigurational self-consistent field (SCF) theory, iCISCF, is proposed to handle systems that require large active spaces. The success of iCISCF stems from three ingredients: (1) efficient selection of individual configuration state functions spanning the active space while maintaining full spin symmetry; (2) the use of Jacobi rotation for optimization of the active orbitals in conjunction with a quasi-Newton algorithm for the core/active-virtual and core-active orbital rotations; (3) a second-order perturbative treatment of the residual space left over by the selection procedure (i.e., iCISCF(2)). Several examples that go beyond the capability of CASSCF are taken as showcases to reveal the efficacy of iCISCF and iCISCF(2), facilitated by iCAS for imposed automatic selection and localization of active orbitals.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an, Shaanxi 710127, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
111
|
Feng R, Yu X, Autschbach J. Spin-Orbit Natural Transition Orbitals and Spin-Forbidden Transitions. J Chem Theory Comput 2021; 17:7531-7544. [PMID: 34792327 DOI: 10.1021/acs.jctc.1c00776] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural transition orbitals (NTOs) are in widespread use for visualizing and analyzing electronic transitions. The present work introduces the analysis of formally spin-forbidden transitions with the help of complex-valued spin-orbit (SO) NTOs. The analysis specifically focuses on the components in such transitions that cause their intensity to be nonzero because of SO coupling. Transition properties such as transition dipole moments are partitioned into SO-NTO hole-particle pairs, such that contributions to the intensity from specific occupied and unoccupied orbitals are obtained. The method has been implemented within the restricted active space (RAS) self-consistent field wave function theory framework, with SO coupling treated by RAS state interaction. SO-NTOs have a broad range of potential applications, which is illustrated by the T2-S1 state mixing in pyrazine, spin-forbidden versus spin-allowed 4f-5d transitions in the Tb3+ ion, and the phosphorescence of tris(2-phenylpyridine) iridium [Ir(ppy)3].
Collapse
Affiliation(s)
- Rulin Feng
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
112
|
Schwedtmann K, Quest M, Guddorf BJ, Keuter J, Hepp A, Feldt M, Droste J, Hansen MR, Lips F. Reactivity of the Bicyclic Amido-Substituted Silicon(I) Ring Compound Si 4 {N(SiMe 3 )Mes} 4 with FLP-Type Character. Chemistry 2021; 27:17361-17368. [PMID: 34636454 PMCID: PMC9297995 DOI: 10.1002/chem.202103101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 01/13/2023]
Abstract
The bicyclic amido-substituted silicon(I) ring compound Si4 {N(SiMe3 )Mes}4 2 (Mes=Mesityl=2,4,6-Me3 C6 H2 ) features enhanced zwitterionic character and different reactivity from the analogous compound Si4 {N(SiMe3 )Dipp}4 1 (Dipp=2,6-i Pr2 C6 H3 ) due to the smaller mesityl substituents. In a reaction with the N-heterocyclic carbene NHCMe 4 (1,3,4,5-tetramethyl-imidazol-2-ylidene), we observe adduct formation to give Si4 {N(SiMe3 )Mes}4 ⋅ NHCMe 4 (3). This adduct reacts further with the Lewis acid BH3 to yield the Lewis acid-base complex Si4 {N(SiMe3 )Mes}4 ⋅ NHCMe 4 ⋅ BH3 (4). Coordination of AlBr3 to 2 leads to the adduct 5. Calculated proton affinities and fluoride ion affinities reveal highly Lewis basic and very weak Lewis acidic character of the low-valent silicon atoms in 1 and 2. This is confirmed by protonation of 1 and 2 with Brookharts acid yielding 6 and 7. Reaction with diphenylacetylene only occurs at 111 °C with 2 in toluene and is accompanied by fragmentation of 2 to afford the silacyclopropene 8 and the trisilanorbornadiene species 9.
Collapse
Affiliation(s)
- Kevin Schwedtmann
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische ChemieCorrensstraße 28–3048149MünsterGermany
| | - Michael Quest
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische ChemieCorrensstraße 28–3048149MünsterGermany
| | - Benedikt J. Guddorf
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische ChemieCorrensstraße 28–3048149MünsterGermany
| | - Jan Keuter
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische ChemieCorrensstraße 28–3048149MünsterGermany
| | - Alexander Hepp
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische ChemieCorrensstraße 28–3048149MünsterGermany
| | - Milica Feldt
- Westfälische Wilhelms-Universität Münster Organisch Chemisches Institut and Center for Multiscale Theory and ComputationCorrensstraße 3648149MünsterGermany
| | - Jörn Droste
- Westfälische Wilhelms-Universität Münster Institut für Physikalische ChemieCorrensstraße 28–3048149MünsterGermany
| | - Michael Ryan Hansen
- Westfälische Wilhelms-Universität Münster Institut für Physikalische ChemieCorrensstraße 28–3048149MünsterGermany
| | - Felicitas Lips
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische ChemieCorrensstraße 28–3048149MünsterGermany
| |
Collapse
|
113
|
Freitag L, Lindenbauer L, Oppel M, González L. A Density Matrix Renormalization Group Study of the Low-Lying Excited States of a Molybdenum Carbonyl-Nitrosyl Complex. Chemphyschem 2021; 22:2371-2377. [PMID: 34495578 PMCID: PMC9292996 DOI: 10.1002/cphc.202100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2021] [Indexed: 11/07/2022]
Abstract
A density matrix renormalization group-self consistent field (DMRG-SCF) study has been carried out to calculate the low-lying excited states of CpMo(CO)2 NO, a molybdenum complex containing NO and CO ligands. In order to automatically select an appropriate active space, a novel procedure employing the maximum single-orbital entropy for several states has been introduced and shown to be efficient and easy-to-implement when several electronic states are simultaneously considered. The analysis of the resulting natural transition orbitals and charge-transfer numbers shows that the lowest five excited electronic states are excitation into metal-NO antibonding orbitals, which offer the possibility for nitric oxide (NO) photorelease after excitation with visible light. Higher excited states are metal-centered excitations with contributions of metal-CO antibonding orbitals, which may serve as a gateway for carbon monoxide (CO) delivery. Time-dependent density functional theory calculations done for comparison, show that the state characters agree remarkably well with those from DMRG-SCF, while excitation energies are 0.4-1.0 eV red-shifted with respect to the DMRG-SCF ones.
Collapse
Affiliation(s)
- Leon Freitag
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
| | - Leopold Lindenbauer
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
| | - Markus Oppel
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
- Vienna Research Platform on Accelerating Photoreaction DiscoveryUniversity of ViennaWähringer Str. 171090ViennaAustria
| |
Collapse
|
114
|
Nottoli T, Gauss J, Lipparini F. Second-Order CASSCF Algorithm with the Cholesky Decomposition of the Two-Electron Integrals. J Chem Theory Comput 2021; 17:6819-6831. [PMID: 34719925 PMCID: PMC8582256 DOI: 10.1021/acs.jctc.1c00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In this contribution,
we present the implementation of a second-order
complete active space–self-consistent field (CASSCF) algorithm
in conjunction with the Cholesky decomposition of the two-electron
repulsion integrals. The algorithm, called norm-extended optimization,
guarantees convergence of the optimization, but it involves the full
Hessian and is therefore computationally expensive. Coupling the second-order
procedure with the Cholesky decomposition leads to a significant reduction
in the computational cost, reduced memory requirements, and an improved
parallel performance. As a result, CASSCF calculations of larger molecular
systems become possible as a routine task. The performance of the
new implementation is illustrated by means of benchmark calculations
on molecules of increasing size, with up to about 3000 basis functions
and 14 active orbitals.
Collapse
Affiliation(s)
- Tommaso Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa. Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa. Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
115
|
Ciborowski SM, Mitra A, Harris RM, Liu G, Sharma P, Khetrapal N, Blankenhorn M, Gagliardi L, Bowen KH. Metal-Metal Bonding in Actinide Dimers: U 2 and U 2. J Am Chem Soc 2021; 143:17023-17028. [PMID: 34609860 DOI: 10.1021/jacs.1c06417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding direct metal-metal bonding between actinide atoms has been an elusive goal in chemistry for years. We report for the first time the anion photoelectron spectrum of U2-. The threshold of the lowest electron binding energy (EBE) spectral band occurs at 1.0 eV, which corresponds to the electron affinity (EA) of U2, whereas the vertical detachment energy of U2- is found at EBE ∼ 1.2 eV. Electronic structure calculations on U2 and U2- were carried out with state-of-the-art theoretical methods. The computed values of EA(U2) and EA(U) and the difference between the computed dissociation energies of U2 and U2- are found to be internally consistent and consistent with experiment. Analysis of the bonds in U2 and U2- shows that while U2 has a formal quintuple bond, U2- has a quadruple bond, even if the effective bond orders differ only by 0.5 unit instead of one unit. The resulting experimental-computational synergy elucidates the nature of metal-metal bonding in U2 and U2-.
Collapse
Affiliation(s)
- Sandra M Ciborowski
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Abhishek Mitra
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rachel M Harris
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Prachi Sharma
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Navneet Khetrapal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Moritz Blankenhorn
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
116
|
Mazin IM, Sokolov AY. Multireference Algebraic Diagrammatic Construction Theory for Excited States: Extended Second-Order Implementation and Benchmark. J Chem Theory Comput 2021; 17:6152-6165. [PMID: 34553937 DOI: 10.1021/acs.jctc.1c00684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an implementation and benchmark of new approximations in multireference algebraic diagrammatic construction theory for simulations of neutral electronic excitations and UV/vis spectra of strongly correlated molecular systems (MR-ADC). Following our work on the first-order MR-ADC approximation [J. Chem. Phys. 2018, 149, 204113], we report the strict and extended second-order MR-ADC methods (MR-ADC(2) and MR-ADC(2)-X) that combine the description of static and dynamic electron correlation in the ground and excited electronic states without relying on state-averaged reference wave functions. We present an extensive benchmark of the new MR-ADC methods for excited states in several small molecules, including the carbon dimer, ethylene, and butadiene. Our results demonstrate that, for weakly correlated electronic states, the MR-ADC(2) and MR-ADC(2)-X methods outperform the third-order single-reference ADC approximation and are competitive with the results from equation-of-motion coupled cluster theory. For states with multireference character, the performance of the MR-ADC methods is similar to that of an N-electron valence perturbation theory. In contrast to conventional multireference perturbation theories, the MR-ADC methods have many attractive features, such as a straightforward and efficient calculation of excited-state properties and a direct access to excitations outside of the frontier (active) orbitals.
Collapse
Affiliation(s)
- Ilia M Mazin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
117
|
Kochman MA, Durbeej B, Kubas A. Simulation and Analysis of the Transient Absorption Spectrum of 4-( N, N-Dimethylamino)benzonitrile (DMABN) in Acetonitrile. J Phys Chem A 2021; 125:8635-8648. [PMID: 34550700 PMCID: PMC8503879 DOI: 10.1021/acs.jpca.1c06166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/03/2021] [Indexed: 12/17/2022]
Abstract
4-(N,N-Dimethylamino)benzonitrile (DMABN) is a well-known model compound for dual fluorescence-in sufficiently polar solvents, it exhibits two distinct fluorescence emission bands. The interpretation of its transient absorption (TA) spectrum in the visible range is the subject of a long-standing controversy. In the present study, we resolve this issue by calculating the TA spectrum on the basis of nonadiabatic molecular dynamics simulations. An unambiguous assignment of spectral signals to specific excited-state structures is achieved by breaking down the calculated spectrum into contributions from twisted and nontwisted molecular geometries. In particular, the much-discussed excited-state absorption band near 1.7 eV (ca. 700 nm) is attributed to the near-planar locally excited (LE) minimum on the S1 state. On the technical side, our study demonstrates that the second-order approximate coupled cluster singles and doubles (CC2) method can be used successfully to calculate the TA spectra of moderately large organic molecules, provided that the system in question does not approach a crossing between the lowest excited state and the singlet ground state within the time frame of the simulation.
Collapse
Affiliation(s)
- Michał Andrzej Kochman
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Ul. Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Bo Durbeej
- Division
of Theoretical Chemistry, Department of Physics, Chemistry and Biology
(IFM), Linköping University, 581 83 Linköping, Sweden
| | - Adam Kubas
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Ul. Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
118
|
Multireference Perturbation Theory Combined with PCM and RISM Solvation Models: A Benchmark Study for Chemical Energetics. J Phys Chem A 2021; 125:8324-8336. [PMID: 34516121 DOI: 10.1021/acs.jpca.1c05944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The polarizable continuum model (PCM) has been one of the most widely used approaches to take into account the solvation effect in quantum chemical calculations. In this paper, we performed a series of benchmark calculations to assess the accuracy of the PCM scheme combined with the second-order complete-active-space perturbation theory (CASPT2) for molecular systems in polar solvents. For solute molecules with extensive conjugated π orbitals, exemplified by elongated conjugated arylcarbenes, we have incorporated the ab initio density matrix renormalization group algorithm into the PCM-CASPT2 method. In the previous work, we presented a combination of the DMRG-CASPT2 method with the reference interaction site model (RISM) theory for describing the solvation effect using the radial distribution function and compared its performance to the widely used density-functional approaches (PCM-TD-DFT). The work here allows us to further show a more thorough assessment of the RISM model compared to the PCM with an equal level of the wave function treatment, the (DMRG-)CASPT2 theory, toward a high-accuracy electronic structure calculations for solvated chemical systems. With the exception that the PCM models are not capable of properly describing the hydrogen bondings, accuracy of the PCM-CASPT2 model is in most cases quite comparable to the RISM counterpart.
Collapse
|
119
|
Valverde D, de Araújo AVS, Borin AC. Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil. Molecules 2021; 26:5191. [PMID: 34500625 PMCID: PMC8434193 DOI: 10.3390/molecules26175191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
The photophysical relaxation mechanisms of 1-cyclohexyluracil, in vacuum and water, were investigated by employing the Multi-State CASPT2 (MS-CASPT2, Multi-State Complete Active-Space Second-Order Perturbation Theory) quantum chemical method and Dunning's cc-pVDZ basis sets. In both environments, our results suggest that the primary photophysical event is the population of the S11(ππ*) bright state. Afterwards, two likely deactivation pathways can take place, which is sustained by linear interpolation in internal coordinates defined via Z-Matrix scans connecting the most important characteristic points. The first one (Route 1) is the same relaxation mechanism observed for uracil, its canonical analogue, i.e., internal conversion to the ground state through an ethylenic-like conical intersection. The other route (Route 2) is the direct population transfer from the S11(ππ*) bright state to the T23(nπ*) triplet state via an intersystem crossing process involving the (S11(ππ*)/T23(nπ*))STCP singlet-triplet crossing point. As the spin-orbit coupling is not too large in either environment, we propose that most of the electronic population initially on the S11(ππ*) state returns to the ground following the same ultrafast deactivation mechanism observed in uracil (Route 1), while a smaller percentage goes to the triplet manifold. The presence of a minimum on the S11(ππ*) potential energy hypersurface in water can help to understand why experimentally it is noticed suppression of the triplet states population in polar protic solvent.
Collapse
Affiliation(s)
- Danillo Valverde
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil;
| | | | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil;
| |
Collapse
|
120
|
Boda Ł, Boczar M, Wójcik MJ, Nakajima T. Theoretical Study of Proton Tunneling in the Imidazole-Imidazolium Complex. J Phys Chem A 2021; 125:6902-6912. [PMID: 34350765 PMCID: PMC8389990 DOI: 10.1021/acs.jpca.1c02972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Proton tunneling
in the hydrogen-bonded imidazole–imidazolium
complex ion has been studied theoretically. Ab initio CASSCF/6-311++G(d,p) calculations concerning geometry optimization
and vibrational frequencies have been carried out for equilibrium
and transition state structures of the system. Two-dimensional double-well
model potentials were constructed on the basis of ab initio results and used to analyze the proton dynamics in the hydrogen
bond and the influence of the excitation of low-frequency hydrogen-bond
vibrations on the proton tunneling splittings. The energy of tunneling-split
vibrational sublevels of the high-frequency tunneling mode have been
calculated for its ground and first excited vibrational state for
the series of excitations of the coupled low-frequency intramolecular
hydrogen-bond modes. The promoting and suppressing effect of the low-frequency
modes on the proton splittings was shown in the ground and first excited
vibrational state of the tunneling mode. The vibrational sublevels
form the two separate semicontinuous bands between which the absorption
transitions may occur. This mechanism explains the experimentally
observed splitting and doublet-component broadening of the high-frequency
N–H stretching infrared (IR) absorption band.
Collapse
Affiliation(s)
- Łukasz Boda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marek Boczar
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marek J Wójcik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Takahito Nakajima
- RIKEN, Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
121
|
Matsika S. Electronic Structure Methods for the Description of Nonadiabatic Effects and Conical Intersections. Chem Rev 2021; 121:9407-9449. [PMID: 34156838 DOI: 10.1021/acs.chemrev.1c00074] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonadiabatic effects are ubiquitous in photophysics and photochemistry, and therefore, many theoretical developments have been made to properly describe them. Conical intersections are central in nonadiabatic processes, as they promote efficient and ultrafast nonadiabatic transitions between electronic states. A proper theoretical description requires developments in electronic structure and specifically in methods that describe conical intersections between states and nonadiabatic coupling terms. This review focuses on the electronic structure aspects of nonadiabatic processes. We discuss the requirements of electronic structure methods to describe conical intersections and nonadiabatic couplings, how the most common excited state methods perform in describing these effects, and what the recent developments are in expanding the methodology and implementing nonadiabatic couplings.
Collapse
Affiliation(s)
- Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
122
|
Nikolaev DM, Manathunga M, Orozco-Gonzalez Y, Shtyrov AA, Guerrero Martínez YO, Gozem S, Ryazantsev MN, Coutinho K, Canuto S, Olivucci M. Free Energy Computation for an Isomerizing Chromophore in a Molecular Cavity via the Average Solvent Electrostatic Configuration Model: Applications in Rhodopsin and Rhodopsin-Mimicking Systems. J Chem Theory Comput 2021; 17:5885-5895. [PMID: 34379429 DOI: 10.1021/acs.jctc.1c00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a novel technique for computing the free energy differences between two chromophore "isomers" hosted in a molecular environment (a generalized solvent). Such an environment may range from a relatively rigid protein cavity to a flexible solvent environment. The technique is characterized by the application of the previously reported "average electrostatic solvent configuration" method, and it is based on the idea of using the free energy perturbation theory along with a chromophore annihilation procedure in thermodynamic cycle calculations. The method is benchmarked by computing the ground-state room-temperature relative stabilities between (i) the cis and trans isomers of prototypal animal and microbial rhodopsins and (ii) the analogue isomers of a rhodopsin-like light-driven molecular switch in methanol. Furthermore, we show that the same technology can be used to estimate the activation free energy for the thermal isomerization of systems i-ii by replacing one isomer with a transition state. The results show that the computed relative stability and isomerization barrier magnitudes for the selected systems are in line with the available experimental observation in spite of their widely diverse complexity.
Collapse
Affiliation(s)
- Dmitrii M Nikolaev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, St. Petersburg 194021, Russia
| | - Madushanka Manathunga
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Yoelvis Orozco-Gonzalez
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States.,Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Andrey A Shtyrov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, St. Petersburg 194021, Russia
| | | | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Mikhail N Ryazantsev
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.,Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, Cidade Universitária, São Paulo 05508-090, Brazil
| | - Sylvio Canuto
- Instituto de Física, Universidade de São Paulo, Cidade Universitária, São Paulo 05508-090, Brazil
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States.,Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy.,Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS, UMR 7504, F-67034 Strasbourg, France
| |
Collapse
|
123
|
Lei Y, Suo B, Liu W. iCAS: Imposed Automatic Selection and Localization of Complete Active Spaces. J Chem Theory Comput 2021; 17:4846-4859. [PMID: 34314180 DOI: 10.1021/acs.jctc.1c00456] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is shown that in the spirit of "from fragments to molecule" for localizing molecular orbitals [J. Chem. Theory Comput. 2011, 7, 3643], a prechosen set of occupied/virtual valence/core atomic/fragmental orbitals can be transformed to an equivalent set of localized occupied/virtual pre-localized molecular orbitals (pre-LMO), which can then be taken as probes to select the same number of maximally matching localized occupied/virtual Hartree-Fock (HF) or restricted open-shell HF (ROHF) molecular orbitals as the initial local orbitals spanning the desired complete active space (CAS). In each cycle of the self-consistent field (SCF) calculation, the CASSCF orbitals can be localized by means of the noniterative "top-down least-change" algorithm for localizing ROHF orbitals [J. Chem. Phys. 2017, 146, 104104] such that the maximum matching between the orbitals of two adjacent iterations can readily be monitored, leading finally to converged localized CASSCF orbitals that overlap most the guess orbitals. Such an approach is to be dubbed as "imposed CASSCF" (iCASSCF or simply iCAS in short) for good reasons: (1) it has been assumed that only those electronic states that have largest projections onto the active space defined by the prechosen atomic/fragmental orbitals are to be targeted. This is certainly an imposed constraint but has wide applications in organic and transition metal chemistry where valence (or core) atomic/fragmental orbitals can readily be identified. (2) The selection of both initial and optimized local active orbitals is imposed from the very beginning by the pre-LMOs (which span the same space as the prechosen atomic/fragmental orbitals). Apart from the (imposed) automation and localization, iCAS has two additional merits: (a) the guess orbitals are guaranteed to be the same for all geometries, for the pre-LMOs do not change in character with geometry and (b) the use of localized orbitals facilitates the SCF convergence, particularly for large active spaces. Both organic molecules and transition-metal complexes are taken as showcases to reveal the efficacy of iCAS.
Collapse
Affiliation(s)
- Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Bingbing Suo
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, Shaanxi, P. R. China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
124
|
The angular overlap model of ligand field theory for f elements: An intuitive approach building bridges between theory and experiment. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
125
|
Roy R, Ghosal A, Roy AK. A Simple Effective Δ SCF Method for Computing Optical Gaps in Organic Chromophores. Chem Asian J 2021; 16:2729-2739. [PMID: 34331415 DOI: 10.1002/asia.202100692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Indexed: 11/09/2022]
Abstract
Photoluminescence effects in organic chromophores are of significant importance and requires precise description of low lying excited states. In this communication, we put forward an alternative time-independent DFT scheme for computing lowest single-particle excitation energy, especially for singlet excited state. This adopts a recently developed "virial"-theorem based model of singlet-triplet splitting which requires a DFT calculation on closed shell ground state and a restricted open-shell triplet excited state, followed by a simple 2 e - integral evaluation. This produces vertical excitation energies in small molecules, linear and non-linear polycyclic aromatic hydrocarbon and organic dyes in comparable accuracy to the TDDFT. We also explore the functional dependency of present method with three different functionals (B3LYP, wB97X and CAM-B3LYP) for polyenes and linear acenes. A systematic comparison with literature value illustrates the validity and usefulness of the present scheme in determining optical gap with fair computational cost.
Collapse
Affiliation(s)
- Raj Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Nadia, Mohanpur, 741246, WB, India
| | - Abhisek Ghosal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Nadia, Mohanpur, 741246, WB, India.,Present Address : Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, Maharastra, India
| | - Amlan K Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Nadia, Mohanpur, 741246, WB, India
| |
Collapse
|
126
|
Waldrop JM, Windus TL, Govind N. Projector-Based Quantum Embedding for Molecular Systems: An Investigation of Three Partitioning Approaches. J Phys Chem A 2021; 125:6384-6393. [PMID: 34260852 DOI: 10.1021/acs.jpca.1c03821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Projector-based embedding is a relatively recent addition to the collection of methods that seek to utilize chemical locality to provide improved computational efficiency. This work considers the interactions between the different proposed procedures for this method and their effects on the accuracy of the results. The interplay between the embedded background, projector type, partitioning scheme, and level of atomic orbital (AO) truncation are investigated on a selection of reactions from the literature. The Huzinaga projection approach proves to be more reliable than the level-shift projection when paired with other procedural options. Active subsystem partitioning from the subsystem projected AO decomposition (SPADE) procedure proves slightly better than the combination of Pipek-Mezey localization and Mulliken population screening (PMM). Along with these two options, a new partitioning criteria is proposed based on subsystem von Neumann entropy and the related subsystem orbital occupancy. This new method overlaps with the previous PMM method, but the screening process is computationally simpler. Finally, AO truncation proves to be a robust option for the tested systems when paired with the Huzinaga projection, with satisfactory results being acquired at even the most severe truncation level.
Collapse
Affiliation(s)
| | - Theresa L Windus
- Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
127
|
Multiconfiguration Pair-Density Functional Theory for Transition Metal Silicide Bond Dissociation Energies, Bond Lengths, and State Orderings. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102881. [PMID: 34068045 PMCID: PMC8152470 DOI: 10.3390/molecules26102881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022]
Abstract
Transition metal silicides are promising materials for improved electronic devices, and this motivates achieving a better understanding of transition metal bonds to silicon. Here we model the ground and excited state bond dissociations of VSi, NbSi, and TaSi using a complete active space (CAS) wave function and a separated-pair (SP) wave function combined with two post-self-consistent field techniques: complete active space with perturbation theory at second order and multiconfiguration pair-density functional theory. The SP approximation is a multiconfiguration self-consistent field method with a selection of configurations based on generalized valence bond theory without the perfect pairing approximation. For both CAS and SP, the active-space composition corresponds to the nominal correlated-participating-orbital scheme. The ground state and low-lying excited states are explored to predict the state ordering for each molecule, and potential energy curves are calculated for the ground state to compare to experiment. The experimental bond dissociation energies of the three diatomic molecules are predicted with eight on-top pair-density functionals with a typical error of 0.2 eV for a CAS wave function and a typical error of 0.3 eV for the SP approximation. We also provide a survey of the accuracy achieved by the SP and extended separated-pair approximations for a broader set of 25 transition metal–ligand bond dissociation energies.
Collapse
|
128
|
Rott F, Reduzzi M, Schnappinger T, Kobayashi Y, Chang KF, Timmers H, Neumark DM, de Vivie-Riedle R, Leone SR. Ultrafast strong-field dissociation of vinyl bromide: An attosecond transient absorption spectroscopy and non-adiabatic molecular dynamics study. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:034104. [PMID: 34169117 PMCID: PMC8208825 DOI: 10.1063/4.0000102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Attosecond extreme ultraviolet (XUV) and soft x-ray sources provide powerful new tools for studying ultrafast molecular dynamics with atomic, state, and charge specificity. In this report, we employ attosecond transient absorption spectroscopy (ATAS) to follow strong-field-initiated dynamics in vinyl bromide. Probing the Br M edge allows one to assess the competing processes in neutral and ionized molecular species. Using ab initio non-adiabatic molecular dynamics, we simulate the neutral and cationic dynamics resulting from the interaction of the molecule with the strong field. Based on the dynamics results, the corresponding time-dependent XUV transient absorption spectra are calculated by applying high-level multi-reference methods. The state-resolved analysis obtained through the simulated dynamics and related spectral contributions enables a detailed and quantitative comparison with the experimental data. The main outcome of the interaction with the strong field is unambiguously the population of the first three cationic states, D 1, D 2, and D 3. The first two show exclusively vibrational dynamics while the D 3 state is characterized by an ultrafast dissociation of the molecule via C-Br bond rupture within 100 fs in 50% of the analyzed trajectories. The combination of the three simulated ionic transient absorption spectra is in excellent agreement with the experimental results. This work establishes ATAS in combination with high-level multi-reference simulations as a spectroscopic technique capable of resolving coupled non-adiabatic electronic-nuclear dynamics in photoexcited molecules with sub-femtosecond resolution.
Collapse
Affiliation(s)
- Florian Rott
- Department of Chemistry, LMU Munich, 81377 Munich, Germany
| | - Maurizio Reduzzi
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Yuki Kobayashi
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Kristina F. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Henry Timmers
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
129
|
Meitei OR, Mayhall NJ. Spin-Flip Pair-Density Functional Theory: A Practical Approach To Treat Static and Dynamical Correlations in Large Molecules. J Chem Theory Comput 2021; 17:2906-2916. [PMID: 33861603 DOI: 10.1021/acs.jctc.1c00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a practical approach to treat static and dynamical correlation accurately in large multiconfigurational systems. The static correlation is taken into account by using the spin-flip approach, which is well-known for capturing static correlation accurately at low-computational expense. Unlike previous approaches to add dynamical correlation to spin-flip models which use perturbation theory or coupled-cluster theory, we explore the ability to use the on-top pair-density functional theory approaches recently developed by Gagliardi and co-workers (J. Comput. Theor. Chem., 2014, 10, 3669). External relaxations are performed in the spin-flip calculations through a restricted active space framework for which a truncation scheme for the orbitals used in the external excitation is presented. The performance of the approach is demonstrated by computing energy gaps between ground and excited states for diradicals, triradicals, and linear polyacene chains ranging from naphthalene to dodecacene. Accurate results are obtained using the new approach for these challenging open-shell molecular systems.
Collapse
Affiliation(s)
- Oinam Romesh Meitei
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas J Mayhall
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
130
|
Dunning TH, Xu LT, Cooper DL, Karadakov PB. Spin-Coupled Generalized Valence Bond Theory: New Perspect ives on the Electronic Structure of Molecules and Chemical Bonds. J Phys Chem A 2021; 125:2021-2050. [PMID: 33677960 DOI: 10.1021/acs.jpca.0c10472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spin-Coupled Generalized Valence Bond (SCGVB) theory provides the foundation for a comprehensive theory of the electronic structure of molecules. SCGVB theory offers a compelling orbital description of the electronic structure of molecules as well as an efficient and effective zero-order wave function for calculations striving for quantitative predictions of molecular structures, energetics, and other properties. The orbitals in the SCGVB wave function are usually semilocalized, and for most molecules, they can be interpreted using concepts familiar to all chemists (hybrid orbitals, localized bond pairs, lone pairs, etc.). SCGVB theory also provides new perspectives on the nature of the bonds in molecules such as C2, Be2 and SF4/SF6. SCGVB theory contributes unparalleled insights into the underlying cause of the first-row anomaly in inorganic chemistry as well as the electronic structure of organic molecules and the electronic mechanisms of organic reactions. The SCGVB wave function accounts for nondynamical correlation effects and, thus, corrects the most serious deficiency in molecular orbital (RHF) wave functions. Dynamical correlation effects, which are critical for quantitative predictions, can be taken into account using the SCGVB wave function as the zero-order wave function for multireference configuration interaction or coupled cluster calculations.
Collapse
Affiliation(s)
- Thom H Dunning
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Lu T Xu
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David L Cooper
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, U.K
| | | |
Collapse
|
131
|
Buyuktemiz M, Kılıç M, Che Y, Zhao J, Dede Y. When Does Fusing Two Rings Not Yield a Larger Ring? The Curious Case of BOPHY. J Org Chem 2021; 86:4547-4556. [PMID: 33656343 DOI: 10.1021/acs.joc.0c02976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Muhammed Buyuktemiz
- Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar, 06500 Ankara, Turkey
| | - Murat Kılıç
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Yuanyuan Che
- School of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Jianzhang Zhao
- School of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Yavuz Dede
- Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar, 06500 Ankara, Turkey
| |
Collapse
|
132
|
Schieschke N, Bodenstein T, Höfener S. A Fock-operator complete active space self-consistent field (CAS-SCF) method combined with frozen-density embedding. J Chem Phys 2021; 154:084120. [PMID: 33639751 DOI: 10.1063/5.0037088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the implementation of a Fock-operator complete-active space self-consistent field (CAS-SCF) method combined with frozen-density embedding (FDE) into the KOALA quantum-chemistry program. The implementation is based on configuration interaction from an unrestricted reference determinant and is able to treat electronic configurations such as singlet, triplet, or quintet states embedded in a molecular environment. In order to account for possible spin polarization effects, the FDE contribution is extended to the unrestricted case. We assess the convergence obtained with the implementation at the example of a stretched lithium dimer with significant multi-reference character. The efficiency of the implementation enables the orbital optimization for 25 states in a state-average SA[S0-S10,T1-T12,Q1-Q2]-CAS(10,10)-SCF calculation for the retinal molecule using a def2-TZVP basis. The FDE ansatz leads to orbitals localized by definition on the target system, thus facilitating the orbital selection required for CAS methods in complex environments.
Collapse
Affiliation(s)
- Nils Schieschke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tilmann Bodenstein
- Department of Chemistry, University of Oslo, Postboks 1033, Blindern, 0315 Oslo, Norway
| | - Sebastian Höfener
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
133
|
Eriksen JJ, Gauss J. Incremental treatments of the full configuration interaction problem. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jürgen Gauss
- Department Chemie Johannes Gutenberg‐Universität Mainz Mainz Germany
| |
Collapse
|
134
|
Iyer A, Reis RAG, Gannavaram S, Momin M, Spring-Connell AM, Orozco-Gonzalez Y, Agniswamy J, Hamelberg D, Weber IT, Gozem S, Wang S, Germann MW, Gadda G. A Single-Point Mutation in d-Arginine Dehydrogenase Unlocks a Transient Conformational State Resulting in Altered Cofactor Reactivity. Biochemistry 2021; 60:711-724. [PMID: 33630571 DOI: 10.1021/acs.biochem.1c00054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proteins are inherently dynamic, and proper enzyme function relies on conformational flexibility. In this study, we demonstrated how an active site residue changes an enzyme's reactivity by modulating fluctuations between conformational states. Replacement of tyrosine 249 (Y249) with phenylalanine in the active site of the flavin-dependent d-arginine dehydrogenase yielded an enzyme with both an active yellow FAD (Y249F-y) and an inactive chemically modified green FAD, identified as 6-OH-FAD (Y249F-g) through various spectroscopic techniques. Structural investigation of Y249F-g and Y249F-y variants by comparison to the wild-type enzyme showed no differences in the overall protein structure and fold. A closer observation of the active site of the Y249F-y enzyme revealed an alternative conformation for some active site residues and the flavin cofactor. Molecular dynamics simulations probed the alternate conformations observed in the Y249F-y enzyme structure and showed that the enzyme variant with FAD samples a metastable conformational state, not available to the wild-type enzyme. Hybrid quantum/molecular mechanical calculations identified differences in flavin electronics between the wild type and the alternate conformation of the Y249F-y enzyme. The computational studies further indicated that the alternate conformation in the Y249F-y enzyme is responsible for the higher spin density at the C6 atom of flavin, which is consistent with the formation of 6-OH-FAD in the variant enzyme. The observations in this study are consistent with an alternate conformational space that results in fine-tuning the microenvironment around a versatile cofactor playing a critical role in enzyme function.
Collapse
Affiliation(s)
- Archana Iyer
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Renata A G Reis
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Swathi Gannavaram
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Mohamed Momin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | | | | | - Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Irene T Weber
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Siming Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
135
|
Freitag K, Stennett CR, Mansikkamäki A, Fischer RA, Power PP. Two-Coordinate, Nonlinear Vanadium(II) and Chromium(II) Complexes of the Silylamide Ligand–N(SiMePh2)2: Characterization and Confirmation of Orbitally Quenched Magnetic Moments in Complexes with Sub-d5 Electron Configurations. Inorg Chem 2021; 60:4108-4115. [DOI: 10.1021/acs.inorgchem.1c00168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kerstin Freitag
- Inorganic and Metalorganic Chemistry, Technical University Munich, D-85748, Garching, Germany
| | - Cary R. Stennett
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Akseli Mansikkamäki
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, Oulu, FIN-90014, Finland
| | - Roland A. Fischer
- Inorganic and Metalorganic Chemistry, Technical University Munich, D-85748, Garching, Germany
| | - Philip P. Power
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
136
|
Romeo-Gella F, Corral I, Faraji S. Theoretical investigation of a novel xylene-based light-driven unidirectional molecular motor. J Chem Phys 2021; 154:064111. [PMID: 33588536 DOI: 10.1063/5.0038281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this study, the working mechanism of the first light-driven rotary molecular motors used to control an eight-base-pair DNA hairpin has been investigated. In particular, this linker was reported to have promising photophysical properties under physiological conditions, which motivated our work at the quantum mechanical level. Cis-trans isomerization is triggered by photon absorption at wavelengths ranging 300 nm-400 nm, promoting the rotor to the first excited state, and it is mediated by an energy-accessible conical intersection from which the ground state is reached back. The interconversion between the resulting unstable isomer and its stable form occurs at physiological conditions in the ground state and is thermally activated. Here, we compare three theoretical frameworks, generally used in the quantum description of medium-size chemical systems: Linear-Response Time-Dependent Density Functional Theory (LR-TDDFT), Spin-Flip TDDFT (SF-TDDFT), and multistate complete active space second-order perturbation theory on state-averaged complete active space self consistent field wavefunctions (MS-CASPT2//SA-CASSCF). In particular, we show the importance of resorting to a multireference approach to study the rotational cycle of light-driven molecular motors due to the occurrence of geometries described by several configurations. We also assess the accuracy and computational cost of the SF-TDDFT method when compared to MS-CASPT2 and LR-TDDFT.
Collapse
Affiliation(s)
- F Romeo-Gella
- Departamento de Química (Módulo 13, Facultad de Ciencias) and Institute of Advanced Chemical Sciences (IadChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - I Corral
- Departamento de Química (Módulo 13, Facultad de Ciencias) and Institute of Advanced Chemical Sciences (IadChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - S Faraji
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
137
|
Rang M, Fantuzzi F, Arrowsmith M, Krummenacher I, Beck E, Witte R, Matler A, Rempel A, Bischof T, Radacki K, Engels B, Braunschweig H. Reduktion und Umlagerung eines Bor(I)‐Carbonylkomplexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Maximilian Rang
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Felipe Fantuzzi
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Deutschland
| | - Merle Arrowsmith
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Ivo Krummenacher
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Eva Beck
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Robert Witte
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Alexander Matler
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Anna Rempel
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Tobias Bischof
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Krzysztof Radacki
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Deutschland
| | - Holger Braunschweig
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
138
|
Rang M, Fantuzzi F, Arrowsmith M, Krummenacher I, Beck E, Witte R, Matler A, Rempel A, Bischof T, Radacki K, Engels B, Braunschweig H. Reduction and Rearrangement of a Boron(I) Carbonyl Complex. Angew Chem Int Ed Engl 2021; 60:2963-2968. [PMID: 33191596 PMCID: PMC7898892 DOI: 10.1002/anie.202014167] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/21/2022]
Abstract
The one-electron reduction of a cyclic (alkyl)(amino)carbene (CAAC)-stabilized arylborylene carbonyl complex yields a dimeric borylketyl radical anion, resulting from an intramolecular aryl migration to the CO carbon atom. Computational analyses support the existence of a [(CAAC)B(CO)Ar].- radical anion intermediate. Further reduction leads to a highly nucleophilic dianionic (boraneylidene)methanolate.
Collapse
Affiliation(s)
- Maximilian Rang
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Felipe Fantuzzi
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität WürzburgEmil-Fischer-Straße 4297074WürzburgGermany
| | - Merle Arrowsmith
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Eva Beck
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Robert Witte
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexander Matler
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Anna Rempel
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Tobias Bischof
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Krzysztof Radacki
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Bernd Engels
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität WürzburgEmil-Fischer-Straße 4297074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
139
|
Chalupský J, Srnec M, Yanai T. Interpretation of Exchange Interaction through Orbital Entanglement. J Phys Chem Lett 2021; 12:1268-1274. [PMID: 33497240 DOI: 10.1021/acs.jpclett.0c03652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, the analysis of single-orbital entropy and mutual information has been introduced as a tool for the investigation of contributions to the exchange (J) coupling between open-shell metal ions [Stein et al. J. Phys. Chem. Lett. 2019, 10, 6762-6770]. Here, we show that this analysis may lead to an incorrect interpretation of the J-coupling mechanism. Instead, we propose an orbital-entanglement analysis that is based on the two-electron density and that provides a coherent picture of the contributing exchange pathways, which seems fully consistent with the available J values. For this purpose, we used a prototypical bis-μ-oxo binuclear manganese complex ([Mn2O2(NH3)8]4+) and demonstrated that its antiferromagnetism (J < 0), calculated by using the active space composed of all valence pO and dMn orbitals, correlates well with the largest elements in the differential low-spin vs high-spin entanglement map. These elements correspond to interactions between the pairs of dMn orbitals mediated by the oxo-bridging out-of-plane p orbitals, representing the π superexchange pathway. We also show that the reduction of active space to manifold of the singly occupied magnetic orbitals does not lead to discrepancy between the calculated J values and entanglement maps. This contrasts to analysis of mutual information, which suggests the "direct" dMn-dMn interactions to play a dominant role for the J coupling, irrespective of the size of active space as well as of the antiferromagnetism expected. The failure is attributed to the large contribution of spin entanglement contained in the mutual information of the low-spin state, which may be regarded as the origin of the different complexity of its wave function and electron density.
Collapse
Affiliation(s)
- Jakub Chalupský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
140
|
Osella S. Artificial Photosynthesis: Is Computation Ready for the Challenge Ahead? NANOMATERIALS 2021; 11:nano11020299. [PMID: 33498961 PMCID: PMC7911014 DOI: 10.3390/nano11020299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
A tremendous effort is currently devoted to the generation of novel hybrid materials with enhanced electronic properties for the creation of artificial photosynthetic systems. This compelling and challenging problem is well-defined from an experimental point of view, as the design of such materials relies on combining organic materials or metals with biological systems like light harvesting and redox-active proteins. Such hybrid systems can be used, e.g., as bio-sensors, bio-fuel cells, biohybrid photoelectrochemical cells, and nanostructured photoelectronic devices. Despite these efforts, the main bottleneck is the formation of efficient interfaces between the biological and the organic/metal counterparts for efficient electron transfer (ET). It is within this aspect that computation can make the difference and improve the current understanding of the mechanisms underneath the interface formation and the charge transfer efficiency. Yet, the systems considered (i.e., light harvesting protein, self-assembly monolayer and surface assembly) are more and more complex, reaching (and often passing) the limit of current computation power. In this review, recent developments in computational methods for studying complex interfaces for artificial photosynthesis will be provided and selected cases discussed, to assess the inherent ability of computation to leave a mark in this field of research.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| |
Collapse
|
141
|
Abstract
We present a Perspective on what the future holds for full configuration interaction (FCI) theory, with an emphasis on conceptual rather than technical details. Upon revisiting the early history of FCI, a number of its key contemporary approximations are compared on as equal a footing as possible, using a recent blind challenge on the benzene molecule as a testbed [Eriksen et al., J. Phys. Chem. Lett., 2020 11, 8922]. In the process, we review the scope of applications for which FCI continues to prove indispensable, and the required traits in terms of robustness, efficacy, and reliability its modern approximations must satisfy are discussed. We close by conveying a number of general observations on the merits offered by the state-of-the-art alongside some of the challenges still faced to this day. While the field has altogether seen immense progress over the years-the past decade, in particular-it remains clear that our community as a whole has a substantial way to go in enhancing the overall applicability of near-exact electronic structure theory for systems of general composition and increasing size.
Collapse
Affiliation(s)
- Janus J Eriksen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
142
|
Song C, Neaton JB, Martínez TJ. Reduced scaling formulation of CASPT2 analytical gradients using the supporting subspace method. J Chem Phys 2021; 154:014103. [PMID: 33412861 DOI: 10.1063/5.0035233] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a reduced scaling and exact reformulation of state specific complete active space second-order perturbation (CASPT2) analytical gradients in terms of the MP2 and Fock derivatives using the supporting subspace method. This work follows naturally from the supporting subspace formulation of the CASPT2 energy in terms of the MP2 energy using dressed orbitals and Fock builds. For a given active space configuration, the terms corresponding to the MP2-gradient can be evaluated with O(N5) operations, while the rest of the calculations can be computed with O(N3) operations using Fock builds, Fock gradients, and linear algebra. When tensor-hyper-contraction is applied simultaneously, the computational cost can be further reduced to O(N4) for a fixed active space size. The new formulation enables efficient implementation of CASPT2 analytical gradients by leveraging the existing graphical processing unit (GPU)-based MP2 and Fock routines. We present benchmark results that demonstrate the accuracy and performance of the new method. Example applications of the new method in ab initio molecular dynamics simulation and constrained geometry optimization are given.
Collapse
Affiliation(s)
- Chenchen Song
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| | - Jeffrey B Neaton
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
143
|
Tóth Z, Pulay P. Comparison of Methods for Active Orbital Selection in Multiconfigurational Calculations. J Chem Theory Comput 2020; 16:7328-7341. [PMID: 33170653 PMCID: PMC7726099 DOI: 10.1021/acs.jctc.0c00123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several methods of constructing the active orbital space for multiconfigurational wave functions are compared on typical moderately strongly or strongly correlated ground-state molecules. The relative merits of these methods and problems inherent in multiconfigurational calculations are discussed. Strong correlation in the ground electronic state is found typically in larger conjugated and in antiaromatic systems, transition states which involve bond breaking or formation, and transition metal complexes. Our examples include polyenes, polyacenes, the reactant, product and transition state of the Bergman cyclization, and two transition metal complexes: Hieber's anion [(CO)3FeNO]- and ferrocene. For the systems investigated, the simplest and oldest selection method, based on the fractional occupancy of unrestricted Hartree-Fock natural orbitals (the UNO criterion), yields the same active space as much more expensive approximate full CI methods. A disadvantage of this method used to be the difficulty of finding broken spin symmetry UHF solutions. However, our analytical method, accurate to fourth order in the orbital rotation angles (Tóth and Pulay J. Chem. Phys. 2016, 145, 164102.), has solved this problem. Two further advantages of the UNO criterion are that, unlike most other methods, it measures not only the energetic proximity to the Fermi level but also the magnitude of the exchange interaction with strongly occupied orbitals and therefore allows the estimation of the correlation strength for orbital selection in Restricted Active Space methods.
Collapse
Affiliation(s)
- Zsuzsanna Tóth
- Department of Chemistry and Biochemistry, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Center for Applied Mathematics (CERMICS), Ecole des Ponts ParisTech, Champs sur Marne, 77455 France
| | - Peter Pulay
- Department of Chemistry and Biochemistry, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
144
|
Bao JJ, Zhou C, Truhlar DG. Compressed-State Multistate Pair-Density Functional Theory. J Chem Theory Comput 2020; 16:7444-7452. [PMID: 33141587 DOI: 10.1021/acs.jctc.0c00908] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Multiconfiguration pair-density functional theory (MC-PDFT) is a multireference method that can be used to calculate excited states. However, MC-PDFT potential energy surfaces have the wrong topology at conical intersections because the last step of MC-PDFT is not a diagonalization of a model-space Hamiltonian matrix, as done in, for example, multistate second-order perturbation theory (MS-CASPT2). We have previously proposed methods that solve this problem by diagonalizing a model-space effective Hamiltonian matrix, where the diagonal elements are MC-PDFT energies for intermediate states, and the off-diagonal elements are evaluated by wave function theory. One previous method is called variational multistate PDFT (VMS-PDFT), whose intermediate states maximize the trace of the effective Hamiltonian, namely, the sum of the MC-PDFT energies of the model-space states; the VMS-PDFT is very robust but is more computationally expensive than another method, extended multistate PDFT (XMS-PDFT), in which the transformation to intermediate states is accomplished without needing any density functional evaluations. However, although VMS-PDFT was accurate in all cases tested, XMS-PDFT was accurate in only some of them. In the present paper, we propose a new method, called compressed-state multistate PDFT (CMS-PDFT), that is as efficient as XMS-PDFT and as accurate as VMS-PDFT. The new method maximizes the trace of the classical Coulomb energy of the intermediate states such that the electron densities of the intermediate states are compressed. We show that CMS-PDFT performs robustly even where XMS-PDFT fails.
Collapse
Affiliation(s)
- Jie J Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Chen Zhou
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
145
|
Bhanja A, Schulze M, Herchel R, Moreno-Pineda E, Wernsdorfer W, Ray D. Selective Coordination of Self-Assembled Hexanuclear [Ni4Ln2] and [Ni2Mn2Ln2] (Ln = DyIII, TbIII, and HoIII) Complexes: Stepwise Synthesis, Structures, and Magnetic Properties. Inorg Chem 2020; 59:17929-17944. [DOI: 10.1021/acs.inorgchem.0c02148] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Avik Bhanja
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Michael Schulze
- Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe D-76131, Germany
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17 Listopadu 12, Olomouc CZ-77146, Czech Republic
| | - Eufemio Moreno-Pineda
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
- Departamento de Química-Física, Escuela de Química, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá City 0801, Panamá
| | - Wolfgang Wernsdorfer
- Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe D-76131, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
- Institut Néel, Centre national de la recherche scientifique, Grenoble F-38042, France
| | - Debashis Ray
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
146
|
Eriksen JJ, Gauss J. Ground and excited state first-order properties in many-body expanded full configuration interaction theory. J Chem Phys 2020; 153:154107. [DOI: 10.1063/5.0024791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Janus J. Eriksen
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
147
|
Jacovella U, Scholz MS, Bieske EJ. Electronic Spectrum of the Tropylium Cation in the Gas Phase. J Phys Chem Lett 2020; 11:8867-8872. [PMID: 32990444 DOI: 10.1021/acs.jpclett.0c02430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The structure and properties of the tropylium cation (C7H7+) have enthralled chemists since the prediction by Hückel in 1931 of the remarkable stability for cyclic, aromatic molecules containing six π-electrons. However, probing and understanding the excited electronic states of the isolated tropylium cation have proved challenging, as the accessible electronic transitions are weak, and there are difficulties in creating appreciable populations of the tropylium cation in the gas phase. Here, we present the first gas-phase S1 ←S0 electronic spectrum of the tropylium cation, recorded by resonance-enhanced photodissociation of weakly bound tropylium-Ar complexes. We demonstrate that the intensity of the symmetry-forbidden S1 ←S0 transition arises from Herzberg-Teller vibronic coupling between the S1 and S2 electronic states mediated by vibrational modes of e2' and e3' symmetry. The main geometry change upon excitation involves elongation of the C-C bonds. Multiconfigurational ab initio calculations predict that the S1 excited state is affected by the dynamical Jahn-Teller effect, which should lead to the appearance of additional weak bands that may be apparent in higher-resolution electronic spectra.
Collapse
Affiliation(s)
- Ugo Jacovella
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Michael S Scholz
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Evan J Bieske
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
148
|
Xu LT, Dunning TH. A cautionary tale: Problems in the valence-CASSCF description of the ground state (X1Σ+) of BF. J Chem Phys 2020; 153:114113. [DOI: 10.1063/5.0024134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Lu T. Xu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Thom H. Dunning
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
149
|
O’Hearn KA, Swift MW, Liu J, Magoulas I, Piecuch P, van Duin ACT, Aktulga HM, Qi Y. Optimization of the Reax force field for the lithium–oxygen system using a high fidelity charge model. J Chem Phys 2020; 153:084107. [DOI: 10.1063/5.0014406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Kurt A. O’Hearn
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael W. Swift
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jialin Liu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ilias Magoulas
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Adri C. T. van Duin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - H. Metin Aktulga
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yue Qi
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
150
|
Hapka M, Pernal K, Gritsenko OV. Local Enhancement of Dynamic Correlation in Excited States: Fresh Perspective on Ionicity and Development of Correlation Density Functional Approximation Based on the On-Top Pair Density. J Phys Chem Lett 2020; 11:5883-5889. [PMID: 32589027 PMCID: PMC7467739 DOI: 10.1021/acs.jpclett.0c01616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
We discuss the interplay between the nondynamic and dynamic electron correlation in excited states from the perspective of the suppression of dynamic correlation (SDC) and enhancement of dynamic correlation (EDC) effects. We reveal that there exists a connection between the ionic character of a wave function and EDC. Following this finding we introduce a quantitative measure of ionicity based solely on local functions without referring to valence bond models. The ability to recognize both the SDC and EDC regions underlies the presented method, named CASΠDFT, combining complete active space (CAS) wave function and density functional theory (DFT) via the on-top pair density (Π) function. We extend this approach to excited states by devising an improved representation of the EDC effect in the correlation functional. The generalized CASΠDFT uses different DFT functionals for ground and excited states. Numerical demonstration for singlet π → π* excitations shows that CASΠDFT offers satisfactory accuracy at a fraction of the cost of the ab initio approaches.
Collapse
Affiliation(s)
- Michał Hapka
- Institute
of Physics, Lodz University of Technology, PL-90-924 Lodz, Poland
- Faculty
of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Oleg V. Gritsenko
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
- Section
Theoretical Chemistry, VU University, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|