101
|
Nih LR, Moshayedi P, Llorente IL, Berg AR, Cinkornpumin J, Lowry WE, Segura T, Carmichael ST. Engineered HA hydrogel for stem cell transplantation in the brain: Biocompatibility data using a design of experiment approach. Data Brief 2016; 10:202-209. [PMID: 27995155 PMCID: PMC5154973 DOI: 10.1016/j.dib.2016.11.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/20/2016] [Accepted: 11/17/2016] [Indexed: 12/02/2022] Open
Abstract
This article presents data related to the research article “Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain” (P. Moshayedi, L.R. Nih, I.L. Llorente, A.R. Berg, J. Cinkornpumin, W.E. Lowry et al., 2016) [1] and focuses on the biocompatibility aspects of the hydrogel, including its stiffness and the inflammatory response of the transplanted organ. We have developed an injectable hyaluronic acid (HA)-based hydrogel for stem cell culture and transplantation, to promote brain tissue repair after stroke. This 3D biomaterial was engineered to bind bioactive signals such as adhesive motifs, as well as releasing growth factors while supporting cell growth and tissue infiltration. We used a Design of Experiment approach to create a complex matrix environment in vitro by keeping the hydrogel platform and cell type constant across conditions while systematically varying peptide motifs and growth factors. The optimized HA hydrogel promoted survival of encapsulated human induced pluripotent stem cell derived-neural progenitor cells (iPS-NPCs) after transplantation into the stroke cavity and differentially tuned transplanted cell fate through the promotion of glial, neuronal or immature/progenitor states. The highlights of this article include: (1) Data of cell and bioactive signals addition on the hydrogel mechanical properties and growth factor diffusion, (2) the use of a design of Experiment (DOE) approach (M.W. 2 Weible and T. Chan-Ling, 2007) [2] to select multi-factorial experimental conditions, and (3) Inflammatory response and cell survival after transplantation.
Collapse
Affiliation(s)
- Lina R. Nih
- Department of Chemical and Biomolecular Engineering, University of California, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Pouria Moshayedi
- Department of Neurology, David Geffen School of Medicine, University of California, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Irene L. Llorente
- Department of Neurology, David Geffen School of Medicine, University of California, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Andrew R. Berg
- Department of Neurology, David Geffen School of Medicine, University of California, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Jessica Cinkornpumin
- Department of Molecular Cell and Developmental Biology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - William E. Lowry
- Department of Molecular Cell and Developmental Biology, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - S. Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California, 635 Charles Young Drive, Los Angeles, CA 90095, USA
- Corresponding authors.
| |
Collapse
|
102
|
|
103
|
Knopf-Marques H, Pravda M, Wolfova L, Velebny V, Schaaf P, Vrana NE, Lavalle P. Hyaluronic Acid and Its Derivatives in Coating and Delivery Systems: Applications in Tissue Engineering, Regenerative Medicine and Immunomodulation. Adv Healthc Mater 2016; 5:2841-2855. [PMID: 27709832 DOI: 10.1002/adhm.201600316] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/11/2016] [Indexed: 12/28/2022]
Abstract
As an Extracellular Matrix (ECM) component, Hyaluronic acid (HA) plays a multi-faceted role in cell migration, proliferation and differentiation at micro level and system level events such as tissue water homeostasis. Among its biological functions, it is known to interact with cytokines and contribute to their retention in ECM microenvironment. In addition to its biological functions, it has advantageous physical properties which result in the industrial endeavors in the synthesis and extraction of HA for variety of applications ranging from medical to cosmetic. Recently, HA and its derivatives have been the focus of active research for applications in biomedical device coatings, drug delivery systems and in the form of scaffolds or cell-laden hydrogels for tissue engineering. A specific reason for the increase in use of HA based structures is their immunomodulatory and regeneration inducing capacities. In this context, this article reviews recent literature on modulation of the implantable biomaterial microenvironment by systems based on HA and its derivatives, particularly hydrogels and microscale coatings that are able to deliver cytokines in order to reduce the adverse immune reactions and promote tissue healing.
Collapse
Affiliation(s)
- Helena Knopf-Marques
- Inserm UMR 1121; 11 rue Humann 67085 Strasbourg France
- Faculté de Chirurgie Dentaire; Université de Strasbourg; 3 rue Sainte Elisabeth 67000 Strasbourg France
| | - Martin Pravda
- Contipro Biotech S. R. O; Dolni Dobrouc 401 561 02 Dolni Dobrouc Czech Republic
| | - Lucie Wolfova
- Contipro Biotech S. R. O; Dolni Dobrouc 401 561 02 Dolni Dobrouc Czech Republic
| | - Vladimir Velebny
- Contipro Biotech S. R. O; Dolni Dobrouc 401 561 02 Dolni Dobrouc Czech Republic
| | - Pierre Schaaf
- Inserm UMR 1121; 11 rue Humann 67085 Strasbourg France
- Faculté de Chirurgie Dentaire; Université de Strasbourg; 3 rue Sainte Elisabeth 67000 Strasbourg France
- Institut Charles Sadron; CNRS UPR 22; 23 rue du Lœss 67034 Strasbourg France
| | - Nihal Engin Vrana
- Inserm UMR 1121; 11 rue Humann 67085 Strasbourg France
- Protip Medical; 8 Place de l'Hôpital 67000 Strasbourg France
| | - Philippe Lavalle
- Inserm UMR 1121; 11 rue Humann 67085 Strasbourg France
- Faculté de Chirurgie Dentaire; Université de Strasbourg; 3 rue Sainte Elisabeth 67000 Strasbourg France
| |
Collapse
|
104
|
Thambi T, Phan VHG, Lee DS. Stimuli-Sensitive Injectable Hydrogels Based on Polysaccharides and Their Biomedical Applications. Macromol Rapid Commun 2016; 37:1881-1896. [DOI: 10.1002/marc.201600371] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/16/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Thavasyappan Thambi
- School of Chemical Engineering; Theranostic Macromolecules Research Center; Sungkyunkwan University; Suwon Republic of Korea
| | - V. H. Giang Phan
- School of Chemical Engineering; Theranostic Macromolecules Research Center; Sungkyunkwan University; Suwon Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering; Theranostic Macromolecules Research Center; Sungkyunkwan University; Suwon Republic of Korea
| |
Collapse
|
105
|
Arulmoli J, Wright HJ, Phan DTT, Sheth U, Que RA, Botten GA, Keating M, Botvinick EL, Pathak MM, Zarembinski TI, Yanni DS, Razorenova OV, Hughes CCW, Flanagan LA. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater 2016; 43:122-138. [PMID: 27475528 PMCID: PMC5386322 DOI: 10.1016/j.actbio.2016.07.043] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/29/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED Human neural stem/progenitor cells (hNSPCs) are good candidates for treating central nervous system (CNS) trauma since they secrete beneficial trophic factors and differentiate into mature CNS cells; however, many cells die after transplantation. This cell death can be ameliorated by inclusion of a biomaterial scaffold, making identification of optimal scaffolds for hNSPCs a critical research focus. We investigated the properties of fibrin-based scaffolds and their effects on hNSPCs and found that fibrin generated from salmon fibrinogen and thrombin stimulates greater hNSPC proliferation than mammalian fibrin. Fibrin scaffolds degrade over the course of a few days in vivo, so we sought to develop a novel scaffold that would retain the beneficial properties of fibrin but degrade more slowly to provide longer support for hNSPCs. We found combination scaffolds of salmon fibrin with interpenetrating networks (IPNs) of hyaluronic acid (HA) with and without laminin polymerize more effectively than fibrin alone and generate compliant hydrogels matching the physical properties of brain tissue. Furthermore, combination scaffolds support hNSPC proliferation and differentiation while significantly attenuating the cell-mediated degradation seen with fibrin alone. HNSPCs express two fibrinogen-binding integrins, αVβ1 and α5β1, and several laminin binding integrins (α7β1, α6β1, α3β1) that can mediate interaction with the scaffold. Lastly, to test the ability of scaffolds to support vascularization, we analyzed human cord blood-derived endothelial cells alone and in co-culture with hNSPCs and found enhanced vessel formation and complexity in co-cultures within combination scaffolds. Overall, combination scaffolds of fibrin, HA, and laminin are excellent biomaterials for hNSPCs. STATEMENT OF SIGNIFICANCE Interest has increased recently in the development of biomaterials as neural stem cell transplantation scaffolds to treat central nervous system (CNS) injury since scaffolds improve survival and integration of transplanted cells. We report here on a novel combination scaffold composed of fibrin, hyaluronic acid, and laminin to support human neural stem/progenitor cell (hNSPC) function. This combined biomaterial scaffold has appropriate physical properties for hNSPCs and the CNS, supports hNSPC proliferation and differentiation, and attenuates rapid cell-mediated scaffold degradation. The hNSPCs and scaffold components synergistically encourage new vessel formation from human endothelial cells. This work marks the first report of a combination scaffold supporting human neural and vascular cells to encourage vasculogenesis, and sets a benchmark for biomaterials to treat CNS injury.
Collapse
Affiliation(s)
- Janahan Arulmoli
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Heather J Wright
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Duc T T Phan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Urmi Sheth
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Richard A Que
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Giovanni A Botten
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark Keating
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA
| | - Medha M Pathak
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Daniel S Yanni
- Disc Comfort, Inc., 351 Hospital Road, Suite 202, Newport Beach, CA 92663, USA
| | - Olga V Razorenova
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher C W Hughes
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA
| | - Lisa A Flanagan
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
106
|
Freudenberg U, Liang Y, Kiick KL, Werner C. Glycosaminoglycan-Based Biohybrid Hydrogels: A Sweet and Smart Choice for Multifunctional Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8861-8891. [PMID: 27461855 PMCID: PMC5152626 DOI: 10.1002/adma.201601908] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/30/2016] [Indexed: 05/12/2023]
Abstract
Glycosaminoglycans (GAGs) govern important functional characteristics of the extracellular matrix (ECM) in living tissues. Incorporation of GAGs into biomaterials opens up new routes for the presentation of signaling molecules, providing control over development, homeostasis, inflammation, and tumor formation and progression. Recent approaches to GAG-based materials are reviewed, highlighting the formation of modular, tunable biohybrid hydrogels by covalent and non-covalent conjugation schemes, including both theory-driven design concepts and advanced processing technologies. Examples of the application of the resulting materials in biomedical studies are provided. For perspective, solid-phase and chemoenzymatic oligosaccharide synthesis methods for GAG-derived motifs, rational and high-throughput design strategies for GAG-based materials, and the utilization of the factor-scavenging characteristics of GAGs are highlighted.
Collapse
Affiliation(s)
- Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| | - Yingkai Liang
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States,
| | - Kristi L. Kiick
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States and Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19716, United States
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
107
|
Muir KW. Clinical trial design for stem cell therapies in stroke: What have we learned? Neurochem Int 2016; 106:108-113. [PMID: 27623094 DOI: 10.1016/j.neuint.2016.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 01/01/2023]
Abstract
Stem cells of various sources have been investigated in a series of small, safety and feasibility-focused studies over the past 15 years. Understanding of mechanisms of action has evolved and the trial paradigms have become focused on two different approaches - one being an early subacute delivery of cells to reduce acute tissue injury and modify the tissue environment in a direction favourable to reparative processes (for example by being anti-inflammatory, anti-apoptotic, and encouraging endogenous stem cell mobilisation); the other exploring later delivery of cells during the recovery phase after stroke to modulate the local environment in favour of angiogenesis and neurogenesis. The former approach has generally investigated intravenous or intra-arterial delivery of cells with an expected paracrine mode of action and no expected engraftment within the brain. The latter has explored direct intracerebral implantation adjacent to the infarct. Several relevant trials have been conducted, including two controlled trials of intravenously delivered bone marrow-derived cells in the early subacute stage, and two small single-arm phase 1 trials of intracerebrally implanted cells. The findings of these studies and their implications for future trial design are considered.
Collapse
Affiliation(s)
- Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK.
| |
Collapse
|
108
|
Marquardt LM, Heilshorn SC. Design of Injectable Materials to Improve Stem Cell Transplantation. CURRENT STEM CELL REPORTS 2016; 2:207-220. [PMID: 28868235 PMCID: PMC5576562 DOI: 10.1007/s40778-016-0058-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cell-based therapies are steadily gaining traction for regenerative medicine approaches to treating disease and injury throughout the body. While a significant body of work has shown success in preclinical studies, results often fail to translate in clinical settings. One potential cause is the massive transplanted cell death that occurs post injection, preventing functional integration with host tissue. Therefore, current research is focusing on developing injectable hydrogel materials to protect cells during delivery and to stimulate endogenous regeneration through interactions of transplanted cells and host tissue. This review explores the design of targeted injectable hydrogel systems for improving the therapeutic potential of stem cells across a variety of tissue engineering applications with a focus on hydrogel materials that have progressed to the stage of preclinical testing.
Collapse
Affiliation(s)
- Laura M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
109
|
Fiorini F, Prasetyanto EA, Taraballi F, Pandolfi L, Monroy F, López-Montero I, Tasciotti E, De Cola L. Nanocomposite Hydrogels as Platform for Cells Growth, Proliferation, and Chemotaxis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4881-4893. [PMID: 27364463 DOI: 10.1002/smll.201601017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/29/2016] [Indexed: 05/24/2023]
Abstract
The challenge of mimicking the extracellular matrix with artificial scaffolds that are able to reduce immunoresponse is still unmet. Recent findings have shown that mesenchymal stem cells (MSC) infiltrating into the implanted scaffold have effects on the implant integration by improving the healing process. Toward this aim, a novel polyamidoamine-based nanocomposite hydrogel is synthesized, cross-linked with porous nanomaterials (i.e., mesoporous silica nanoparticles), able to release chemokine proteins. A comprehensive viscoelasticity study confirms that the hydrogel provides optimal structural support for MSC infiltration and proliferation. The efficiency of this hydrogel, containing the chemoattractant stromal cell-derived factor 1α (SDF-1α), in promoting MSC migration in vitro is demonstrated. Finally, subcutaneous implantation of SDF-1α-releasing hydrogels in mice results in a modulation of the inflammatory reaction. Overall, the proposed SDF-1α-nanocomposite hydrogel proves to have potential for applications in tissue engineering.
Collapse
Affiliation(s)
- Federica Fiorini
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 rue Gaspard Monge, 67000, Strasbourg, France
| | - Eko Adi Prasetyanto
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 rue Gaspard Monge, 67000, Strasbourg, France
| | - Francesca Taraballi
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Laura Pandolfi
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- College of Materials Science and Engineering, University of Chinese Academy of Science, 19A Yuquanlu, Beijing, 100049, China
| | - Francisco Monroy
- Departamento de Química Física I Universidad Complutense, Ciudad Universitaria s/n, 28040, Madrid, Spain
- Instituto de Investigacion Hospital 12 de Octubre (i+12), Avda. de Cordoba s/n, 28041, Madrid, Spain
| | - Iván López-Montero
- Departamento de Química Física I Universidad Complutense, Ciudad Universitaria s/n, 28040, Madrid, Spain
- Instituto de Investigacion Hospital 12 de Octubre (i+12), Avda. de Cordoba s/n, 28041, Madrid, Spain
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Luisa De Cola
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 rue Gaspard Monge, 67000, Strasbourg, France.
| |
Collapse
|
110
|
Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials 2016; 105:145-155. [PMID: 27521617 DOI: 10.1016/j.biomaterials.2016.07.028] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/15/2016] [Accepted: 07/23/2016] [Indexed: 12/16/2022]
Abstract
Stem cell therapies have shown promise in promoting recovery in stroke but have been limited by poor cell survival and differentiation. We have developed a hyaluronic acid (HA)-based self-polymerizing hydrogel that serves as a platform for adhesion of structural motifs and a depot release for growth factors to promote transplant stem cell survival and differentiation. We took an iterative approach in optimizing the complex combination of mechanical, biochemical and biological properties of an HA cell scaffold. First, we optimized stiffness for a minimal reaction of adjacent brain to the transplant. Next hydrogel crosslinkers sensitive to matrix metalloproteinases (MMP) were incorporated as they promoted vascularization. Finally, candidate adhesion motifs and growth factors were systemically changed in vitro using a design of experiment approach to optimize stem cell survival or proliferation. The optimized HA hydrogel, tested in vivo, promoted survival of encapsulated human neural progenitor cells (iPS-NPCs) after transplantation into the stroke core and differentially tuned transplanted cell fate through the promotion of glial, neuronal or immature/progenitor states. This HA hydrogel can be tracked in vivo with MRI. A hydrogel can serve as a therapeutic adjunct in a stem cell therapy through selective control of stem cell survival and differentiation in vivo.
Collapse
|
111
|
Gervois P, Wolfs E, Ratajczak J, Dillen Y, Vangansewinkel T, Hilkens P, Bronckaers A, Lambrichts I, Struys T. Stem Cell-Based Therapies for Ischemic Stroke: Preclinical Results and the Potential of Imaging-Assisted Evaluation of Donor Cell Fate and Mechanisms of Brain Regeneration. Med Res Rev 2016; 36:1080-1126. [DOI: 10.1002/med.21400] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/27/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Pascal Gervois
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Esther Wolfs
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Jessica Ratajczak
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Yörg Dillen
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Tim Vangansewinkel
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Petra Hilkens
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Annelies Bronckaers
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Ivo Lambrichts
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Tom Struys
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| |
Collapse
|
112
|
Tsou YH, Khoneisser J, Huang PC, Xu X. Hydrogel as a bioactive material to regulate stem cell fate. Bioact Mater 2016; 1:39-55. [PMID: 29744394 PMCID: PMC5883979 DOI: 10.1016/j.bioactmat.2016.05.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 02/08/2023] Open
Abstract
The encapsulation of stem cells in a hydrogel substrate provides a promising future in biomedical applications. However, communications between hydrogels and stem cells is complicated; various factors such as porosity, different polymer types, stiffness, compatibility and degradation will lead to stem cell survival or death. Hydrogels mimic the three-dimensional extracellular matrix to provide a friendly environment for stem cells. On the other hand, stem cells can sense the surroundings to make the next progression, stretching out, proliferating or just to remain. As such, understanding the correlation between stem cells and hydrogels is crucial. In this Review, we first discuss the varying types of the hydrogels and stem cells, which are most commonly used in the biomedical fields and further investigate how hydrogels interact with stem cells from the perspective of their biomedical application, while providing insights into the design and development of hydrogels for drug delivery, tissue engineering and regenerative medicine purpose. In addition, we compare the results such as stiffness, degradation time and pore size as well as peptide types of hydrogels from respected journals. We also discussed most recently magnificent materials and their effects to regulate stem cell fate. Hydrogels as Extracellular Matrix (ECM) mimics stem cells proliferation and differentiation. Discuss how hydrogels interact with stem cells from the perspective of their biomedical applications. Recent magnificent materials and their effects to regulate stem cells fate.
Collapse
Affiliation(s)
- Yung-Hao Tsou
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Joe Khoneisser
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Ping-Chun Huang
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Xiaoyang Xu
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
113
|
Hydrogels for brain repair after stroke: an emerging treatment option. Curr Opin Biotechnol 2016; 40:155-163. [PMID: 27162093 DOI: 10.1016/j.copbio.2016.04.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/02/2016] [Accepted: 04/20/2016] [Indexed: 12/23/2022]
Abstract
Stroke disability is the only major disease without an effective treatment. The substantial clinical burden of stroke in disabled survivors and the lack of a medical therapy that promotes recovery provide an opportunity to explore the use of biomaterials to promote brain repair after stroke. Hydrogels can be injected as a liquid and solidify in situ to form a gelatinous solid with similar mechanical properties to the brain. These biomaterials have been recently explored to generate pro-repair environments within the damaged organ. This review highlights the clinical problem of stroke treatment and discusses recent advances in using in situ forming hydrogels for brain repair.
Collapse
|
114
|
Park HJ, Jin Y, Shin J, Yang K, Lee C, Yang HS, Cho SW. Catechol-Functionalized Hyaluronic Acid Hydrogels Enhance Angiogenesis and Osteogenesis of Human Adipose-Derived Stem Cells in Critical Tissue Defects. Biomacromolecules 2016; 17:1939-48. [PMID: 27112904 DOI: 10.1021/acs.biomac.5b01670] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the last few decades, stem cell therapies have been highlighted for their potential to heal damaged tissue and aid in tissue reconstruction. However, materials used to deliver and support implanted cells often display limited efficacy, which has resulted in delaying translation of stem cell therapies into the clinic. In our previous work, we developed a mussel-inspired, catechol-functionalized hyaluronic acid (HA-CA) hydrogel that enabled effective cell transplantation due to its improved biocompatibility and strong tissue adhesiveness. The present study was performed to further expand the utility of HA-CA hydrogels for use in stem cell therapies to treat more clinically relevant tissue defect models. Specifically, we utilized HA-CA hydrogels to potentiate stem cell-mediated angiogenesis and osteogenesis in two tissue defect models: critical limb ischemia and critical-sized calvarial bone defect. HA-CA hydrogels were found to be less cytotoxic to human adipose-derived stem cells (hADSCs) in vitro compared to conventional photopolymerized HA hydrogels. HA-CA hydrogels also retained the angiogenic functionality of hADSCs and supported osteogenic differentiation of hADSCs. Because of their superior tissue adhesiveness, HA-CA hydrogels were able to mediate efficient engraftment of hADSCs into the defect regions. When compared to photopolymerized HA hydrogels, HA-CA hydrogels significantly enhanced hADSC-mediated therapeutic angiogenesis (promoted capillary/arteriole formation, improved vascular perfusion, attenuated ischemic muscle degeneration/fibrosis, and reduced limb amputation) and bone reconstruction (mineralized bone formation, enhanced osteogenic marker expression, and collagen deposition). This study proves the feasibility of using bioinspired HA-CA hydrogels as functional biomaterials for improved tissue regeneration in critical tissue defects.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea
| | - Yoonhee Jin
- Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea
| | - Jisoo Shin
- Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea
| | - Kisuk Yang
- Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea
| | - Changhyun Lee
- Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea.,Department of Neurosurgery, Yonsei University College of Medicine , Seoul 120-752, Republic of Korea
| |
Collapse
|
115
|
Biomaterial Applications in Cell-Based Therapy in Experimental Stroke. Stem Cells Int 2016; 2016:6810562. [PMID: 27274738 PMCID: PMC4870368 DOI: 10.1155/2016/6810562] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/11/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
Stroke is an important health issue corresponding to the second cause of mortality and first cause of severe disability with no effective treatments after the first hours of onset. Regenerative approaches such as cell therapy provide an increase in endogenous brain structural plasticity but they are not enough to promote a complete recovery. Tissue engineering has recently aroused a major interesting development of biomaterials for use into the central nervous system. Many biomaterials have been engineered based on natural compounds, synthetic compounds, or a mix of both with the aim of providing polymers with specific properties. The mechanical properties of biomaterials can be exquisitely regulated forming polymers with different stiffness, modifiable physical state that polymerizes in situ, or small particles encapsulating cells or growth factors. The choice of biomaterial compounds should be adapted for the different applications, structure target, and delay of administration. Biocompatibilities with embedded cells and with the host tissue and biodegradation rate must be considerate. In this paper, we review the different applications of biomaterials combined with cell therapy in ischemic stroke and we explore specific features such as choice of biomaterial compounds and physical and mechanical properties concerning the recent studies in experimental stroke.
Collapse
|
116
|
Bagalkot V, Deiuliis JA, Rajagopalan S, Maiseyeu A. "Eat me" imaging and therapy. Adv Drug Deliv Rev 2016; 99:2-11. [PMID: 26826436 PMCID: PMC4865253 DOI: 10.1016/j.addr.2016.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/07/2016] [Accepted: 01/18/2016] [Indexed: 12/17/2022]
Abstract
Clearance of apoptotic debris is a vital role of the innate immune system. Drawing upon principles of apoptotic clearance, convenient delivery vehicles including intrinsic anti-inflammatory characteristics and specificity to immune cells can be engineered to aid in drug delivery. In this article, we examine the use of phosphatidylserine (PtdSer), the well-known "eat-me" signal, in nanoparticle-based therapeutics making them highly desirable "meals" for phagocytic immune cells. Use of PtdSer facilitates engulfment of nanoparticles allowing for imaging and therapy in various pathologies and may result in immunomodulation. Furthermore, we discuss the targeting of the macrophages and other cells at sites of inflammation in disease. A thorough understanding of the immunobiology of "eat-me" signals is requisite for the successful application of "eat-me"-bearing materials in biomedical applications.
Collapse
Affiliation(s)
- Vaishali Bagalkot
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Jeffrey A Deiuliis
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Andrei Maiseyeu
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States.
| |
Collapse
|
117
|
Shafiq M, Jung Y, Kim SH. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials 2016; 90:85-115. [PMID: 27016619 DOI: 10.1016/j.biomaterials.2016.03.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 12/13/2022]
Abstract
Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Youngmee Jung
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Soo Hyun Kim
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
118
|
Jha AK, Tharp KM, Browne S, Ye J, Stahl A, Yeghiazarians Y, Healy KE. Matrix metalloproteinase-13 mediated degradation of hyaluronic acid-based matrices orchestrates stem cell engraftment through vascular integration. Biomaterials 2016; 89:136-47. [PMID: 26967648 DOI: 10.1016/j.biomaterials.2016.02.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
Abstract
A critical design parameter for the function of synthetic extracellular matrices is to synchronize the gradual cell-mediated degradation of the matrix with the endogenous secretion of natural extracellular matrix (ECM) (e.g., creeping substitution). In hyaluronic acid (HyA)-based hydrogel matrices, we have investigated the effects of peptide crosslinkers with different matrix metalloproteinases (MMP) sensitivities on network degradation and neovascularization in vivo. The HyA hydrogel matrices consisted of cell adhesive peptides, heparin for both the presentation of exogenous and sequestration of endogenously synthesized growth factors, and MMP cleavable peptide linkages (i.e., QPQGLAK, GPLGMHGK, and GPLGLSLGK). Sca1(+)/CD45(-)/CD34(+)/CD44(+) cardiac progenitor cells (CPCs) cultured in the matrices with the slowly degradable QPQGLAK hydrogels supported the highest production of MMP-2, MMP-9, MMP-13, VEGF165, and a range of angiogenesis related proteins. Hydrogels with QPQGLAK crosslinks supported prolonged retention of these proteins via heparin within the matrix, stimulating rapid vascular development, and anastomosis with the host vasculature when implanted in the murine hindlimb.
Collapse
Affiliation(s)
- Amit K Jha
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Material Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Kevin M Tharp
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Shane Browne
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Material Science and Engineering, University of California, Berkeley, CA 94720, USA; Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Ireland
| | - Jianqin Ye
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Andreas Stahl
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Yerem Yeghiazarians
- Department of Medicine, University of California, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Material Science and Engineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
119
|
Highley CB, Prestwich GD, Burdick JA. Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr Opin Biotechnol 2016; 40:35-40. [PMID: 26930175 DOI: 10.1016/j.copbio.2016.02.008] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
Hyaluronic acid (HA) is widely used in the design of engineered hydrogels, due to its biofunctionality, as well as numerous sites for modification with reactive groups. There are now widespread examples of modified HA macromers that form either covalent or physical hydrogels through crosslinking reactions such as with click chemistry or supramolecular assemblies of guest-host pairs. HA hydrogels range from relatively static matrices to those that exhibit spatiotemporally dynamic properties through external triggers like light. Such hydrogels are being explored for the culture of cells in vitro, as carriers for cells in vivo, or to deliver therapeutics, including in an environmentally responsive manner. The future will bring new examples of HA hydrogels due to the synthetic diversity of HA.
Collapse
Affiliation(s)
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
120
|
Spector M, Lim TC. Injectable biomaterials: a perspective on the next wave of injectable therapeutics. ACTA ACUST UNITED AC 2016; 11:014110. [PMID: 26836246 DOI: 10.1088/1748-6041/11/1/014110] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We are experiencing a new wave of injectable therapeutics (namely/injectable biomaterials) to complement injectable drugs and injectable biologics, and to serve as the basis for injectable combinatorial therapeutics. Injectable biomaterials contribute to the treatment of the fluid-filled defects which often result from disease and injury, by providing the missing physical framework (i.e. the stroma). However, while injectable matrices may be necessary for the successful treatment of certain lesions, they will not likely be sufficient. Chemoattractants for select endogenous cells, or cells themselves, may need to be incorporated into the matrix prior to its injection to ensure the necessary cellular repopulation of the cavitary defect. These agents and others (drugs and biologics) delivered by the matrix represent the new category of injectable combinatorial therapeutics.
Collapse
Affiliation(s)
- Myron Spector
- Tissue Engineering, VA Boston Healthcare System, Boston, MA 02130, USA. Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
121
|
Wei ZZ, Lee JH, Zhang Y, Zhu YB, Deveau TC, Gu X, Winter MM, Li J, Wei L, Yu SP. Intracranial Transplantation of Hypoxia-Preconditioned iPSC-Derived Neural Progenitor Cells Alleviates Neuropsychiatric Defects After Traumatic Brain Injury in Juvenile Rats. Cell Transplant 2016; 25:797-809. [PMID: 26766038 DOI: 10.3727/096368916x690403] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a common cause of mortality and long-term morbidity in children and adolescents. Posttraumatic stress disorder (PTSD) frequently develops in these patients, leading to a variety of neuropsychiatric syndromes. Currently, few therapeutic strategies are available to treat juveniles with PTSD and other developmental neuropsychiatric disorders. In the present investigation, postnatal day 14 (P14) Wistar rats were subjected to TBI induced by a controlled cortical impact (CCI) (velocity = 3 m/s, depth = 2.0 mm, contact time = 150 ms). This TBI injury resulted in not only cortical damages, but also posttrauma social behavior deficits. Three days after TBI, rats were treated with intracranial transplantation of either mouse iPSC-derived neural progenitor cells under normal culture conditions (N-iPSC-NPCs) or mouse iPSC-derived neural progenitor cells pretreated with hypoxic preconditioning (HP-iPSC-NPCs). Compared to TBI animals that received N-iPSC-NPCs or vehicle treatment, HP-iPSC-NPC-transplanted animals showed a unique benefit of improved performance in social interaction, social novelty, and social transmission of food preference tests. Western blotting showed that HP-iPSC-NPCs expressed significantly higher levels of the social behavior-related genes oxytocin and the oxytocin receptor. Overall, HP-iPSC-NPC transplantation exhibits a great potential as a regenerative therapy to improve neuropsychiatric outcomes after juvenile TBI.
Collapse
Affiliation(s)
- Zheng Zachory Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Lim HJ, Perera TH, Wilems TS, Ghosh S, Zheng YY, Azhdarinia A, Cao Q, Smith Callahan LA. Response to di-functionalized hyaluronic acid with orthogonal chemistry grafting at independent modification sites in rodent models of neural differentiation and spinal cord injury. J Mater Chem B 2016; 4:6865-6875. [DOI: 10.1039/c6tb01906d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hyaluronic acid functionalized with two orthogonal chemistries at different targets expedites neural maturation in vitro, while reducing inflammation in vivo.
Collapse
Affiliation(s)
- Hyun Ju Lim
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - T. Hiran Perera
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - Thomas S. Wilems
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - Sukhen Ghosh
- Center for Molecular Imaging
- Brown Foundation Institute of Molecular Medicine
- University of Texas Health Science Center at Houston
- Houston
- USA
| | - Yi-Yan Zheng
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - Ali Azhdarinia
- Center for Molecular Imaging
- Brown Foundation Institute of Molecular Medicine
- University of Texas Health Science Center at Houston
- Houston
- USA
| | - Qilin Cao
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - Laura A. Smith Callahan
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| |
Collapse
|
123
|
Sauerová P, Verdánová M, Mravec F, Pilgrová T, Venerová T, Hubálek Kalbáčová M, Pekař M. Hyaluronic acid as a modulator of the cytotoxic effects of cationic surfactants. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.06.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
124
|
Su K, Wang C. Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 2015; 37:2139-45. [PMID: 26160110 DOI: 10.1007/s10529-015-1907-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
The biomacromolecule, gelatin, has increasingly been used in biomedicine-beyond its traditional use in food and cosmetics. The appealing advantages of gelatin, such as its cell-adhesive structure, low cost, off-the-shelf availability, high biocompatibility, biodegradability and low immunogenicity, among others, have made it a desirable candidate for the development of biomaterials for tissue engineering and drug delivery. Gelatin can be formulated in the form of nanoparticles, employed as size-controllable porogen, adopted as surface coating agent and mixed with synthetic or natural biopolymers forming composite scaffolds. In this article, we review recent advances in the versatile applications of gelatin within biomedical context and attempt to draw upon its advantages and potential challenges.
Collapse
Affiliation(s)
- Kai Su
- CSIRO Manufacturing Flagship, Bayview Avenue, Clayton, VIC, 3169, Australia
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, N22-6011, Taipa, Macau, Special Administrative Region, People's Republic of China.
| |
Collapse
|
125
|
Khaing ZZ, Seidlits SK. Hyaluronic acid and neural stem cells: implications for biomaterial design. J Mater Chem B 2015; 3:7850-7866. [DOI: 10.1039/c5tb00974j] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While in the past hyaluronic acid (HA) was considered a passive structural component, research over the past few decades has revealed its diverse and complex biological functions resulting in a major ideological shift. This review describes recent advances in biological interactions of HA with neural stem cells, with a focus on leveraging these interactions to develop advanced biomaterials that aid regeneration of the central nervous system.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery
- Institute for Stem Cell & Regenerative Medicine
- University of Washington
- USA
| | - Stephanie K. Seidlits
- Department of Bioengineering
- Brain Research Institute
- Jonsson Comprehensive Cancer Center
- University of California Los Angeles
- USA
| |
Collapse
|