101
|
Guan X, Avci-Adali M, Alarçin E, Cheng H, Kashaf SS, Li Y, Chawla A, Jang HL, Khademhosseini A. Development of hydrogels for regenerative engineering. Biotechnol J 2017; 12:10.1002/biot.201600394. [PMID: 28220995 PMCID: PMC5503693 DOI: 10.1002/biot.201600394] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/07/2022]
Abstract
The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues.
Collapse
Affiliation(s)
- Xiaofei Guan
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Orthopedic Department, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr. 7/1, Tuebingen 72076, Germany
| | - Emine Alarçin
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey
| | - Hao Cheng
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sara Saheb Kashaf
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuxiao Li
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aditya Chawla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hae Lin Jang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience & Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
102
|
Zheng J, Jung S, Schmidt PW, Lodge TP, Reineke TM. 2-Hydroxyethylcellulose and Amphiphilic Block Polymer Conjugates Form Mechanically Tunable and Nonswellable Hydrogels. ACS Macro Lett 2017; 6:145-149. [PMID: 35632884 DOI: 10.1021/acsmacrolett.6b00954] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we report a family of mechanically tunable, nonswellable hydrogels that are based on a 2-hydroxyethylcellulose (HEC) scaffold grafted with amphiphilic diblock copolymers. Poly[(oligo(ethylene glycol)methyl ether methacrylate]-b-poly(methyl methacrylate) (POEGMA-b-PMMA) diblock copolymers of different compositions were created via RAFT polymerization using an alkyne terminated macro chain transfer agent (CTA). 2-Hydroxyethylcellulose (HEC) was modified with azide groups and the diblock copolymers were attached to the backbone via the copper-catalyzed click reaction to yield HEC-g-(POEGMA-b-PMMA) graft terpolymers. The resulting conjugates were soluble in DMF and able to form hydrogels upon simple solvent exchange in water. By increasing the concentration of the conjugates in DMF, the storage moduli of the hydrogels increased and the pore size in the gel decreased. After hydrogel formation, the structures were also found to be nonswellable (no macroscopic volume change upon incubation in water), which is an important feature for retaining size and mechanical integrity of the gels over time. Moreover, these materials were able to be electrospun into fibers that, upon hydration, formed fibrous hydrogel structures. The nonswellable and tunable mechanical properties of these materials imply great potential for a variety of applications such as personal care, active delivery, and tissue engineering.
Collapse
Affiliation(s)
- Jukuan Zheng
- Department
of Chemistry and ‡Department of Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Seyoung Jung
- Department
of Chemistry and ‡Department of Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W. Schmidt
- Department
of Chemistry and ‡Department of Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department
of Chemistry and ‡Department of Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department
of Chemistry and ‡Department of Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
103
|
Zhao X, Sun X, Yildirimer L, Lang Q, Lin ZYW, Zheng R, Zhang Y, Cui W, Annabi N, Khademhosseini A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater 2017; 49:66-77. [PMID: 27826004 PMCID: PMC5296408 DOI: 10.1016/j.actbio.2016.11.017] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
Development of natural protein-based fibrous scaffolds with tunable physical properties and biocompatibility is highly desirable to construct three-dimensional (3D), fully cellularized scaffolds for wound healing. Herein, we demonstrated a simple and effective technique to construct electrospun 3D fibrous scaffolds for accelerated wound healing using a photocrosslinkable hydrogel based on gelatin methacryloyl (GelMA). We found that the physical properties of the photocrosslinkable hydrogel including water retention, stiffness, strength, elasticity and degradation can be tailored by changing the light exposure time. We further observed that the optimized hydrogel fibrous scaffolds which were soft and elastic could support cell adhesion, proliferation and migration into the whole scaffolds, facilitating regeneration and formation of cutaneous tissues within two weeks. Such tunable characteristics of the fibrous GelMA scaffolds distinguished them from other reported substrates developed for reconstruction of wound defects including glutaraldehyde-crosslinked gelatin or poly (lactic-co-glycolic acid) (PLGA), whose physical and chemical properties were difficult to modify to allow cell infiltration into the 3D scaffolds for tissue regeneration. We anticipate that the ability to become fully cellularized will make the engineered GelMA fibrous scaffolds suitable for widespread applications as skin substitutes or wound dressings. STATEMENT OF SIGNIFICANCE In present study, we generate three-dimensional photocrosslinkable gelatin (GelMA)-based fibrous scaffolds with tunable physical and biological properties by using a combined photocrosslinking/electrospinning approach. The developed GelMA fibrous scaffolds can not only support cell viability and cell adhesion, but also facilitate cell migration and proliferation, accelerating regeneration and formation of cutaneous tissues. In addition, the physical properties of the engineered fibrous GelMA hydrogel including water retention capability, mechanical properties and biodegradability can be tuned to accommodate different patients' needs, making it a promising candidate for skin tissue engineering.
Collapse
Affiliation(s)
- Xin Zhao
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Shaanxi 710049, China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University of Medicine, Shanghai 200011, China
| | - Lara Yildirimer
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Qi Lang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Zhi Yuan William Lin
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Reila Zheng
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University of Medicine, Shanghai 200011, China
| | - Wenguo Cui
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
104
|
Eslahi N, Abdorahim M, Simchi A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules 2016; 17:3441-3463. [PMID: 27775329 DOI: 10.1021/acs.biomac.6b01235] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.
Collapse
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University , P.O. Box 14515/775, Tehran, Iran
| | | | | |
Collapse
|
105
|
Hou K, Wang H, Lin Y, Chen S, Yang S, Cheng Y, Hsiao BS, Zhu M. Large Scale Production of Continuous Hydrogel Fibers with Anisotropic Swelling Behavior by Dynamic-Crosslinking-Spinning. Macromol Rapid Commun 2016; 37:1795-1801. [DOI: 10.1002/marc.201600430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/29/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Kai Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Huiyi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Yunyin Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Shaohua Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Shengyuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Benjamin S. Hsiao
- Department of Chemistry; Stony Brook University; Stony Brook NY 11794 USA
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| |
Collapse
|
106
|
Kalaoglu-Altan OI, Verbraeken B, Lava K, Gevrek TN, Sanyal R, Dargaville T, De Clerck K, Hoogenboom R, Sanyal A. Multireactive Poly(2-oxazoline) Nanofibers through Electrospinning with Crosslinking on the Fly. ACS Macro Lett 2016; 5:676-681. [PMID: 35614674 DOI: 10.1021/acsmacrolett.6b00188] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crosslinked hydrophilic poly(2-oxazoline)-based nanofibers amenable to facile multifunctionalization are fabricated using alkene-containing poly(2-alkyl-2-oxazoline)s (PAOx) via in situ photoinitiated radical thiol-ene crosslinking during electrospinning. The resulting crosslinked nanofibers are demonstrated to be multifunctionalizable using different chemistries as they contain two functional handles, being the alkene moieties from the parent copolymer and the residual thiol groups from the tetra-thiol-based crosslinker. While the thiol groups in these nanofibers could be passivated or conjugated to install functional molecules through thiol-maleimide conjugation, the alkene groups could sequentially be modified with thiol-containing molecules using photoinitiated radical thiol-ene reactions. Utilization of the photochemically induced conjugation of thiol-bearing molecules to the alkene groups on the nanofibers is used to obtain functionalization in a spatially controlled manner.
Collapse
Affiliation(s)
| | - Bart Verbraeken
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, Belgium
| | - Kathleen Lava
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, Belgium
| | - Tugce Nihal Gevrek
- Bogazici University, Department of Chemistry, Bebek, 34342, Istanbul, Turkey
| | - Rana Sanyal
- Bogazici University, Department of Chemistry, Bebek, 34342, Istanbul, Turkey
- Bogazici University, Center for Life Sciences and
Technologies, Istanbul, Turkey
| | - Tim Dargaville
- Queensland University
of Technology, 2 George Street, 4001, Queensland, Australia
| | - Karen De Clerck
- Department
of Textiles, Ghent University, Technologiepark 907, B-9052, Zwijnaarde, Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, Belgium
| | - Amitav Sanyal
- Bogazici University, Department of Chemistry, Bebek, 34342, Istanbul, Turkey
- Bogazici University, Center for Life Sciences and
Technologies, Istanbul, Turkey
| |
Collapse
|
107
|
Santo VE, Babo P, Amador M, Correia C, Cunha B, Coutinho DF, Neves NM, Mano JF, Reis RL, Gomes ME. Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers. Biomacromolecules 2016; 17:1985-97. [DOI: 10.1021/acs.biomac.6b00150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vítor E. Santo
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Pedro Babo
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Miguel Amador
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Cláudia Correia
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Bárbara Cunha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Daniela F. Coutinho
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Nuno M. Neves
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - João F. Mano
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Rui L. Reis
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Manuela E. Gomes
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| |
Collapse
|
108
|
Abstract
Biomaterials for tissue engineering provide scaffolds to support cells and guide tissue regeneration. Despite significant advances in biomaterials design and fabrication techniques, engineered tissue constructs remain functionally inferior to native tissues. This is largely due to the inability to recreate the complex and dynamic hierarchical organization of the extracellular matrix components, which is intimately linked to a tissue's biological function. This review discusses current state-of-the-art strategies to control the spatial presentation of physical and biochemical cues within a biomaterial to recapitulate native tissue organization and function.
Collapse
Affiliation(s)
- Lesley W Chow
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA
| | - Jacob F Fischer
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
109
|
Abstract
There is growing appreciation of the role that the extracellular environment plays in regulating cell behavior. Mechanical, structural, and compositional cues, either alone or in concert, can drastically alter cell function. Biomaterials, and particularly hydrogels, have been developed and implemented to present defined subsets of these cues for investigating countless cellular processes as a means of understanding morphogenesis, aging, and disease. Although most scientists concede that standard cell culture materials (tissue culture plastic and glass) do a poor job of recapitulating native cellular milieus, there is currently a knowledge barrier for many researchers in regard to the application of hydrogels for cell culture. Here, we introduce hydrogels to those who may be unfamiliar with procedures to culture and study cells with these systems, with a particular focus on commercially available hydrogels.
Collapse
Affiliation(s)
- Steven R Caliari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
110
|
Abstract
Biomaterials that interface with biological systems are used to deliver drugs safely and efficiently; to prevent, detect, and treat disease; to assist the body as it heals; and to engineer functional tissues outside of the body for organ replacement. The field has evolved beyond selecting materials that were originally designed for other applications with a primary focus on properties that enabled restoration of function and mitigation of acute pathology. Biomaterials are now designed rationally with controlled structure and dynamic functionality to integrate with biological complexity and perform tailored, high-level functions in the body. The transition has been from permissive to promoting biomaterials that are no longer bioinert but bioactive. This perspective surveys recent developments in the field of polymeric and soft biomaterials with a specific emphasis on advances in nano- to macroscale control, static to dynamic functionality, and biocomplex materials.
Collapse
|
111
|
Highley CB, Prestwich GD, Burdick JA. Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr Opin Biotechnol 2016; 40:35-40. [PMID: 26930175 DOI: 10.1016/j.copbio.2016.02.008] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
Hyaluronic acid (HA) is widely used in the design of engineered hydrogels, due to its biofunctionality, as well as numerous sites for modification with reactive groups. There are now widespread examples of modified HA macromers that form either covalent or physical hydrogels through crosslinking reactions such as with click chemistry or supramolecular assemblies of guest-host pairs. HA hydrogels range from relatively static matrices to those that exhibit spatiotemporally dynamic properties through external triggers like light. Such hydrogels are being explored for the culture of cells in vitro, as carriers for cells in vivo, or to deliver therapeutics, including in an environmentally responsive manner. The future will bring new examples of HA hydrogels due to the synthetic diversity of HA.
Collapse
Affiliation(s)
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
112
|
Uhlig K, Wegener T, He J, Zeiser M, Bookhold J, Dewald I, Godino N, Jaeger M, Hellweg T, Fery A, Duschl C. Patterned Thermoresponsive Microgel Coatings for Noninvasive Processing of Adherent Cells. Biomacromolecules 2016; 17:1110-6. [DOI: 10.1021/acs.biomac.5b01728] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Katja Uhlig
- Branch
Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology , 14476 Potsdam, Germany
| | | | - Jian He
- GeSiM mbH, 01454 Grosserkmannsdorf, Germany
| | - Michael Zeiser
- Department
of Chemistry Physical and Biophysical Chemistry (PC III), Bielefeld University, 33615 Bielefeld, Germany
| | - Johannes Bookhold
- Department
of Chemistry Physical and Biophysical Chemistry (PC III), Bielefeld University, 33615 Bielefeld, Germany
| | - Inna Dewald
- Physical
Chemistry II, Bayreuth University, 95440 Bayreuth, Germany
| | - Neus Godino
- Branch
Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology , 14476 Potsdam, Germany
| | - Magnus Jaeger
- Branch
Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology , 14476 Potsdam, Germany
| | - Thomas Hellweg
- Department
of Chemistry Physical and Biophysical Chemistry (PC III), Bielefeld University, 33615 Bielefeld, Germany
| | - Andreas Fery
- Institute
of Physical Chemistry and Polymer Physics, Leibniz Institute for Polymer Research Dresden, 01069 Dresden, Germany
- Chair of
Physical Chemistry of Polymeric Materials, Technical University Dresden, 01069 Dresden, Germany
| | - Claus Duschl
- Branch
Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology , 14476 Potsdam, Germany
| |
Collapse
|
113
|
Eslahi N, Simchi A, Mehrjoo M, Shokrgozar MA, Bonakdar S. Hybrid cross-linked hydrogels based on fibrous protein/block copolymers and layered silicate nanoparticles: tunable thermosensitivity, biodegradability and mechanical durability. RSC Adv 2016; 6:62944-62957. [DOI: 10.1039/c6ra08563f] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Schematic representation of LAPONITE® reinforced pluronic/chitosan/keratin nanocomposite hydrogel crosslinked with Genipin.
Collapse
Affiliation(s)
- Niloofar Eslahi
- Department of Materials Science and Engineering
- Sharif University of Technology
- Tehran
- Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering
- Sharif University of Technology
- Tehran
- Iran
- Institute for Nanoscience and Nanotechnology
| | - Morteza Mehrjoo
- National Cell Bank of Iran
- Pasteur Institute of Iran
- Tehran
- Iran
| | | | - Shahin Bonakdar
- National Cell Bank of Iran
- Pasteur Institute of Iran
- Tehran
- Iran
| |
Collapse
|
114
|
Zhu F, Chen Y, Yang S, Wang Q, Liang F, Qu X, Hu Z. Surface patterned hydrogel film as a flexible scaffold for 2D and 3D cell co-culture. RSC Adv 2016. [DOI: 10.1039/c6ra11249h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell adhesive magnetic silica nano-rods were aligned on glycol chitosan/benzaldehyde capped poly(ethylene oxide) hydrogel surface via dynamic interactions in magnetic field for 2D and 3D cell co-culture.
Collapse
Affiliation(s)
- Feiyan Zhu
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Ying Chen
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Saina Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Qian Wang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Fuxin Liang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xiaozhong Qu
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Zhongbo Hu
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
115
|
Fang X, Xie J, Zhong L, Li J, Rong D, Li X, Ouyang J. Biomimetic gelatin methacrylamide hydrogel scaffolds for bone tissue engineering. J Mater Chem B 2016; 4:1070-1080. [DOI: 10.1039/c5tb02251g] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biomimetic GelMA scaffolds which have highly porous, interconnected macropores, and rough surface could promote ADSC to differentiate into osteoblasts and bone formation.
Collapse
Affiliation(s)
- Xingxing Fang
- Guangdong Provincial Medical Biomechanical Key Laboratory
- Department of Anatomy
- Southern Medical University
- Guangzhou
- China
| | - Jin Xie
- Guangdong Provincial Medical Biomechanical Key Laboratory
- Department of Anatomy
- Southern Medical University
- Guangzhou
- China
| | - Lixin Zhong
- School of Public Health and Tropical Medicine
- Southern Medical University
- Guangzhou
- China
| | - Jierong Li
- School of Public Health and Tropical Medicine
- Southern Medical University
- Guangzhou
- China
| | - Dongming Rong
- Department of Orthopaedic
- Zhujiang Hospital
- Southern Medical University
- Guangzhou
- China
| | - Xiongshen Li
- 1st School of Clinical Medicine
- Southern Medical University
- Guangzhou
- China
| | - Jun Ouyang
- Guangdong Provincial Medical Biomechanical Key Laboratory
- Department of Anatomy
- Southern Medical University
- Guangzhou
- China
| |
Collapse
|
116
|
Gao M, Zeng L, Nie J, Ma G. Polymer–metal–organic framework core–shell framework nanofibers via electrospinning and their gas adsorption activities. RSC Adv 2016. [DOI: 10.1039/c5ra23147g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we have fabricated of PAN@ZIF-8 core–shell nanofibers by combining electrospinning techniques and the MOF synthesis method.
Collapse
Affiliation(s)
- Ming Gao
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Lingwang Zeng
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Jun Nie
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Guiping Ma
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| |
Collapse
|
117
|
Zanna N, Merlettini A, Tatulli G, Milli L, Focarete ML, Tomasini C. Hydrogelation Induced by Fmoc-Protected Peptidomimetics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12240-50. [PMID: 26491829 DOI: 10.1021/acs.langmuir.5b02780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Four new low molecular weight hydrogelators (LMWGs) have been prepared in multigram scale and their attitude to form hydrogels has been tested. The gelation trigger is pH variation. The resulting gels have been characterized with several techniques: measurement of the melting points (T(gel)), transparency, gelation time, and viscoelastic properties, together with ECD analysis. Among them, Fmoc-L-Tyr-D-Oxd-OH 1 is an excellent gelator that leads to the preparation of strong, transparent, and viscoelastic gels, by pH variation. UV-visible analyses have demonstrated that the gels obtained with the LMWG 1 possess high transparency, with a transmittance up to 25.6% at a wavelength of 600 nm. Results of the amplitude sweep experiments showed that the elastic response component (G') was approximately an order of magnitude larger than the viscous component, indicating an elastic rather than viscous attitude of the gels, confirmed by the frequency independence of G' and G″ values, in the range from 0.1 to 100 rad·s(-1). The thermal behavior of gel obtained from Fmoc-L-Tyr-D-Oxd-OH 1 was characterized performing an "ad hoc" rheological temperature sweep experiment, that indicated that G' remained almost constant from 23 °C up to about 65 °C while G″ increased in the same temperature range. At higher temperatures, both G' and G″ values started to slightly decrease without displaying a crossover point.
Collapse
Affiliation(s)
- Nicola Zanna
- Dipartimento di Chimica Ciamician, Università di Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Merlettini
- Dipartimento di Chimica Ciamician, Università di Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Giuseppina Tatulli
- Dipartimento di Chimica Ciamician, Università di Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Lorenzo Milli
- Dipartimento di Chimica Ciamician, Università di Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Maria Letizia Focarete
- Dipartimento di Chimica Ciamician, Università di Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Claudia Tomasini
- Dipartimento di Chimica Ciamician, Università di Bologna , Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
118
|
Grim JC, Marozas IA, Anseth KS. Thiol-ene and photo-cleavage chemistry for controlled presentation of biomolecules in hydrogels. J Control Release 2015; 219:95-106. [PMID: 26315818 DOI: 10.1016/j.jconrel.2015.08.040] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022]
Abstract
Hydrogels have emerged as promising scaffolds in regenerative medicine for the delivery of biomolecules to promote healing. However, increasing evidence suggests that the context that biomolecules are presented to cells (e.g., as soluble verses tethered signals) can influence their bioactivity. A common approach to deliver biomolecules in hydrogels involves physically entrapping them within the network, such that they diffuse out over time to the surrounding tissues. While simple and versatile, the release profiles in such system are highly dependent on the molecular weight of the entrapped molecule relative to the network structure, and it can be difficult to control the release of two different signals at independent rates. In some cases, supraphysiologically high loadings are used to achieve therapeutic local concentrations, but uncontrolled release can then cause deleterious off-target side effects. In vivo, many growth factors and cytokines are stored in the extracellular matrix (ECM) and released on demand as needed during development, growth, and wound healing. Thus, emerging strategies in biomaterial chemistry have focused on ways to tether or sequester biological signals and engineer these bioactive scaffolds to signal to delivered cells or endogenous cells. While many strategies exist to achieve tethering of peptides, protein, and small molecules, this review focuses on photochemical methods, and their usefulness as a mild reaction that proceeds with fast kinetics in aqueous solutions and at physiological conditions. Photo-click and photo-caging methods are particularly useful because one can direct light to specific regions of the hydrogel to achieve spatial patterning. Recent methods have even demonstrated reversible introduction of biomolecules to mimic the dynamic changes of native ECM, enabling researchers to explore how the spatial and dynamic context of biomolecular signals influences important cell functions. This review will highlight how two photochemical methods have led to important advances in the tissue regeneration community, namely the thiol-ene photo-click reaction for bioconjugation and photocleavage reactions that allow for the removal of protecting groups. Specific examples will be highlighted where these methodologies have been used to engineer hydrogels that control and direct cell function with the aim of inspiring their use in regenerative medicine.
Collapse
Affiliation(s)
- Joseph C Grim
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Ian A Marozas
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA; BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Kristi S Anseth
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO 80309, USA; Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA; BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
119
|
Davey SK, Aung A, Agrawal G, Lim HL, Kar M, Varghese S. Embedded 3D Photopatterning of Hydrogels with Diverse and Complex Architectures for Tissue Engineering and Disease Models. Tissue Eng Part C Methods 2015; 21:1188-96. [PMID: 26154197 DOI: 10.1089/ten.tec.2015.0179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Techniques that can create three-dimensional (3D) structures to provide architectural support for cells have a significant impact in generating complex and hierarchically organized tissues/organs. In recent times, a number of technologies, including photopatterning, have been developed to create such intricate 3D structures. In this study, we describe an easy-to-implement photopatterning approach, involving a conventional fluorescent microscope and a simple photomask, to encapsulate cells within spatially defined 3D structures. We have demonstrated the ease and the versatility of this approach by creating simple to complex as well as multilayered structures. We have extended this photopatterning approach to incorporate and spatially organize multiple cell types, thereby establishing coculture systems. Such cost-effective and easy-to-use approaches can greatly advance tissue engineering strategies.
Collapse
Affiliation(s)
- Shruti Krishna Davey
- 1 Department of Bioengineering, University of California-San Diego , La Jolla, California
| | - Aereas Aung
- 1 Department of Bioengineering, University of California-San Diego , La Jolla, California
| | - Gaurav Agrawal
- 1 Department of Bioengineering, University of California-San Diego , La Jolla, California
| | - Han Liang Lim
- 1 Department of Bioengineering, University of California-San Diego , La Jolla, California
| | - Mrityunjoy Kar
- 1 Department of Bioengineering, University of California-San Diego , La Jolla, California
| | - Shyni Varghese
- 1 Department of Bioengineering, University of California-San Diego , La Jolla, California.,2 Institute of Engineering in Medicine, University of California-San Diego , La Jolla, California
| |
Collapse
|