101
|
Zhang D, Yao Y, Duan Y, Yu X, Shi H, Nakkala JR, Zuo X, Hong L, Mao Z, Gao C. Surface-Anchored Graphene Oxide Nanosheets on Cell-Scale Micropatterned Poly(d,l-lactide- co-caprolactone) Conduits Promote Peripheral Nerve Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7915-7930. [PMID: 31935055 DOI: 10.1021/acsami.9b20321] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regeneration and functional recovery of peripheral nerves remain formidable due to the inefficient physical and chemical cues in the available nerve guidance conduits (NGCs). Introducing micropatterns and bioactive substances into the inner wall of NGCs can effectively regulate the behavior of Schwann cells, the elongation of axons, and the phenotype of macrophages, thereby aiding the regeneration of injured nerve. In this study, linear micropatterns with ridges and grooves of 3/3, 5/5, 10/10, and 30/30 μm were created on poly(d,l-lactide-co-caprolactone) (PLCL) films following with surface aminolysis and electrostatic adsorption of graphene oxide (GO) nanosheets. The GO-modified micropatterns could significantly accelerate the collective migration of Schwann cells (SCs) and migration of SCs from their spheroids in vitro. Moreover, the SCs migrated directionally along the stripes with a fastest rate on the 3/3-GO film that had the largest cell adhesion force. The neurites of N2a cells were oriented along the micropatterns, and the macrophages tended to differentiate into the M2 type on the 3/3-GO film judged by the higher expression of Arg 1 and IL-10. The systematic histological and functional assessments of the regenerated nerves at 4 and 8 weeks post-surgery in vivo confirmed that the 3/3-GO NGCs had better performance to promote the nerve regeneration, and the CMAP, NCV, wet weight of gastrocnemius muscle, positive S100β and NF200 area percentages, and average myelinated axon diameter were more close to those of the autograft group at 8 weeks. This type of NGCs thus has a great potential for nerve regeneration.
Collapse
Affiliation(s)
- Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine , Zhejiang University , Hangzhou 310058 , China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yiyuan Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine , Zhejiang University , Hangzhou 310058 , China
| | - Xing Yu
- Department of Thyroid Surgery, the Second Affiliated Hospital of Zhejiang University , College of Medicine , Hangzhou 310009 , China
| | - Haifei Shi
- Department of Hand Surgery, First Affiliated Hospital of Zhejiang University , School of Medicine , Hangzhou 310009 , China
| | - Jayachandra Reddy Nakkala
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine , Zhejiang University , Hangzhou 310058 , China
| | - Xingang Zuo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
102
|
Zhang D, Yang W, Wang C, Zheng H, Liu Z, Chen Z, Gao C. Methylcobalamin-Loaded PLCL Conduits Facilitate the Peripheral Nerve Regeneration. Macromol Biosci 2020; 20:e1900382. [PMID: 32058665 DOI: 10.1002/mabi.201900382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/01/2020] [Indexed: 12/16/2022]
Abstract
The feasible fabrication of nerve guidance conduits (NGCs) with good biological performance is important for translation in clinics. In this study, poly(d,l-lactide-co-caprolactone) (PLCL) films loaded with various amounts (wt; 5%, 15%, 25%) of methylcobalamin (MeCbl) are prepared, and are further rolled and sutured to obtain MeCbl-loaded NGCs. The MeCbl can be released in a sustainable manner up to 21 days. The proliferation and elongation of Schwann cells, and the proliferation of Neuro2a cells are enhanced on these MeCbl-loaded films. The MeCbl-loaded NGCs are implanted into rats to induce the regeneration of 10 mm amputated sciatic nerve defects, showing the ability to facilitate the recovery of motor and sensory function, and to promote myelination in peripheral nerve regeneration. In particular, the 15% MeCbl-loaded PLCL conduit exhibits the most satisfactory recovery of sciatic nerves in rats with the largest diameter and thickest myelinated fibers.
Collapse
Affiliation(s)
- Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Weichao Yang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chunyang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Honghao Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhizhou Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhehan Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
103
|
The effect of oxygen plasma pretreatment on the properties of mussel-inspired polydopamine-decorated polyurethane nanofibers. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2019-0219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractIn this study, polyurethane (PU) scaffolds were fabricated by electrospinning technology and modified through the deposition of polydopamine (PDA) on the activated surface under oxygen plasma treatment. Herein, the effect of the modification process on the homogeneous surface coating and the changes in the physicochemical and biological properties were evaluated. Morphological observations demonstrated decoration of the nanofibrous microstructure with PDA, while the uniformity and homogeneity of the deposited layer increased after plasma oxygen treatment. Hydrophilicity measurements and swelling ratio indicated a remarkable improvement in the interaction of scaffolds with water molecules when the PDA coating is applied on the surface of the treated nanofibers. The biomineralization of the samples was characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) images. It was found that PDA has the capability for mineralization, and the amount of deposited hydroxyapatite increased as a function of PDA content. The in vitro evaluation of constructs indicated great improvement in cell-scaffold interactions, biocompatibility, and alkaline phosphatase activity after coating the PDA on the plasma-modified matrix. These results suggest that PDA coating, especially after oxygen plasma treatment, improves the physicochemical and in vitro properties of PU scaffolds for bone tissue engineering application.
Collapse
|
104
|
Fang X, Deng J, Zhang W, Guo H, Yu F, Rao F, Li Q, Zhang P, Bai S, Jiang B. Conductive conduit small gap tubulization for peripheral nerve repair. RSC Adv 2020; 10:16769-16775. [PMID: 35498832 PMCID: PMC9053044 DOI: 10.1039/d0ra02143a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/01/2020] [Indexed: 11/21/2022] Open
Abstract
Despite advances in surgical techniques, functional recovery following epineurial neurorrhaphy of transected peripheral nerves often remains quite unsatisfactory. Small gap tubulisation is a promising approach that has shown potential to traditional epineurial neurorrhaphy in the treatment of peripheral nerve injury. Thus, the goal of this study is to evaluate sciatic nerve regeneration after nerve transection, followed by small gap tubulization using a reduced graphene oxide-based conductive conduit. In vitro, the electrically conductive conduit could promote Schwann cell proliferation through PI3K/Akt signaling pathway activation. In vivo, the results of electrophysiological and walking track analysis suggest that the electrically conductive conduit could promote sensory and motor nerve regeneration and functional recovery, which is based on the mechanisms of selective regeneration and multiple-bud regeneration. These promising results illustrate electrically conductive conduit small gap tubulization as an alternative approach for transected peripheral nerve repair. rGO-based conductive nerve conduit as a scaffold to bridge peripheral nerve transected injury and 2 mm gap provides a suitable microenvironment for axons selective regeneration.![]()
Collapse
|
105
|
Melo SF, Neves SC, Pereira AT, Borges I, Granja PL, Magalhães FD, Gonçalves IC. Incorporation of graphene oxide into poly(ɛ-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110537. [PMID: 32228892 DOI: 10.1016/j.msec.2019.110537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
Implantable medical devices infection and consequent failure is a severe health issue, which can result from bacterial adhesion, growth, and subsequent biofilm formation at the implantation site. Graphene-based materials, namely graphene oxide (GO), have been described as potential antibacterial agents when immobilized and exposed in polymeric matrices. This work focuses on the development of antibacterial and biocompatible 3D fibrous scaffolds incorporating GO. Poly(ε-caprolactone) scaffolds were produced, with and without GO, using wet-spinning combined with additive manufacturing. Scaffolds with different GO loadings were evaluated regarding physical-chemical characterization, namely GO surface exposure, antibacterial properties, and ability to promote human cells adhesion. Antimicrobial properties were evaluated through live/dead assays performed with Gram-positive and Gram-negative bacteria. 2 h and 24 h adhesion assays revealed a time-dependent bactericidal effect in the presence of GO, with death rates of adherent S. epidermidis and E. coli reaching ~80% after 24 h of contact with scaffolds with the highest GO concentration. Human fibroblasts cultured for up to 14 days were able to adhere and spread over the fibers, independently of the presence of GO. Overall, this work demonstrates the potential of GO-containing fibrous scaffolds to be used as biomaterials that hinder bacterial infection, while allowing human cells adhesion.
Collapse
Affiliation(s)
- Sofia F Melo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; FEUP-Faculdade de Engenharia da Universidade do Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal; LEPABE-Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia da Universidade do Porto, Portugal
| | - Sara C Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
| | - Andreia T Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Inês Borges
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
| | - Pedro L Granja
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; FEUP-Faculdade de Engenharia da Universidade do Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Fernão D Magalhães
- LEPABE-Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia da Universidade do Porto, Portugal
| | - Inês C Gonçalves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; FEUP-Faculdade de Engenharia da Universidade do Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal.
| |
Collapse
|
106
|
Qian Y, Yao Z, Wang X, Cheng Y, Fang Z, Yuan WE, Fan C, Ouyang Y. (-)-Epigallocatechin gallate-loaded polycaprolactone scaffolds fabricated using a 3D integrated moulding method alleviate immune stress and induce neurogenesis. Cell Prolif 2019; 53:e12730. [PMID: 31746040 PMCID: PMC6985678 DOI: 10.1111/cpr.12730] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives In peripheral neuropathy, the underlying mechanisms of nerve and muscle degeneration include chronic inflammation and oxidative stress in fibrotic tissues. (‐)‐Epigallocatechin gallate (EGCG) is a major, active component in green tea and may scavenge free radical oxygen and attenuate inflammation. Conservative treatments such as steroid injection only deal with early, asymptomatic, peripheral neuropathy. In contrast, neurolysis and nerve conduit implantation work effectively for treating advanced stages. Materials and methods An EGCG‐loaded polycaprolactone (PCL) porous scaffold was fabricated using an integrated moulding method. We evaluated proliferative, oxidative and inflammatory activity of rat Schwann cells (RSCs) and rat skeletal muscle cells (RSMCs) cultured on different scaffolds in vitro. In a rat radiation injury model, we assessed the morphological, electrophysiological and functional performance of regenerated sciatic nerves and gastrocnemius muscles, as well as oxidative stress and inflammation state. Results RSCs and RSMCs exhibited higher proliferative, anti‐oxidant and anti‐inflammatory states in an EGCG/PCL scaffold. In vivo studies showed improved nerve and muscle recovery in the EGCG/PCL group, with increased nerve myelination and muscle fibre proliferation and reduced macrophage infiltration, lipid peroxidation, inflammation and oxidative stress indicators. Conclusions The EGCG‐modified PCL porous nerve scaffold alleviates cellular oxidative stress and repairs peripheral nerve and muscle structure in rats. It attenuates oxidative stress and inflammation in vivo and may provide further insights into peripheral nerve repair in the future.
Collapse
Affiliation(s)
- Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhixiao Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuan Cheng
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Fang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
107
|
Barui AK, Nethi SK, Haque S, Basuthakur P, Patra CR. Recent Development of Metal Nanoparticles for Angiogenesis Study and Their Therapeutic Applications. ACS APPLIED BIO MATERIALS 2019; 2:5492-5511. [DOI: 10.1021/acsabm.9b00587] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ayan Kumar Barui
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Susheel Kumar Nethi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Papia Basuthakur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
108
|
Jiang L, Wang Y, Liu Z, Ma C, Yan H, Xu N, Gang F, Wang X, Zhao L, Sun X. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:398-411. [PMID: 31115274 DOI: 10.1089/ten.teb.2019.0100] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The goal of tissue engineering scaffolds is to simulate the physiological microenvironment, in which the electrical microenvironment is an important part. Hydrogel is an ideal material for tissue engineering scaffolds because of its soft, porous, water-bearing, and other extracellular matrix-like properties. However, the hydrogel matrix is usually not conductive and can hinder the communication of electrical signals between cells, which promotes researchers' attention to conductive hydrogels. Conductive hydrogels can promote the communication of electrical signals between cells and simulate the physiological microenvironment of electroactive tissues. Hydrogel formation is an important step for the application of hydrogels in tissue engineering. In situ forming of injectable hydrogels and customized forming of three-dimensional (3D) printing hydrogels represent two most potential advanced forming processes, respectively. In this review, we discuss (i) the classification, properties, and advantages of conductive hydrogels, (ii) the latest development of conductive hydrogels applied in myocardial, nerve, and bone tissue engineering, (iii) advanced forming processes, including injectable conductive hydrogels in situ and customized 3D printed conductive hydrogels, (iv) the challenges and opportunities of conductive hydrogels for tissue engineering. Impact Statement Biomimetic construction of electro-microenvironment is a challenge of tissue engineering. The development of conductive hydrogels provides possibility for the construction of biomimetic electro-microenvironment. However, the importance of conductive hydrogels in tissue engineering has not received enough attention so far. Herein, various conductive hydrogels and their tissue engineering applications are systematically reviewed. Two potential methods of conductive hydrogel forming, in situ forming of injectable conductive hydrogels and customized forming of three-dimensional printing conductive hydrogels, are introduced. The current challenges and future development directions of conductive hydrogels are comprehensively overviewed. This review provides a guideline for tissue engineering applications of conductive hydrogels.
Collapse
Affiliation(s)
- Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Yingjin Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Zhongqun Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Chunyang Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Hao Yan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Nan Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Fangli Gang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China.,College of Chemistry and Pharmacy, Shaanxi Key Laboratory of Natural Products and Chemical Biology, Northwest A&F University, Yangling, People's Republic of China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
109
|
Hsu R, Chen P, Fang J, Chen Y, Chang C, Lu Y, Hu S. Adaptable Microporous Hydrogels of Propagating NGF-Gradient by Injectable Building Blocks for Accelerated Axonal Outgrowth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900520. [PMID: 31453065 PMCID: PMC6702647 DOI: 10.1002/advs.201900520] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/10/2019] [Indexed: 05/24/2023]
Abstract
Injectable hydrogels in regeneration medicine can potentially mimic hierarchical natural living tissue and fill complexly shaped defects with minimally invasive implantation procedures. To achieve this goal, however, the versatile hydrogels that usually possess the nonporous structure and uncontrollable spatial agent release must overcome the difficulties in low cell-penetrative rates of tissue regeneration. In this study, an adaptable microporous hydrogel (AMH) composed of microsized building blocks with opposite charges serves as an injectable matrix with interconnected pores and propagates gradient growth factor for spontaneous assembly into a complex shape in real time. By embedding gradient concentrations of growth factors into the building blocks, the propagated gradient of the nerve growth factor, integrated to the cell-penetrative connected pores constructed by the building blocks in the nerve conduit, effectively promotes cell migration and induces dramatic bridging effects on peripheral nerve defects, achieving axon outgrowth of up to 4.7 mm and twofold axon fiber intensity in 4 days in vivo. Such AMHs with intrinsic properties of tunable mechanical properties, gradient propagation of biocues and effective induction of cell migration are potentially able to overcome the limitations of hydrogel-mediated tissue regeneration in general and can possibly be used in clinical applications.
Collapse
Affiliation(s)
- Ru‐Siou Hsu
- Department of Biomedical Engineering and Environmental ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Pei‐Yueh Chen
- Department of Biomedical Engineering and Environmental ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Jen‐Hung Fang
- Department of Biomedical Engineering and Environmental ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - You‐Yin Chen
- Department of Biomedical EngineeringNational Yang Ming UniversityTaipei11221Taiwan
| | - Chien‐Wen Chang
- Department of Biomedical Engineering and Environmental ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Yu‐Jen Lu
- Department of NeurosurgeryChang Gung Memorial Hospital Linkou Medical Center and College of MedicineChang Gung UniversityTaoyuan33305Taiwan
| | - Shang‐Hsiu Hu
- Department of Biomedical Engineering and Environmental ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| |
Collapse
|
110
|
Wang W, Liu Y, Yang C, Qi X, Li S, Liu C, Li X. Mesoporous bioactive glass combined with graphene oxide scaffolds for bone repair. Int J Biol Sci 2019; 15:2156-2169. [PMID: 31592233 PMCID: PMC6775301 DOI: 10.7150/ijbs.35670] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/21/2019] [Indexed: 12/23/2022] Open
Abstract
Recently there has been an increasing interest in bioactive factors with robust osteogenic ability and angiogenesis function to repair bone defects. However, previously tested factors have not achieved satisfactory results due to low loading doses and a short protein half-life. Finding a validated stable substitute for these growth factors and apply it to the construction of porous scaffolds with the dual function of osteogenesis and angiogenesis is therefore vital for bone tissue regeneration engineering. Graphene oxide (GO) has attracted increasing attention due to its good biocompatibility, osteogenic, and angiogenic functions. This study aims to design a scaffold composed of mesoporous bioactive glasses (MBG) and GO to investigate whether the composite porous scaffold promotes local angiogenesis and bone healing. Our in vitro studies demonstrate that the MBG-GO scaffolds have better cytocompatibility and higher osteogenesis differentiation ability with rat bone marrow mesenchymal stem cells (rBMSCs) than the purely MBG scaffold. Moreover, MBG-GO scaffolds promote vascular ingrowth and, importantly, enhance bone repair at the defect site in a rat cranial defect model. The new bone was fully integrated not only with the periphery but also with the center of the scaffold. From these results, it is believed that the MBG-GO scaffolds possess excellent osteogenic-angiogenic properties which will make them appealing candidates for repairing bone defects. The novelty of this research is to provide a new material to treat bone defects in the clinic.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Chao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin Qi
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai, China
| | - Shuangwu Li
- School of Engineering, King's College, University of Aberdeen, Scotland, United Kingdom
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Xiaolin Li
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
111
|
Ma C, Jiang L, Wang Y, Gang F, Xu N, Li T, Liu Z, Chi Y, Wang X, Zhao L, Feng Q, Sun X. 3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2491. [PMID: 31390733 PMCID: PMC6696326 DOI: 10.3390/ma12152491] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
Inspired by electrically active tissues, conductive materials have been extensively developed for electrically active tissue engineering scaffolds. In addition to excellent conductivity, nanocomposite conductive materials can also provide nanoscale structure similar to the natural extracellular microenvironment. Recently, the combination of three-dimensional (3D) printing and nanotechnology has opened up a new era of conductive tissue engineering scaffolds exhibiting optimized properties and multifunctionality. Furthermore, in the case of two-dimensional (2D) conductive film scaffolds such as periosteum, nerve membrane, skin repair, etc., the traditional preparation process, such as solvent casting, produces 2D films with defects of unequal bubbles and thickness frequently. In this study, poly-l-lactide (PLLA) conductive scaffolds incorporated with polypyrrole (PPy) nanoparticles, which have multiscale structure similar to natural tissue, were prepared by combining extrusion-based low-temperature deposition 3D printing with freeze-drying. Furthermore, we creatively integrated the advantages of 3D printing and solvent casting and successfully developed a 2D conductive film scaffold with no bubbles, uniform thickness, and good structural stability. Subsequently, the effects of concentration and morphology of PPy nanoparticles on electrical properties and mechanical properties of 3D conductive scaffolds and 2D conductive films scaffolds have been studied, which provided a new idea for the design of both 2D and 3D electroactive tissue engineering scaffolds.
Collapse
Affiliation(s)
- Chunyang Ma
- School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yingjin Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Fangli Gang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Nan Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ting Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhongqun Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yongjie Chi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
112
|
Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019; 14:5753-5783. [PMID: 31413573 PMCID: PMC6662516 DOI: 10.2147/ijn.s192779] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Renu Geetha Bai
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Kasturi Muthoosamy
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Sivakumar Manickam
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Ali Hilal-Alnaqbi
- Electromechanical Technology, Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
113
|
Wang J, Zheng W, Chen L, Zhu T, Shen W, Fan C, Wang H, Mo X. Enhancement of Schwann Cells Function Using Graphene-Oxide-Modified Nanofiber Scaffolds for Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2019; 5:2444-2456. [DOI: 10.1021/acsbiomaterials.8b01564] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Juan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wei Zheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Tonghe Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wei Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
114
|
Joshi K, Mazumder B, Chattopadhyay P, Bora NS, Goyary D, Karmakar S. Graphene Family of Nanomaterials: Reviewing Advanced Applications in Drug delivery and Medicine. Curr Drug Deliv 2019; 16:195-214. [DOI: 10.2174/1567201815666181031162208] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Graphene in nano form has proven to be one of the most remarkable materials. It has a single
atom thick molecular structure and it possesses exceptional physical strength, electrical and electronic
properties. Applications of the Graphene Family of Nanomaterials (GFNs) in different fields of therapy
have emerged, including for targeted drug delivery in cancer, gene delivery, antimicrobial therapy, tissue
engineering and more recently in more diseases including HIV. This review seeks to analyze current
advances of potential applications of graphene and its family of nano-materials for drug delivery and
other major biomedical purposes. Moreover, safety and toxicity are the major roadblocks preventing the
use of GFNs in therapeutics. This review intends to analyze the safety and biocompatibility of GFNs
along with the discussion on the latest techniques developed for toxicity reduction and biocompatibility
enhancement of GFNs. This review seeks to evaluate how GFNs in future will serve as biocompatible
and useful biomaterials in therapeutics.
Collapse
Affiliation(s)
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | | | | | | | | |
Collapse
|
115
|
Wang J, Cheng Y, Chen L, Zhu T, Ye K, Jia C, Wang H, Zhu M, Fan C, Mo X. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomater 2019; 84:98-113. [PMID: 30471474 DOI: 10.1016/j.actbio.2018.11.032] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 12/30/2022]
Abstract
Graphene, as a promising biomaterial, has received great attention in biomedical fields due to its intriguing properties, especially the conductivity and biocompatibility. Given limited studies on the effects of graphene-based scaffolds on peripheral nerve regeneration in vitro and in vivo under electrical stimulation (ES), the present study was intended to systematically investigate how conductive graphene-based nanofibrous scaffolds regulate Schwann cell (SC) behavior including migration, proliferation and myelination, and PC12 cell differentiation in vitro via ES, and whether these conductive scaffolds could guide SC migration and promote nerve regeneration in vivo. Briefly, the reduced graphene oxide (RGO) was coated onto ApF/PLCL nanofibrous scaffolds via in situ redox reaction of the graphene oxide (GO). In vitro, RGO-coated ApF/PLCL (AP/RGO) scaffolds significantly enhanced SC migration, proliferation, and myelination including myelin-specific gene expression and neurotrophic factor secretion. The conditioned media of SCs cultured on AP/RGO scaffolds under ES could induce the differentiation of PC12 cells in a separate culture. In addition, PC12 cells cultured on the conductive AP/RGO scaffolds also showed elevated differentiation upon ES. In vivo implantation of the conductive AP/RGO nerve guidance conduits into rat sciatic nerve defects exhibited a similar healing capacity to autograft, which is the current gold standard in peripheral nerve regeneration. In view of the performance of AP/RGO scaffolds in modulating cell functions in vitro and promoting nerve regeneration in vivo, it is expected that the graphene-based conductive nanofibrous scaffolds would exhibit their potential in peripheral nerve repair and regeneration. STATEMENT OF SIGNIFICANCE: Despite the demonstrated capability of bridging the distal and proximal peripheral nerves, it remains a significant challenge with current artificial nerve conduits to achieve the desired physiological functions, e.g., the transmission of electrical stimuli. Herein, we explored the possibility of combining the conductive properties of graphene with electrospun nanofiber to create the electroactive biomimetic scaffolds for nerve tissue regeneration. In vitro and in vivo studies were carried out: (1) In vitro, the conductive nanofibrous scaffolds significantly promoted SC migration, proliferation and myelination including myelin specific gene expression and neurotrophicfactor secretion, and induced PC12 cell differentiation with electrical stimulation. (2) In vivo, the conductive nerve guidance conduit exhibited similar effects with the gold standard autograft. In view of the performance of this conductive scaffold in modulating the cell functions in vitro and promoting nerve regeneration in vivo, it is expected that the graphene-modified nanofibrous scaffolds will exhibit their potential in peripheral nerve repair and regeneration.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yuan Cheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Tonghe Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Kaiqiang Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Chao Jia
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
116
|
Qian Y, Han Q, Zhao X, Li H, Yuan WE, Fan C. Asymmetrical 3D Nanoceria Channel for Severe Neurological Defect Regeneration. iScience 2019; 12:216-231. [PMID: 30703735 PMCID: PMC6354782 DOI: 10.1016/j.isci.2019.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/24/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation and oxidative stress are major problems in peripheral nerve injury. Nanoceria can manipulate antioxidant factor expression, stimulate angiogenesis, and assist in axonal regeneration. We fabricate collagen/nanoceria/polycaprolactone (COL/NC/PCL) conduit by asymmetrical three-dimensional manufacture and find that this scaffold successfully improves Schwann cell proliferation, adhesion, and neural expression. In a 15-mm rat sciatic nerve defect model, we further confirm that the COL/NC/PCL conduit markedly alleviates inflammation and oxidative stress, improves microvessel growth, and contributes to functional, electrophysiological, and morphological nerve restoration in the long term. Our findings provide compelling evidence for future research in antioxidant nerve conduit for severe neurological defects. Collagen/nanoceria/polycaprolactone conduit was prepared by asymmetrical fabrication The scaffold induced proliferation, adhesion, and angiogenesis in nerve repair The scaffold alleviated oxidative stress and inflammation in the microenvironment
Collapse
Affiliation(s)
- Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qixin Han
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Xiaotian Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Li
- School of Medicine, University of California, 1450 Third St., San Francisco, CA 94158, USA
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
117
|
Li L, Liu Y, Li H, Guo X, He X, Geng S, Zhao H, Peng X, Shi D, Xiong B, Zhou G, Zhao Y, Zheng C, Yang X. Rational design of temperature-sensitive blood-vessel-embolic nanogels for improving hypoxic tumor microenvironment after transcatheter arterial embolization. Theranostics 2018; 8:6291-6306. [PMID: 30613298 PMCID: PMC6299701 DOI: 10.7150/thno.28845] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/14/2018] [Indexed: 01/01/2023] Open
Abstract
Transcatheter arterial embolization (TAE) plays an important role in clinical tumor therapy by accomplishing vessel-casting embolization of tumor arteries at all levels and suppressing tumor collateral circulation and vascular re-canalization. In this study, we describe smart blood-vessel-embolic nanogels for improving the anti-tumor efficacy of TAE therapy on hepatocellular carcinoma (HCC). Methods: In this study, an in vitro model composed of two microfluidic chips was used for simulating the tumor capillary network and analyzing artery-embolization properties. Also, blood-vessel-casting embolization of renal arteries was evaluated in normal rabbits. Using a VX2 tumor-bearing rabbit model, the therapeutic efficacy of TAE on HCC was investigated for tumor growth, necrosis, and proliferation. Neovascularization and collateral circulation were evaluated by immunofluorescent detection of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and CD31 following the TAE therapy of VX2 tumor-bearing rabbits. Results: Sufficient embolization of all eight levels of micro-channels was achieved in a tumor-vessel-mimetic model with two microfluidic chips using PIBI-2240, and was further confirmed in renal arteries of normal rabbit. Effective inhibition of tumor collateral circulation and vascular re-canalization was observed in VX2 tumor-bearing rabbits due to the reduced expression levels of HIF-1α, VEGF, and CD31. Conclusions: The exceptional anti-tumor effect of PIBI-2240 observed in this study suggested that it is an excellent blood-vessel-embolic material for tumor TAE therapy.
Collapse
Affiliation(s)
- Ling Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Yiming Liu
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Han Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Xiaopeng Guo
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaojun He
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shinan Geng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Hao Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Xiaole Peng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Dingwen Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
| | - Bin Xiong
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guofeng Zhou
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Chuansheng Zheng
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
| |
Collapse
|