101
|
Wang Z, Yang H, Bai Y, Cheng L, Zhu R. rBMSC osteogenic differentiation enhanced by graphene quantum dots loaded with immunomodulatory layered double hydroxide nanoparticles. Biomed Mater 2021; 17. [PMID: 34905741 DOI: 10.1088/1748-605x/ac4324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022]
Abstract
Bone tissue defects caused by disease, trauma, aging or genetic factors emerged as one of the main factors that endanger human health. At present, advanced development of bone tissue engineering and regenerative medicine focused on the biomaterials regulated stem cell for responsive differentiation. In vivo transplantation of allogeneic bone materials has the needs of both osteogenic and immune regulation function. In this study, we utilized the extensively proved biocompatible layered double hydroxide (LDH) nanoparticles as the nanocarrier of graphene quantum dots (GQD), the functional loading was validated by characteristics analysis of scanning electron microscopy, surface zeta potential, X-ray diffraction and fourier transform infrared spectroscopy. Further, we investigated the cellular uptake of nanoparticles in rat bone marrow derived mesenchymal stem cells, the significant enhanced endocytosis was occurred in LDH-GQD treated groups. The enhanced osteogenic differentiation abilities of LDH-GQD were systematically investigated through alkaline phosphatase staining, alizarin red staining and qPCR analysis. In addition, the anti-inflammatory regulation of LDH facilitated the phenotypic transition of macrophage in LDH-GQD nanocomposites. Overall, the successful construction and functional validation of nanomaterials in this study will provide clinical therapeutic potential in bone defects regeneration.
Collapse
Affiliation(s)
- Zhaojie Wang
- Tongji University, 1239 Siping Road, Shanghai, 200092, CHINA
| | - Huiyi Yang
- Tongji University, 1239 Siping Road, Shanghai, 200092, CHINA
| | - Yuxin Bai
- Tongji University, 1239 Siping Road, Shanghai, 200092, CHINA
| | - Liming Cheng
- Tongji University, 1239 Siping Road, Shanghai, 200092, CHINA
| | - Rongrong Zhu
- Tongji University, 1239 Siping Road, Shanghai, 200092, CHINA
| |
Collapse
|
102
|
Motivating borate doped FeNi layered double hydroxides by molten salt method toward efficient oxygen evolution. J Colloid Interface Sci 2021; 610:173-181. [PMID: 34922073 DOI: 10.1016/j.jcis.2021.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/23/2022]
Abstract
The incorporation of borate is a beneficial strategy to improve the catalytic activity of transition metal-based electrocatalyts for oxygen evolution reaction (OER). However, how to efficiently introduce borate has always been a challenge. Here, a facile and scalable molten salt method is developed to successfully dope borate into FeNi layered double hydroxides (FeBi@FeNi LDH) for efficient OER. The molten salt method can not only promote the formation of evenly dispersed nano-pompous FeBi precursor, thus providing the possibility to realize the direct doping of borate and the increase of mass, charge transfer and oxygen evolution active sites in FeNi LDH, but also promote the in-situ growth of FeBi@FeNi LDH on the conductive iron foam, improvingconductivity and stability of the material. The results indicate that the synthesized FeBi@FeNi LDH shows enhanced OER activity by delivering current densities of 10 and 100 mA cm-2 at low overpotentials of 246 and 295 mV and showing a small Tafel slope of 56.48 mV dec-1, benefiting from the optimization of geometric structure of active sites as well as the adjustment of electron density by borate doping especially in the case of molten salt. In addition, the sample can maintain durability at an industrial current density of 100 mA cm-1 for 90 h. This work provides a new way for the construction of efficient catalysts using boron doping assisted by molten salt.
Collapse
|
103
|
Radha AV, Weiß S, Sanjuán I, Ertl M, Andronescu C, Breu J. The Effect of Interlayer Anion Grafting on Water Oxidation Electrocatalysis: A Comparative Study of Ni- and Co-Based Brucite-Type Layered Hydroxides, Layered Double Hydroxides and Hydroxynitrate Salts. Chemistry 2021; 27:16930-16937. [PMID: 34138493 PMCID: PMC9291102 DOI: 10.1002/chem.202100452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/18/2022]
Abstract
The urge for carbon‐neutral green energy conversion and storage technologies has invoked the resurgence of interest in applying brucite‐type materials as low‐cost oxygen evolution reaction (OER) electrocatalysts in basic media. Transition metal layered hydroxides belonging to the brucite‐type structure family have been shown to display remarkable electrochemical activity. Recent studies on the earth‐abundant Fe3+ containing mössbauerite and Fe3+ rich Co−Fe layered oxyhydroxide carbonates have suggested that grafted interlayer anions might play a key role in OER catalysis. To probe the effect of such interlayer anion grafting in brucite‐like layered hydroxides, we report here a systematic study on the electrocatalytic performance of three distinct Ni and Co brucite‐type layered structures, namely, (i) brucite‐type M(OH)2 without any interlayer anions, (ii) LDHs with free interlayer anions, and (iii) hydroxynitrate salts with grafted interlayer anions. The electrochemical results indeed show that grafting has an evident impact on the electronic structure and the observed OER activity. Ni‐ and Co‐hydroxynitrate salts with grafted anions display notably earlier formations of the electrocatalytically active species. Particularly Co‐hydroxynitrate salts exhibit lower overpotentials at 10 mA cm−2 (η=0.34 V) and medium current densities of 100 mA cm−2 (η=0.40 V) compared to the corresponding brucite‐type hydroxides and LDH materials.
Collapse
Affiliation(s)
- A V Radha
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Sebastian Weiß
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany.,Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Ignacio Sanjuán
- Technical Technology III and Center for Nanointegration (CENIDE), University Duisburg-Essen, Carl-Benz-Str. 199, 47057, Duisburg, Germany
| | - Michael Ertl
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Corina Andronescu
- Technical Technology III and Center for Nanointegration (CENIDE), University Duisburg-Essen, Carl-Benz-Str. 199, 47057, Duisburg, Germany
| | - Josef Breu
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany.,Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| |
Collapse
|
104
|
Wang B, Wang X, Yong J, Song Z, Chen J, Wang X, Gao J. Hofmann‐type Metal‐Organic Framework Based Bimetal/Carbon Nanosheets for Efficient Electrocatalytic Oxygen Evolution. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bo Wang
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Xue Wang
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Jiayi Yong
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Zhirong Song
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Jiazhen Chen
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Xusheng Wang
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Junkuo Gao
- Institute of Functional Porous Materials School of Materials Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| |
Collapse
|
105
|
Gao R, Deng M, Yan Q, Fang Z, Li L, Shen H, Chen Z. Structural Variations of Metal Oxide-Based Electrocatalysts for Oxygen Evolution Reaction. SMALL METHODS 2021; 5:e2100834. [PMID: 34928041 DOI: 10.1002/smtd.202100834] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Electrocatalytic oxygen evolution reaction (OER), an important electrode reaction in electrocatalytic and photoelectrochemical cells for a carbon-free energy cycle, has attracted considerable attention in the last few years. Metal oxides have been considered as good candidates for electrocatalytic OER because they can be easily synthesized and are relatively stable during the OER process. However, inevitable structural variations still occur to them due to the complex reaction steps and harsh working conditions of OER, thus impending the further insight into the catalytic mechanism and rational design of highly efficient electrocatalysts. The aim of this review is to disclose the current research progress toward the structural variations of metal oxide-based OER electrocatalysts. The origin of structural variations of metal oxides is discussed. Based on some typical oxides performing OER activity, the external and internal factors that influence the structural stability are summarized and then some general approaches to regulate the structural variation process are provided. Some operando methods are also concluded to monitor the structural variation processes and to identify the final active structure. Additionally, the unresolved problems and challenges are presented in an attempt to get further insight into the mechanism of structural variations and establish a rational structure-catalysis relationship.
Collapse
Affiliation(s)
- Ruiqin Gao
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Meng Deng
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Qing Yan
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Zhenxing Fang
- College of Science and Technology, Ningbo University, 521 Wenwei Road, Ningbo, 315100, P. R. China
| | - Lichun Li
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Roady, Hangzhou, 310032, P. R. China
| | - Haoyu Shen
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Zhengfei Chen
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| |
Collapse
|
106
|
Sun S, Wang Z, Meng S, Yu R, Jiang D, Chen M. Iron and chromium co-doped cobalt phosphide porous nanosheets as robust bifunctional electrocatalyst for efficient water splitting. NANOTECHNOLOGY 2021; 33:075204. [PMID: 34555817 DOI: 10.1088/1361-6528/ac297e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
It is still a huge challenge to develop highly efficient and low-cost non-precious metal-based electrocatalysts for overall water splitting in alkaline electrolytes. Herein, Cr and Fe co-doped CoP porous mesh nanosheets (Mesh-CrFe-CoP NSs) were synthesized through hydrolysis reaction, ion exchange etching and subsequent low-temperature phosphating process. The Mesh-CrFe-CoP NSs provides overpotentials at a current density of 10 mA cm-2under alkaline electrolyte of 103.7 mV and 256.4 mV for HER and OER, respectively. Furthermore, when using Mesh-CrFe-CoP NSs as anode and cathode, the water splitting system could afford a current density of 10 mA cm-2at 1.55 V, which is better than an electrolytic cell composed of 20% Pt/C and RuO2. The excellent electrocatalytic performance of Mesh-CrFe-CoP NSs is attributed to the co-doping and porous nanostructure. Specifically, the Cr and Fe co-doped porous CoP nanosheets electrocatalyst not only provided abundant exposure active sites, accelerated the entry of liquid and the diffusion of gas, but also regulated the electronic environment of active sites, and thus enhanced the electrochemical performance. This work proposes a strategy for the rational design of highly efficient and stable non-precious metal co-doped phosphide electrocatalysts in the of electrochemical water splitting.
Collapse
Affiliation(s)
- Shichao Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Zhihong Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Suci Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Rui Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
107
|
Xu H, Zhou X, Lin X, Wu Y, Lin X, Qiu HJ. Electronic Interaction between In Situ Formed RuO 2 Clusters and a Nanoporous Zn 3V 3O 8 Support and Its Use in the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54951-54958. [PMID: 34781674 DOI: 10.1021/acsami.1c15119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The catalytic activity and durability of RuO2 clusters toward the oxygen evolution reaction (OER) are strongly associated with their support; however, how the electronic interaction would enhance the catalytic performance is still not quite clear. Herein, hierarchical nanoporous and single-crystal Zn3V3O8 nanosheets are adopted to anchor in situ formed RuO2 clusters. X-ray photoelectron analysis reveals significant binding energy changes of both Ru and V due to the creation of strong Ru-O-V bonding interaction, which would lead to the reconstruction of the electronic structure of the Zn3V3O8 matrix and RuO2 clusters. The ultrastrong electronic interaction also results in superior OER activity, indicated by a small overpotential at 10 mA cm-2 (228 mV) and a shallow Tafel slope of 46 mV dec-1. First-principles simulation further reveals the synergistic effect derived from the unique RuO2@Zn3V3O8 couple, which effectively regulates the electronic structure for the OER process. In addition, the created interfacial chemical bond and the confined microporous structure of the Zn3V3O8 substrate could prevent the RuO2 clusters from detachment and aggregation, making the nanocomposite a promising long-term stable OER electrocatalyst.
Collapse
Affiliation(s)
- Haitao Xu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xuyan Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaorong Lin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yunhui Wu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xi Lin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hua-Jun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
108
|
Chen X, Shi Z, Tian Y, Lin P, Wu D, Li X, Dong B, Xu W, Fang X. Two-dimensional Ti 3C 2 MXene-based nanostructures for emerging optoelectronic applications. MATERIALS HORIZONS 2021; 8:2929-2963. [PMID: 34558566 DOI: 10.1039/d1mh00986a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since the first discovery of Ti3C2 in 2011, two-dimensional (2D) transition-metal carbides, carbonitrides and nitrides, known as MXenes, have attracted significant attention. Due to their outstanding electronic, optical, mechanical, and thermal properties, versatile structures and surface chemistries, Ti3C2 MXenes have emerged as new candidates with great potential for applications in optoelectronic devices, such as photovoltaics, photodetectors and photoelectrochemical devices. The excellent metallic conductivity, high anisotropic carrier mobility, good structural and chemical stabilities, high optical transmittance, excellent mechanical strength, tunable work functions, and wide range of optical absorption properties of Ti3C2 MXene nanostructures are the key to their success in a number of electronic and photonic device applications. Herein, we summarize the fundamental properties and preparation of pure Ti3C2 MXenes, functionalized Ti3C2 MXenes and their hybrid nanocomposites, as well as their optoelectronic applications. In the end, the perspective and current challenges of Ti3C2 MXenes toward the development of advanced MXene-based nanostructures are briefly discussed for future optoelectronic applications.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhifeng Shi
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Yongtao Tian
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Pei Lin
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Di Wu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Xinjian Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Bin Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China.
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China.
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
109
|
Jin X, Gu TH, Kwon NH, Hwang SJ. Synergetic Advantages of Atomically Coupled 2D Inorganic and Graphene Nanosheets as Versatile Building Blocks for Diverse Functional Nanohybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005922. [PMID: 33890336 DOI: 10.1002/adma.202005922] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 05/05/2023]
Abstract
2D nanostructured materials, including inorganic and graphene nanosheets, have evoked plenty of scientific research activity due to their intriguing properties and excellent functionalities. The complementary advantages and common 2D crystal shapes of inorganic and graphene nanosheets render their homogenous mixtures powerful building blocks for novel high-performance functional hybrid materials. The nanometer-level thickness of 2D inorganic/graphene nanosheets allows the achievement of unusually strong electronic couplings between sheets, leading to a remarkable improvement in preexisting functionalities and the creation of unexpected properties. The synergetic merits of atomically coupled 2D inorganic-graphene nanosheets are presented here in the exploration of novel heterogeneous functional materials, with an emphasis on their critical roles as hybridization building blocks, interstratified sheets, additives, substrates, and deposited monolayers. The great flexibility and controllability of the elemental compositions, defect structures, and surface natures of inorganic-graphene nanosheets provide valuable opportunities for exploring high-performance nanohybrids applicable as electrodes for supercapacitors and rechargeable batteries, electrocatalysts, photocatalysts, and water purification agents, to give some examples. An outlook on future research perspectives for the exploitation of emerging 2D nanosheet-based hybrid materials is also presented along with novel synthetic strategies to maximize the synergetic advantage of atomically mixed 2D inorganic-graphene nanosheets.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Ha Gu
- Department of Chemistry and Nanoscience, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Nam Hee Kwon
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
110
|
Singh B, Singh A, Yadav A, Indra A. Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
111
|
Wang N, Xu A, Ou P, Hung SF, Ozden A, Lu YR, Abed J, Wang Z, Yan Y, Sun MJ, Xia Y, Han M, Han J, Yao K, Wu FY, Chen PH, Vomiero A, Seifitokaldani A, Sun X, Sinton D, Liu Y, Sargent EH, Liang H. Boride-derived oxygen-evolution catalysts. Nat Commun 2021; 12:6089. [PMID: 34667176 PMCID: PMC8526748 DOI: 10.1038/s41467-021-26307-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Metal borides/borates have been considered promising as oxygen evolution reaction catalysts; however, to date, there is a dearth of evidence of long-term stability at practical current densities. Here we report a phase composition modulation approach to fabricate effective borides/borates-based catalysts. We find that metal borides in-situ formed metal borates are responsible for their high activity. This knowledge prompts us to synthesize NiFe-Boride, and to use it as a templating precursor to form an active NiFe-Borate catalyst. This boride-derived oxide catalyzes oxygen evolution with an overpotential of 167 mV at 10 mA/cm2 in 1 M KOH electrolyte and requires a record-low overpotential of 460 mV to maintain water splitting performance for over 400 h at current density of 1 A/cm2. We couple the catalyst with CO reduction in an alkaline membrane electrode assembly electrolyser, reporting stable C2H4 electrosynthesis at current density 200 mA/cm2 for over 80 h.
Collapse
Affiliation(s)
- Ning Wang
- grid.33763.320000 0004 1761 2484School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China ,grid.17063.330000 0001 2157 2938Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4 Canada
| | - Aoni Xu
- grid.17063.330000 0001 2157 2938Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4 Canada
| | - Pengfei Ou
- grid.17063.330000 0001 2157 2938Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4 Canada
| | - Sung-Fu Hung
- grid.260539.b0000 0001 2059 7017Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300 Taiwan ROC
| | - Adnan Ozden
- grid.17063.330000 0001 2157 2938Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 Canada
| | - Ying-Rui Lu
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan ROC
| | - Jehad Abed
- grid.17063.330000 0001 2157 2938Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4 Canada
| | - Ziyun Wang
- grid.17063.330000 0001 2157 2938Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4 Canada
| | - Yu Yan
- grid.17063.330000 0001 2157 2938Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4 Canada
| | - Meng-Jia Sun
- grid.17063.330000 0001 2157 2938Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4 Canada
| | - Yujian Xia
- grid.263761.70000 0001 0198 0694Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Materials and Devices, Soochow University, Suzhou, Jiangsu 215123 China
| | - Mei Han
- grid.33763.320000 0004 1761 2484School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
| | - Jingrui Han
- grid.33763.320000 0004 1761 2484School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
| | - Kaili Yao
- grid.33763.320000 0004 1761 2484School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
| | - Feng-Yi Wu
- grid.260539.b0000 0001 2059 7017Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300 Taiwan ROC
| | - Pei-Hsuan Chen
- grid.260539.b0000 0001 2059 7017Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300 Taiwan ROC
| | - Alberto Vomiero
- grid.6926.b0000 0001 1014 8699Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden ,grid.7240.10000 0004 1763 0578Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Ali Seifitokaldani
- grid.14709.3b0000 0004 1936 8649Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5 Canada
| | - Xuhui Sun
- grid.263761.70000 0001 0198 0694Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Materials and Devices, Soochow University, Suzhou, Jiangsu 215123 China
| | - David Sinton
- grid.260539.b0000 0001 2059 7017Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300 Taiwan ROC
| | - Yongchang Liu
- grid.33763.320000 0004 1761 2484School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
| | - Edward H. Sargent
- grid.17063.330000 0001 2157 2938Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4 Canada
| | - Hongyan Liang
- grid.33763.320000 0004 1761 2484School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
| |
Collapse
|
112
|
Yu H, Qi L, Hu Y, Qu Y, Yan P, Isimjan TT, Yang X. Nanowire-structured FeP-CoP arrays as highly active and stable bifunctional electrocatalyst synergistically promoting high-current overall water splitting. J Colloid Interface Sci 2021; 600:811-819. [PMID: 34051467 DOI: 10.1016/j.jcis.2021.05.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
The design and construction of highly efficient and durable non-noble metal bifunctional catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media is essential for developing the hydrogen economy. To achieve this goal, we have developed a bifunctional nanowire-structured FeP-CoP array catalyst on carbon cloth with uniform distribution through in-situ hydrothermal growth and phosphating treatment. The unique nanowire array structure and the strong electronic interaction between FeP and CoP species have been confirmed. Electrochemical studies have found that the designed Fe0.14Co0.86-P/CC catalyst appears excellent HER (130 mV@10 mA cm-2)/OER (270 mV@10 mA cm-2) activity and stability. Moreover, the bifunctional Fe0.14Co0.86-P/CC(+/-) catalyst is also used in simulated industrial water splitting system, where the pair catalyst requires about 1.95 and 2.14 V to reach 500 and 1000 mA cm-2, even superior to the control RuO2(+)||Pt/C(-) catalyst, showing good industrial application prospects. These excellent electrocatalytic properties are attributed to the synergy between FeP and CoP species as well as the unique microstructure, which can accelerate charge transfer, expose more active sites and enhance electrolyte diffusion and gas emissions.
Collapse
Affiliation(s)
- Hongbo Yu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Luoluo Qi
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yan Hu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Qu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Puxuan Yan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
113
|
Fang Q, Ye S, Yang H, Yang K, Zhou J, Gao Y, Lin Q, Tan X, Yang Z. Application of layered double hydroxide-biochar composites in wastewater treatment: Recent trends, modification strategies, and outlook. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126569. [PMID: 34280719 DOI: 10.1016/j.jhazmat.2021.126569] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
In recent years, layered double hydroxide-biochar (LDH-BC) composites as adsorbents and catalysts for contaminants removal (inorganic anions, heavy metals, and organics) have received increasing attention and became a new research point. It is because of the good chemical stability, abundant surface functional groups, excellent anion exchange ability, and good electronic properties of LDH-BC composites. Hence, we offer an overall review on the developments and processes in the synthesis of LDH-BC composites as adsorbents and catalysts. Special attention is devoted to the strategies for enhancing the properties of LDH-BC composites, including (1) magnetic treatment, (2) acid treatment, (3) alkali treatment, (4) controlling metal ion ratios, (5) LDHs intercalation, and (6) calcination. In addition, further studies are called for LDH-BC composites and potential areas for future application of LDH-BC composites are also proposed.
Collapse
Affiliation(s)
- Qianzhen Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Junwu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yue Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinyi Lin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
114
|
Layered Double Hydroxides as a Drug Delivery Vehicle for S-Allyl-Mercapto-Cysteine (SAMC). Processes (Basel) 2021. [DOI: 10.3390/pr9101819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The intercalations of anionic molecules and drugs in layered double hydroxides (LDHs) have been intensively investigated in recent years. Due to their properties, such as versatility in chemical composition, good biocompatibility, high density and protection of loaded drugs, LDHs seem very promising nanosized systems for drug delivery. In this work, we report the intercalation of S-allyl-mercapto-cysteine (SAMC), which is a component of garlic that is well-known for its anti-tumor properties, inside ZnAl-LDH (hereafter LDH) nanostructured crystals. In order to investigate the efficacy of the intercalation and drug delivery of SAMC, the intercalated compounds were characterized using X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The increase in the interlayer distance of LDH from 8.9 Å, typical of the nitrate phase, to 13.9 Å indicated the intercalation of SAMC, which was also confirmed using FT-IR spectra. Indeed, compared to that of the pristine LDH precursor, the spectrum of LDH-SAMC was richly structured in the fingerprint region below 1300 cm−1, whose peaks corresponded to those of the functional groups in the SAMC molecular anion. The LDH-SAMC empirical formula, obtained from UV-Vis spectrophotometry and thermogravimetric analysis, was [Zn0.67Al0.33(OH)2]SAMC0.15(NO3)0.18·0.6H2O. The morphology of the sample was investigated using SEM: LDH-SAMC exhibited a more irregular size and shape of the flake-like crystals in comparison with the pristine LDH, with a reduction in the average crystallite size from 3 µm to about 2 µm. In vitro drug release studies were performed in a phosphate buffer solution at pH 7.2 and 37 °C and were analyzed using UV-Vis spectrophotometry. The SAMC release from LDH-SAMC was initially characterized by a burst effect in the first four hours, during which, 32% of the SAMC is released. Subsequently, the release percentage increased at a slower rate until 42% after 48 h; then it stabilized at 43% and remained constant for the remaining period of the investigation. The LDH-SAMC complex that was developed in this study showed the improved efficacy of the action of SAMC in reducing the invasive capacity of a human hepatoma cell line.
Collapse
|
115
|
Recent Advances in Layered-Double-Hydroxides Based Noble Metal Nanoparticles Efficient Electrocatalysts. NANOMATERIALS 2021; 11:nano11102644. [PMID: 34685086 PMCID: PMC8539300 DOI: 10.3390/nano11102644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022]
Abstract
With the energy crisis and environmental pollution becoming more and more serious, it is urgent to develop renewable and clean energy. Hydrogen production from electrolyzed water is of great significance to solve the energy crisis and environmental problems in the future. Recently, layered double hydroxides (LDHs) materials have been widely studied in the electrocatalysis field, due to their unique layered structure, tunable metal species and highly dispersed active sites. Moreover, the LDHs supporting noble metal catalysts obtained through the topotactic transformation of LDHs precursors significantly reduce the energy barrier of electrolyzing water, showing remarkable catalytic activity, good conductivity and excellent durability. In this review, we give an overview of recent advances on LDHs supporting noble metal catalysts, from a brief introduction, to their preparation and modification methods, to an overview of their application in the electrocatalysis field, as well as the challenges and outlooks in this promising field on the basis of current development.
Collapse
|
116
|
Li W, Zhao L, Wang C, Lu X, Chen W. Interface Engineering of Heterogeneous CeO 2-CoO Nanofibers with Rich Oxygen Vacancies for Enhanced Electrocatalytic Oxygen Evolution Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46998-47009. [PMID: 34549934 DOI: 10.1021/acsami.1c11101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of highly efficient and cheap electrocatalysts for the oxygen evolution reaction (OER) is highly desirable in typical water-splitting electrolyzers to achieve renewable energy production, yet it still remains a huge challenge. Herein, we have presented a simple procedure to construct a new nanofibrous hybrid structure with the interface connecting the surface of CeO2 and CoO as a high-performance electrocatalyst toward the OER through an electrospinning-calcination-reduction process. The resultant CeO2-CoO nanofibers exhibit excellent electrocatalytic properties with a small overpotential of 296 mV at 10 mA cm-2 for the OER, which is superior to many previously reported nonprecious metal-based and commercial RuO2 catalysts. Furthermore, the prepared CeO2-CoO nanofibers display remarkable long-term stability, which can be maintained for 130 h with nearly no attenuation of OER activity in an alkaline electrolyte. A combined experimental and theoretical investigation reveals that the excellent OER properties of CeO2-CoO nanofibers are due to the unique interfacial architecture between CeO2 and CoO, where abundant oxygen vacancies can be generated due to the incomplete matching of atomic positions of two parts, leading to the formation of many low-coordinated Co sites with high OER catalytic activity. This research provides a practical and promising opportunity for the application of heterostructured nonprecious metal oxide catalysts for high-efficiency electrochemical water oxidation.
Collapse
Affiliation(s)
- Weimo Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lusi Zhao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wei Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| |
Collapse
|
117
|
Cirone J, Dondapati JS, Chen A. Design of bimetallic nickel-iron quantum dots with tunable compositions for enhanced electrochemical water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
118
|
Zhang YC, Han C, Gao J, Pan L, Wu J, Zhu XD, Zou JJ. NiCo-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction: A Review. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03260] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yong-Chao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Caidi Han
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Gao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jinting Wu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiao-Dong Zhu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
119
|
Xiang M, Wang N, Xu Z, Zhang H, Yan Z. Accelerating Hydrogen Evolution by Anodic Electrosynthesis of Value-Added Chemicals in Water over Non-Precious Metal Electrocatalysts. Chempluschem 2021; 86:1307-1315. [PMID: 34519445 DOI: 10.1002/cplu.202100327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/29/2021] [Indexed: 11/06/2022]
Abstract
Integrating electrolytic hydrogen production from water with thermodynamically more favorable aqueous organic oxidation reactions is highly desired, because it can enhance the energy conversion efficiency in relation to traditional water electrolysis, and produce value-added chemicals instead of oxygen at the anode. In this Minireview, we introduce some key considerations for anodic auxiliary electrosynthesis and outline three types of electrocatalytic organic reactions including biomass derivative, alcohol and amine oxidation reactions, which can boost cathodic hydrogen generation. Furthermore, frequently used noble-metal-free electrocatalysts are classified into nickel-based, cobalt-based, other transition-metal-based and bimetallic electrocatalysts. The preparation methods of these catalysts and their performance towards electrochemical oxidation reactions are also discussed in detail. We specifically highlight the importance of redox active sites on the surface of the electrocatalysts, which act as electron mediators to promote oxidation reactions. Finally, the current challenges and future developments in this emerging field are also discussed.
Collapse
Affiliation(s)
- Ming Xiang
- Key Laboratory of Optoelectronic Chemical Materials and, Devices of Ministry of Education, Jianghan University, Wuhan, 430056, P. R. China
| | - Nenghuan Wang
- Key Laboratory of Optoelectronic Chemical Materials and, Devices of Ministry of Education, Jianghan University, Wuhan, 430056, P. R. China
| | - Zhihua Xu
- Key Laboratory of Optoelectronic Chemical Materials and, Devices of Ministry of Education, Jianghan University, Wuhan, 430056, P. R. China
| | - Han Zhang
- Key Laboratory of Optoelectronic Chemical Materials and, Devices of Ministry of Education, Jianghan University, Wuhan, 430056, P. R. China
| | - Zhaoxiong Yan
- Key Laboratory of Optoelectronic Chemical Materials and, Devices of Ministry of Education, Jianghan University, Wuhan, 430056, P. R. China
| |
Collapse
|
120
|
Wang T, Wang W, Shao W, Bai M, Zhou M, Li S, Ma T, Ma L, Cheng C, Liu X. Synthesis and Electronic Modulation of Nanostructured Layered Double Hydroxides for Efficient Electrochemical Oxygen Evolution. CHEMSUSCHEM 2021; 14:5112-5134. [PMID: 34520128 DOI: 10.1002/cssc.202101844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/14/2021] [Indexed: 02/05/2023]
Abstract
Water electrolysis is considered to be one of the most promising technologies to produce clean fuels. However, its extensive realization critically depends on the progress in cost-effective and high-powered oxygen evolution reaction (OER) electrocatalysts. As a member of the big family of two-dimensional (2D) materials, nanostructured layered double hydroxides (nLDHs) have made significant processes and continuous breakthroughs for OER electrocatalysis. In this Review, the advancements in designing nLDHs for OER in recent years were discussed with a unique focus on their electronic modulations and in situ analysis on catalytic processes. After a brief discussion on different synthetic methodologies of nLDHs, including "bottom-up" and "top-down" approaches, the general strategies to enhance the catalytic performances of nLDHs reported so far were summarized, including compositional substitution, heteroatom doping, vacancy engineering, and amorphous/crystalline engineering. Furthermore, the in situ OER processes and mechanism analysis on engineering efficient nLDHs electrocatalysts were discussed. Finally, the research trends, perspectives, and challenges on designing nLDHs were also carefully outlined. This progress Review may offer enlightening experimental/theoretical guidance for designing highly catalytic active nLDHs and provide new directions to promote their future prosperity for practical utilization in water splitting.
Collapse
Affiliation(s)
- Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Weiwen Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shuang Li
- Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
121
|
Sun X, Yang P, Wang S, Jin C, Ren M, Xing H. Fabrication of Nanoflower-like MCoP (M = Fe and Ni) Composites for High-Performance Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10403-10412. [PMID: 34436907 DOI: 10.1021/acs.langmuir.1c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Elaborating the development of functional materials with excellent performance for supercapacitors is important in energy storage devices. In the present study, nanoflower-like MCoP (M = Ni and Fe) composites were successfully fabricated on Ni foam (denoted as NF@MCoP) by a cost-effective hydrothermal and low-temperature phosphating method. Simultaneously, the unique three-dimensional structure, nanoflower morphology, and the conductive substrate provide a favorable large electroactive area, shorter electron transfer distance, and rapid electron conductivity. The as-synthesized nanoflower-like MCoP composites exhibit outstanding energy density, power density, and long-term cycling stability. These results show that the developed electrode materials with excellent performance have great application prospects in the field of supercapacitor applications.
Collapse
Affiliation(s)
- Xiangfei Sun
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Ping Yang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Shaohua Wang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Congcong Jin
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Menglei Ren
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Honglong Xing
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| |
Collapse
|
122
|
Yu J, Lu K, Wang C, Wang Z, Fan C, Bai G, Wang G, Yu F. Modification of NiFe layered double hydroxide by lanthanum doping for boosting water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
123
|
Zhang K, Zou R. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100129. [PMID: 34114334 DOI: 10.1002/smll.202100129] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/06/2021] [Indexed: 05/14/2023]
Abstract
Oxygen evolution reaction (OER) is an important half-reaction involved in many electrochemical applications, such as water splitting and rechargeable metal-air batteries. However, the sluggish kinetics of its four-electron transfer process becomes a bottleneck to the performance enhancement. Thus, rational design of electrocatalysts for OER based on thorough understanding of mechanisms and structure-activity relationship is of vital significance. This review begins with the introduction of OER mechanisms which include conventional adsorbate evolution mechanism and lattice-oxygen-mediated mechanism. The reaction pathways and related intermediates are discussed in detail, and several descriptors which greatly assist in catalyst screen and optimization are summarized. Some important parameters suggested as measurement criteria for OER are also mentioned and discussed. Then, recent developments and breakthroughs in experimental achievements on transition metal-based OER electrocatalysts are reviewed to reveal the novel design principles. Finally, some perspectives and future directions are proposed for further catalytic performance enhancement and deeper understanding of catalyst design. It is believed that iterative improvements based on the understanding of mechanisms and fundamental design principles are essential to realize the applications of efficient transition metal-based OER electrocatalysts for electrochemical energy storage and conversion technologies.
Collapse
Affiliation(s)
- Kexin Zhang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Institute of Clean Energy, Peking University, Beijing, 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Institute of Clean Energy, Peking University, Beijing, 100871, China
| |
Collapse
|
124
|
Yang XF, Li J, Yang XM, Li CX, Li F, Li B, He JB. High-Performance Bifunctional Ni-Fe-S Catalyst in situ Synthesized within Graphite Intergranular Nanopores for Overall Water Splitting. CHEMSUSCHEM 2021; 14:3131-3138. [PMID: 34076965 DOI: 10.1002/cssc.202100891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Low-cost and efficient bifunctional catalysts are urgently needed for overall water splitting used in large-scale energy storage. In this study, we develop a nickel and iron (di)sulfide (Ni-Fe-S) composite catalyst that is in situ synthesized and fixed within the intergranular nanopores inside high pure polycrystalline graphite. Two precursor solutions (reactants) may permeate the graphite intergranular pores to a depth of more than 3.5 mm. The nanoscale pores serve as an array of nanoreactors for the synthesis of the Ni-Fe-S nanoparticles under conditions much milder than usual. The prepared catalyst efficiently catalyzes both the hydrogen and oxygen evolution reactions (HER and OER) in 1.0 M KOH. It delivers a current density of 400 mA cm-2 at a full cell voltage of around 2.3 V without considerable activity decay over 24 h electrolysis. The active species of the catalyst are different for the HER and OER and discussed accordingly. The synthesis strategy based on the nanopores in a monolithic conductive substrate proves to be a simple, efficient, and promising way to prepare electrocatalysts that are cheap, abundant, and industrially attractive.
Collapse
Affiliation(s)
- Xiao-Fan Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Xin-Ming Yang
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Jieshou, 236500, P.R. China
| | - Chao-Xiong Li
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Jieshou, 236500, P.R. China
| | - Fang Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Jieshou, 236500, P.R. China
| | - Bing Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Jieshou, 236500, P.R. China
| | - Jian-Bo He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Jieshou, 236500, P.R. China
| |
Collapse
|
125
|
Munonde TS, Zheng H. The impact of ultrasonic parameters on the exfoliation of NiFe LDH nanosheets as electrocatalysts for the oxygen evolution reaction in alkaline media. ULTRASONICS SONOCHEMISTRY 2021; 76:105664. [PMID: 34252685 PMCID: PMC8283143 DOI: 10.1016/j.ultsonch.2021.105664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/04/2021] [Accepted: 07/04/2021] [Indexed: 05/11/2023]
Abstract
The ultrasonic process has been examined to exfoliate layered materials and upgrade their properties for a variety of applications in different media. Our previous studies have shown that the ultra-sonication treatment in water without chemicals has a positive influence on the physical and electrochemical performance of layered materials and nanoparticles. In this work, we have probed the impact of ultrasonication on the physical properties and the oxygen evolution reaction (OER) of the NiFe LDH materials under various conditions, including suspension concentration (2.5-12.5 mg mL-1), sonication times (3-20 min) and amplitudes (50-90%) in water, in particular, sonication times and amplitudes. We found that the concentration, amplitude and time play significant roles on the exfoliation of the NiFe LDH material. Firstly, the NiFe LDH nanosheets displayed the best OER performance under ultrasonic conditions with the concentration of 10 mg mL-1 (50% amplitude and 15 min). Secondly, it was revealed that the exfoliation of the NiFe LDH nanosheets in a short time (<10 min) or a higher amplitudes (≥80%) has left a cutdown on the OER activity. Comprehensively, the optimum OER activity was displayed on the exfoliated NiFe LDH materials under ultrasonic condition of 60% (amplitude), 10 mg mL-1 and 15 min. It demanded only 250 mV overpotentials to reach 10 mA cm-2 in 1 M KOH, which was 100 mV less than the starting NiFe LDH material. It was revealed from the mechanism of sonochemistry and the OER reaction that, after exfoliation, the promoted OER performance is ascribed to the enriched Fe3+ at the active sites, easier oxidation of Ni2+ to Ni3+, and the strong electrical coupling of the Ni2+ and Fe3+ during the OER process. This work provides a green strategy to improve the intrinsic activity of layered materials.
Collapse
Affiliation(s)
- Tshimangadzo S Munonde
- Energy Centre, Council for Scientific and Industrial Research (CSIR), P.O Box 395, Pretoria 0001, South Africa; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O Box 17011, Johannesburg 2028, South Africa
| | - Haitao Zheng
- Energy Centre, Council for Scientific and Industrial Research (CSIR), P.O Box 395, Pretoria 0001, South Africa.
| |
Collapse
|
126
|
Faraji M, Shirani M, Rashidi-Nodeh H. The recent advances in magnetic sorbents and their applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116302] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
127
|
Zhang Y, Xu H, Lu S. Preparation and application of layered double hydroxide nanosheets. RSC Adv 2021; 11:24254-24281. [PMID: 35479011 PMCID: PMC9036865 DOI: 10.1039/d1ra03289e] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Layered double hydroxides (LDH) with unique structure and excellent properties have been widely studied in recent years. LDH have found widespread applications in catalysts, polymer/LDH nanocomposites, anion exchange materials, supercapacitors, and fire retardants. The exfoliated LDH ultrathin nanosheets with a thickness of a few atomic layers enable a series of new opportunities in both fundamental research and applications. In this review, we mainly summarize the LDH exfoliation methods developed in recent years, the recent developments for the direct synthesis of LDH single-layer nanosheets, and the applications of LDH nanosheets in catalyzing oxygen evolution reactions, crosslinkers, supercapacitors and delivery carriers.
Collapse
Affiliation(s)
- Yaping Zhang
- Pharmacy College, Henan University of Chinese Medicine Zhengzhou 450008 PR China
| | - Huifang Xu
- Pharmacy College, Henan University of Chinese Medicine Zhengzhou 450008 PR China
| | - Song Lu
- Pharmacy College, Henan University of Chinese Medicine Zhengzhou 450008 PR China
| |
Collapse
|
128
|
Gicha BB, Tufa LT, Kang S, Goddati M, Bekele ET, Lee J. Transition Metal-Based 2D Layered Double Hydroxide Nanosheets: Design Strategies and Applications in Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1388. [PMID: 34070272 PMCID: PMC8225180 DOI: 10.3390/nano11061388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 01/06/2023]
Abstract
Water splitting driven by renewable energy sources is considered a sustainable way of hydrogen production, an ideal fuel to overcome the energy issue and its environmental challenges. The rational design of electrocatalysts serves as a critical point to achieve efficient water splitting. Layered double hydroxides (LDHs) with two-dimensionally (2D) layered structures hold great potential in electrocatalysis owing to their ease of preparation, structural flexibility, and tenability. However, their application in catalysis is limited due to their low activity attributed to structural stacking with irrational electronic structures, and their sluggish mass transfers. To overcome this challenge, attempts have been made toward adjusting the morphological and electronic structure using appropriate design strategies. This review highlights the current progress made on design strategies of transition metal-based LDHs (TM-LDHs) and their application as novel catalysts for oxygen evolution reactions (OERs) in alkaline conditions. We describe various strategies employed to regulate the electronic structure and composition of TM-LDHs and we discuss their influence on OER performance. Finally, significant challenges and potential research directions are put forward to promote the possible future development of these novel TM-LDHs catalysts.
Collapse
Affiliation(s)
- Birhanu Bayissa Gicha
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (B.B.G.); (S.K.)
| | - Lemma Teshome Tufa
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama 1888, Ethiopia; (L.T.T.); (E.T.B.)
| | - Sohyun Kang
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (B.B.G.); (S.K.)
| | - Mahendra Goddati
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| | - Eneyew Tilahun Bekele
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama 1888, Ethiopia; (L.T.T.); (E.T.B.)
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (B.B.G.); (S.K.)
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| |
Collapse
|
129
|
Hu J, Zhu S, Liang Y, Wu S, Li Z, Luo S, Cui Z. Self-supported Ni3Se2@NiFe layered double hydroxide bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 2021; 587:79-89. [DOI: 10.1016/j.jcis.2020.12.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 01/22/2023]
|
130
|
Li Y, Wei X, Chen L, Shi J. Electrocatalytic Hydrogen Production Trilogy. Angew Chem Int Ed Engl 2021; 60:19550-19571. [DOI: 10.1002/anie.202009854] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/31/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Yan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Xinfa Wei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Jianlin Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
131
|
Affiliation(s)
- Yan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Xinfa Wei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Jianlin Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
132
|
Xie Y, Wang Z, Wang H, Lu L, Subramanian P, Ji S, Kannan P. α‐Co(OH)
2
Thin‐Layered Cactus‐Like Nanostructures Wrapped Ni
3
S
2
Nanowires: A Robust and Potential Catalyst for Electro‐oxidation of Hydrazine. ChemElectroChem 2021. [DOI: 10.1002/celc.202100068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yichun Xie
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing, Zhejiang 314001 P. R. China
- Fujian Yanan Power Co. Ltd. Ningde Fujian 352100 P. R. China
| | - Zining Wang
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Hui Wang
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Lei Lu
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing, Zhejiang 314001 P. R. China
| | | | - Shan Ji
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing, Zhejiang 314001 P. R. China
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing, Zhejiang 314001 P. R. China
| |
Collapse
|
133
|
Ahn IK, Lee SY, Kim HG, Lee GB, Lee JH, Kim M, Joo YC. Electrochemical oxidation of boron-doped nickel-iron layered double hydroxide for facile charge transfer in oxygen evolution electrocatalysts. RSC Adv 2021; 11:8198-8206. [PMID: 35423321 PMCID: PMC8695062 DOI: 10.1039/d0ra10169a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
The oxygen evolution reaction (OER) is the key reaction in water splitting systems, but compared with the hydrogen evolution reaction (HER), the OER exhibits slow reaction kinetics. In this work, boron doping into nickel-iron layered double hydroxide (NiFe LDH) was evaluated for the enhancement of OER electrocatalytic activity. To fabricate boron-doped NiFe LDH (B:NiFe LDH), gaseous boronization, a gas-solid reaction between boron gas and NiFe LDH, was conducted at a relatively low temperature. Subsequently, catalyst activation was performed through electrochemical oxidation for maximization of boron doping and improved OER performance. As a result, it was possible to obtain a remarkably reduced overpotential of 229 mV at 10 mA cm-2 compared to that of pristine NiFe LDH (315 mV) due to the effect of facile charge-transfer resistance by boron doping and improved active sites by electrochemical oxidation.
Collapse
Affiliation(s)
- In-Kyoung Ahn
- Department of Materials Science & Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - So-Yeon Lee
- Department of Materials Science & Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Hyoung Gyun Kim
- Department of Materials Science & Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Gi-Baek Lee
- Department of Materials Science & Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Ji-Hoon Lee
- Materials Center for Energy Convergence, Surface Technology Division, Korea Institute of Materials Science (KIMS) Changwon Gyeongnam 51508 Republic of Korea
| | - Miyoung Kim
- Department of Materials Science & Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Young-Chang Joo
- Department of Materials Science & Engineering, Seoul National University Seoul 08826 Republic of Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University Seoul 08826 Republic of Korea
- Advanced Institute of Convergence Technology 145 Gwanggyo-ro, Yeongtong-gu Suwon 16229 Republic of Korea
| |
Collapse
|
134
|
Optimizing noble metals exploitation in water oxidation catalysis by their incorporation in layered double hydroxides. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
135
|
Sun T, Mitchell S, Li J, Lyu P, Wu X, Pérez-Ramírez J, Lu J. Design of Local Atomic Environments in Single-Atom Electrocatalysts for Renewable Energy Conversions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003075. [PMID: 33283369 DOI: 10.1002/adma.202003075] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/06/2020] [Indexed: 05/27/2023]
Abstract
Single-atom electrocatalysts (SAECs) have recently attracted tremendous research interest due to their often remarkable catalytic responses, unmatched by conventional catalysts. The electrocatalytic performance of SAECs is closely related to the specific metal species and their local atomic environments, including their coordination number, the determined structure of the coordination sites, and the chemical identity of nearest and second nearest neighboring atoms. The wide range of distinct chemical bonding configurations of a single-metal atom with its surrounding host atoms creates virtually limitless opportunities for the rational design and synthesis of SAECs with tunable local atomic environment for high-performance electrocatalysis. In this review, the authors first identify fundamental hurdles in electrochemical conversions and highlight the relevance of SAECs. They then critically examine the role of the local atomic structures, encompassing the first and second coordination spheres of the isolated metal atoms, on the design of high-performance SAECs. The relevance of single-atom dopants for host activation is also discussed. Insights into the correlation between local structures of SAECs and their catalytic response are analyzed and discussed. Finally, the authors summarize major challenges to be addressed in the field of SAECs and provide some perspectives in the rational construction of superior SAECs for a wide range of electrochemical conversions.
Collapse
Affiliation(s)
- Tao Sun
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Jing Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xinbang Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Science Drive 4, Singapore, 117585, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
| |
Collapse
|
136
|
Mo2C nanospheres anchored on nickel foam as self-supported electrode for high-performance hydrogen production. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
137
|
Hao Y, Li Y, Wu J, Meng L, Wang J, Jia C, Liu T, Yang X, Liu ZP, Gong M. Recognition of Surface Oxygen Intermediates on NiFe Oxyhydroxide Oxygen-Evolving Catalysts by Homogeneous Oxidation Reactivity. J Am Chem Soc 2021; 143:1493-1502. [DOI: 10.1021/jacs.0c11307] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yaming Hao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yefei Li
- Key Laboratory of Computational Physical Science, Fudan University, Shanghai 200438, P. R. China
| | - Jianxiang Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Lingshen Meng
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jinling Wang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chenglin Jia
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Tao Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xuejing Yang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhi-Pan Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
- Key Laboratory of Computational Physical Science, Fudan University, Shanghai 200438, P. R. China
| | - Ming Gong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
138
|
Liu Q, Huang J, Yang D, Feng Y, Li G, Zhang X, Zhang Y, Xu G, Feng L. Formation of porous NiCoV-LTH nanosheet arrays by in situ etching of nickel foam for the hydrogen evolution reaction at large current density. Dalton Trans 2021; 50:72-75. [PMID: 33331362 DOI: 10.1039/d0dt03509b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the in situ generation of NiCoV-LTH on nickel foam for the HER. Interestingly, the introduction of Co into NiV-LDH can induce the formation of porous nanosheets to expose a large number of active sites and change the electron density around Ni and V to promote the absorption of hydrogen species and thus accelerate the HER kinetics.
Collapse
Affiliation(s)
- Qianqian Liu
- School of Materials Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Heravi MM, Mohammadi P. Layered double hydroxides as heterogeneous catalyst systems in the cross-coupling reactions: an overview. Mol Divers 2021; 26:569-587. [PMID: 33392966 DOI: 10.1007/s11030-020-10170-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 11/26/2022]
Abstract
Layered double hydroxides (LDHs) are recognized as two-dimensional (2D) clay materials, which comprise the interlayer anions and host layers with a positive charge (brucite-like M(OH)6 octahedral). They have been used as effective and eco-friendly heterogeneous catalytic systems in cross-coupling reactions. In this review, we try to underscore the applications of (LDHs) as an efficient and green catalyst in some important name reactions, namely Suzuki, Heck, Sonogashira, and Ullmann cross-coupling reactions leading to carbon-carbon bond formations.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Vanak, P.O. Box 1993891176, Tehran, Iran.
| | - Pourya Mohammadi
- Department of Chemistry, School of Science, Alzahra University, Vanak, P.O. Box 1993891176, Tehran, Iran
| |
Collapse
|
140
|
Boppella R, Tan J, Yun J, Manorama SV, Moon J. Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213552] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
141
|
Cao Y, Wang T, Li X, Zhang L, Luo Y, Zhang F, Asiri AM, Hu J, Liu Q, Sun X. A hierarchical CuO@NiCo layered double hydroxide core–shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00124h] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hierarchical CuO@NiCo LDH core–shell nanoarray on copper foil (CuO@NiCo LDH/CF) acts as an efficient and durable oxygen-evolving electrocatalyst, capable of driving 20 mA cm−2 at an overpotential of only 256 mV in 1.0 M KOH.
Collapse
Affiliation(s)
- Yang Cao
- School of Physics and Electrical Engineering
- Chongqing Normal University
- Chongqing 401331
- China
| | - Ting Wang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Xue Li
- School of Physics and Electrical Engineering
- Chongqing Normal University
- Chongqing 401331
- China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Yonglan Luo
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Fang Zhang
- National Engineering Research Center for Nanotechnology
- No. 28 East Jiang Chuan Road
- Shanghai 200241
- China
| | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science & Center of Excellence for Advanced Materials Research
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Jianming Hu
- School of Physics and Electrical Engineering
- Chongqing Normal University
- Chongqing 401331
- China
| | - Qian Liu
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| |
Collapse
|
142
|
Song XZ, Zhang N, Niu ZY, Pan Y, Wang XF, Tan Z. Interface engineering in the α-Co(OH) 2/ZIF-67 heterostructure for enhanced oxygen evolution electrocatalysis. NEW J CHEM 2021. [DOI: 10.1039/d1nj01286j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interface coupling endows the heterostructural α-Co(OH)2/ZIF-67-0.6 material with higher activity (η10 = 320 mV), fast kinetics and excellent durability toward oxygen evolution reaction electrocatalysis.
Collapse
Affiliation(s)
- Xue-Zhi Song
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Panjin Campus
- Panjin 124221
| | - Nan Zhang
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Panjin Campus
- Panjin 124221
| | - Zan-Yao Niu
- Leicester International Institute
- Dalian University of Technology
- Panjin 124221
- China
| | - Yu Pan
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Panjin Campus
- Panjin 124221
| | - Xiao-Feng Wang
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams
- Ministry of Education
- Dalian University of Technology
- Dalian
- China
| | - Zhenquan Tan
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Panjin Campus
- Panjin 124221
| |
Collapse
|
143
|
Sun T, Lin S, Xu Z, Li L. In situ growth of an Fe-doped NiCo-MOF electrocatalyst from layered double hydroxide effectively enhances electrocatalytic oxygen evolution performance. CrystEngComm 2021. [DOI: 10.1039/d1ce01220g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hierarchical book-like Fe-NiCo-MOF exhibits superior OER performance coupled with outstanding stability at a high current density.
Collapse
Affiliation(s)
- Tingting Sun
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| | - Shuangyan Lin
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| | - Zhikun Xu
- School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| | - Lin Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| |
Collapse
|
144
|
Noor T, Yaqoob L, Iqbal N. Recent Advances in Electrocatalysis of Oxygen Evolution Reaction using Noble‐Metal, Transition‐Metal, and Carbon‐Based Materials. ChemElectroChem 2020. [DOI: 10.1002/celc.202001441] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tayyaba Noor
- School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Lubna Yaqoob
- School of Natural Sciences (SNS) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E) National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan
| |
Collapse
|
145
|
Yu W, Du N, Hou W. Solvothermal synthesis of carbonate-type layered double hydroxide monolayer nanosheets: Solvent selection based on characteristic parameter matching criterion. J Colloid Interface Sci 2020; 587:324-333. [PMID: 33360904 DOI: 10.1016/j.jcis.2020.11.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/28/2022]
Abstract
Monolayer nanosheets of CO32--type layered double hydroxides (LDHs) have many special applications, but their fabrication is challenging. Herein, Co2Al-CO3 and Co2Fe-CO3 LDH nanosheets were synthesized via a solvothermal method. 31 solvents with different characteristic parameters, including the surface free energy (γ) and solubility (δ) parameters were chosen, to explore the correlation between the formation of monolayer LDHs (ML-LDHs) and the characteristic parameters of solvents. The results reveal that when the solvents used have the characteristic parameters matching to those of the LDHs, CO32--type ML-LDHs with a thickness of ca. 1 nm can be obtained. The mixed-solvent strategy can provide the effective solvents for the synthesis of ML-LDHs. The dispersions of CO32--type ML-LDHs can be stable for at least six months without obvious precipitation. In addition, it is demonstrated that the δ parameters of LDHs can be calculated from the γ parameters via the molar volume-free γ-δ equations developed previously. Furthermore, a new parameter called "surface free energy distance" is introduced, which can be used for screening effective solvents for the synthesis of ML-LDHs. To the best of our knowledge, this is the first time to investigate the applicable of the characteristic parameter matching principle for the bottom-up synthesis of ML-LDHs. This work deepens the understanding on the feature of CO32--type LDHs and provides a solvent selection strategy for the synthesis of CO32--type ML-LDHs.
Collapse
Affiliation(s)
- Weiyan Yu
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China
| | - Na Du
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China; National Engineering Technology Research Center of Colloidal Materials, Shandong University, Jinan 250100, PR China
| |
Collapse
|
146
|
Zhang X, Dong CL, Wang Y, Chen J, Arul KT, Diao Z, Fu Y, Li M, Shen S. Regulating Crystal Structure and Atomic Arrangement in Single-Component Metal Oxides through Electrochemical Conversion for Efficient Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57038-57046. [PMID: 33300348 DOI: 10.1021/acsami.0c16659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-component transition-metal oxide (TMO: FeOx, NiOx, or CoOx) nanosheets grown on nickel foam (NF) were electrochemically optimized with Li ion (Na ion)-induced conversion reaction for bifunctional electrocatalysis. The optimum FeOx/NF-Li electrocatalyst exhibits low overpotentials of 239 mV for hydrogen evolution reaction and 276 mV for oxygen evolution reaction at a current density of 100 mA cm-2. A two-electrode water splitting cell using FeOx/NF-Li as both anode and cathode requires only 1.60 V to achieve a current density of 10 mA cm-2. The impressive water splitting performance of the FeOx/NF-Li electrode is revealed to be attributed to Li-induced electrochemical conversion, which alters the crystal structure, creating more active sites for electrocatalytic reactions, as well as introduces O vacancies increasing the electron density and the intrinsic conductivity. More importantly, the atomic arrangement is regulated from tetrahedral Fe(Td) to octahedral Fe(Oh) coordination, which acts as catalytically active sites with reduced Gibbs free energy for the rate-determining steps. This electrochemical conversion reaction can be extended to other TMOs (i.e., NiOx/NF and CoOx/NF) for promoted electrocatalytic water splitting performances. This study provides an in-depth understanding on the nature of atomic and electronic structure evolution to promote the electrocatalytic activity.
Collapse
Affiliation(s)
- Xiaoping Zhang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, 151 Yingzhuan Road, New Taipei City 25137, Taiwan
| | - Yiqing Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Chen
- Division of Physical Science and Engineering (PSE), and KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | | - Zhidan Diao
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yanming Fu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Mingtao Li
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shaohua Shen
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
147
|
Li YK, Zhang G, Huang H, Lu WT, Cao FF, Shao ZG. Ni 17 W 3 -W Interconnected Hybrid Prepared by Atmosphere- and Thermal-Induced Phase Separation for Efficient Electrocatalysis of Alkaline Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005184. [PMID: 33169925 DOI: 10.1002/smll.202005184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/10/2020] [Indexed: 05/26/2023]
Abstract
The development of efficient and stable noble-metal-free electrocatalysts for hydrogen evolution reaction (HER) in alkaline media is still a challenge. Herein, a hybrid material formed by the interconnection of Ni17 W3 intermetallic compound with metallic W is demonstrated for HER. The Ni17 W3 -W hybrid is prepared by the atmosphere- and thermal-induced phase-separation strategy from a single-phase precursor (NiWO4 ), which gives Ni17 W3 -W hybrid abundant and tight interfaces. The theoretical calculation manifests that Ni17 W3 shows more optimized energetics for adsorbed H atom, while W has lower energy barrier for water dissociation, and the synergistic effect between them is believed to facilitate the HER kinetics. Moreover, Ni17 W3 presents a proper adsorption strength for both adsorbed OH and H, and thus Ni17 W3 may also act as a high HER catalyst by itself. As a result, the Ni17 W3 -W hybrid demonstrates high activity and durability for HER in liquid alkaline electrolyte; the electrolyzer assembled by Ni17 W3 -W hybrid and Ni-Fe-layered double hydroxide (LDH) as, respectively, the cathode and anode electrocatalysts presents superior performance to Pt/C-IrO2 benchmark. In addition, the Ni17 W3 -W hybrid also works well in the water electrolyzer based on solid hydroxide exchange membrane. The present work provides a promising pathway to the design of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Yong-Ke Li
- College of Resources and Environment, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, P. R. China
| | - Geng Zhang
- Department of Chemistry, College of Science, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, P. R. China
| | - He Huang
- Fuel Cell System and Engineering Research Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Wang-Ting Lu
- Institute for Interdisciplinary Research, Jianghan University, No. 8, Sanjiaohu Road, Wuhan, 430056, P. R. China
| | - Fei-Fei Cao
- College of Resources and Environment, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, P. R. China
- Department of Chemistry, College of Science, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, P. R. China
| | - Zhi-Gang Shao
- Fuel Cell System and Engineering Research Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
148
|
Hunt D, Oestreicher V, Mizrahi M, Requejo FG, Jobbágy M. Unveiling the Occurrence of Co(III) in NiCo Layered Electroactive Hydroxides: The Role of Distorted Environments. Chemistry 2020; 26:17081-17090. [PMID: 32721065 DOI: 10.1002/chem.202001944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Indexed: 11/06/2022]
Abstract
Co- and Ni-based layered hydroxides constitute a unique class of two-dimensional inorganic materials with exceptional chemical diversity, physicochemical properties and outstanding performance as supercapacitors and overall water splitting catalysts. Recently, the occurrence of Co(III) in these phases has been proposed as a key factor that enhance their electrochemical performance. However, the origin of this centers and control over its contents remains as an open question. We employed the Epoxide Route to synthesize a whole set of α-NiCo layered hydroxides. The PXRD and XAS characterization alert about the occurrence of Co(III) as a consequence of the increment in the Ni content. DFT+U simulation suggest that the shortening of the Co-O distance promotes a structural distortion in the Co environments, resulting in a double degeneration in the octahedral Co 3d orbitals. Hence, a strong modification of the electronic properties leaves the system prone to oxidation, by the appearance of Co localized electronic states on the Fermi level. This work combines a microscopic interpretation supported by a multiscale crystallochemical analysis, regarding the so-called synergistic redox behavior of Co and Ni, offering fundamental tools for the controllable design of highly efficient electroactive materials. To the best of our knowledge, this is the first computational-experimental investigation of the electronic and structural details of α-NiCo hydroxides, laying the foundation for the fine tuning of electronic properties in layered hydroxides.
Collapse
Affiliation(s)
- Diego Hunt
- Departamento de Física de la Materia Condensada, GIyA, CAC-CNEA, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Martin, Buenos Aires, B1650, Argentina
| | - Víctor Oestreicher
- INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina.,Current address: Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Betrán 2, 46980, Valencia, Spain
| | - Martín Mizrahi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata- CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina.,Facultad de Ingeniería, Universidad Nacional de La Plata, calle 1 esq. 47, 1900, La Plata, Argentina
| | - Félix G Requejo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata- CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Matías Jobbágy
- INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
149
|
Ma L, Zhou H, Xu M, Hao P, Kong X, Duan H. Integrating hydrogen production with anodic selective oxidation of sulfides over a CoFe layered double hydroxide electrode. Chem Sci 2020; 12:938-945. [PMID: 34163860 PMCID: PMC8179046 DOI: 10.1039/d0sc05499b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Replacing the sluggish oxygen evolution reaction (OER) with oxidation reactions for the synthesis of complex pharmaceutical molecules coupled with enhanced hydrogen evolution reaction (HER) is highly attractive, but it is rarely explored. Here, we report an electrochemical protocol for selective oxidation of sulfides to sulfoxides over a CoFe layered double hydroxide (CoFe-LDH) anode in an aqueous-MeCN electrolyte, coupled with 2-fold promoted cathodic H2 productivity. This protocol displays high activity (85-96% yields), catalyst stability (10 cycles), and generality (12 examples) in selective sulfide oxidation. We demonstrate its applicability in the synthesis of four important pharmaceutical related sulfoxide compounds with scalability (up to 1.79 g). X-ray spectroscopy investigations reveal that the CoFe-LDH material evolved into amorphous CoFe-oxyhydroxide under catalytic conditions. This work may pave the way towards sustainable organic synthesis of valuable pharmaceuticals coupled with H2 production.
Collapse
Affiliation(s)
- Lina Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Hua Zhou
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Peipei Hao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
150
|
Wan H, Chen F, Ma W, Liu X, Ma R. Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction. NANOSCALE 2020; 12:21479-21496. [PMID: 33089855 DOI: 10.1039/d0nr05072e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The electrocatalytic oxygen reduction reaction (ORR) is a crucial part in developing high-efficiency fuel cells and metal-air batteries, which have been cherished as clean and sustainable energy conversion devices/systems to meet the ever-increasing energy demand. ORR electrocatalysts currently employed in the cathodes of fuel cells and metal-air batteries are mainly based on high-cost and scarce noble metal elements. It is thus of great importance to develop cheap and earth-abundant ORR electrocatalysts. In this aspect, redox-active transition metal hydroxides, a class of multifunctional inorganic layered materials, have been proposed as prospective candidates on account of their abundance and high ORR activities. In this article, the preparation and structural evolution of transition metal hydroxides, in particular their exfoliation into two-dimensional (2D) nanosheets, as well as compositing/integrating with catalytic active and/or conductive components to overcome the insulating nature of hydroxides in alkaline ORR, are summarized. Recent advances have demonstrated that 2D transition metal hydroxides with carefully tuned compositions and elaborately designed nanoarchitectures can achieve both high activity and high pathway selectivity, as well as excellent stability comparable to those of commercial Pt/C electrocatalysts. To realize the dream of renewable electrochemical energy conversion, new strategies and insights into rational designing of 2D hydroxide-based nanostructures with further enhanced electrocatalytic performance are still to be vigorously pursued.
Collapse
Affiliation(s)
- Hao Wan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Fashen Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China. and State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Wei Ma
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Xiaohe Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China. and State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Renzhi Ma
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|