101
|
Yang H, Tong Z, Sun S, Mao Z. Enhancement of tumour penetration by nanomedicines through strategies based on transport processes and barriers. J Control Release 2020; 328:28-44. [PMID: 32858072 DOI: 10.1016/j.jconrel.2020.08.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Nanomedicines for antitumour therapy have been widely studied in recent decades, but only a few have been used in clinical applications. One of the most important reasons is the poor tumour permeability of the nanomedicines. In this three-part review, intravascular, transvascular and extravascular transport were introduced one by one according to their roles in the overall process of nanomedicine transport into tumours. Transportation obstacles, such as elevated interstitial fluid pressure (IFP), abnormal blood vessels, dense tumour extracellular matrix (ECM) and binding site barriers (BSB), were each discussed in the context of the respective transport processes. Furthermore, homologous resolution strategies were summarized on the basis of each transportation obstacle, such as the normalization of blood vessels, regulation of the tumour microenvironment (TME) and application of transformable nanoparticles. At the end of this review, we propose holistic, concrete, and innovative views for better tumour penetration of nanomedicines.
Collapse
Affiliation(s)
- Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Zongrui Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shichao Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
102
|
Birlik Demirel G, Aygul E, Dag A, Atasoy S, Cimen Z, Cetin B. Folic Acid-Conjugated pH and Redox-Sensitive Ellipsoidal Hybrid Magnetic Nanoparticles for Dual-Triggered Drug Release. ACS APPLIED BIO MATERIALS 2020; 3:4949-4961. [DOI: 10.1021/acsabm.0c00488] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gokcen Birlik Demirel
- Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, 06900 Ankara, Turkey
| | - Ebru Aygul
- Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, 06900 Ankara, Turkey
- Department of Chemistry, Institute of Natural and Applied Sciences, Gazi University, 06500 Ankara, Turkey
| | - Aydan Dag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Sezen Atasoy
- Department of Biochemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Zeynep Cimen
- Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, 06900 Ankara, Turkey
- Department of Chemistry, Institute of Natural and Applied Sciences, Gazi University, 06500 Ankara, Turkey
| | - Busra Cetin
- Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, 06900 Ankara, Turkey
- Department of Chemistry, Institute of Natural and Applied Sciences, Gazi University, 06500 Ankara, Turkey
| |
Collapse
|
103
|
Santra S, Sk MA, Mondal A, Molla MR. Self-Immolative Polyurethane-Based Nanoassemblies: Surface Charge Modulation at Tumor-Relevant pH and Redox-Responsive Guest Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8282-8289. [PMID: 32579366 DOI: 10.1021/acs.langmuir.0c01474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The self-assembly of a stimuli-responsive amphiphilic polymer has been of great interest in the area of targeted drug delivery applications. In this article, a new amphiphilic polyurethane with a hydrophobic backbone consisting of a redox-responsive self-immolative unit and hydrophilic pendant triethylene glycol, which is periodically grafted on the backbone by a tertiary amine group, has been designed and synthesized. This amphiphilic polymer self-assembles into a micellar nanostructure (investigated by dynamic light scattering and transmission electron microscopy) in an aqueous medium and shows guest encapsulation property. Furthermore, the pH-responsive nature leads to the formation of a positively charged nanoassembly at a tumor-relevant pH (∼6.5-6.8), which is probed by zeta potential measurements. As the backbone was constructed with self-immolative, redox-responsive functionality, degradation of the polymer was observed in the presence of a reducing agent, glutathione (GSH), which results in disassembly of the self-assembled structure followed by guest release as probed by UV-vis spectroscopy. The triggered degradation and pH-specific charge generation (from neutral to positive), we believe, will have implications in the design of biodegradable polymers as supramoleular scaffolds for biomedical applications.
Collapse
Affiliation(s)
- Subrata Santra
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India
| | - Mursed A Sk
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India
| | - Arun Mondal
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India
| | - Mijanur R Molla
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India
| |
Collapse
|
104
|
Liu J, Li HJ, Luo YL, Chen YF, Fan YN, Du JZ, Wang J. Programmable Delivery of Immune Adjuvant to Tumor-Infiltrating Dendritic Cells for Cancer Immunotherapy. NANO LETTERS 2020; 20:4882-4889. [PMID: 32551705 DOI: 10.1021/acs.nanolett.0c00893] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tumor-infiltrating dendritic cells (TIDCs) are mostly immature and immunosuppressive, usually mediating immune inhibition. The utilization of cytosine-guanine oligodeoxynucleotides (CpG ODNs) to stimulate the activation of TIDCs has been demonstrated to be effective for improving antitumor immunity. However, a series of biological barriers has limited the efficacy of previous nanocarriers for delivering CpG to TIDCs. Herein, we developed a dual-sensitive dendrimer cluster-based nanoadjuvant for delivering CpG ODNs into TIDCs. We show that the tumor acidity triggers the rapid release of CpG conjugated polyamidoamine (PAMAM) dendrimers from the nanoadjuvant, thus facilitating its perfusion deep into tumors and phagocytosis by TIDCs. Thereafter, the reductive condition of the endolysosomes led to the subsequent release of CpG, which promotes the DCs activation and enhances antitumor immunotherapies. Programmable delivery of immune adjuvant efficiently overcomes the barriers for targeted delivery to TIDCs and provides a promising strategy for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Jing Liu
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, P. R. China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Hong-Jun Li
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ying-Li Luo
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yi-Fang Chen
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ya-Nan Fan
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jin-Zhi Du
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jun Wang
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, P. R. China
| |
Collapse
|
105
|
Cao Y, Mao Z, He Y, Kuang Y, Liu M, Zhou Y, Zhang Y, Pei R. Extremely Small Iron Oxide Nanoparticle-Encapsulated Nanogels as a Glutathione-Responsive T 1 Contrast Agent for Tumor-Targeted Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26973-26981. [PMID: 32452664 DOI: 10.1021/acsami.0c07288] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Activatable magnetic resonance imaging (MRI) contrast agents that can be selectively stimulated at a tumor region are urgently demanded to realize the efficient and accurate diagnosis of cancers. Here, extremely small iron oxide nanoparticles (ESIONPs) modified with citric acid (ESIONPs-CA) are encapsulated in disulfide-cross-linked poly(carboxybetaine methacrylate) (poly(CBMA)) nanogels, and a cyclo[Arg-Gly-Asp-d-Tyr-Lys] (c(RGD)) ligand is further introduced to obtain ESIONP-packaged poly(CBMA) nanogels equipped with tumor-targeted c(RGD) (ICNs-RGD). On the basis of the transformation of the clustered ESIONPs into dispersed ones induced by the reducing glutathione (GSH), ICNs-RGD can complete the conversion from a T2 contrast agent to a T1 one, realizing the selective activation of the T1 contrasting effect. The GSH-dependent MRI signal conversion of ICNs-RGD is feasible in the tumor cell and tissue. Moreover, ICNs-RGD exhibits obvious targeting specificity and favorable biocompatibility. In the MRI experiments of tumor-bearing mice, benefiting from the stimuli-responsiveness toward GSH and targeting specificity, the T1 contrasting effect of tumor tissues can be selectively enhanced after the intravenous injection of ICNs-RGD. Therefore, tumor-targeted ICNs-RGD with a switchable MRI signal derived from the activation of GSH is a potential contrast agent for the efficient and precise tumor diagnosis in the clinic.
Collapse
Affiliation(s)
- Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zheng Mao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yilin He
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ye Kuang
- School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Min Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Youxin Zhou
- The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ye Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
106
|
Chang Y, Liu T, Liu P, Meng L, Li S, Guo Y, Yang L, Ma X. Biomineralized nanosilica-based organelles endow living yeast cells with non-inherent biological functions. Chem Commun (Camb) 2020; 56:5693-5696. [PMID: 32319480 DOI: 10.1039/d0cc02546a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We propose a biomimetic strategy to construct engineered yeast cells (EYCs) by building intracellular silica nanoscaffolds as biomimetic organelles. These nanosilica-based organelles can coordinate with loaded drug and yeast as a shell could prevent drug leakage. In vivo results show that EYCs serve as a dually responsive drug delivery system, targeted with extracellular caps (folate) and triggered by intracellular SiO2 at the low pH of cancer tissue.
Collapse
Affiliation(s)
- Yi Chang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Tingting Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Peng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Lili Meng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Shujun Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yuming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Lin Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Xiaoming Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| |
Collapse
|
107
|
Wang S, Zhang F, Yu G, Wang Z, Jacobson O, Ma Y, Tian R, Deng H, Yang W, Chen ZY, Chen X. Zwitterionic-to-cationic charge conversion polyprodrug nanomedicine for enhanced drug delivery. Am J Cancer Res 2020; 10:6629-6637. [PMID: 32550894 PMCID: PMC7295052 DOI: 10.7150/thno.47849] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/21/2022] Open
Abstract
Zwitterionic surface modification is a promising strategy for nanomedicines to achieve prolonged circulation time and thus effective tumor accumulation. However, zwitterion modified nanoparticles suffer from reduced cellular internalization efficiency. Methods: A polyprodrug-based nanomedicine with zwitterionic-to-cationic charge conversion ability (denoted as ZTC-NMs) was developed for enhanced chemotherapeutic drug delivery. The polyprodrug consists of pH-responsive poly(carboxybetaine)-like zwitterionic segment and glutathione-responsive camptothecin prodrug segment. Results: The ZTC-NMs combine the advantages of zwitterionic surface and polyprodrug. Compared with conventional zwitterionic surface, the ZTC-NMs can respond to tumor microenvironment and realize ZTC surface charge conversion, thus improve cellular internalization efficiency of the nanomedicines. Conclusions: This ZTC method offers a strategy to promote the drug delivery efficiency and therapeutic efficacy, which is promising for the development of cancer nanomedicines.
Collapse
|
108
|
Chen Z, Wan L, Yuan Y, Kuang Y, Xu X, Liao T, Liu J, Xu ZQ, Jiang B, Li C. pH/GSH-Dual-Sensitive Hollow Mesoporous Silica Nanoparticle-Based Drug Delivery System for Targeted Cancer Therapy. ACS Biomater Sci Eng 2020; 6:3375-3387. [PMID: 33463161 DOI: 10.1021/acsbiomaterials.0c00073] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The purpose of developing novel anticancer drug delivery systems (DDSs) is to efficiently carry and release drugs into cancer cells and minimize side effects. In this work, based on hollow mesoporous silica nanoparticle (HMSN) and the charge-reversal property, a pH/GSH-dual-sensitive DDS named DOX@HMSN-SS-PLL(cit) was reported. HMSN encapsulated DOX with high efficacy and was then covered by the "gatekeeper" β-cyclodextrin (β-CD) through the glutathione (GSH)-sensitive disulfide bond. Thereafter, adamantine-blocked citraconic-anhydride-functionalized poly-l-lysine (PLL(cit)-Ad) was decorated on the surface of the particles via host-guest interaction. The negatively charged carriers were stable in the neutral environment in vivo and could be effectively transported to the tumor site. The surface charge of the nanoparticles could be reversed in the weakly acidic environment, which increased the cellular uptake ability of the carriers by the cancer cells. After cellular internalization, β-CD can be removed by breakage of the disulfide bond in the presence of a high concentration of GSH, leading to DOX release. The preparation process of the carriers was monitored. The charge-reversal capability and the controlled drug-release behavior of the carriers were also investigated. In vitro and in vivo experiments demonstrated the excellent cancer therapy effect with low side effects of the carriers. It is expected that dual-sensitive DOX@HMSN-SS-PLL(cit) could play an important role in cancer therapy.
Collapse
Affiliation(s)
- Zhongyin Chen
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Lihui Wan
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Ye Yuan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, China
| | - Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiangyu Xu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Tao Liao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, China
| | - Zi-Qiang Xu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Bingbing Jiang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| |
Collapse
|
109
|
Chen J, Guo Z, Jiao Z, Lin L, Xu C, Tian H, Chen X. Poly(l-glutamic acid)-Based Zwitterionic Polymer in a Charge Conversional Shielding System for Gene Therapy of Malignant Tumors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19295-19306. [PMID: 32239907 DOI: 10.1021/acsami.0c02769] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, pH-sensitive polymers have received extensive attention in tumor therapy. However, the rapid response to pH changes is the key to achieving efficient treatment. Here, a novel shielding system with a rapidly pH-responsive polymer (PAMT) is synthesized by click reaction between poly(γ-allyl-l-glutamate) and thioglycolic acid or 2-(Boc-amino)ethanethiol. The zwitterionic biodegradable polymer PAMT, which is negatively charged at physiological pH, can be used to shield positively charged nanoparticles. PAMT is electrostatically attached to the surface of the positively charged PEI/pDNA complex to form a ternary complex. The zwitterionic PAMT-shielded complex exhibits rapid charge conversion when the pH decreases from 7.4 to 6.8. For the in vivo tumor inhibition experiment, PAMT/PEI/shVEGF injected intravenously shows a more significant inhibitory effect on tumor growth. The excellent results are mainly attributed to introduction of the zwitterionic copolymer PAMT, which can shield the positively charged PEI/shVEGF complex in physiological conditions, while the surface potential of the shielded complexes changes to a positive charge in the acidic tumor environment.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Caina Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
110
|
Gong Z, Liu X, Wu J, Li X, Tang Z, Deng Y, Sun X, Chen K, Gao Z, Bai J. pH-triggered morphological change in a self-assembling amphiphilic peptide used as an antitumor drug carrier. NANOTECHNOLOGY 2020; 31:165601. [PMID: 31891937 DOI: 10.1088/1361-6528/ab667c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The geometry of nanoparticles plays an important role in the process of drug encapsulation and release. In this study, an acid-responsive amphiphilic polypeptide consisting of lysine and leucine was prepared. In neutral media, the amphiphilic peptide L6K4 self-assembled to form spherical nanoparticles and encapsulated fat-soluble antitumor drugs. The intratumoral accumulation of the drug-loaded nanoparticles was improved in HeLa cells compared with normal cells. Compared to a neutral environment, increasingly acidic solutions changed the secondary structure of the peptide. In addition, the drug-loaded nanoparticles expanded and decomposed, rapidly releasing the poorly soluble antitumor drug doxorubicin (DOX). In addition, the amphiphilic peptide L6K4 had antitumor properties, and the antitumor performance of the combination of L6K4 and DOX was better than that of free DOX. Our results indicate that the use of acid responsiveness to induce geometric changes in drug-loaded peptide nanoparticles could be a promising strategy for antitumor drug delivery.
Collapse
Affiliation(s)
- Zhongying Gong
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, 261042, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Yin J, Jiao Y, Peng X, He H, Duan C. Ionic fluorescent sensor targeting receptor tyrosine kinases for biosystems imaging and application in flow cytometry. Biosens Bioelectron 2020; 153:112026. [PMID: 31989936 DOI: 10.1016/j.bios.2020.112026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 01/09/2023]
Abstract
Fluorescent imaging of receptor tyrosine kinases in living biosystems is an important means for the early diagnosis of cancer, herein an ionic fluorescent sensor (SNB) composed of targeting unit (sunitinib) and nile blue fluorophore linked via long flexible chain has been designed and evaluated. The SNB sensor exhibits distinct fluorescence responses to receptor tyrosine kinases derived from unfolding strategy and targeting ability, which were evaluated through 2D NMR analyses, optical studies, kinase activity assays. The SNB sensor has excellent membrane fluorescent imaging by electrostatic adsorption and can selectively insert into receptor tyrosine kinases domain pocket on the membrane of cancer cell lines. The SNB sensor has been successfully applied in flow cytometry for cell sorting and fluorescence imaging with tumor mouse model in vivo. The SNB senor may help transition the technology into a widely suitable tool for flow cytometry, imaging with confocal microscopes, whole animal imaging and possibly facilitating early diagnoses and treatment of cancer.
Collapse
Affiliation(s)
- Jiqiu Yin
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China; College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Yang Jiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Haiyang He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
112
|
Zhang M, Chen X, Li C, Shen X. Charge-reversal nanocarriers: An emerging paradigm for smart cancer nanomedicine. J Control Release 2020; 319:46-62. [DOI: 10.1016/j.jconrel.2019.12.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022]
|
113
|
Su YL, Kuo LW, Hsu CH, Chiang CS, Lu YJ, Chang SJ, Hu SH. Rabies virus glycoprotein-amplified hierarchical targeted hybrids capable of magneto-electric penetration delivery to orthotopic brain tumor. J Control Release 2020; 321:159-173. [PMID: 32045622 DOI: 10.1016/j.jconrel.2020.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/16/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Compact nanohybrids can potentially unite various therapeutic features and reduce side effects for precise cancer therapy. However, the poor accumulation and limited tumor penetration of drugs at the tumor impede the manifestation of nanomedicine. We developed a rabies virus glycoprotein (RVG)-amplified hierarchical targeted hybrid that acts as a stealthy and magnetolytic carrier that transports dual tumor-penetrating agents incorporating two drugs (boron-doped graphene quantum dots (B-GQDs)/doxorubicin and pH-responsive dendrimers (pH-Den)/palbociclib). The developed RVG-decorated hybrids (RVG-hybrids) enhance the accumulation of drugs at tumor by partially bypassing the BBB via spinal cord transportation and pH-induced aggregation of hierarchical targeting. The penetrated delivery of dual pH-Den and B-GQD drugs to deep tumors is actuated by magnetoelectric effect, which are able to generate electrons to achieve electrostatic repulsion and disassemble the hybrids into components of a few nanometers in size. The synergy of magnetoelectric drug penetration and chemotherapy was achieved by delivery of the B-GQDs and pH-Den to orthotopic tumors, which prolonged the host survival time. This RVG-amplified dual hierarchical delivery integrated with controlled and penetrated release from this hybrid improve the distribution of the therapeutic agents at the brain tumor for synergistic therapy, exhibiting potential for clinic use.
Collapse
Affiliation(s)
- Yu-Lin Su
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Wen Kuo
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Hsien Hsu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
114
|
Polymeric nanoparticles of poly(2-oxazoline), tannic acid and doxorubicin for controlled release and cancer treatment. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
115
|
Ooi YJ, Wen Y, Zhu J, Song X, Li J. Surface Charge Switchable Polymer/DNA Nanoparticles Responsive to Tumor Extracellular pH for Tumor-Triggered Enhanced Gene Delivery. Biomacromolecules 2020; 21:1136-1148. [DOI: 10.1021/acs.biomac.9b01521] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ying Jie Ooi
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, 117574 Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, 117574 Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, 117574 Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411 Singapore
| | - Xia Song
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, 117574 Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, 117574 Singapore
| |
Collapse
|
116
|
Li X, Zhao Z, Yang Y, Liu Z, Wang J, Xu Y, Zhang Y. Novel β-1,3-d-glucan porous microcapsule enveloped folate-functionalized liposomes as a Trojan horse for facilitated oral tumor-targeted co-delivery of chemotherapeutic drugs and quantum dots. J Mater Chem B 2020; 8:2307-2320. [DOI: 10.1039/c9tb02674f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, novel β-1,3-d-glucan porous microcapsule enveloped folate-functionalized liposomes were developed for the potential co-delivery of chemotherapeutic drugs and quantum dots with facilitated drug absorption and antitumor efficacy.
Collapse
Affiliation(s)
- Xiaonan Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical University
- Xuzhou
- P. R. China
| | - Ziming Zhao
- Department of Pharmaceutics, School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- P. R. China
| | - Yihua Yang
- Department of Pharmaceutics, School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- P. R. China
| | - Zhaorong Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical University
- Xuzhou
- P. R. China
| | - Jinglei Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical University
- Xuzhou
- P. R. China
| | - Yalu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical University
- Xuzhou
- P. R. China
| | - Yanzhuo Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical University
- Xuzhou
- P. R. China
- Department of Pharmaceutics, School of Pharmacy
| |
Collapse
|
117
|
Ma BA, Sun CY. Tumor pH-triggered “charge conversion” nanocarriers with on-demand drug release for precise cancer therapy. J Mater Chem B 2020; 8:9351-9361. [DOI: 10.1039/d0tb01692f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The pHe-triggered “charge conversion” nanocarriers were developed for combined X-ray-induced photodynamic therapy (X-PDT) and hypoxia-activated chemotherapy.
Collapse
Affiliation(s)
- Bo-Ai Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging
- Tianjin Medical University General Hospital
- Tianjin 300052
- P. R. China
- School of Food and Biological Engineering
| | - Chun-Yang Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging
- Tianjin Medical University General Hospital
- Tianjin 300052
- P. R. China
| |
Collapse
|
118
|
Zhou T, Wan G, Li B, Wu L. Nanocomposites of ionic copolymer integrating Gd-containing polyoxometalate as a multiple platform for enhanced MRI and pH-response chemotherapy. J Mater Chem B 2020; 8:6390-6401. [DOI: 10.1039/d0tb00782j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanocomposites from the co-assemblies of block copolymers and a gadolinium-grafting inorganic cluster were constructed as a multifunctional platform for MRI enhancement, drug loading, and environment-response release at local positions.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Guofeng Wan
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
119
|
Sui H, Gao Z, Guo J, Wang Y, Yuan J, Hao J, Dong S, Cui J. Dual pH-Responsive Polymer Nanogels with a Core-Shell Structure for Improved Cell Association. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16869-16875. [PMID: 31815492 DOI: 10.1021/acs.langmuir.9b03107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the fabrication of polymer nanogels with a pH-responsive core and a pH-sheddable shell and investigate the pH-dependent cell association of the pH-responsive polymer nanogels. The pH-responsive core composed of poly(2-diisopropylaminoethyl methacrylate) (PDPA) with a pKa ≈ 6.2 was synthesized by using polymerization in emulsion droplets. The pH-sheddable poly(ethylene glycol) (PEG) shell was coated on the amine-modified PDPA nanogels by an acid-degradable amide bond. The PEG shell is cleavable in response to the acidic tumor microenvironment, and subsequently, the surface charge of the nanogels can be reversed, which effectively enhances cellular association of these nanogels. The reported pH-responsive polymer nanogels provide a promising way for the better understanding of bio-nano interactions and potentially enrich the application of therapeutic delivery for cancer therapy.
Collapse
Affiliation(s)
- Haiyan Sui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Jianman Guo
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Jin Yuan
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao , Shandong 266237 , China
| |
Collapse
|
120
|
Li D, Qin J, Sun M, Yan G, Tang R. pH-sensitive, dynamic graft polymer micelles via simple synthesis for enhanced chemotherapeutic efficacy. J Biomater Appl 2019; 34:1059-1070. [DOI: 10.1177/0885328219894695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To promote chemotherapeutic efficacy and easier clinical transformation, a series of pH-sensitive and dynamic drug delivery systems with facile two-step synthesis and simple structure have been successfully constructed by the tunable grafting reaction between pH-sensitive ortho ester and poly(vinyl alcohol). The amphipathic graft macromolecules (PVA- g-OE x, x represents the percentage of feed between ortho esters and hydroxyl groups of polyvinyl alcohol) could self-assemble into micelles and doxorubicin was embedded. These micelles exhibited pH-sensitivity to both extracellular and intracellular pH and demonstrated the following characteristics: (i) maintaining long-term storage and blood circulation stability at pH 7.4; (ii) responding to tumoral extracellular pH value following gradually larger nanoparticles for improved drug accumulation and retention; (iii) being sensitive to tumoral intracellular pH value following disintegration for rapid drug release to improve toxicity to tumor cells. Moreover, the doxorubicin-loaded micelle (PVA- g-OE30-DOX) showed similar cytotoxicity to free doxorubicin in vitro, but stronger tumor penetration and inhibition ability in vitro human liver carcinoma cell line multicellular tumor spheroids. In vivo biodistribution and tumor inhibition examinations demonstrated that PVA- g-OE30-DOX had more superior efficacy in significantly enhancing drug accumulation in tumor, restraining tumor growth while decreasing drug concentration in normal tissues. The pH-sensitive, dynamic graft polymer micelles via simple synthesis could be considered as a promising and effective drug carrier in tumor therapy.
Collapse
Affiliation(s)
- Dapeng Li
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Jiejie Qin
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Min Sun
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Guoqing Yan
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| |
Collapse
|
121
|
Oehrl A, Schötz S, Haag R. Systematic Screening of Different Polyglycerin-Based Dienophile Macromonomers for Efficient Nanogel Formation through IEDDA Inverse Nanoprecipitation. Macromol Rapid Commun 2019; 41:e1900510. [PMID: 31750985 DOI: 10.1002/marc.201900510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Indexed: 12/15/2022]
Abstract
Alternatives for strain-promoted azide-alkyne cycloaddition (SPAAC) chemistries are needed because of the employment of expensive and not easily scalable precursors such as bicyclo[6.1.0]non-4-yne (BCN). Inverse electron demand Diels Alder (iEDDA)-based click chemistries, using dienophiles and tetrazines, offer a more bioorthogonal and faster toolbox, especially in the biomedical field. Here, the straightforward synthesis of dendritic polyglycerin dienophiles (dPG-dienophiles) and dPG-methyl-tetrazine (dPG-metTet) as macromonomers for a fast, stable, and scalable nanogel formation by inverse nanoprecipitation is reported. Nanogel size-influencing parameters are screened such as macromonomer concentration and water-to-acetone ratio are screened. dPG-norbonene and dPG-cyclopropene show fast and stable nanogel formation in the size range of 40-200 nm and are thus used for the coprecipitation of the model protein myoglobin. High encapsulation efficiencies of more than 70% at a 5 wt% feed ratio are obtained in both cases, showing the suitability of the mild gelation chemistry for the encapsulation of small proteins.
Collapse
Affiliation(s)
- Alexander Oehrl
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Takustr 3, D-14195, Berlin, Germany
| | - Sebastian Schötz
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Takustr 3, D-14195, Berlin, Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Takustr 3, D-14195, Berlin, Germany
| |
Collapse
|
122
|
Liu Q, Jin Z, Huang W, Sheng Y, Wang Z, Guo S. Tailor-made ternary nanopolyplexes of thiolated trimethylated chitosan with pDNA and folate conjugated cis-aconitic amide-polyethylenimine for efficient gene delivery. Int J Biol Macromol 2019; 152:948-956. [PMID: 31759023 DOI: 10.1016/j.ijbiomac.2019.10.212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
To overcome the different extra-/intracellular barriers in gene delivery, tumor-targeted and pH/redox-responsive ternary polyplexes with charge-conversional properties were prepared through a modular self-assembly strategy. Firstly, the thiolated trimethylated chitosan (TMC-SH) was synthesized to crosslink and condense pDNA through electrostatic interaction and disulfide formation, which obtained the TMC-SS/pDNA binary polyplexes with redox-responsive gene release. To further endow the binary polyplexes with tumor targeting and endo/lysosomal pH-triggered charge-reversal properties, a folate conjugated cis-aconitic amide-polyethylenimine (FA-PEI-AcO) was synthesized to shield the positive TMC-SS/pDNA, generating the FA-PEI-AcO/TMC-SS/pDNA ternary polyplexes with a size of ~190 nm and negative surface-charges. The ζ-potential of the polyplexes was stable at physiological pH and increased rapidly from -14 mV to + 20 mV at pH 5.5 (endo/lysosomal pH) due to the breakages of acid-liable amide bonds and the subsequent de-shielding of FA-PEI-AcO layers, which might benefit the endo/lysosomal escape of the polyplexes. Afterward, the polyplexes could redox-responsively release gene at higher intracellular concentrations of glutathione. By taking advantage of such multi-responses, significantly enhanced transfection efficiency was achieved in vitro in Hela cells for the ternary polyplexes. These results suggested that the newly developed polyplexes had potential application for gene delivery.
Collapse
Affiliation(s)
- Qing Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhu Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Huang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China; Department of Interventional Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Yuanyuan Sheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China; Department of Interventional Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
123
|
Liao J, Peng H, Wei X, Song Y, Liu C, Li D, Yin Y, Xiong X, Zheng H, Wang Q. A bio-responsive 6-mercaptopurine/doxorubicin based "Click Chemistry" polymeric prodrug for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110461. [PMID: 31924029 DOI: 10.1016/j.msec.2019.110461] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/05/2019] [Accepted: 11/17/2019] [Indexed: 01/04/2023]
Abstract
A novel bio-responsive co-delivery system based on Poly(DEA)-b-Poly(ABMA-co-OEGMA) (PDPAO, prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization) copolymers was constructed for enhanced cellular internalization and effective combination therapy. Reduction-sensitive 6-mercaptopurine (6MP) based prodrug and pH-sensitive doxorubicin (DOX) based prodrug were grafted onto PDPAO by an azide-alkyne "Click Chemistry" reaction to acquire a pH/reduction-sensitive polymeric prodrug (PDPAO@imine-DOX/cis-6MP), which was able to self-aggregate to form polymeric micelles (M(DOX/6MP)) with an average particle size of 116 ± 2 nm in the water. The resultant micelles could maintain a stable sphere structure and show stability with a small particles' dispersion index in the blood. Importantly, it has been observed that the pH-sensitive surface charge-conversion accompanied pH-triggered DOX release in the biomimetic extracellular acidic environment of tumor tissue and a rapid dual-drug release triggered by pH and GSH in the intracellular environment. The in vitro evaluation of micelles on human cervical cancer (HeLa) and human promyelocytic leukemia (HL-60) cells showed an enhanced cellular uptake because of charge-conversion and exhibited a higher cell-killing performance. Moreover, the graft ratio of DOX and 6MP showed the ability to adjust the cytotoxicity; the micelles with a graft ratio of 2: 1 (M(DOX2/6MP)) displayed the higher cellular inhibition on either HeLa (combination index (CI) = 0.62) or HL-60 (CI = 0.35) cells. Overall, this novel dual-drug-conjugated delivery system might have important potential applications for combination therapy of cancer.
Collapse
Affiliation(s)
- Jianhong Liao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Haisheng Peng
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States; Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing 163319, PR China
| | - Xuan Wei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yajing Song
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Can Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yihua Yin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiong Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
124
|
Li M, Ning Y, Chen J, Duan X, Song N, Ding D, Su X, Yu Z. Proline Isomerization-Regulated Tumor Microenvironment-Adaptable Self-Assembly of Peptides for Enhanced Therapeutic Efficacy. NANO LETTERS 2019; 19:7965-7976. [PMID: 31596096 DOI: 10.1021/acs.nanolett.9b03136] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomedicines have been demonstrated as promising strategies for cancer therapy due to the advantages in pharmacokinetics and drug targeting delivery to tumor tissues. However, creation of delivery platforms able to intrinsically and spatially optimize drug cellular uptake during the entire delivering process remain challenging. To address this challenge, here we report on tumor microenvironment-adaptable self-assembly (TMAS) of pentapeptides regulated by the pH-sensitive cis/trans isomerization of 4-amino-proline (Amp) amide bonds for enhanced drug delivery and photodynamic therapeutic (PDT) efficacy. We found that decreasing solution pH led to the cis → trans isomerization of Amp amide bonds, thus promoting reversible self-assembly of pentapeptide FF-Amp-FF (AmpF) into superhelices and nanoparticles upon alternating exposure to neutral and mild acidic conditions. Co-assembly of peptide AmpF with its derivative containing a photosensitizer Chlorin e6 (AmpF-C) allows for creation of TMAS systems undergoing a morphological transition adaptable to the pH gradient present in cellular uptake pathway. Ex vivo studies revealed that TMAS nanomedicines prolonged circulation in the animal body and improved accumulation at tumor sites compared to morphology-persistent nanomedicines. In addition to the optimized cellular uptake, the morphological transition of TMAS into nanofibers in cytoplasm caused an enhanced intracellular ROS level compared to nanoparticle counterparts, thus leading to a lowered half lethal dose value for cancer cells. The combined advantages of TMAS eventually allowed in vivo PDT therapy for significant inhibition of tumor growth, thus demonstrating the improved drug delivery efficiency and therapeutic efficacy of TMAS systems toward new-generation nanomedicines.
Collapse
Affiliation(s)
- Mingming Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Yashan Ning
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Jialiang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xingchen Duan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Na Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Xuncheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| |
Collapse
|
125
|
Charge-convertible polymers for improved tumor targeting and enhanced therapy. Biomaterials 2019; 217:119299. [PMID: 31254932 DOI: 10.1016/j.biomaterials.2019.119299] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 12/31/2022]
|
126
|
Yang Q, Liu S, Liu X, Liu Z, Xue W, Zhang Y. Role of charge-reversal in the hemo/immuno-compatibility of polycationic gene delivery systems. Acta Biomater 2019; 96:436-455. [PMID: 31254682 DOI: 10.1016/j.actbio.2019.06.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
Abstract
As an effective and well-recognized strategy used in many delivery systems, such as polycation gene vectors, charge reversal refers to the alternation of vector surface charge from negative (in blood circulation) to positive (in the targeted tissue) in response to specific stimuli to simultaneously satisfy the requirements of biocompatibility and targeting. Although charge reversal vectors are intended to avoid interactions with blood in their application, no overall or systematic investigation has been carried out to verify the role of charge reversal in the blood compatibility. Herein, we comprehensively mapped the effects of a typical charge-reversible polycation gene vector based on pH-responsive 2,3-dimethylmaleic anhydride (DMMA)-modified polyethylenimine (PEI)/pDNA complex in terms of blood components, coagulation function, and immune response as compared to conventional PEGylated modification. The in vitro and in vivo results displayed that charge-reversal modification significantly improves the PEI/pDNA-induced abnormal effect on vascular endothelial cells, platelet activation, clotting factor activity, fibrinogen polymerization, blood coagulation process, and pro-inflammatory cytokine expression. Unexpectedly, (PEI/pDNA)-DMMA induced the cytoskeleton impairment-mediated erythrocyte morphological alternation and complement activation even more than PEI/pDNA. Further, transcriptome sequencing demonstrated that the overexpression of pro-inflammatory cytokines was correlated with vector-induced differentially expressed gene number and mediated by inflammation-related signaling pathways (MAPK, NF-κB, Toll-like receptor, and JAK-STAT) activation. By comparison, charge-reversal modification improved the hemocompatibility to a greater extent than dose PEGylation except for erythrocyte rupture. Nevertheless, it is inferior to mPEG modification in terms of immunocompatibility. These findings provide comprehensive insights to understand the molecular mechanisms of the effects of charge reversal on blood components and their function and to provide valuable information for its potential applications from laboratory to clinic. STATEMENT OF SIGNIFICANCE: The seemingly revolutionary charge reversal strategy has been believed to possess stealth character with negative charge eluding interaction with blood components during circulation. However to date, no overall or systematic investigation has been carried out to verify the role of charge-reversal on the blood/immune compatibility, which impede their development from laboratory to bedside. Therefore, we comprehensively mapped the effects of a typical charge-reversible polycationic gene vector on blood components (vascular endothelial cell, platelet, clotting factors, fibrinogen, RBCs and coagulation function) and immune response (complement and pro-inflammatory cytokines) at cellular and molecular level in comparison to PEGylation modification. These findings help to elucidate the molecular mechanisms for the effects of charge-reversal on blood components and functions, and provide valuable information for the possible application in clinical settings.
Collapse
Affiliation(s)
- Qi Yang
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Shuo Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xin Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Wei Xue
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Yi Zhang
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
127
|
Liu J, Li HJ, Luo YL, Xu CF, Du XJ, Du JZ, Wang J. Enhanced Primary Tumor Penetration Facilitates Nanoparticle Draining into Lymph Nodes after Systemic Injection for Tumor Metastasis Inhibition. ACS NANO 2019; 13:8648-8658. [PMID: 31328920 DOI: 10.1021/acsnano.9b03472] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lymph nodes (LNs) are normally the primary site of tumor metastasis, and effective delivery of chemotherapeutics into LNs through systemic administration is critical for metastatic cancer treatment. Here, we uncovered that improved perfusion in a primary tumor facilitates nanoparticle translocation to LNs for inhibiting tumor metastasis. On the basis of our finding that an iCluster platform, which undergoes size reduction from ∼100 nm to ∼5 nm at the tumor site, markedly improved particle perfusion in the interstitium of the primary tumor, we further revealed in the current study that such tumor-specific size transition promoted particle intravasation into tumor lymphatics and migration into LNs. Quantitative analysis indicated that the drug deposition in LNs after iCluster treatment was significantly higher in the presence of a primary tumor in comparison with that after primary tumor resection. Early intervention of metastatic 4T1 tumors with iCluster chemotherapy and subsequent surgical resection of the primary tumor resulted in significantly extending animal survival, with 4 out of the 10 mice remaining completely tumor-free for 110 days. Additionally, in the more clinical relevant late metastatic model, iCluster inhibited the metastatic colonies to the lungs and extended animal survival time. This finding provides insights into the design of more effective nanomedicines for treating metastatic cancer.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , P.R. China
| | | | | | | | | | - Jin-Zhi Du
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory , Guangzhou 510005 , P.R. China
| | - Jun Wang
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory , Guangzhou 510005 , P.R. China
- Research Institute for Food Nutrition and Human Health , South China University of Technology , Guangzhou 510641 , P.R. China
| |
Collapse
|
128
|
Wang Y, Qian J, Yang M, Xu W, Wang J, Hou G, Ji L, Suo A. Doxorubicin/cisplatin co-loaded hyaluronic acid/chitosan-based nanoparticles for in vitro synergistic combination chemotherapy of breast cancer. Carbohydr Polym 2019; 225:115206. [PMID: 31521263 DOI: 10.1016/j.carbpol.2019.115206] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/09/2023]
Abstract
Combination chemotherapy has attracted more and more attention in the field of anticancer treatment. Herein, a synergetic targeted combination chemotherapy of doxorubicin (DOX) and cisplatin in breast cancer was realized by HER2 antibody-decorated nanoparticles assembled from aldehyde hyaluronic acid (AHA) and hydroxyethyl chitosan (HECS). Cisplatin and DOX were successively conjugated onto AHA through chelation and Schiff's base reaction, respectively, forming DOX/cisplatin-loaded AHA inner core. The core was sequentially complexed with HECS and targeting HER2 antibody-conjugated AHA. The formed near-spherical nanoplatform had an average size of ∼160 nm and a zeta potential of -28 mV and displayed pH-responsive surface charge reversal and drug release behaviors. HER2 receptor-mediated active targeting significantly enhanced the cellular uptake of nanoplatform. Importantly, DOX and cisplatin exhibited a synergistic cell-killing effect in human breast cancer MCF-7 cells. These results clearly indicate that the novel nanoplatform is promising for synergistic combination chemotherapy of breast cancer.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Ming Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinlei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guanghui Hou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lijie Ji
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
129
|
Hwang E, Kim K, Lee CG, Kwon TH, Lee SH, Min SK, Kim BS. Tailorable Degradation of pH-Responsive All-Polyether Micelles: Unveiling the Role of Monomer Structure and Hydrophilic–Hydrophobic Balance. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00823] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eunbyul Hwang
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Kicheol Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chae Gyu Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Ho Lee
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
130
|
Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 2019; 92:1-18. [PMID: 31096042 PMCID: PMC6661071 DOI: 10.1016/j.actbio.2019.05.018] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Nanogels are three-dimensional nanoscale networks formed by physically or chemically cross-linking polymers. Nanogels have been explored as drug delivery systems due to their advantageous properties, such as biocompatibility, high stability, tunable particle size, drug loading capacity, and possible modification of the surface for active targeting by attaching ligands that recognize cognate receptors on the target cells or tissues. Nanogels can be designed to be stimulus responsive, and react to internal or external stimuli such as pH, temperature, light and redox, thus resulting in the controlled release of loaded drugs. This "smart" targeting ability prevents drug accumulation in non-target tissues and minimizes the side effects of the drug. This review aims to provide an introduction to nanogels, their preparation methods, and to discuss the design of various stimulus-responsive nanogels that are able to provide controlled drug release in response to particular stimuli. STATEMENT OF SIGNIFICANCE: Smart and stimulus-responsive drug delivery is a rapidly growing area of biomaterial research. The explosive rise in nanotechnology and nanomedicine, has provided a host of nanoparticles and nanovehicles which may bewilder the uninitiated reader. This review will lay out the evidence that polymeric nanogels have an important role to play in the design of innovative drug delivery vehicles that respond to internal and external stimuli such as temperature, pH, redox, and light.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Sepideh Ahmadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Division of Diseases, Advanced Technologies Research Group, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
131
|
Xie D, Du J, Bao M, Zhou A, Tian C, Xue L, Ju C, Shen J, Zhang C. A one-pot modular assembly strategy for triple-play enhanced cytosolic siRNA delivery. Biomater Sci 2019; 7:901-913. [PMID: 30575823 DOI: 10.1039/c8bm01454j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Robust efficiency for cytosolic small interfering RNA (siRNA) delivery is of great importance for effective gene therapy. To significantly improve the cytosolic siRNA delivery, a "one-pot modular assembly" strategy is developed to assemble a triple-play enhanced cytosolic siRNA delivery system via a facile and innocuous copper-free click reaction. Specifically, three modules are prepared including octreotide for receptor-mediated endocytosis, a cell-penetrating peptide (CPP) for cell penetration, and glutamic acid for the charge-reversal property. All three modules with distinct facilitating endocytosis effects are expediently assembled on the surface of the siRNA/liposome complex to fabricate a multifunctional integrated siRNA delivery system (OCA-CC). OCA-CC has been demonstrated to have enhanced cytosolic delivery and superior gene-silencing efficiency in multiple tumor cells due to the combined effects of all the three modules. High levels of survivin-silencing are also achieved by OCA-CC on orthotopic human breast cancer (MCF-7)-bearing mice accompanied by significant tumor inhibition. This research provides a facile strategy to produce safe and tunable siRNA delivery systems for effective gene therapy and to facilitate the development of multifunctional siRNA vectors.
Collapse
Affiliation(s)
- Daping Xie
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Cuggino JC, Blanco ERO, Gugliotta LM, Alvarez Igarzabal CI, Calderón M. Crossing biological barriers with nanogels to improve drug delivery performance. J Control Release 2019; 307:221-246. [PMID: 31175895 DOI: 10.1016/j.jconrel.2019.06.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 01/04/2023]
Abstract
The current limitations in the use of nanocarriers to treat constantly evolving diseases call for the design of novel and smarter drug delivery systems (DDS). Nanogels (NGs) are three-dimensional crosslinked polymers with dimensions on the nanoscale and with a great potential for use in the biomedical field. Particular interest focuses on their application as DDS to minimize severe toxic effects and increase the therapeutic index of drugs. They have recently gained attention, since they can include responsive modalities within their structure, which enable them to excerpt a therapeutic function on demand. Their bigger sizes and controlled architecture and functionality, when compared to non-crosslinked polymers, make them particularly interesting to explore novel modalities to cross biological barriers. The present review summarizes the most significant developments of NGs as smart carriers, with focus on smart modalities to cross biological barriers such as cellular membrane, tumor stroma, mucose, skin, and blood brain barrier. We discuss the properties of each barrier and highlight the importance that the NG design has on their capability to overcome them and deliver the cargo at the site of action.
Collapse
Affiliation(s)
- Julio César Cuggino
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina; Grupo de Polímeros, Departamento de Ingeniería Química, Facultad Regional San Francisco, Universidad Tecnológica Nacional. Av. de la Universidad 501, San Francisco, 2400 Córdoba, Argentina
| | - Ernesto Rafael Osorio Blanco
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany; POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Luis Marcelino Gugliotta
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - Cecilia Inés Alvarez Igarzabal
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), IPQA-CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina.
| | - Marcelo Calderón
- POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
133
|
Kuang Y, Chen H, Chen Z, Wan L, Liu J, Xu Z, Chen X, Jiang B, Li C. Poly(amino acid)/ZnO/mesoporous silica nanoparticle based complex drug delivery system with a charge-reversal property for cancer therapy. Colloids Surf B Biointerfaces 2019; 181:461-469. [PMID: 31176118 DOI: 10.1016/j.colsurfb.2019.05.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/06/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
Negative-to-positive charge-reversal strategy employed in anti-cancer drug delivery systems (DDSs) can improve the utilization of the drugs as well as reduce their side effects efficiently. In this article, a complex DDS named DOX@MSN-ZnO-PLL-PLL(DMA) was prepared. Doxorubicin hydrochloride (DOX) was loaded in mesoporous silica nanoparticles (MSNs), which were then covered by ZnO in situ. Poly-L-lysine (PLL) and 2,3-dimethylmaleic anhydride functionalized PLL (PLL(DMA)) were finally coated on the nanoparticles through a Layer-by-Layer (LbL) assembly process with PLL(DMA) outside to obtain the carriers. The negative charged PLL(DMA) avoided the unspecific uptake of the carriers by normal cells at pH 7.4. While the charge-reversal property could reverse the zeta-potential of the carriers to positive in weakly acidic tumor tissues at pH 6.5, which promoted the cytophagy of the carriers by cancer cells. ZnO which blocked the pores of MSNs could be dissolved intracellular due to the more acidic environment in endosome/lysosome, and resulting in drug release for cancer cell apoptosis. Zeta-potential measurements, the in vitro cellular uptake behaviors as well as cellular cytotoxicity of the carriers at different pH values were investigated to prove the charge-reversal property. The in vitro drug release studies and the cellular cytotoxicity studies were also investigated to prove the controlled DOX release behavior of the carriers. In summary, the complex DDS with charge-reversal property should be of consideration in cancer therapy.
Collapse
Affiliation(s)
- Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, PR China; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Hui Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Zhongyin Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Lihui Wan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Ziqiang Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Xueqin Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Bingbing Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China.
| | - Cao Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China.
| |
Collapse
|
134
|
Nakayama M, Lim WQ, Kajiyama S, Kumamoto A, Ikuhara Y, Kato T, Zhao Y. Liquid-Crystalline Hydroxyapatite/Polymer Nanorod Hybrids: Potential Bioplatform for Photodynamic Therapy and Cellular Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17759-17765. [PMID: 31010284 DOI: 10.1021/acsami.9b02485] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, we found that self-organization of hydroxyapatite (HAp) with poly(acrylic acid) (PAA) leads to the formation of liquid-crystalline (LC) nanorod hybrids that form aligned films and show stimuli-responsive properties. Here, we demonstrate that these biocompatible HAp/PAA hybrid nanorods represent a platform technology as drug nanocarriers for photodynamic cancer therapy and as bioscaffolds for the control of cellular alignment and growth. To use hybrid nanorods as a drug nanocarrier, we introduced methylene blue (MB), a typical photosensitizer for photodynamic therapy, into the PAA nanolayer covering the surface of the HAp nanocrystals through electrostatic interactions. The stable MB-loaded HAp/PAA hybrid nanorods efficiently produced singlet oxygen from MB upon light irradiation and showed remarkable photodynamic therapeutic effects in cancer cells. Moreover, taking advantage of the mechanically responsive LC alignment properties of the HAp/PAA hybrid nanorods, macroscopically oriented bioscaffolds were prepared through a spin-coating process. The cells cultured on the oriented scaffolds showed cellular alignment and elongation along the oriented direction of the hybrid nanorods. The HAp/PAA hybrid nanorods demonstrate potential in drug delivery and tissue engineering. These unique LC HAp/PAA hybrid nanorods have significant potential as a platform for the development of various types of biomaterial.
Collapse
Affiliation(s)
- Masanari Nakayama
- Department of Chemistry and Biotechnology, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Wei Qi Lim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| | - Satoshi Kajiyama
- Department of Chemistry and Biotechnology, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Akihito Kumamoto
- Institute of Engineering Innovation, School of Engineering , The University of Tokyo , 2-11-16 Yayoi , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, School of Engineering , The University of Tokyo , 2-11-16 Yayoi , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| |
Collapse
|
135
|
Cheng X, Zeng X, Li D, Wang X, Sun M, He L, Tang R. TPGS-grafted and acid-responsive soy protein nanogels for efficient intracellular drug release, accumulation, penetration in 3D tumor spheroids of drug-resistant cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:863-875. [PMID: 31147058 DOI: 10.1016/j.msec.2019.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 01/17/2023]
Abstract
The frequent occurrence of multidrug resistance (MDR) in solid tumors is the major obstacle for nano-drug delivery systems (nDDS) to realize the successful cancer chemotherapy. Herein, we had prepared pH-responsive nanogels via cross-linking TPGS-grafted soy protein with an acid-labile ortho ester cross-linker (OEAM) to realize the efficient intracellular drugs release and accumulation, and subsequently enhance therapeutic effect in MDR tumor cells. These nanogels displayed a uniform size (~200 nm) and morphology, and the introduction of ortho ester bonds endowed nanogels stability in neutral environment and acid-degradability in acidic conditions. Cisplatin (CDDP) was successfully loaded into nanogels, which exhibited an accelerated drug release at low pH. The modification of TPGS efficiently improved cellular internalization and drug accumulation in A549/DDP cells by inhibiting the function of drug efflux pumps (MRP2 and ATP7A/7B), leading to higher cytotoxicity and apoptosis. Moreover, TPGS-grafted nanogels also showed better drug accumulation and penetration in tumor-like spheroids, and then remarkably inhibited tumor growth owing to the rapid drug release in acidic organelles. As a result, the TPGS-grafted and pH-sensitive soy protein nanogels have a great potential as a drugs carrier for the efficient cancer treatment.
Collapse
Affiliation(s)
- Xu Cheng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xiaoli Zeng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Dapeng Li
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Min Sun
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Le He
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China.
| |
Collapse
|
136
|
|
137
|
Xu Y, Shi W, Li H, Li X, Ma H. H
2
O
2
‐Responsive Organosilica‐Doxorubicin Nanoparticles for Targeted Imaging and Killing of Cancer Cells Based on a Synthesized Silane‐Borate Precursor. ChemMedChem 2019; 14:1079-1085. [DOI: 10.1002/cmdc.201900142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/24/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yanhui Xu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wen Shi
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongyu Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
138
|
Shi Y, Liu S, Liu Y, Sun C, Chang M, Zhao X, Hu C, Pang M. Facile Fabrication of Nanoscale Porphyrinic Covalent Organic Polymers for Combined Photodynamic and Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12321-12326. [PMID: 30856317 DOI: 10.1021/acsami.9b00361] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photodynamic therapy (PDT) of cancers is usually inefficient due to the relatively low level of oxygen in cancer cells; therefore, it needs to combine with other treatment strategies such as chemotherapy or photothermal therapy (PTT) to achieve the best anticancer efficacy. Although porphyrin-containing materials have been widely studied for PDT, the photothermal effect is rarely reported. Herein, nanoscale porphyrin-containing covalent organic polymers (PCOPs) were produced via a room temperature solution-based aging method. The resulting nanoparticles possess high photothermal conversion efficiency (21.7%) and excellent photodynamic effect. For the first time, the in vitro and in vivo tests indicated an enhanced antitumor efficacy for PCOP with combined PDT and PTT. This study provides an efficient approach to fabricate nanoCOP and also demonstrates the great potential of porphyrin-containing COP for biomedical applications.
Collapse
Affiliation(s)
- Yanshu Shi
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Sainan Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Ying Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- Changchun University of Science and Technology , Changchun 130022 , P. R. China
| | - Chunqiang Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Xueyan Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- Changchun University of Science and Technology , Changchun 130022 , P. R. China
| | - Chunling Hu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Maolin Pang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|
139
|
Yu M, Xu J, Zheng J. Renal Clearable Luminescent Gold Nanoparticles: From the Bench to the Clinic. Angew Chem Int Ed Engl 2019; 58:4112-4128. [PMID: 30182529 PMCID: PMC6943938 DOI: 10.1002/anie.201807847] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 12/14/2022]
Abstract
With more and more engineered nanoparticles (NPs) being translated to the clinic, the United States Food and Drug Administration (FDA) has recently issued the latest draft guidance on nanomaterial-containing drug products with an emphasis on understanding their in vivo transport and nano-bio interactions. Following these guidelines, NPs can be designed to target and treat diseases more efficiently than small molecules, have minimum accumulation in normal tissues, and induce minimum toxicity. In this Minireview, we integrate this guidance with our ten-year studies on developing renal clearable luminescent gold NPs. These gold NPs resist serum protein adsorption, escape liver uptake, target cancerous tissues, and report kidney dysfunction at early stages. At the same time, off-target gold NPs can be eliminated by the kidneys with minimum accumulation in the body. Additionally, we identify challenges to the translation of renal clearable gold NPs from the bench to the clinic.
Collapse
Affiliation(s)
- Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
- ClearNano, Inc., Venture Development Center, The University of Texas at Dallas, 17217 Waterview Parkway, Suite 1.202, Dallas, TX 75252 (USA)
| | - Jing Xu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
- ClearNano, Inc., Venture Development Center, The University of Texas at Dallas, 17217 Waterview Parkway, Suite 1.202, Dallas, TX 75252 (USA)
| |
Collapse
|
140
|
Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iqbal HMN. Endogenous and Exogenous Stimuli-Responsive Drug Delivery Systems for Programmed Site-Specific Release. Molecules 2019; 24:1117. [PMID: 30901827 PMCID: PMC6470858 DOI: 10.3390/molecules24061117] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 02/05/2023] Open
Abstract
In this study, we reviewed state-of-the-art endogenous-based and exogenous-based stimuli-responsive drug delivery systems (DDS) for programmed site-specific release to overcome the drawbacks of conventional therapeutic modalities. This particular work focuses on the smart chemistry and mechanism of action aspects of several types of stimuli-responsive polymeric carriers that play a crucial role in extracellular and intracellular sections of diseased tissues or cells. With ever increasing scientific knowledge and awareness, research is underway around the globe to design new types of stimuli (external/internal) responsive polymeric carriers for biotechnological applications at large and biomedical and/or pharmaceutical applications, in particular. Both external/internal and even dual/multi-responsive behavior of polymeric carriers is considered an essential element of engineering so-called 'smart' DDS, which controls the effective and efficient dose loading, sustained release, individual variability, and targeted permeability in a sophisticated manner. So far, an array of DDS has been proposed, developed, and implemented. For instance, redox, pH, temperature, photo/light, magnetic, ultrasound, and electrical responsive DDS and/or all in all dual/dual/multi-responsive DDS (combination or two or more from any of the above). Despite the massive advancement in DDS arena, there are still many challenging concerns that remain to be addressed to cover the research gap. In this context, herein, an effort has been made to highlight those concerning issues to cover up the literature gap. Thus, the emphasis was given to the drug release mechanism and applications of endogenous and exogenous based stimuli-responsive DDS in the clinical settings.
Collapse
Affiliation(s)
- Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Faran Nabeel
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, Mexico.
| |
Collapse
|
141
|
Chen M, Song F, Liu Y, Tian J, Liu C, Li R, Zhang Q. A dual pH-sensitive liposomal system with charge-reversal and NO generation for overcoming multidrug resistance in cancer. NANOSCALE 2019; 11:3814-3826. [PMID: 30600823 DOI: 10.1039/c8nr06218h] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In cancer therapy, chemotherapeutic drugs frequently encounter multidrug resistance (MDR) induced by the overexpression of drug transporters such as P-glycoprotein (P-gp). Herein, in order to overcome MDR and improve the effectiveness of chemotherapy, we developed a novel pH-sensitive charge-reversal and NO generation liposomal system by modifying a pH-sensitive polymer (PEG-PLL-DMA) on the surface of cationic liposomes for delivering a NO donor (DETA NONOate) and a chemotherapy drug (paclitaxel, PTX) into MDR cells. The proposed liposomal system (PTX/NO/DMA-L) exhibited a distinctive charge-reversal capacity, which was negatively charged under physiological conditions (pH 7.4) but could reverse to positive charge in a tumor microenvironment (pH 6.5) due to the cleavable amide linkages formed between PEG-PLL and DMA, leading to the improvement of cell uptake. Once arrived in the endosomes and lysosomes (pH 5.0), DETA NONOate was triggered to decompose and release NO, which further promoted the quick release of PTX and inhibited the P-gp mediated efflux. The charge-reversal, NO generation and NO-triggered rapid release of drugs could significantly increase the accumulation of PTX in tumors and eventually improve the antitumor efficacy. These results indicate that this dual pH-sensitive liposomal system is a highly promising approach for chemotherapy and may pave a new avenue for overcoming MDR in cancer.
Collapse
MESH Headings
- A549 Cells
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Cell Survival/drug effects
- Drug Resistance, Neoplasm/drug effects
- Humans
- Hydrogen-Ion Concentration
- Liposomes/chemistry
- Mice
- Mice, Nude
- Microscopy, Confocal
- Neoplasms/drug therapy
- Neoplasms/pathology
- Nitric Oxide/metabolism
- Paclitaxel/chemistry
- Paclitaxel/metabolism
- Paclitaxel/pharmacology
- Paclitaxel/therapeutic use
- Polymers/chemistry
- Tissue Distribution
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Mingmao Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Feifei Song
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Yan Liu
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jia Tian
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Chun Liu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Ruyue Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China. and Key Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
142
|
Wang Y, Liu X, Kovalenko SA, Chen Q, Pinna N. Atomically Precise Bimetallic Nanoclusters as Photosensitizers in Photoelectrochemical Cells. Chemistry 2019; 25:4814-4820. [DOI: 10.1002/chem.201900008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Yu Wang
- Institut für Chemie and IRIS AdlershofHumboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Xiao‐He Liu
- Institut für Chemie and IRIS AdlershofHumboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
- International Research Center for Renewable Energy (IRCRE) andState Key Laboratory of Multiphase Flow in Power EngineeringSchool of Energy and Power EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Sergey A. Kovalenko
- Institut für Chemie and IRIS AdlershofHumboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Qing‐Yun Chen
- International Research Center for Renewable Energy (IRCRE) andState Key Laboratory of Multiphase Flow in Power EngineeringSchool of Energy and Power EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Nicola Pinna
- Institut für Chemie and IRIS AdlershofHumboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
143
|
Jin Q, Deng Y, Chen X, Ji J. Rational Design of Cancer Nanomedicine for Simultaneous Stealth Surface and Enhanced Cellular Uptake. ACS NANO 2019; 13:954-977. [PMID: 30681834 DOI: 10.1021/acsnano.8b07746] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Owing to the complex and still not fully understood physiological environment, the development of traditional nanosized drug delivery systems is very challenging for precision cancer therapy. It is very difficult to control the in vivo distribution of nanoparticles after intravenous injection. The ideal drug nanocarriers should not only have stealth surface for prolonged circulation time but also possess enhanced cellular internalization in tumor sites. Unfortunately, the stealth surface and enhanced cellular uptake seem contradictory to each other. How to integrate the two opposite aspects into one system is a very herculean but meaningful task. As an alternative drug delivery strategy, chameleon-like drug delivery systems were developed to achieve long circulation time while maintaining enhanced cancer cell uptake. Such drug nanocarriers can "turn off" their internalization ability during circulation. However, the enhanced cellular uptake can be readily activated upon arriving at tumor tissues. In this way, stealth surface and enhanced uptake are of dialectical unity in drug delivery. In this review, we focus on the surface engineering of drug nanocarriers to obtain simultaneous stealth surfaces in circulation and enhanced uptake in tumors. The current strategies and ongoing developments, including programmed tumor-targeting strategies and some specific zwitterionic surfaces, will be discussed in detail.
Collapse
Affiliation(s)
- Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang Province , P.R. China
| | - Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang Province , P.R. China
| | - Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang Province , P.R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang Province , P.R. China
| |
Collapse
|
144
|
Chen R, Chen Q, Qin H, Xing D. A photoacoustic shockwave triggers the size shrinkage of nanoparticles to obviously improve tumor penetration and therapeutic efficacy. NANOSCALE 2019; 11:1423-1436. [PMID: 30608103 DOI: 10.1039/c8nr08271e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Drug delivery to a tumor site with an insufficient microvascular network remains a challenge due to the size preference for transport in terms of circulation and distribution. In this work, an integrated nano-therapeutic parcel disintegrable by a photoacoustic shockwave was developed. Nano-therapeutic particles with red absorbance are packaged into a larger parcel to generate a longer circulation half-life and improved accumulation in tumor tissue. Pulse-laser irradiation is absorbed by the nanoparticles and it generates a photoacoustic shockwave. This triggers a liquid-gas phase transition of the nano-parcel, leading to the high-efficiency release of smaller nanoparticles, thus achieving excellent therapeutic diffusion with improved uniformity. This results in a highly effective therapeutic effect, as demonstrated with both in vitro and in vivo tumor models. Compared to previously reported work, this approach has the distinctive advantage of precisely controllable therapeutic release that is independent of the physiological environment in the tumor and it is less limited than a UV-based release mechanism. In addition, the concept of photoacoustic shockwave-based nanoparticle release can be extended over a wide wavelength range, including microwaves, to match specific needs and achieve optimal therapeutic depth. The results demonstrate that the proposed strategy holds great potential for improved tumor therapy efficacy.
Collapse
Affiliation(s)
- Rong Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China.
| | | | | | | |
Collapse
|
145
|
Yu M, Xu J, Zheng J. Renal Clearable Luminescent Gold Nanoparticles: From the Bench to the Clinic. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mengxiao Yu
- Department of Chemistry and BiochemistryThe University of Texas at Dallas 800 W. Campbell Rd. Richardson TX 75080 USA
- ClearNano, Inc., Venture Development CenterThe University of Texas at Dallas 17217 Waterview Parkway, Suite 1.202 Dallas TX 75252 USA
| | - Jing Xu
- Department of Chemistry and BiochemistryThe University of Texas at Dallas 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Jie Zheng
- Department of Chemistry and BiochemistryThe University of Texas at Dallas 800 W. Campbell Rd. Richardson TX 75080 USA
- ClearNano, Inc., Venture Development CenterThe University of Texas at Dallas 17217 Waterview Parkway, Suite 1.202 Dallas TX 75252 USA
| |
Collapse
|
146
|
Meng Q, Hu H, Zhou L, Zhang Y, Yu B, Shen Y, Cong H. Logical design and application of prodrug platforms. Polym Chem 2019. [DOI: 10.1039/c8py01160e] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review summarizes the current state of prodrugs and elaborates the logical design and future development of the prodrug platform.
Collapse
Affiliation(s)
- Qingye Meng
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Liping Zhou
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Yixin Zhang
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
147
|
Zhang X, Hua Q, Meng P, Wang M, Wang Y, Sun L, Ma L, Wang B, Yu C, Wei H. Fabrication of biocleavable crosslinked polyprodrug vesicles via reversible donor–acceptor interactions for enhanced anticancer drug delivery. Polym Chem 2019. [DOI: 10.1039/c9py00404a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Reversible donor–acceptor interactions were used to prepare biocleavable crosslinked polyprodrug vesicles toward enhanced anticancer drug delivery.
Collapse
|
148
|
Jiang Y. The Application of Nucleic Acid Amplification Strategies in Theranostics. NUCLEIC ACID AMPLIFICATION STRATEGIES FOR BIOSENSING, BIOIMAGING AND BIOMEDICINE 2019. [PMCID: PMC7122292 DOI: 10.1007/978-981-13-7044-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Targeting nanoparticles equipped with diagnosis “tools” to malignant cells or tissues for optimal therapy is a popular concept of theranostics. As one of the most reliable and sensitive diagnosis “tools,” nucleic acid detection is of growing practical interest with respect to molecular diagnostics of cancer and other genetic diseases. Particularly, PCR-based and other nucleic acid amplification strategies are most widely used in theranostics. This chapter aims at systematization and critical summarization of the applications of DNA- or RNA-targeted nucleic acid amplification strategies in theranostics.
Collapse
|
149
|
Cheng M, Zhang Y, Zhang X, Wang W, Yuan Z. One-pot synthesis of acid-induced in situ aggregating theranostic gold nanoparticles with enhanced retention in tumor cells. Biomater Sci 2019; 7:2009-2022. [DOI: 10.1039/c9bm00014c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we took advantage of a one-pot reaction to prepare tumor-targeting nanoparticles (Au@T), which could respond to the intracellular acidic environment and form aggregates to enhance the retention effect of nanoparticles in tumor cells, for tumor dual-mode diagnose and photothermal therapy.
Collapse
Affiliation(s)
- Mingbo Cheng
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xiaolei Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
150
|
Cao Y, Min J, Zheng D, Li J, Xue Y, Yu F, Wu M. Vehicle-saving theranostic probes based on hydrophobic iron oxide nanoclusters using doxorubicin as a phase transfer agent for MRI and chemotherapy. Chem Commun (Camb) 2019; 55:9015-9018. [DOI: 10.1039/c9cc03868j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A simple approach for constructing vehicle-saving theranostic nanobeads for MRI and chemotherapy is developed by using doxorubicin for phase transfer of iron oxide nanoclusters.
Collapse
Affiliation(s)
- Yanbing Cao
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- Hubei Engineering Research Center for Advanced Fine Chemicals, and School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Juan Min
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
| | - Dongye Zheng
- Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- P. R. China
| | - Jiong Li
- Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- P. R. China
| | - Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- Hubei Engineering Research Center for Advanced Fine Chemicals, and School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- Hubei Engineering Research Center for Advanced Fine Chemicals, and School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Ming Wu
- Wuhan Institute of Virology
- Chinese Academy of Sciences
- Wuhan 430071
- P. R. China
| |
Collapse
|