101
|
Fischer G, Rossmann M, Hyvönen M. Alternative modulation of protein-protein interactions by small molecules. Curr Opin Biotechnol 2015; 35:78-85. [PMID: 25935873 PMCID: PMC4728186 DOI: 10.1016/j.copbio.2015.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/05/2023]
Abstract
Protein–protein interactions can be modulated by more than orthosteric disruption. Modulator categories: ‘orthosteric versus allosteric’ and ‘disrupting versus stabilising’. Interfacial binders exert secondary effects. Non-competitive modulation is a way around low affinity molecules. Non-competitive modulators require tailored screening strategies.
Protein–protein interactions (PPI) have become increasingly popular drug targets, with a number of promising compounds currently in clinical trials. Recent research shows, that PPIs can be modulated in more ways than direct inhibition, where novel non-competitive modes of action promise a solution for the difficult nature of PPI drug discovery. Here, we review recently discovered PPI modulators in light of their mode of action and categorise them as disrupting versus stabilising, orthosteric versus allosteric and by their ability to affect the proteins’ dynamics. We also give recent examples of compounds successful in the clinic, analyse their physicochemical properties and discuss how to overcome the hurdles in discovering alternative modes of modulation.
Collapse
Affiliation(s)
- Gerhard Fischer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Maxim Rossmann
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
102
|
Small molecules, peptides and natural products: getting a grip on 14-3-3 protein-protein modulation. Future Med Chem 2015; 6:903-21. [PMID: 24962282 DOI: 10.4155/fmc.14.47] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
One of the proteins that is found in a diverse range of eukaryotic protein-protein interactions is the adaptor protein 14-3-3. As 14-3-3 is a hub protein with very diverse interactions, it is a good model to study various protein-protein interactions. A wide range of classes of molecules, peptides, small molecules or natural products, has been used to modify the protein interactions, providing both stabilization or inhibition of the interactions of 14-3-3 with its binding partners. The first protein crystal structures were solved in 1995 and gave molecular insights for further research. The plant analog of 14-3-3 binds to a plant plasma membrane H(+)-ATPase and this protein complex is stabilized by the fungal phytotoxin fusicoccin A. The knowledge gained from the process in plants was transferred to and applied in human models to find stabilizers or inhibitors of 14-3-3 interaction in human cellular pathways.
Collapse
|
103
|
Insights into the molecular mechanisms of action of bioportides: a strategy to target protein-protein interactions. Expert Rev Mol Med 2015; 17:e1. [DOI: 10.1017/erm.2014.24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell-penetrating peptides (CPPs) are reliable vehicles for the target-selective intracellular delivery of therapeutic agents. The identification and application of numerous intrinsically bioactive CPPs, now designated as bioportides, is further endorsement of the tremendous clinical potential of CPP technologies. The refinement of proteomimetic bioportides, particularly sequences that mimic cationic α-helical domains involved in protein-protein interactions (PPIs), provides tremendous opportunities to modulate this emergent drug modality in a clinical setting. Thus, a number of CPP-based constructs are currently undergoing clinical trials as human therapeutics, with a particular focus upon anti-cancer agents. A well-characterised array of synthetic modifications, compatible with modern solid-phase synthesis, can be utilised to improve the biophysical and pharmacological properties of bioportides and so achieve cell-and tissue-selective targeting in vivo. Moreover, considering the recent successful development of stapled α-helical peptides as anti-cancer agents, we hypothesise that similar structural modifications are applicable to the design of bioportides that more effectively modulate the many interactomes known to underlie human diseases. Thus, we propose that stapled-helical bioportides could satisfy all of the clinical requirements for metabolically stable, intrinsically cell-permeable agents capable of regulating discrete PPIs by a dominant negative mode of action with minimal toxicity.
Collapse
|
104
|
Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015; 14:111-29. [PMID: 25614221 DOI: 10.1038/nrd4510] [Citation(s) in RCA: 1540] [Impact Index Per Article: 171.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural products have been a rich source of compounds for drug discovery. However, their use has diminished in the past two decades, in part because of technical barriers to screening natural products in high-throughput assays against molecular targets. Here, we review strategies for natural product screening that harness the recent technical advances that have reduced these barriers. We also assess the use of genomic and metabolomic approaches to augment traditional methods of studying natural products, and highlight recent examples of natural products in antimicrobial drug discovery and as inhibitors of protein-protein interactions. The growing appreciation of functional assays and phenotypic screens may further contribute to a revival of interest in natural products for drug discovery.
Collapse
Affiliation(s)
- Alan L Harvey
- 1] Research and Innovation Support, Dublin City University, Dublin 9, Ireland. [2] Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0NR, UK
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0NR, UK
| | - Ronald J Quinn
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
105
|
Song Y, Buchwald P. TNF superfamily protein-protein interactions: feasibility of small- molecule modulation. Curr Drug Targets 2015; 16:393-408. [PMID: 25706111 PMCID: PMC4408546 DOI: 10.2174/1389450116666150223115628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
The tumor necrosis factor (TNF) superfamily (TNFSF) contains about thirty structurally related receptors (TNFSFRs) and about twenty protein ligands that bind to one or more of these receptors. Almost all of these cell surface protein-protein interactions (PPIs) represent high-value therapeutic targets for inflammatory or immune modulation in autoimmune diseases, transplant recipients, or cancers, and there are several biologics including antibodies and fusion proteins targeting them that are in various phases of clinical development. Small-molecule inhibitors or activators could represent possible alternatives if the difficulties related to the targeting of protein-protein interactions by small molecules can be addressed. Compounds proving the feasibility of such approaches have been identified through different drug discovery approaches for a number of these TNFSFR-TNFSF type PPIs including CD40-CD40L, BAFFR-BAFF, TRAIL-DR5, and OX40-OX40L. Corresponding structural, signaling, and medicinal chemistry aspects are briefly reviewed here. While none of these small-molecule modulators identified so far seems promising enough to be pursued for clinical development, they provide proof-of-principle evidence that these interactions are susceptible to small-molecule modulation and can serve as starting points toward the identification of more potent and selective candidates.
Collapse
Affiliation(s)
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, 1450 NW 10 Ave (R-134), Miami, FL 33136, USA.
| |
Collapse
|
106
|
Geng J, Goh WL, Zhang C, Lane DP, Liu B, Ghadessy F, Tan YN. A highly sensitive fluorescent light-up probe for real-time detection of the endogenous protein target and its antagonism in live cells. J Mater Chem B 2015; 3:5933-5937. [DOI: 10.1039/c5tb00819k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A target-specific switchable fluorescent probe for cellular Mdm2 protein detection (off–on) and drug discovery applications (on–off) targeting the p53 pathway.
Collapse
Affiliation(s)
- Junlong Geng
- Institute of Materials Research Engineering
- A*STAR
- Singapore 117602
| | - Walter L. Goh
- p53 Laboratory
- A*STAR
- 8A Biomedical Grove
- Singapore 138648
| | - Chongjing Zhang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117576
| | - David P. Lane
- p53 Laboratory
- A*STAR
- 8A Biomedical Grove
- Singapore 138648
| | - Bin Liu
- Institute of Materials Research Engineering
- A*STAR
- Singapore 117602
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
| | | | - Yen Nee Tan
- Institute of Materials Research Engineering
- A*STAR
- Singapore 117602
| |
Collapse
|
107
|
Abstract
Low molecular weight compound competing for the binding of the p53 tumor suppressor to the MDM2 oncoprotein.
Collapse
Affiliation(s)
- Didier Rognan
- Laboratory for Therapeutical Innovation
- UMR7200 CNRS-Université de Strasbourg
- MEDALIS Drug Discovery Center
- 67400 Illkirch
- France
| |
Collapse
|
108
|
Abstract
"Protein-protein interactions (PPIs) are one of the most promising new targets in drug discovery. With estimates between 300,000 and 650,000 in human physiology, targeted modulation of PPIs would tremendously extend the "druggable" genome. In fact, in every disease a wealth of potentially addressable PPIs can be found making pharmacological intervention based on PPI modulators in principle a generally applicable technology. An impressing number of success stories in small-molecule PPI inhibition and natural-product PPI stabilization increasingly encourage academia and industry to invest in PPI modulation. In this chapter examples of both inhibition as well as stabilization of PPIs are reviewed including some of the technologies which has been used for their identification."
Collapse
|
109
|
Negi AS, Gautam Y, Alam S, Chanda D, Luqman S, Sarkar J, Khan F, Konwar R. Natural antitubulin agents: importance of 3,4,5-trimethoxyphenyl fragment. Bioorg Med Chem 2014; 23:373-89. [PMID: 25564377 DOI: 10.1016/j.bmc.2014.12.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 01/29/2023]
Abstract
Microtubules are polar cytoskeletal filaments assembled from head-to-tail and comprised of lateral associations of α/β-tubulin heterodimers that play key role in various cellular processes. Because of their vital role in mitosis and various other cellular processes, microtubules have been attractive targets for several disease conditions and especially for cancer. Antitubulin is the most successful class of antimitotic agents in cancer chemotherapeutics. The target recognition of antimitotic agents as a ligand is not much explored so far. However, 3,4,5-trimethoxyphenyl fragment has been much highlighted and discussed in such type of interactions. In this review, some of the most important naturally occurring antimitotic agents and their interactions with microtubules are discussed with a special emphasis on the role of 3,4,5-trimethoxyphenyl unit. At last, some emerging naturally occurring antimitotic agents have also been tabulated.
Collapse
Affiliation(s)
- Arvind S Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India.
| | - Yashveer Gautam
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Sarfaraz Alam
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Debabrata Chanda
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Jayanta Sarkar
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Rituraj Konwar
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| |
Collapse
|
110
|
Abstract
Increased signaling by the small G protein Ras is found in many human cancers and is often caused by direct mutation of this protein. Hence, small-molecule attenuation of pathological Ras activity is of utmost interest in oncology. However, despite nearly three decades of intense drug discovery efforts, no clinically viable option for Ras inhibition has been developed. Very recently, reports of a number of new approaches of addressing Ras activity have led to the revival of this molecular target with the prospect of finally fulfilling the therapy promises associated with this important protein.
Collapse
Affiliation(s)
- Lech-Gustav Milroy
- Laboratory of Chemical Biology
and Institute of Complex Molecular Systems, Department of Biomedical
Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology
and Institute of Complex Molecular Systems, Department of Biomedical
Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
111
|
Giordanetto F, Schäfer A, Ottmann C. Stabilization of protein–protein interactions by small molecules. Drug Discov Today 2014; 19:1812-1821. [DOI: 10.1016/j.drudis.2014.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/03/2014] [Accepted: 08/18/2014] [Indexed: 12/23/2022]
|
112
|
Rational design of small-molecule stabilizers of spermine synthase dimer by virtual screening and free energy-based approach. PLoS One 2014; 9:e110884. [PMID: 25340632 PMCID: PMC4207787 DOI: 10.1371/journal.pone.0110884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/17/2014] [Indexed: 11/19/2022] Open
Abstract
Snyder-Robinson Syndrome (SRS) is a rare mental retardation disorder which is caused by the malfunctioning of an enzyme, the spermine synthase (SMS), which functions as a homo-dimer. The malfunctioning of SMS in SRS patients is associated with several identified missense mutations that occur away from the active site. This investigation deals with a particular SRS-causing mutation, the G56S mutation, which was shown computationally and experimentally to destabilize the SMS homo-dimer and thus to abolish SMS enzymatic activity. As a proof-of-concept, we explore the possibility to restore the enzymatic activity of the malfunctioning SMS mutant G56S by stabilizing the dimer through small molecule binding at the mutant homo-dimer interface. For this purpose, we designed an in silico protocol that couples virtual screening and a free binding energy-based approach to identify potential small-molecule binders on the destabilized G56S dimer, with the goal to stabilize it and thus to increase SMS G56S mutant activity. The protocol resulted in extensive list of plausible stabilizers, among which we selected and tested 51 compounds experimentally for their capability to increase SMS G56S mutant enzymatic activity. In silico analysis of the experimentally identified stabilizers suggested five distinctive chemical scaffolds. This investigation suggests that druggable pockets exist in the vicinity of the mutation sites at protein-protein interfaces which can be used to alter the disease-causing effects by small molecule binding. The identified chemical scaffolds are drug-like and can serve as original starting points for development of lead molecules to further rescue the disease-causing effects of the Snyder-Robinson syndrome for which no efficient treatment exists up to now.
Collapse
|
113
|
Abstract
INTRODUCTION Proteins are effective biotherapeutics with applications in diverse ailments. Despite being specific and potent, their full clinical potential has not yet been realized. This can be attributed to short half-lives, complex structures, poor in vivo stability, low permeability, frequent parenteral administrations and poor adherence to treatment in chronic diseases. A sustained release system, providing controlled release of proteins, may overcome many of these limitations. AREAS COVERED This review focuses on recent development in approaches, especially polymer-based formulations, which can provide therapeutic levels of proteins over extended periods. Advances in particulate, gel-based formulations and novel approaches for extended protein delivery are discussed. Emphasis is placed on dosage form, method of preparation, mechanism of release and stability of biotherapeutics. EXPERT OPINION Substantial advancements have been made in the field of extended protein delivery via various polymer-based formulations over last decade despite the unique delivery-related challenges posed by protein biologics. A number of injectable sustained-release formulations have reached market. However, therapeutic application of proteins is still hampered by delivery-related issues. A large number of protein molecules are under clinical trials, and hence, there is an urgent need to develop new methods to deliver these highly potent biologics.
Collapse
Affiliation(s)
- Ravi Vaishya
- University of Missouri-Kansas City, Pharmaceutical Sciences , Kansas City, MO , USA
| | | | | | | |
Collapse
|
114
|
Dias DM, Ciulli A. NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:101-12. [PMID: 25175337 PMCID: PMC4261069 DOI: 10.1016/j.pbiomolbio.2014.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/06/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a pivotal method for structure-based and fragment-based lead discovery because it is one of the most robust techniques to provide information on protein structure, dynamics and interaction at an atomic level in solution. Nowadays, in most ligand screening cascades, NMR-based methods are applied to identify and structurally validate small molecule binding. These can be high-throughput and are often used synergistically with other biophysical assays. Here, we describe current state-of-the-art in the portfolio of available NMR-based experiments that are used to aid early-stage lead discovery. We then focus on multi-protein complexes as targets and how NMR spectroscopy allows studying of interactions within the high molecular weight assemblies that make up a vast fraction of the yet untargeted proteome. Finally, we give our perspective on how currently available methods could build an improved strategy for drug discovery against such challenging targets.
Collapse
Affiliation(s)
- David M Dias
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alessio Ciulli
- College of Life Sciences, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, DD1 5EH, Dundee, UK.
| |
Collapse
|
115
|
Structure of the human Cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol 2014; 21:803-9. [DOI: 10.1038/nsmb.2874] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/16/2014] [Indexed: 12/17/2022]
|
116
|
Structural basis for the recognition-evasion arms race between Tomato mosaic virus and the resistance gene Tm-1. Proc Natl Acad Sci U S A 2014; 111:E3486-95. [PMID: 25092327 DOI: 10.1073/pnas.1407888111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a protein that shows no sequence homology to functionally characterized proteins. Tm-1 binds ToMV replication proteins and thereby inhibits replication complex formation. ToMV mutants that overcome this resistance have amino acid substitutions in the helicase domain of the replication proteins (ToMV-Hel). A small region of Tm-1 in the genome of the wild tomato Solanum habrochaites has been under positive selection during its antagonistic coevolution with ToMV. Here we report crystal structures for the N-terminal inhibitory domains of Tm-1 and a natural Tm-1 variant with an I91-to-T substitution that has a greater ability to inhibit ToMV RNA replication and their complexes with ToMV-Hel. Each complex contains a Tm-1 dimer and two ToMV-Hel monomers with the interfaces between Tm-1 and ToMV-Hel bridged by ATP. Residues in ToMV-Hel and Tm-1 involved in antagonistic coevolution are found at the interface. The structural differences between ToMV-Hel in its free form and in complex with Tm-1 suggest that Tm-1 affects nucleoside triphosphatase activity of ToMV-Hel, and this effect was confirmed experimentally. Molecular dynamics simulations of complexes formed by Tm-1 with ToMV-Hel variants showed how the amino acid changes in ToMV-Hel impair the interaction with Tm-1 to overcome the resistance. With these findings, together with the biochemical properties of the interactions between ToMV-Hel and Tm-1 variants and effects of the mutations in the polymorphic residues of Tm-1, an atomic view of a step-by-step coevolutionary arms race between a plant resistance protein and a viral protein emerges.
Collapse
|
117
|
Villoutreix BO, Kuenemann MA, Poyet JL, Bruzzoni-Giovanelli H, Labbé C, Lagorce D, Sperandio O, Miteva MA. Drug-Like Protein-Protein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology. Mol Inform 2014; 33:414-437. [PMID: 25254076 PMCID: PMC4160817 DOI: 10.1002/minf.201400040] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/21/2014] [Indexed: 12/13/2022]
Abstract
[Formula: see text] Fundamental processes in living cells are largely controlled by macromolecular interactions and among them, protein-protein interactions (PPIs) have a critical role while their dysregulations can contribute to the pathogenesis of numerous diseases. Although PPIs were considered as attractive pharmaceutical targets already some years ago, they have been thus far largely unexploited for therapeutic interventions with low molecular weight compounds. Several limiting factors, from technological hurdles to conceptual barriers, are known, which, taken together, explain why research in this area has been relatively slow. However, this last decade, the scientific community has challenged the dogma and became more enthusiastic about the modulation of PPIs with small drug-like molecules. In fact, several success stories were reported both, at the preclinical and clinical stages. In this review article, written for the 2014 International Summer School in Chemoinformatics (Strasbourg, France), we discuss in silico tools (essentially post 2012) and databases that can assist the design of low molecular weight PPI modulators (these tools can be found at www.vls3d.com). We first introduce the field of protein-protein interaction research, discuss key challenges and comment recently reported in silico packages, protocols and databases dedicated to PPIs. Then, we illustrate how in silico methods can be used and combined with experimental work to identify PPI modulators.
Collapse
Affiliation(s)
- Bruno O Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse59000 Lille, France
| | - Melaine A Kuenemann
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| | - Jean-Luc Poyet
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- IUH, Hôpital Saint-LouisParis, France
- CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse59000 Lille, France
| | - Heriberto Bruzzoni-Giovanelli
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- CIC, Clinical investigation center, Hôpital Saint-LouisParis, France
| | - Céline Labbé
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| | - David Lagorce
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| | - Olivier Sperandio
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse59000 Lille, France
| | - Maria A Miteva
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| |
Collapse
|
118
|
Bonache MÁ, Balsera B, López-Méndez B, Millet O, Brancaccio D, Gómez-Monterrey I, Carotenuto A, Pavone LM, Reille-Seroussi M, Gagey-Eilstein N, Vidal M, de la Torre-Martı́nez R, Fernández-Carvajal A, Ferrer-Montiel A, García-López MT, Martín-Martínez M, de Vega MJP, González-Muñiz R. De novo designed library of linear helical peptides: an exploratory tool in the discovery of protein-protein interaction modulators. ACS COMBINATORIAL SCIENCE 2014; 16:250-8. [PMID: 24725184 DOI: 10.1021/co500005x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) have emerged as important targets for pharmaceutical intervention because of their essential role in numerous physiological and pathological processes, but screening efforts using small-molecules have led to very low hit rates. Linear peptides could represent a quick and effective approach to discover initial PPI hits, particularly if they have inherent ability to adopt specific peptide secondary structures. Here, we address this hypothesis through a linear helical peptide library, composed of four sublibraries, which was designed by theoretical predictions of helicity (Agadir software). The 13-mer peptides of this collection fixes either a combination of three aromatic or two aromatic and one aliphatic residues on one face of the helix (Ac-SSEEX(5)ARNX(9)AAX(12)N-NH2), since these are structural features quite common at PPIs interfaces. The 81 designed peptides were conveniently synthesized by parallel solid-phase methodologies, and the tendency of some representative library components to adopt the intended secondary structure was corroborated through CD and NMR experiments. As proof of concept in the search for PPI modulators, the usefulness of this library was verified on the widely studied p53-MDM2 interaction and on the communication between VEGF and its receptor Flt-1, two PPIs for which a hydrophobic α-helix is essential for the interaction. We have demonstrated here that, in both cases, selected peptides from the library, containing the right hydrophobic sequence of the hot-spot in one of the protein partners, are able to interact with the complementary protein. Moreover, we have discover some new, quite potent inhibitors of the VEGF-Flt-1 interaction, just by replacing one of the aromatic residues of the initial F(5)Y(9)Y(12) peptide by W, in agreement with previous results on related antiangiogenic peptides. Finally, the HTS evaluation of the full collection on thermoTRPs has led to a few antagonists of TRPV1 and TRPA1 channels, which open new avenues on the way to innovative modulators of these channels.
Collapse
Affiliation(s)
- M. Ángeles Bonache
- Instituto de Química-Médica (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Beatriz Balsera
- Instituto de Química-Médica (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Oscar Millet
- CICbioGUNE, Structural Biology Unit, 48160 Bilbao, Spain
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, 80131 Naples, Italy
| | - Isabel Gómez-Monterrey
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, 80131 Naples, Italy
| | - Luigi M. Pavone
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131, Naples, Italy
| | - Marie Reille-Seroussi
- UMR
8638
CNRS, UFR de Pharmacie, Université Paris Descartes, PRES
Sorbonne Paris Cité, 4 avenue de l’Observatoire, 75006 Paris, France
| | - Nathalie Gagey-Eilstein
- UMR
8638
CNRS, UFR de Pharmacie, Université Paris Descartes, PRES
Sorbonne Paris Cité, 4 avenue de l’Observatoire, 75006 Paris, France
| | - Michel Vidal
- UMR
8638
CNRS, UFR de Pharmacie, Université Paris Descartes, PRES
Sorbonne Paris Cité, 4 avenue de l’Observatoire, 75006 Paris, France
- UF
“Pharmacocinétique et pharmacochimie”, Hôpital Cochin, , AP-HP, 27 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Roberto de la Torre-Martı́nez
- Instituto
de Biología Molecular y Celular, Universidad Miguel Hernández, Avenida de la Universidad s/n, 03202 Elche (Alicante), Spain
| | - Asia Fernández-Carvajal
- Instituto
de Biología Molecular y Celular, Universidad Miguel Hernández, Avenida de la Universidad s/n, 03202 Elche (Alicante), Spain
| | - Antonio Ferrer-Montiel
- Instituto
de Biología Molecular y Celular, Universidad Miguel Hernández, Avenida de la Universidad s/n, 03202 Elche (Alicante), Spain
| | | | | | | | | |
Collapse
|
119
|
Hintersteiner M, Kallen J, Schmied M, Graf C, Jung T, Mudd G, Shave S, Gstach H, Auer M. Identification and X-ray co-crystal structure of a small-molecule activator of LFA-1-ICAM-1 binding. Angew Chem Int Ed Engl 2014; 53:4322-6. [PMID: 24692345 PMCID: PMC4314669 DOI: 10.1002/anie.201310240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Indexed: 01/07/2023]
Abstract
Stabilization of protein-protein interactions by small molecules is a concept with few examples reported to date. Herein we describe the identification and X-ray co-crystal structure determination of IBE-667, an ICAM-1 binding enhancer for LFA-1. IBE-667 was designed based on the SAR information obtained from an on-bead screen of tagged one-bead one-compound combinatorial libraries by confocal nanoscanning and bead picking (CONA). Cellular assays demonstrate the activity of IBE-667 in promoting the binding of LFA-1 on activated immune cells to ICAM-1.
Collapse
Affiliation(s)
| | - Jörg Kallen
- Novartis Institutes for BioMedical ResearchNovartis Campus, 4056 Basel (Switzerland)
| | - Mario Schmied
- Affiliation when work was performed: Novartis Institutes for BioMedical ResearchBrunnerstrasse 59, 1235 Vienna (Austria)
| | - Christine Graf
- Affiliation when work was performed: Novartis Institutes for BioMedical ResearchBrunnerstrasse 59, 1235 Vienna (Austria)
| | - Thomas Jung
- Affiliation when work was performed: Novartis Institutes for BioMedical ResearchBrunnerstrasse 59, 1235 Vienna (Austria)
| | - Gemma Mudd
- The University of Edinburgh, School of Biological Sciences (CSE) and School of Biomedical Sciences (CMVM)CH Waddington Building, 3.07, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JD (UK)
| | - Steven Shave
- The University of Edinburgh, School of Biological Sciences (CSE) and School of Biomedical Sciences (CMVM)CH Waddington Building, 3.07, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JD (UK)
| | - Hubert Gstach
- Institute of Medical Chemistry, Medical Univ. of ViennaWaehringerstrasse 10, 1090 Vienna (Austria)
| | - Manfred Auer
- The University of Edinburgh, School of Biological Sciences (CSE) and School of Biomedical Sciences (CMVM)CH Waddington Building, 3.07, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JD (UK)
| |
Collapse
|
120
|
Hintersteiner M, Kallen J, Schmied M, Graf C, Jung T, Mudd G, Shave S, Gstach H, Auer M. Identifizierung und Strukturbestimmung eines niedermolekularen Aktivators der LFA-1/ICAM-1-Bindung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
121
|
Abstract
Virtually all currently used therapeutic agents are small molecules, largely because the development and delivery of small molecule drugs is relatively straightforward. Small molecules have serious limitations: drugs of this type can be fairly good enzyme inhibitors, receptor ligands, or allosteric modulators. However, most cellular functions are mediated by protein interactions with other proteins, and targeting protein-protein interactions by small molecules presents challenges that are unlikely to be overcome with these compounds as the only tools. Recent advances in gene delivery techniques and characterization of cell type-specific promoters open the prospect of using reengineered signaling-biased proteins as next-generation therapeutics. The first steps in targeted engineering of proteins with desired functional characteristics look very promising. As quintessential scaffolds that act strictly via interactions with other proteins in the cell, arrestins represent a perfect model for the development of these novel therapeutic agents with enormous potential: custom-designed signaling proteins will allow us to tell the cell what to do and when to do it in a way it cannot disobey.
Collapse
|
122
|
Milroy LG, Grossmann TN, Hennig S, Brunsveld L, Ottmann C. Modulators of Protein–Protein Interactions. Chem Rev 2014; 114:4695-748. [DOI: 10.1021/cr400698c] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lech-Gustav Milroy
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| | - Tom N. Grossmann
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Sven Hennig
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße 15, 44227 Dortmund, Germany
| | - Luc Brunsveld
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
123
|
Zhong HJ, Leung KH, Liu LJ, Lu L, Chan DSH, Leung CH, Ma DL. Antagonism of mTOR Activity by a Kinetically Inert Rhodium(III) Complex. Chempluschem 2014; 79:508-511. [DOI: 10.1002/cplu.201400014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Indexed: 11/09/2022]
|
124
|
Glas A, Bier D, Hahne G, Rademacher C, Ottmann C, Grossmann TN. Makrocyclische Peptide mit dem Zielprotein angepassten Kohlenwasserstoffbrücken: Inhibitoren einer pathogenen Protein-Protein-Wechselwirkung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310082] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
125
|
Glas A, Bier D, Hahne G, Rademacher C, Ottmann C, Grossmann TN. Constrained Peptides with Target-Adapted Cross-Links as Inhibitors of a Pathogenic Protein-Protein Interaction. Angew Chem Int Ed Engl 2014; 53:2489-93. [DOI: 10.1002/anie.201310082] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Indexed: 11/07/2022]
|
126
|
Huang H, Ceccarelli DF, Orlicky S, St-Cyr DJ, Ziemba A, Garg P, Plamondon S, Auer M, Sidhu S, Marinier A, Kleiger G, Tyers M, Sicheri F. E2 enzyme inhibition by stabilization of a low-affinity interface with ubiquitin. Nat Chem Biol 2014; 10:156-163. [PMID: 24316736 PMCID: PMC3905752 DOI: 10.1038/nchembio.1412] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/31/2013] [Indexed: 11/09/2022]
Abstract
Weak protein interactions between ubiquitin and the ubiquitin-proteasome system (UPS) enzymes that mediate its covalent attachment to substrates serve to position ubiquitin for optimal catalytic transfer. We show that a small-molecule inhibitor of the E2 ubiquitin-conjugating enzyme Cdc34A, called CC0651, acts by trapping a weak interaction between ubiquitin and the E2 donor ubiquitin-binding site. A structure of the ternary CC0651-Cdc34A-ubiquitin complex reveals that the inhibitor engages a composite binding pocket formed from Cdc34A and ubiquitin. CC0651 also suppresses the spontaneous hydrolysis rate of the Cdc34A-ubiquitin thioester without decreasing the interaction between Cdc34A and the RING domain subunit of the E3 enzyme. Stabilization of the numerous other weak interactions between ubiquitin and UPS enzymes by small molecules may be a feasible strategy to selectively inhibit different UPS activities.
Collapse
Affiliation(s)
- Hao Huang
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada M5G 1X5
| | - Derek F Ceccarelli
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada M5G 1X5
| | - Stephen Orlicky
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada M5G 1X5
| | - Daniel J. St-Cyr
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec H3C 3J7, Canada
| | - Amy Ziemba
- Department of Chemistry, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154
| | - Pankaj Garg
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Serge Plamondon
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec H3C 3J7, Canada
| | - Manfred Auer
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR United Kingdom
| | - Sachdev Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec H3C 3J7, Canada
- Department of Chemistry, University of Montreal, Montreal, Québec H3C 3J7, Canada
| | - Gary Kleiger
- Department of Chemistry, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec H3C 3J7, Canada
- Department of Medicine, University of Montreal, Montreal, Québec H3C 3J7, Canada
| | - Frank Sicheri
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada M5G 1X5
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
127
|
Paiardini A, Aducci P, Cervoni L, Cutruzzolà F, Di Lucente C, Janson G, Pascarella S, Rinaldo S, Visconti S, Camoni L. The phytotoxin fusicoccin differently regulates 14-3-3 proteins association to mode III targets. IUBMB Life 2014; 66:52-62. [DOI: 10.1002/iub.1239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/20/2013] [Indexed: 01/03/2023]
Affiliation(s)
| | - Patrizia Aducci
- Department of Biology; University of Rome “Tor Vergata”; Rome Italy
| | - Laura Cervoni
- Department of Biochemical Sciences; Sapienza University of Rome; Rome Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences; Sapienza University of Rome; Rome Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti; Rome Italy
| | | | - Giacomo Janson
- Department of Biochemical Sciences; Sapienza University of Rome; Rome Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences; Sapienza University of Rome; Rome Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences; Sapienza University of Rome; Rome Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti; Rome Italy
| | - Sabina Visconti
- Department of Biology; University of Rome “Tor Vergata”; Rome Italy
| | - Lorenzo Camoni
- Department of Biology; University of Rome “Tor Vergata”; Rome Italy
| |
Collapse
|
128
|
Dias DM, Van Molle I, Baud MGJ, Galdeano C, Geraldes CFGC, Ciulli A. Is NMR Fragment Screening Fine-Tuned to Assess Druggability of Protein-Protein Interactions? ACS Med Chem Lett 2014; 5:23-28. [PMID: 24436777 PMCID: PMC3891296 DOI: 10.1021/ml400296c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/02/2013] [Indexed: 01/18/2023] Open
Abstract
Modulation of protein-protein interactions (PPIs) with small molecules has been hampered by a lack of lucid methods capable of reliably identifying high-quality hits. In fragment screening, the low ligand efficiencies associated with PPI target sites pose significant challenges to fragment binding detection. Here, we investigate the requirements for ligand-based NMR techniques to detect rule-of-three compliant fragments that form part of known high-affinity inhibitors of the PPI between the von Hippel-Lindau protein and the alpha subunit of hypoxia-inducible factor 1 (pVHL:HIF-1α). Careful triaging allowed rescuing weak but specific binding of fragments that would otherwise escape detection at this PPI. Further structural information provided by saturation transfer difference (STD) group epitope mapping, protein-based NMR, competitive isothermal titration calorimetry (ITC), and X-ray crystallography confirmed the binding mode of the rescued fragments. Our findings have important implications for PPI druggability assessment by fragment screening as they reveal an accessible threshold for fragment detection and validation.
Collapse
Affiliation(s)
- David M. Dias
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Department of Life Sciences, Faculty of
Science and Technology, Centre for Neurosciences and Cell Biology
and Chemistry Centre, University of Coimbra, Coimbra, Portugal
| | - Inge Van Molle
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | | | - Carles Galdeano
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Carlos F. G. C. Geraldes
- Department of Life Sciences, Faculty of
Science and Technology, Centre for Neurosciences and Cell Biology
and Chemistry Centre, University of Coimbra, Coimbra, Portugal
| | - Alessio Ciulli
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
129
|
Voet ARD, Ito A, Hirohama M, Matsuoka S, Tochio N, Kigawa T, Yoshida M, Zhang KYJ. Discovery of small molecule inhibitors targeting the SUMO–SIM interaction using a protein interface consensus approach. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We present a virtual screening approach incorporating the consensus of protein interactions that led to the discovery of non-peptidic inhibitors.
Collapse
Affiliation(s)
| | - Akihiro Ito
- Chemical Genetics Laboratory
- RIKEN
- Wako, Japan
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science
- Wako, Japan
| | - Mikako Hirohama
- Chemical Genetics Laboratory
- RIKEN
- Wako, Japan
- Japan Science and Technology Corporation, CREST Research Project
- Kawaguchi, Japan
| | - Seiji Matsuoka
- Drug Discovery Platforms Cooperation Division
- RIKEN Center for Sustainable Resource Science
- Wako, Japan
| | - Naoya Tochio
- Laboratory for Biomolecular Structure and Dynamics
- Quantitative Biology Center
- RIKEN
- Yokohama, Japan
| | - Takanori Kigawa
- Laboratory for Biomolecular Structure and Dynamics
- Quantitative Biology Center
- RIKEN
- Yokohama, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory
- RIKEN
- Wako, Japan
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science
- Wako, Japan
| | | |
Collapse
|
130
|
Chaurasia S, Pieraccini S, De Gonda R, Conti S, Sironi M. Molecular insights into the stabilization of protein–protein interactions with small molecule: The FKBP12–rapamycin–FRB case study. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
131
|
|
132
|
Higueruelo AP, Jubb H, Blundell TL. Protein–protein interactions as druggable targets: recent technological advances. Curr Opin Pharmacol 2013; 13:791-6. [DOI: 10.1016/j.coph.2013.05.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022]
|
133
|
Molzan M, Kasper S, Röglin L, Skwarczynska M, Sassa T, Inoue T, Breitenbuecher F, Ohkanda J, Kato N, Schuler M, Ottmann C. Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers. ACS Chem Biol 2013; 8:1869-75. [PMID: 23808890 DOI: 10.1021/cb4003464] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One-third of all human cancers harbor somatic RAS mutations. This leads to aberrant activation of downstream signaling pathways involving the RAF kinases. Current ATP-competitive RAF inhibitors are active in cancers with somatic RAF mutations, such as BRAF(V600) mutant melanomas. However, they paradoxically promote the growth of RAS mutant tumors, partly due to the complex interplay between different homo- and heterodimers of A-RAF, B-RAF, and C-RAF. Based on pathway analysis and structure-guided compound identification, we describe the natural product cotylenin-A (CN-A) as stabilizer of the physical interaction of C-RAF with 14-3-3 proteins. CN-A binds to inhibitory 14-3-3 interaction sites of C-RAF, pSer233, and pSer259, but not to the activating interaction site, pSer621. While CN-A alone is inactive in RAS mutant cancer models, combined treatment with CN-A and an anti-EGFR antibody synergistically suppresses tumor growth in vitro and in vivo. This defines a novel pharmacologic strategy for treatment of RAS mutant cancers.
Collapse
Affiliation(s)
- Manuela Molzan
- Chemical Genomics Centre of the Max-Planck-Society, Otto-Hahn-Strasse
15, 44227 Dortmund, Germany
| | - Stefan Kasper
- Department of Medical Oncology,
West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Lars Röglin
- Chemical Genomics Centre of the Max-Planck-Society, Otto-Hahn-Strasse
15, 44227 Dortmund, Germany
| | - Malgorzata Skwarczynska
- Chemical Genomics Centre of the Max-Planck-Society, Otto-Hahn-Strasse
15, 44227 Dortmund, Germany
| | - Takeshi Sassa
- Department
of Bioresource Engineering, Yamagata University, Tsuruoka,Yamagata, Japan
| | - Takatsugu Inoue
- The Institute of Scientific
and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Frank Breitenbuecher
- Department of Medical Oncology,
West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Junko Ohkanda
- The Institute of Scientific
and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | - Nobuo Kato
- The Institute of Scientific
and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Martin Schuler
- Department of Medical Oncology,
West German Cancer Center, University Hospital Essen, Essen, Germany
- German
Cancer Consortium (DKTK),
Heidelberg, Germany
| | - Christian Ottmann
- Chemical Genomics Centre of the Max-Planck-Society, Otto-Hahn-Strasse
15, 44227 Dortmund, Germany
- Laboratory
of Chemical Biology,
Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The
Netherlands
| |
Collapse
|
134
|
Lukanowska M, Howl J, Jones S. Bioportides: Bioactive cell-penetrating peptides that modulate cellular dynamics. Biotechnol J 2013; 8:918-30. [DOI: 10.1002/biot.201200335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/10/2013] [Accepted: 06/21/2013] [Indexed: 11/10/2022]
|
135
|
Higueruelo AP, Jubb H, Blundell TL. TIMBAL v2: update of a database holding small molecules modulating protein-protein interactions. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat039. [PMID: 23766369 PMCID: PMC3681332 DOI: 10.1093/database/bat039] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
TIMBAL is a database holding molecules of molecular weight <1200 Daltons that modulate protein–protein interactions. Since its first release, the database has been extended to cover 50 known protein–protein interactions drug targets, including protein complexes that can be stabilized by small molecules with therapeutic effect. The resource contains 14 890 data points for 6896 distinct small molecules. UniProt codes and Protein Data Bank entries are also included. Database URL:http://www-cryst.bioc.cam.ac.uk/timbal
Collapse
|
136
|
Bulic B, Pickhardt M, Mandelkow E. Progress and developments in tau aggregation inhibitors for Alzheimer disease. J Med Chem 2013; 56:4135-55. [PMID: 23484434 DOI: 10.1021/jm3017317] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pharmacological approaches directed toward Alzheimer disease are diversifying in parallel with a growing number of promising targets. Investigations on the microtubule-associated protein tau yielded innovative targets backed by recent findings about the central role of tau in numerous neurodegenerative diseases. In this review, we summarize the recent evolution in the development of nonpeptidic small molecules tau aggregation inhibitors (TAGIs) and their advancement toward clinical trials. The compounds are classified according to their chemical structures, providing correlative insights into their pharmacology. Overall, shared structure-activity traits are emerging, as well as specific binding modes related to their ability to engage in hydrogen bonding. Medicinal chemistry efforts on TAGIs together with encouraging in vivo data argue for successful translation to the clinic.
Collapse
Affiliation(s)
- Bruno Bulic
- Laboratory of Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany.
| | | | | |
Collapse
|
137
|
iPPI-DB: a manually curated and interactive database of small non-peptide inhibitors of protein-protein interactions. Drug Discov Today 2013; 18:958-68. [PMID: 23688585 DOI: 10.1016/j.drudis.2013.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/10/2013] [Indexed: 01/05/2023]
Abstract
The development of small molecule drugs targeting protein-protein interactions (PPI) represents a major challenge, in part owing to the misunderstanding of the PPI chemical space. To this end, we have manually collected the structures, the physicochemical and pharmacological profiles of 1650 PPI inhibitors across 13 families of PPI targets in a database named iPPI-DB. To access iPPI-DB, we propose a user-friendly web application (www.ippidb.cdithem.fr) with customizable queries and intuitive visualizing functionalities for associated properties of the compounds. This could assist scientists to design the next generation of PPI drugs. In this review, we describe iPPI-DB in the context of other low molecular weight molecule databases.
Collapse
|
138
|
Duran-Frigola M, Mosca R, Aloy P. Structural Systems Pharmacology: The Role of 3D Structures in Next-Generation Drug Development. ACTA ACUST UNITED AC 2013; 20:674-84. [DOI: 10.1016/j.chembiol.2013.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 01/12/2023]
|
139
|
Brown NG, Chow DC, Ruprecht KE, Palzkill T. Identification of the β-lactamase inhibitor protein-II (BLIP-II) interface residues essential for binding affinity and specificity for class A β-lactamases. J Biol Chem 2013; 288:17156-66. [PMID: 23625930 DOI: 10.1074/jbc.m113.463521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The interactions between β-lactamase inhibitory proteins (BLIPs) and β-lactamases have been used as model systems to understand the principles of affinity and specificity in protein-protein interactions. The most extensively studied tight binding inhibitor, BLIP, has been characterized with respect to amino acid determinants of affinity and specificity for binding β-lactamases. BLIP-II, however, shares no sequence or structural homology to BLIP and is a femtomolar to picomolar potency inhibitor, and the amino acid determinants of binding affinity and specificity are unknown. In this study, alanine scanning mutagenesis was used in combination with determinations of on and off rates for each mutant to define the contribution of residues on the BLIP-II binding surface to both affinity and specificity toward four β-lactamases of diverse sequence. The residues making the largest contribution to binding energy are heavily biased toward aromatic amino acids near the center of the binding surface. In addition, substitutions that reduce binding energy do so by increasing off rates without impacting on rates. Also, residues with large contributions to binding energy generally exhibit low temperature factors in the structures of complexes. Finally, with the exception of D206A, BLIP-II alanine substitutions exhibit a similar trend of effect for all β-lactamases, i.e., a substitution that reduces affinity for one β-lactamase usually reduces affinity for all β-lactamases tested.
Collapse
Affiliation(s)
- Nicholas G Brown
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
140
|
Wilson AJ, Ault JR, Filby MH, Philips HIA, Ashcroft AE, Fletcher NC. Protein destabilisation by ruthenium(II) tris-bipyridine based protein-surface mimetics. Org Biomol Chem 2013; 11:2206-12. [PMID: 23411505 PMCID: PMC3731202 DOI: 10.1039/c3ob26251k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly functionalised ruthenium(II) tris-bipyridine receptor 1 which acts as a selective sensor for equine cytochrome c (cyt c) is shown to destabilise the native protein conformation by around 25 °C. Receptors 2 and 3 do not exert this effect confirming the behaviour is a specific effect of molecular recognition between 1 and cyt c, whilst the absence of a destabilising effect on 60% acetylated cyt c demonstrates the behaviour of 1 to be protein specific. Molecular recognition also modifies the conformational properties of the target protein at room temperature as evidenced by ion-mobility spectrometry (IMS) and accelerated trypsin proteolysis.
Collapse
Affiliation(s)
- Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
141
|
Anders C, Higuchi Y, Koschinsky K, Bartel M, Schumacher B, Thiel P, Nitta H, Preisig-Müller R, Schlichthörl G, Renigunta V, Ohkanda J, Daut J, Kato N, Ottmann C. A Semisynthetic Fusicoccane Stabilizes a Protein-Protein Interaction and Enhances the Expression of K+ Channels at the Cell Surface. ACTA ACUST UNITED AC 2013; 20:583-93. [DOI: 10.1016/j.chembiol.2013.03.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 01/01/2023]
|
142
|
Jose RA, Voet A, Broos K, Jakobi AJ, Bruylants G, Egle B, Zhang KYJ, De Maeyer M, Deckmyn H, De Borggraeve WM. An integrated fragment based screening approach for the discovery of small molecule modulators of the VWF-GPIbα interaction. Chem Commun (Camb) 2013; 48:11349-51. [PMID: 23072895 DOI: 10.1039/c2cc35269a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An integrated approach comprising STD NMR screening, pharmacophore based analogue selection and a bioassay is presented for the discovery of a stabilizer of the clinically relevant VWF-GPIbα protein-protein interaction.
Collapse
Affiliation(s)
- Rani A Jose
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Heverlee, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Merdanovic M, Mönig T, Ehrmann M, Kaiser M. Diversity of allosteric regulation in proteases. ACS Chem Biol 2013. [PMID: 23181429 DOI: 10.1021/cb3005935] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allostery is a fundamental regulatory mechanism that is based on a functional modulation of a site by a distant site. Allosteric regulation can be triggered by binding of diverse allosteric effectors, ranging from small molecules to macromolecules, and is therefore offering promising opportunities for functional modulation in a wide range of applications including the development of chemical probes or drug discovery. Here, we provide an overview of key classes of allosteric protease effectors, their corresponding molecular mechanisms, and their practical implications.
Collapse
Affiliation(s)
- Melisa Merdanovic
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| | - Timon Mönig
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| | - Michael Ehrmann
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| | - Markus Kaiser
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| |
Collapse
|
144
|
Ko E, Raghuraman A, Perez LM, Ioerger TR, Burgess K. Exploring key orientations at protein-protein interfaces with small molecule probes. J Am Chem Soc 2013; 135:167-73. [PMID: 23270593 PMCID: PMC3551583 DOI: 10.1021/ja3067258] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small molecule probes that selectively perturb protein-protein interactions (PPIs) are pivotal to biomedical science, but their discovery is challenging. We hypothesized that conformational resemblance of semirigid scaffolds expressing amino acid side-chains to PPI-interface regions could guide this process. Consequently, a data mining algorithm was developed to sample huge numbers of PPIs to find ones that match preferred conformers of a selected semirigid scaffold. Conformations of one such chemotype (1aaa; all methyl side-chains) matched several biomedically significant PPIs, including the dimerization interface of HIV-1 protease. On the basis of these observations, four molecules 1 with side-chains corresponding to the matching HIV-1 dimerization interface regions were prepared; all four inhibited HIV-1 protease via perturbation of dimerization. These data indicate this approach may inspire design of small molecule interface probes to perturb PPIs.
Collapse
Affiliation(s)
- Eunhwa Ko
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842
| | - Arjun Raghuraman
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842
| | - Lisa M. Perez
- Laboratory for Molecular Simulation, Texas A & M University, Box 30012, College Station, TX 77842
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A & M University, College Station, TX 77843-3112
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842
| |
Collapse
|
145
|
Hori H, Nazumi Y, Uto Y. Boron Tracedrug Design for Neutron Dynamic Therapeutics for LDL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 789:385-389. [DOI: 10.1007/978-1-4614-7411-1_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
146
|
Thiel P, Röglin L, Meissner N, Hennig S, Kohlbacher O, Ottmann C. Virtual screening and experimental validation reveal novel small-molecule inhibitors of 14-3-3 protein–protein interactions. Chem Commun (Camb) 2013; 49:8468-70. [DOI: 10.1039/c3cc44612c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
147
|
|
148
|
|
149
|
Ottmann C. Small-molecule modulators of 14-3-3 protein-protein interactions. Bioorg Med Chem 2012; 21:4058-62. [PMID: 23266179 DOI: 10.1016/j.bmc.2012.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 11/17/2012] [Accepted: 11/20/2012] [Indexed: 01/07/2023]
Abstract
14-3-3 Proteins are eukaryotic adapter proteins that regulate a plethora of physiological processes by binding to several hundred partner proteins. They play a role in biological activities as diverse as signal transduction, cell cycle regulation, apoptosis, host-pathogen interactions and metabolic control. As such, 14-3-3s are implicated in disease areas like cancer, neurodegeneration, diabetes, pulmonary disease, and obesity. Targeted modulation of 14-3-3 protein-protein interactions (PPIs) by small molecules is therefore an attractive concept for disease intervention. In recent years a number of examples of inhibitors and stabilizers of 14-3-3 PPIs have been reported promising a vivid future in chemical biology and drug development for this remarkable class of proteins.
Collapse
Affiliation(s)
- Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.
| |
Collapse
|
150
|
Castellano TG, Neo AG, Marcaccini S, Marcos CF. Enols as feasible acid components in the Ugi condensation. Org Lett 2012. [PMID: 23199185 DOI: 10.1021/ol302976g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterocyclic enols are used for the first time as acid components in an Ugi-type multicomponent condensation. For that purpose, we have chosen enols containing a Michael acceptor, in order to facilitate an irreversible rearrangement of the primary Ugi adduct. The new four-component process leads readily and efficiently to heterocyclic enamines containing at least six elements of diversity.
Collapse
Affiliation(s)
- Teresa G Castellano
- Laboratorio Química Orgánica y Bioorgánica (L.O.B.O.), Departamento Química Orgánica e Inorgánica, Facultad de Veterinaria, Universidad de Extremadura, 10071 Cáceres, Spain
| | | | | | | |
Collapse
|