101
|
Zhou K, Hu L, Liao W, Yin D, Rui F. Coptisine Prevented IL-β-Induced Expression of Inflammatory Mediators in Chondrocytes. Inflammation 2017; 39:1558-65. [PMID: 27294276 DOI: 10.1007/s10753-016-0391-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interleukin 1β (IL-1β) is a pleiotropic pro-inflammatory cytokine that plays a critical role in the development of osteoarthritis (OA). Coptisine is an isoquinoline alkaloid extracted from Coptidis rhizome and has been reported to possess anti-inflammatory activity. However, the anti-inflammatory effects of coptisine on interleukin-1 beta (IL-1β)-stimulated chondrocytes have not been reported. Therefore, the aim of this study was to investigate the effects of coptisine on IL-1β-induced inflammation in human articular chondrocytes. Our results showed that coptisine greatly inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2), as well as suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in human OA chondrocytes induced by IL-1β. It also inhibited the expression of matrix metalloproteinase-3 (MMP-3) and MMP-13 in IL-1β-stimulated human OA chondrocytes. Furthermore, coptisine significantly inhibited the IL-1β-induced NF-kB activation in human OA chondrocytes. Taken together, these data suggest that coptisine inhibits the IL-1β-induced inflammatory response by suppressing the NF-kB signaling pathway. Thus, coptisine may be a potential agent in the treatment of OA.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Emergency, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou, 646000, China.
| | - Li Hu
- Department of Emergency, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou, 646000, China
| | - Wenjun Liao
- Department of Emergency, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou, 646000, China
| | - Defeng Yin
- Department of Emergency, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou, 646000, China
| | - Feng Rui
- Basic Medical College of Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830054, China.
| |
Collapse
|
102
|
Liu XY, Xu L, Wang Y, Li JX, Zhang Y, Zhang C, Wang SS, Zhang XM. Protective effects of total flavonoids of Astragalus against adjuvant-induced arthritis in rats by regulating OPG/RANKL/NF-κB pathway. Int Immunopharmacol 2017; 44:105-114. [PMID: 28092862 DOI: 10.1016/j.intimp.2017.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Astragalus membranaceus Bunge is one of the oldest and most frequently used crude herbs in traditional Chinese medicine. The total flavonoids of Astragalus (TFA) are the main active components isolated from Astragalus membranaceus Bunge. Our recent study has shown its potential immunomodulatory and anti-inflammatory effects in vivo and in vitro. However, its anti-arthritic effects and mechanisms of action involved have not been elucidated. The aim of this study was to evaluate the protective effects and possible mechanisms of TFA on Freund's complete adjuvant (FCA)-induced arthritis in rats. METHODS Wistar rats were intradermally injected FCA into the right hind metatarsal footpads to establish adjuvant-arthritic model. The rats were intragastrically administered daily with TFA at 25, 50 and 100mg/kg for 28days after FCA induction. Body weight, primary paw swelling, arthritis index, thymus and spleen indices were measured. The levels of serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β, prostaglandin (PG)E2, osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) were determined using ELISA. Histopathological changes and scores in joint tissues were examined using hematoxylin and eosin (H&E). The expression of nuclear factor (NF)-κB p65 in synovial tissues was assayed using immunohistochemical method. RESULTS TFA significantly increased body weight, attenuated primary paw swelling and arthritis index, decreased thymus and spleen indices of rats induced by FCA. Furthermore, TFA significantly inhibited serum TNF-α, IL-1β, PGE2 and RANKL production, and promoted serum OPG production and OPG/RANKL ratio of rats induced by FCA. Histopathological examination indicated that TFA significantly attenuated inflammatory cell infiltration, synovial hyperplasia, pannus formation, and bone and cartilage damage. Immunohistochemical assay indicated that TFA inhibited NF-κB p65 expression in synovial tissues of rats induced by FCA. CONCLUSIONS These results suggest that TFA exerts potential protective effects against FCA-induced arthritis in rats by regulating OPG/RANKL/NF-κB pathway.
Collapse
Affiliation(s)
- Xin-Yu Liu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Lu Xu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Ying Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Jin-Xia Li
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Yu Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Chong Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Sha-Sha Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Xue-Mei Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| |
Collapse
|
103
|
JNK activation is essential for activation of MEK/ERK signaling in IL-1β-induced COX-2 expression in synovial fibroblasts. Sci Rep 2017; 7:39914. [PMID: 28054591 PMCID: PMC5215076 DOI: 10.1038/srep39914] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/29/2016] [Indexed: 11/08/2022] Open
Abstract
The proinflammatory cytokine interleukin 1β (IL-1β) induces prostaglandin E2 (PGE2) production via upregulation of cyclooxygenase-2 (COX-2) expression in synovial fibroblasts. This effect of IL-1β is involved in osteoarthritis. We investigated MAPK signaling pathways in IL-1β-induced COX-2 expression in feline synovial fibroblasts. In the presence of MAPK inhibitors, IL-1β-induced COX-2 expression and PGE2 release were both attenuated. IL-1β induced the phosphorylation of p38, JNK, MEK, and ERK1/2. A JNK inhibitor prevented not only JNK phosphorylation but also MEK and ERK1/2 phosphorylation in IL-1β-stimulated cells, but MEK and ERK1/2 inhibitors had no effect on JNK phosphorylation. A p38 inhibitor prevented p38 phosphorylation, but had no effect on MEK, ERK1/2, and JNK phosphorylation. MEK, ERK1/2, and JNK inhibitors had no effect on p38 phosphorylation. We also observed that in IL-1β-treated cells, phosphorylated MEK, ERK1/2, and JNK were co-precipitated with anti-phospho-MEK, ERK1/2, and JNK antibodies. The silencing of JNK1 in siRNA-transfected fibroblasts prevented IL-1β to induce phosphorylation of MEK and ERK1/2 and COX-2 mRNA expression. These observations suggest that JNK1 phosphorylation is necessary for the activation of the MEK/ERK1/2 pathway and the subsequent COX-2 expression for PGE2 release, and p38 independently contributes to the IL-1β effect in synovial fibroblasts.
Collapse
|
104
|
Butein inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes and slows the progression of osteoarthritis in mice. Int Immunopharmacol 2016; 42:1-10. [PMID: 27863298 DOI: 10.1016/j.intimp.2016.11.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/22/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a progressive degenerative disease characterized by irreversible articular cartilage destruction. Butein, a polyphenolic compound isolated from the stem bark of cashews and Rhus verniciflua Stokes, has been reported to have anti-inflammatory effects. This study aimed to assess the effect of butein on human OA chondrocytes and mice OA models induced by destabilization of the medial meniscus (DMM). In vitro, human OA chondrocytes were pretreated with butein at 10, 50μM and subsequently stimulated with IL-1β (10ng/ml) for 24h. Production of NO, PGE2, TNF-α and IL-6 was evaluated by the Griess reaction and ELISAs. The mRNA expression of COX-2, iNOS, TNF-α, IL-6, MMP-1, MMP-3, MMP-13, ADAMTS-4, ADAMTS-5, COL-2 and SOX-9 were measured by real-time PCR. The protein expression of COX-2, iNOS, MMP-13, COL-2, SOX-9, p65 and IκB-α were detected by Western blot. P65 nuclear translocation was detected by immunofluorescence. In vivo, the severity of OA was determined by histological analysis. We found that butein significantly inhibited the IL-1β-induced production of NO and PGE2, expression of COX-2, iNOS, TNF-α, IL-6 and MMP-13, degradation of COL-2 and SOX-9 at mRNA and protein levels as well as MMP-1, MMP-3, ADAMTS-4 and ADAMTS-5 gene expression. Furthermore, butein dramatically suppressed IL-1β-stimulated IκB-α degradation and NF-kB p65 activation. In vivo, the cartilage in butein-treated mice exhibited less Safranin O loss, cartilage erosion and lower OARSI scores. Butein also reduced subchondral bone plate thickness and alleviated synovitis. Taken together, these findings indicate that butein may be a potential agent in the treatment of OA.
Collapse
|
105
|
Hosseinzadeh A, Kamrava SK, Joghataei MT, Darabi R, Shakeri-Zadeh A, Shahriari M, Reiter RJ, Ghaznavi H, Mehrzadi S. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res 2016; 61:411-425. [PMID: 27555371 DOI: 10.1111/jpi.12362] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive erosion of articular cartilage. As chondrocytes are the only cell type forming the articular cartilage, their gradual loss is the main cause of OA. There is a substantial body of published research that suggests reactive oxygen species (ROS) are major causative factors for chondrocyte damage and OA development. Oxidative stress elicited by ROS is capable of oxidizing and subsequently disrupting cartilage homeostasis, promoting catabolism via induction of cell death and damaging numerous components of the joint. IL-1β and TNF-α are crucial inflammatory factors that play pivotal roles in the pathogenesis of OA. In this process, the mitochondria are the major source of ROS production in cells, suggesting a role of mitochondrial dysfunction in this type of arthritis. This may also be promoted by inflammatory cytokines such as IL-1β and TNF-α which contribute to chondrocyte death. In patients with OA, the expression of endoplasmic reticulum (ER) stress-associated molecules is positively correlated with cartilage degeneration. Melatonin and its metabolites are broad-spectrum antioxidants and free radical scavengers which regulate a variety of molecular pathways such as inflammation, proliferation, apoptosis, and metastasis in different pathophysiological situations. Herein, we review the effects of melatonin on OA, focusing on its ability to regulate apoptotic processes and ER and mitochondrial activity. We also evaluate likely protective effects of melatonin on OA pathogenesis.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT and Head & Neck Research Center, Hazrate Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM), Brown Foundation Institute of Molecular Medicine (IMM), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour Shahriari
- Ophthalmology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. ,
| |
Collapse
|
106
|
Sakata R, Reddi AH. Platelet-Rich Plasma Modulates Actions on Articular Cartilage Lubrication and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:408-419. [DOI: 10.1089/ten.teb.2015.0534] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ryosuke Sakata
- Department of Orthopedic Surgery, Center for Tissue Regeneration and Repair, University of California, Davis, Sacramento, California
| | - A. Hari Reddi
- Department of Orthopedic Surgery, Center for Tissue Regeneration and Repair, University of California, Davis, Sacramento, California
| |
Collapse
|
107
|
Inhibition of cartilage degradation and suppression of PGE 2 and MMPs expression by pomegranate fruit extract in a model of posttraumatic osteoarthritis. Nutrition 2016; 33:1-13. [PMID: 27908544 DOI: 10.1016/j.nut.2016.08.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/04/2016] [Accepted: 08/18/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is characterized by cartilage degradation in the affected joints. Pomegranate fruit extract (PFE) inhibits cartilage degradation in vitro. The aim of this study was to determine whether oral consumption of PFE inhibits disease progression in rabbits with surgically induced OA. METHODS OA was surgically induced in the tibiofemoral joints of adult New Zealand White rabbits. In one group, animals were fed PFE in water for 8 wk postsurgery. In the second group, animals were fed PFE for 2 wk before surgery and for 8 wk postsurgery. Histologic assessment and scoring of the cartilage was per Osteoarthritis Research Society International guidelines. Gene expression and matrix metalloproteinases (MMP) activity were determined using quantitative reverse transcriptase polymerase chain reaction and fluorometric assay, respectively. Interleukin (IL)-1 β, MMP-13, IL-6, prostaglandin (PG)E2, and type II collagen (COL2A1) levels in synovial fluid/plasma/culture media were quantified using enzyme-linked immunosorbent assay. Expression of active caspase-3 and poly (ADP-ribose) polymerase p85 was determined by immunohistochemistry. Effect of PFE and inhibitors of MMP-13, mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB was studied in IL-1 β-stimulated rabbit articular chondrocytes. RESULTS Safranin-O-staining and chondrocyte cluster formation was significantly reduced in the anterior cruciate ligament transaction plus PFE fed groups. Expression of MMP-3, MMP-9, and MMP-13 mRNA was higher in the cartilage of rabbits given water alone but was significantly lower in the animals fed PFE. PFE-fed rabbits had lower IL-6, MMP-13, and PGE2 levels in the synovial fluid and plasma, respectively, and showed higher expression of aggrecan and COL2A1 mRNA. Significantly higher numbers of chondrocytes were positive for markers of apoptosis in the joints of rabbits with OA given water only compared with those in the PFE-fed groups. PFE pretreatment significantly reduced IL-1 β induced IL-6 and MMPs expression in rabbit articular chondrocytes. These effects were also mimicked using MMP-13, MAPK, and NF-κB inhibitors in IL-1 β-stimulated rabbit chondrocytes. In an in vitro activity assay, PFE blocked the activity of MMP-13. Like MAPK and NF-κB inhibitors, PFE was also effective in inhibiting IL-1 β-induced PGE2 production in rabbit chondrocytes. PFE also reversed the inhibitory effect of IL-1β on COL2A1 mRNA and protein expression in IL-1 β-stimulated rabbit chondrocytes. CONCLUSION The present data highlight the chondroprotective effects of PFE oral consumption in a model of posttraumatic OA and suggest that PFE-derived compounds may have potential value in the management of OA.
Collapse
|
108
|
Wang S, Wang Y, Liu X, Guan L, Yu L, Zhang X. Anti-inflammatory and anti-arthritic effects of taraxasterol on adjuvant-induced arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:42-48. [PMID: 27109342 DOI: 10.1016/j.jep.2016.04.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/10/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taraxasterol was isolated from the traditional Chinese medicinal herb Taraxacum which has been frequently used as a remedy for inflammatory diseases. In the present study, we determined the in vivo anti-arthritic effect of taraxasterol on arthritis induced by Freund's complete adjuvant (FCA) in rats. MATERIALS AND METHODS Rats were immunized with FCA by intradermal injection into the right hind metatarsal footpad, and were orally treated daily with taraxasterol at 2, 4 and 8mg/kg from day 2-28 after immunization. Paw swelling, arthritis index, body weight, spleen index and thymus index were evaluated. The levels of TNF-α, IL-1β, PGE2, OPG and RANKL in sera were measured using ELISA. Histopathological changes in joint tissues were examined using hematoxylin and eosin (H&E). RESULTS Taraxasterol significantly suppressed paw swelling and arthritis index, attenuated body weight loss, decreased the spleen index and thymus index induced by FCA. Furthermore, taraxasterol significantly inhibited the overproduction of serum TNF-α, IL-1β, PGE2 and RANKL, and increased serum OPG production in FCA-induced rats. Histopathological examination indicated that taraxasterol attenuated synovial hyperplasia, bone and cartilage damage, and inflammatory cell infiltration. CONCLUSIONS These results suggest that taraxasterol has the potential protective effect against FCA-induced arthritis in rats.
Collapse
Affiliation(s)
- Shasha Wang
- Department of Animal Medicine, Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Ying Wang
- Department of Animal Medicine, Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Xinyu Liu
- Department of Animal Medicine, Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Lizeng Guan
- Department of Animal Medicine, Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Longzheng Yu
- Department of Animal Medicine, Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Xuemei Zhang
- Department of Animal Medicine, Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| |
Collapse
|
109
|
Limited efficacy of COX-2 inhibitors on nerve growth factor and metalloproteinases expressions in human synovial fibroblasts. J Orthop Sci 2016; 21:381-8. [PMID: 26876621 DOI: 10.1016/j.jos.2016.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/10/2015] [Accepted: 01/14/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nerve growth factor (NGF) is associated with arthritic pain and metalloproteinases are implicated in collagen and aggrecan degradation. Although selective COX-2 inhibitors are recommended for the treatment of arthritic diseases, their effects on NGF and metalloproteinases remain unclear. This study investigated the regulations of NGF and metalloproteinases by selective COX-2 inhibitors in isolated human synovial cells. METHODS The isolated human synovial cells were stimulated with IL-1β in the presence of selective COX-2 inhibitors (NS-398 or celecoxib) with or without exogenous PGE2 or its receptor (EP1-4) agonists. The expressions of NGF, MMP-1, -3, -13, ADAMTS-4, and -5 were quantified by real-time PCR and their proteins were determined by Western blotting. The amount of PGE2 released was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The IL-1β inductions of NGF and MMP-1 and MMP-13 were augmented by the COX-2 inhibitors, whereas the inductions of ADAMTS-4 and ADAMTS-5 were inhibited. These actions were reversed by supplementing PGE2 or the EP4 agonist exogenously. CONCLUSION Our comprehensive analysis revealed that COX-2 inhibitors may be beneficial for suppressing aggrecan degradation and for reducing inflammatory pain by inhibiting PGE2 release, although they may have limited efficacy in suppressing collagen degradation and nerve growth. This study suggests the feedback roles of PGE2 in the negative regulation of NGF and MMP-1 and MMP-13 and the positive regulation of ADAMTS-4 and ADAMTS-5.
Collapse
|
110
|
Kwon HO, Lee M, Kim OK, Ha Y, Jun W, Lee J. Effect of Hijikia fusiforme extracts on degenerative osteoarthritis in vitro and in vivo models. Nutr Res Pract 2016; 10:265-73. [PMID: 27247722 PMCID: PMC4880725 DOI: 10.4162/nrp.2016.10.3.265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/26/2015] [Accepted: 01/06/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/OBJECTIVES The inhibitory effect of Hijikia fusiforme (HF) extracts on degenerative osteoarthritis was examined in primary cultured rat cartilage cells and a monosodium iodoacetate (MIA)-induced osteoarthritis rat model. MATERIALS/METHODS In vitro, cell survival and the expression of matrix metalloproteinases (MMPs), collagen type I, collagen type II, aggrecan, and tissue inhibitor of metalloproteinases (TIMPs) was measured after H2O2 (800 µM, 2 hr) treatment in primary chondrocytes. In vivo animal study, osteoarthritis was induced by intra-articular injection of MIA into knee joints of rats, and then RH500, HFE250 and HFE500 were administered orally once a day for 28 days. To determine the anti-inflammatory effects of HFE, nitric oxide (NO), prostaglandin E2 (PGE2) expression were measured. In addition, real-time PCR was performed to measure the genetic expression of MMPs, collagen type I, collagen type II, aggrecan, and TIMPs. RESULTS In the in vitro assay, cell survival after H2O2 treatment was increased by HFE extract (20% EtOH). In addition, anabolic factors (genetic expression of collagen type I, II, and aggrecan) were increased by HFE extract (20% EtOH). However, the genetic expression of MMP-3 and 7, known as catabolic factors were significantly inhibited by treatment with HFE extract (20% EtOH). In the in vivo assay, anabolic factors (genetic expression of collagen type I, II, aggrecan, and TIMPs) were increased by oral administration of HFE extract. However, the genetic expression of MMP-3 and 7, known as catabolic factors, and production of NO and PGE2 were significantly inhibited by treatment with oral administration of HFE extract. CONCLUSIONS HFE extract inhibited articular cartilage degeneration through preventing extracellular matrix degradation and chondrocyte injury.
Collapse
Affiliation(s)
- Han Ol Kwon
- Department of Medical Nutrition, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Korea
| | - Ok-Kyung Kim
- Department of Medical Nutrition, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Korea
| | - Yejin Ha
- Department of Medical Nutrition, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Korea
| | - Woojin Jun
- Division of Food and Nutritional Science, Chonnam National University, Gwangju 61186, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Korea
| |
Collapse
|
111
|
Tangtrongsup S, Kisiday JD. Effects of Dexamethasone Concentration and Timing of Exposure on Chondrogenesis of Equine Bone Marrow-Derived Mesenchymal Stem Cells. Cartilage 2016; 7:92-103. [PMID: 26958321 PMCID: PMC4749745 DOI: 10.1177/1947603515595263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Dexamethasone is known to support mesenchymal stem cell (MSC) chondrogenesis, although the effects of dose and timing of exposure are not well understood. The objective of this study was to investigate these variables using a laboratory model of MSC chondrogenesis. DESIGN Equine MSCs were encapsulated in agarose and cultured in chondrogenic medium with 1 or 100 nM dexamethasone, or without dexamethasone, for 15 days. Samples were analyzed for extracellular matrix (ECM) accumulation, prostaglandin E2 and alkaline phosphatase secretion, and gene expression of selected collagens and catabolic enzymes. Timing of exposure was evaluated by ECM accumulation after dexamethasone was withdrawn over the first 6 days, or withheld for up to 3 or 6 days of culture. RESULTS ECM accumulation was not significantly different between 1 and 100 nM dexamethasone, but was suppressed ~40% in dexamethasone-free cultures. Prostaglandin E2 secretion, and expression of catabolic enzymes, including matrix metalloproteinase 13, and type X collagen was generally lowest in 100 nM dexamethasone and not significantly different between 1 nM and dexamethasone-free cultures. Dexamethasone could be withheld for at least 2 days without affecting ECM accumulation, while withdrawal studies suggested that dexamethasone supports ECM accumulation beyond day 6. CONCLUSION One nanomolar dexamethasone supported robust cartilage-like ECM accumulation despite not having an effect on markers of inflammation, although higher concentrations of dexamethasone may be necessary to suppress undesirable hypertrophic differentiation. While early exposure to dexamethasone was not critical, sustained exposure of at least a week appears to be necessary to maximize ECM accumulation.
Collapse
Affiliation(s)
- Suwimol Tangtrongsup
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - John D. Kisiday
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA,John D. Kisiday, Orthopaedic Research Center, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523, USA.
| |
Collapse
|
112
|
Therapeutic Effect of Chenodeoxycholic Acid in an Experimental Rabbit Model of Osteoarthritis. Mediators Inflamm 2015; 2015:780149. [PMID: 26538834 PMCID: PMC4619964 DOI: 10.1155/2015/780149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/18/2015] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is a slowly progressive joint disease typically seen in middle-age to elderly people. At present, there is no ideal agent to treat OA. Chenodeoxycholic acid (CDCA) was a principal active constituent from animal bile. However, the therapeutic effect of CDCA on OA severity was largely unknown. The purpose of this study was to evaluate the therapeutic effect of intra-articular injection of CDCA in a rabbit OA model. OA was induced in experimental rabbits by anterior cruciate ligament transection (ACLT) and then rabbits were intra-articularly injected with CDCA (10 mg/kg or 50 mg/kg) once per week for 5 weeks. The results showed that CDCA significantly decreased cartilage degradation on the surface of femoral condyles, reducing the pathological changes of articular cartilage and synovial membrane by macroscopic and histological analysis. CDCA also significantly decreased bone destruction and erosion of joint evaluated by micro-CT. Furthermore, CDCA could markedly reduce the release of matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-3 (MMP-3), interleukin-1β (IL-1β), and prostaglandin E2 (PGE2) in synovial fluid. These observations highlight CDCA might be a potential therapeutic agent for OA.
Collapse
|
113
|
Cheleschi S, Pascarelli NA, Valacchi G, Di Capua A, Biava M, Belmonte G, Giordani A, Sticozzi C, Anzini M, Fioravanti A. Chondroprotective effect of three different classes of anti-inflammatory agents on human osteoarthritic chondrocytes exposed to IL-1β. Int Immunopharmacol 2015; 28:794-801. [DOI: 10.1016/j.intimp.2015.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/08/2015] [Accepted: 07/05/2015] [Indexed: 11/16/2022]
|
114
|
Zhao L, Ye J, Wu GT, Peng XJ, Xia PF, Ren Y. Gentiopicroside prevents interleukin-1 beta induced inflammation response in rat articular chondrocyte. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:100-7. [PMID: 26116164 DOI: 10.1016/j.jep.2015.06.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/07/2015] [Accepted: 06/16/2015] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, Gentiana macrophylla Pall have been prescribed for the treatment of pain and inflammatory conditions. In addition, it is a common Tibetan medicinal herb used for the treatment of tonsillitis, urticaria, and rheumatoid arthritis (RA), while the flowers of G. macrophylla Pall have been traditionally treated as an anti-inflammatory agent to clear heat in Mongolian medicine. The secoiridoid glycosides and their derivatives are the primary active components of G. macrophylla and have been demonstrated to be effective as anti-inflammatory agents. MATERIALS AND METHODS Solvent extraction and D101 macroporous resin columns were employed to concentratethe gentiopicroside. Gentiopicroside cytotoxicity was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; the toxicity of gentiopicroside in chondrocytes was reconfirmed using Hoechst staining. Western blotting, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry were utilized to explore the protective effects and mechanisms of gentiopicroside prevents interleukin-1 beta induced inflammation response in rat articular chondrocyte. RESULTS The MTT assay demonstrated that 50, 500, and 1,500 μg/mL of gentiopicroside exhibited no significant toxicity to chondrocytes (P>0.05) after 24h. Using immunohistochemistry, ELISA, RT-PCR, Western blot method to explore the protective effect and mechanism of gentiopicroside on chondrocytes induced by IL-1β. The results showed some pathways of IL-1β signal transduction were inhibited by gentiopicroside in rat chondrocytes: p38, ERK and JNK. Meanwhile, gentiopicroside showed inhibition in the IL-1β-induced release of MMPs while increasing Collagen type II expression. CONCLUSIONS The current study demonstrated that gentiopicroside exhibited a potent protective effect on IL-1β induced inflammation response in rat articular chondrocyte. Thus, gentiopicroside could be a potential therapeutic strategy for treatment of OA.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Chemistry and Quality for Traditional Chinese Medicines of the College of Gansu Province, Gansu College of Traditional Chinese Medicine, Lanzhou, PR China.
| | - Juan Ye
- Key Laboratory of Chemistry and Quality for Traditional Chinese Medicines of the College of Gansu Province, Gansu College of Traditional Chinese Medicine, Lanzhou, PR China
| | - Guo-Tai Wu
- Key Laboratory of Pharmacology and Toxicology for Traditional Chinese Medicines of Gansu Province, Gansu College of Traditional Chinese Medicine, PR China
| | - Xue-Jing Peng
- Key Laboratory of Chemistry and Quality for Traditional Chinese Medicines of the College of Gansu Province, Gansu College of Traditional Chinese Medicine, Lanzhou, PR China
| | - Peng-Fei Xia
- Key Laboratory of Chemistry and Quality for Traditional Chinese Medicines of the College of Gansu Province, Gansu College of Traditional Chinese Medicine, Lanzhou, PR China
| | - Yuan Ren
- Key Laboratory of Pharmacology and Toxicology for Traditional Chinese Medicines of Gansu Province, Gansu College of Traditional Chinese Medicine, PR China.
| |
Collapse
|
115
|
Torrero JI, Martínez C. New developments in the treatment of osteoarthritis - focus on biologic agents. Open Access Rheumatol 2015; 7:33-43. [PMID: 27790043 PMCID: PMC5045124 DOI: 10.2147/oarrr.s50058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common diseases around the world. Medical, social, and financial consequences oblige clinicians, surgeons, and researchers to focus on finding the best treatment option, to eradicate and stop this degenerative joint disease, in order to avoid surgical options which in many instances are over-indicated. Noninvasive treatments, such as anti-inflammatory drugs, physiotherapy, orthotic devices, dietary supplements, have demonstrated lack of effectiveness. The possibility to perform intra-articular injections with hyaluronic acid, corticosteroids, or the newest but criticized treatment based on platelet-rich plasma (PRP) has changed the management of OA disease. The use of PRP has led to many differences in treatment since there is a lack of consensus about protocols, indications, number of doses, cost-effectiveness, and duration of the treatment. Many publications have suggested efficacy in tendon injuries, but when PRP has been indicated to treat cartilage injuries, things are more inconsistent. Some authors have reported their experience treating OA with PRP, and it seems that, if well indicated, it is an option as a supplementary therapy. Therefore, we need to understand that OA is a mechanical disease which not only produces changes in radiographs, but also affects the quality of life. Pathogenesis of OA has been well explained, providing us new knowledge and future possibilities to improve the clinical approach. From basic science to surgery, there is a great field we all need to contribute to, because the general population is aging and total joint replacements should not be the only solution for OA. So herein is an actual review of the developments for treating OA with biologics, intended to be useful for the population inside orthopedics who could be called bio-orthopedists, since OA is a molecular homeostasis disbalance between catabolism and anabolism triggered by mechanical stress.
Collapse
Affiliation(s)
| | - Carlos Martínez
- University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| |
Collapse
|
116
|
Wei S, Lu Z, Zou Y, Lin X, Lin C, Liu B, Zheng L, Zhao J. A Novel Synthesized Sulfonamido-Based Gallate-JEZ-C as Potential Therapeutic Agents for Osteoarthritis. PLoS One 2015; 10:e0125930. [PMID: 26107568 PMCID: PMC4480854 DOI: 10.1371/journal.pone.0125930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/25/2015] [Indexed: 11/24/2022] Open
Abstract
Gallic acid (GA) and its derivatives are anti-inflammatory agents reported to have an effect on osteoarthritis (OA). However, GA has much weaker anti-oxidant effects and inferior bioactivity compared with its derivatives. We modified GA with the introduction of sulfonamide to synthesize a novel compound named JEZ-C and analyzed its anti-arthritis and chondro-protective effects. Comparison of JEZ-C with its sources i.e. GA and Sulfamethoxazole (SMZ) was also performed. Results showed that JEZ-C could effectively inhibit the IL-1-mediated induction of MMP-1 and MMP-13 and could induce the expression of TIMP-1, which demonstrated its ability to reduce the progression of OA. JEZ-C can also exert chondro-protective effects by promoting cell proliferation and maintaining the phenotype of articular chondrocytes, as evidenced by improved cell growth, enhanced synthesis of cartilage specific markers such as aggrecan, collagen II and Sox9. Meanwhile, expression of the collagen I gene was effectively downregulated, revealing the inhibition of chondrocytes dedifferentiation by JEZ-C. Hypertrophy that may lead to chondrocyte ossification was also undetectable in JEZ-C groups. The recommended dose of JEZ-C ranges from 6.25×10-7 μg/ml to 6.25×10-5 μg/ml, among which the most profound response was observed with 6.25×10-6 μg/ml. In contrast, its source products of GA and SMZ have a weak effect not only in the inhibition of OA but also in the bioactivity of chondrocytes, which indicated the significance of this modification. This study revealed JEZ-C as a promising novel agent in the treatment of chondral and osteochondral lesions.
Collapse
Affiliation(s)
- Shixiu Wei
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
| | - Zhenhui Lu
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiao Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
| | - Cuiwu Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Buming Liu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
| | - Li Zheng
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- * E-mail:
| | - Jinmin Zhao
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
117
|
Study of osteoarthritis treatment with anti-inflammatory drugs: cyclooxygenase-2 inhibitor and steroids. BIOMED RESEARCH INTERNATIONAL 2015; 2015:595273. [PMID: 26000299 PMCID: PMC4427003 DOI: 10.1155/2015/595273] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/06/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022]
Abstract
Patients with osteoarthritis (OA), a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs) and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM). To compare the effects of these treatments on chondrocyte metabolism, TNF-α was incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2). The chondrocytes were then treated with either a steroid (prednisone), a nonspecific COX inhibitor NSAID (piroxicam), or a COX-2 selective NSAID (celecoxib). Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxib in vivo was investigated using a posttraumatic OA (PTOA) mouse model. In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 production in vitro and that celecoxib may demonstrate beneficial effects on anabolic metabolism in vivo.
Collapse
|
118
|
Ferrándiz ML, Terencio MC, Carceller MC, Ruhí R, Dalmau P, Vergés J, Montell E, Torrent A, Alcaraz MJ. Effects of BIS076 in a model of osteoarthritis induced by anterior cruciate ligament transection in ovariectomised rats. BMC Musculoskelet Disord 2015; 16:92. [PMID: 25903377 PMCID: PMC4407298 DOI: 10.1186/s12891-015-0547-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/30/2015] [Indexed: 01/15/2023] Open
Abstract
Background Osteoarthritis (OA) is the most frequent articular disease and a leading cause of disability. There is a need for effective treatments able to slow the progression of disease. Some of the available treatments are dietary supplements providing natural components. Recent studies have shown that estrogen deficiency contributes to the pathophysiological events of OA progression. Methods We have used the anterior cruciate ligament transection model of OA in ovariectomised rats to study the effects of BIS076, a new formulation of a natural porcine cartilage extract associated with hydroxyapatite (as a source of calcium) and vitamin D3. Cartilage degradation, proteoglycan depletion and synovitis were followed by histochemistry. Effects on bone microstructure were determined by μCT. The levels of biomarkers in serum and inflammatory mediators in knee homogenates were measured by luminex or ELISA. Results Oral administration of BIS076 reduced articular cartilage damage and serum levels of cartilage degradation markers C-telopeptide of type II collagen and cartilage oligomeric matrix protein, as well as matrix metalloproteinase-3. The local inflammatory response was down-regulated by BIS076 with lower production of pro-inflammatory cytokines and prostaglandin E2 in joint tissues. In addition, BIS076 was effective on metaphyseal bone alterations as this formulation increased volumetric bone mineral density and improved bone micro-architecture. These effects were related to the modification of bone metabolism reflected by changes in bone biomarkers with reductions in the ratio receptor activator of nuclear factor κB ligand/osteoprotegerin and the levels of tartrate-resistant acid phosphatase-5b, suggesting an inhibitory activity of BIS076 on trabecular bone resorption. Conclusions We have demonstrated the protective properties of a new formulation (BIS076) on joint lesion and bone alterations in an experimental model of OA in ovariectomised rats. This study supports the interest of BIS076 in OA treatments.
Collapse
Affiliation(s)
- María Luisa Ferrándiz
- Department of Pharmacology and IDM, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain.
| | - María Carmen Terencio
- Department of Pharmacology and IDM, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain.
| | - María Carmen Carceller
- Department of Pharmacology and IDM, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain.
| | - Ramón Ruhí
- Technological Extraction Department, BIOIBERICA S.A., Pol. Ind. "Mas Puigvert", Crta. N-II, Km 680.6, 08389, Palafolls, Barcelona, Spain.
| | - Pere Dalmau
- Technological Extraction Department, BIOIBERICA S.A., Pol. Ind. "Mas Puigvert", Crta. N-II, Km 680.6, 08389, Palafolls, Barcelona, Spain.
| | - Josep Vergés
- Pre-Clinical R&D Department, Pharmascience Div., BIOIBERICA S.A., Francesc Macià 7, 08029, Barcelona, Spain.
| | - Eulàlia Montell
- Pre-Clinical R&D Department, Pharmascience Div., BIOIBERICA S.A., Francesc Macià 7, 08029, Barcelona, Spain.
| | - Anna Torrent
- Pre-Clinical R&D Department, Pharmascience Div., BIOIBERICA S.A., Francesc Macià 7, 08029, Barcelona, Spain.
| | - María José Alcaraz
- Department of Pharmacology and IDM, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain.
| |
Collapse
|
119
|
Sim BY, Bak JW, Lee HJ, Jun JA, Choi HJ, Kwon CJ, Kim HY, Ruff KJ, Brandt K, Kim DH. Effects of natural eggshell membrane (NEM) on monosodium iodoacetate-induced arthritis in rats. JOURNAL OF NUTRITION AND HEALTH 2015; 48:310. [DOI: 10.4163/jnh.2015.48.4.310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/09/2015] [Accepted: 06/29/2015] [Indexed: 01/04/2025]
Affiliation(s)
- Boo Yong Sim
- Traditional and Biomedical Research Center (TBRC-RIC), Daejeon University, Daejeon 300-176, Korea
| | - Ji Won Bak
- Traditional and Biomedical Research Center (TBRC-RIC), Daejeon University, Daejeon 300-176, Korea
| | - Hae Jin Lee
- Traditional and Biomedical Research Center (TBRC-RIC), Daejeon University, Daejeon 300-176, Korea
| | - Ji Ae Jun
- Traditional and Biomedical Research Center (TBRC-RIC), Daejeon University, Daejeon 300-176, Korea
| | - Hak Joo Choi
- Traditional and Biomedical Research Center (TBRC-RIC), Daejeon University, Daejeon 300-176, Korea
| | | | | | - Kevin J. Ruff
- Scientific & Regulatory Affairs, ESM Technologies, LLC, 2213 Missouri St. 64836, USA
| | - Karsten Brandt
- Human Nutrition, Stratum Nutrition, 43204, Tarragona, Spain
| | - Dong Hee Kim
- Traditional and Biomedical Research Center (TBRC-RIC), Daejeon University, Daejeon 300-176, Korea
| |
Collapse
|
120
|
Gómez R, Villalvilla A, Largo R, Gualillo O, Herrero-Beaumont G. TLR4 signalling in osteoarthritis—finding targets for candidate DMOADs. Nat Rev Rheumatol 2014; 11:159-70. [PMID: 25512010 DOI: 10.1038/nrrheum.2014.209] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
121
|
Andrographolide Exerts Chondroprotective Activity in Equine Cartilage Explant and Suppresses Interleukin-1 β -Induced MMP-2 Expression in Equine Chondrocyte Culture. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:464136. [PMID: 27379277 PMCID: PMC4897368 DOI: 10.1155/2014/464136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 11/17/2022]
Abstract
Cartilage erosion in degenerative joint diseases leads to lameness in affected horses. It has been reported that andrographolide from Andrographis paniculata inhibited cartilage matrix-degrading enzymes. This study aimed to explore whether this compound protects equine cartilage degradation in the explant culture model and to determine its effect on matrix metalloproteinase-2 (MMP-2) expression, a matrix-degrading enzyme, in equine chondrocyte culture. Equine articular cartilage explant culture was induced by 25 ng/mL interleukin-1β, a key inducer of cartilage degeneration, in cultures with or without andrographolide ranging from 10 to 50 μM. After 3–21 days, they were analyzed for the markers of cartilage degradation. It was found that interleukin-1β increased the release of sulfated glycosaminoglycans and hyaluronan from the explants into the culture media consistently with the decrease in uronic acid and collagen content in the cartilage explants. These catabolic effects were inhibited when cotreated with interleukin-1β and andrographolide. In primary equine chondrocytes, andrographolide suppressed interleukin-1β-induced MMP-2 mRNA expression and MMP-2 activity in the culture medium. These results confirmed the in vitro potent chondroprotective activities of this compound which were performed in cartilage explants and on a cellular level. These may indicate the application of andrographolide for therapeutic use in equine degenerative joint diseases.
Collapse
|
122
|
Effect of a novel synthesized sulfonamido-based gallate-SZNTC on chondrocytes metabolism in vitro. Chem Biol Interact 2014; 221:127-38. [DOI: 10.1016/j.cbi.2014.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/20/2022]
|
123
|
de Jesus JF, Spadacci-Morena DD, dos Anjos Rabelo ND, Pinfildi CE, Fukuda TY, Plapler H. Low-level laser therapy in IL-1β, COX-2, and PGE2 modulation in partially injured Achilles tendon. Lasers Med Sci 2014; 30:153-8. [PMID: 25070591 DOI: 10.1007/s10103-014-1636-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/16/2014] [Indexed: 12/15/2022]
Abstract
This study evaluated IL-1β, COX-2, and PGE2 modulation in partially injured Achilles tendons treated with low-level laser therapy (LLLT). Sixty-five male Wistar rats were used. Sixty were submitted to a direct injury on Achilles tendon and then distributed into six groups: LASER 1 (a single LLLT application), LASER 3 (three LLLT applications), and LASER 7 (seven LLLT applications) and Sham 1, 3, and 7 (the same injury but LLLT applications were simulated). The five remaining animals were allocated at control group (no procedure performed). LLLT (780 nm) was applied with 70 mW of mean power and 17.5 J/cm(2) of fluency for 10 s, once a day. The tendons were surgically removed and assessed immunohistochemically for IL-1β, COX-2, and PGE2. In comparisons with control (IL-1β: 100.5 ± 92.5 / COX-2: 180.1 ± 97.1 / PGE2: 187.8 ± 128.8) IL-1β exhibited (mean ± SD) near-normal level (p > 0.05) at LASER 3 (142.0 ± 162.4). COX-2 and PGE2 exhibited near-normal levels (p > 0.05) at LASER 3 (COX-2: 176.9 ± 75.4 / PGE2: 297.2 ± 259.6) and LASER 7 (COX-2: 259.2 ± 190.4 / PGE2: 587.1 ± 409.7). LLLT decreased Achilles tendon's inflammatory process.
Collapse
Affiliation(s)
- Julio Fernandes de Jesus
- Interdisciplinary Surgical Science Program, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, 04021-001, Brazil,
| | | | | | | | | | | |
Collapse
|
124
|
Su SC, Tanimoto K, Tanne Y, Kunimatsu R, Hirose N, Mitsuyoshi T, Okamoto Y, Tanne K. Celecoxib exerts protective effects on extracellular matrix metabolism of mandibular condylar chondrocytes under excessive mechanical stress. Osteoarthritis Cartilage 2014; 22:845-51. [PMID: 24721459 DOI: 10.1016/j.joca.2014.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Excessive mechanical stress is considered a major cause of temporomandibular joint osteoarthritis (TMJ-OA). High magnitude cyclic tensile strain (CTS) up-regulates pro-inflammatory cytokines and matrix metalloproteinases (MMPs) in chondrocytes, while selective cyclooxygenase (COX)-2 inhibition has been shown to be beneficial to cytokine-induced cartilage damage. However, the effect of selective COX-2 inhibitors on mechanically stimulated chondrocytes remains unclear. This study evaluated the effect of celecoxib, a selective COX-2 inhibitor, on extracellular matrix (ECM) metabolism of mandibular condylar chondrocytes under CTS. METHODS Porcine mandibular chondrocytes were subjected to CTS of 0.5 Hz, 10% elongation with celecoxib for 24 h. The gene expressions of COX-2, MMPs, aggrecanase (ADAMTS), type II collagen and aggrecan were examined by real-time PCR. Also, prostaglandin E2 (PGE2) concentrations were determined using enzyme immunoassay kit. The levels of MMP and transcription factor NF-κB were measured by western blot while MMP activity was determined by casein zymography. RESULTS The presence of celecoxib normalized the release of PGE2 and diminished the CTS-induced COX-2, MMP-1, MMP-3, MMP-9 and ADAMTS-5 gene expressions while recovered the downregulated type II collagen and aggrecan gene expressions. Concurrently, celecoxib showed inhibition of NF-κB and suppression of MMP production and activity. CONCLUSIONS Celecoxib exerts protective effects on mandibular condylar chondrocytes under CTS stimulation by diminishing degradation and restoring synthesis of ECM.
Collapse
Affiliation(s)
- S C Su
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - K Tanimoto
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Y Tanne
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - R Kunimatsu
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - N Hirose
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - T Mitsuyoshi
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Y Okamoto
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - K Tanne
- Department of Orthodontics, Division of Applied Biosciences, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
125
|
Zhang J, Zhang HY, Zhang M, Qiu ZY, Wu YP, Callaway DA, Jiang JX, Lu L, Jing L, Yang T, Wang MQ. Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage. Osteoarthritis Cartilage 2014; 22:822-30. [PMID: 24704497 PMCID: PMC4706739 DOI: 10.1016/j.joca.2014.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/14/2014] [Accepted: 03/22/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Connexin (Cx) 43 hemichannels play a role in mechanotransduction. This study was undertaken in order to determine if Cx43 hemichannels were activated in rat temporomandibular joint (TMJ) chondrocytes under mechanical stimulation. METHODS Sprague-Dawley rats were stimulated dental-mechanically. Cx43 expression in rat TMJ cartilage was determined with immunohistochemistry and real-time PCR, and Cx43 hemichannel opening was evaluated by the extra- and intracellular levels of prostaglandin E2 (PGE2). Both primary rat chondrocytes and ATDC5 cells were treated with fluid flow shear stress (FFSS) to induce hemichannel opening. The Cx43 expression level was then determined by real-time PCR or Western blotting, and the extent of Cx43 hemichannel opening was evaluated by measuring both PGE2 release and cellular dye uptake. RESULTS Cx43 expression and intra- and extracellular PGE2 levels were increased in mechanically-stimulated rat TMJ cartilage compared to the unstimulated control. The FFSS treatment increased Cx43 expression and induced Cx43 hemichannel opening in primary rat chondrocytes and ATDC5 cells indicated by enhanced PGE2 release and dye uptake. Furthermore, the Cx43 hemichannel opening could be blocked by the addition of 18β-glycyrrhetinic acid, a Cx channel inhibitor, Cx43-targeting siRNA, or by withdrawal of FFSS stimulation. The migration of cytosolic Cx43 protein to the plasma membrane in ATDC5 cells was still significant after 8 h post 2-h FFSS treatment, and the Cx43 protein level was still high at 48 h, which returned to control levels at 72 h after treatment. CONCLUSION Cx43 hemichannels are activated and mediate small molecule exchange between TMJ chondrocytes and matrix under mechanical stimulation.
Collapse
Affiliation(s)
- J Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - H Y Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - M Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - Z Y Qiu
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Y P Wu
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an, 710032, China
| | - D A Callaway
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - J X Jiang
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - L Lu
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - L Jing
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - T Yang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China
| | - M Q Wang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi'an, 710032, China.
| |
Collapse
|
126
|
Nam DE, Kim OK, Shim TJ, Kim JH, Lee J. Effect of Boswellia serrata Extracts on Degenerative Osteoarthritis in vitro and in vivo Models. JOURNAL OF THE KOREAN SOCIETY OF FOOD SCIENCE AND NUTRITION 2014; 43:631-640. [DOI: 10.3746/jkfn.2014.43.5.631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
127
|
El Mansouri FE, Nebbaki SS, Kapoor M, Afif H, Martel-Pelletier J, Pelletier JP, Benderdour M, Fahmi H. Lysine-specific demethylase 1-mediated demethylation of histone H3 lysine 9 contributes to interleukin 1β-induced microsomal prostaglandin E synthase 1 expression in human osteoarthritic chondrocytes. Arthritis Res Ther 2014; 16:R113. [PMID: 24886859 PMCID: PMC4060543 DOI: 10.1186/ar4564] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/30/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction Microsomal prostaglandin E synthase 1 (mPGES-1) catalyzes the terminal step in the biosynthesis of PGE2, a critical mediator in the pathophysiology of osteoarthritis (OA). Histone methylation plays an important role in epigenetic gene regulation. In this study, we investigated the roles of histone H3 lysine 9 (H3K9) methylation in interleukin 1β (IL-1β)-induced mPGES-1 expression in human chondrocytes. Methods Chondrocytes were stimulated with IL-1β, and the expression of mPGES-1 mRNA was evaluated using real-time RT-PCR. H3K9 methylation and the recruitment of the histone demethylase lysine-specific demethylase 1 (LSD1) to the mPGES-1 promoter were evaluated using chromatin immunoprecipitation assays. The role of LSD1 was further evaluated using the pharmacological inhibitors tranylcypromine and pargyline and small interfering RNA (siRNA)-mediated gene silencing. The LSD1 level in cartilage was determined by RT-PCR and immunohistochemistry. Results The induction of mPGES-1 expression by IL-1β correlated with decreased levels of mono- and dimethylated H3K9 at the mPGES-1 promoter. These changes were concomitant with the recruitment of the histone demethylase LSD1. Treatment with tranylcypromine and pargyline, which are potent inhibitors of LSD1, prevented IL-1β-induced H3K9 demethylation at the mPGES-1 promoter and expression of mPGES-1. Consistently, LSD1 gene silencing with siRNA prevented IL-1β-induced H3K9 demethylation and mPGES-1 expression, suggesting that LSD1 mediates IL-1β-induced mPGES-1 expression via H3K9 demethylation. We show that the level of LSD1 was elevated in OA compared to normal cartilage. Conclusion These results indicate that H3K9 demethylation by LSD1 contributes to IL-1β-induced mPGES-1 expression and suggest that this pathway could be a potential target for pharmacological intervention in the treatment of OA and possibly other arthritic conditions.
Collapse
|
128
|
The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014; 2014:561459. [PMID: 24876674 PMCID: PMC4021678 DOI: 10.1155/2014/561459] [Citation(s) in RCA: 1114] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/12/2014] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic disease of human joints. The basis of pathologic changes involves all the tissues forming the joint; already, at an early stage, it has the nature of inflammation with varying degrees of severity. An analysis of the complex relationships indicates that the processes taking place inside the joint are not merely a set that (seemingly) only includes catabolic effects. Apart from them, anti-inflammatory anabolic processes also occur continually. These phenomena are driven by various mediators, of which the key role is attributed to the interactions within the cytokine network. The most important group controlling the disease seems to be inflammatory cytokines, including IL-1β, TNFα, IL-6, IL-15, IL-17, and IL-18. The second group with antagonistic effect is formed by cytokines known as anti-inflammatory cytokines such as IL-4, IL-10, and IL-13. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of OA with respect to inter- and intracellular signaling pathways is still under investigation. This paper summarizes the current state of knowledge. The cytokine network in OA is put in the context of cells involved in this degenerative joint disease. The possibilities for further implementation of new therapeutic strategies in OA are also pointed.
Collapse
|
129
|
Budsberg SC, Stoker AM, Johnston SA, Liska W, Reno LR, Cook JL. In vitro effects of meloxicam on metabolism in articular chondrocytes from dogs with naturally occurring osteoarthritis. Am J Vet Res 2014; 74:1198-205. [PMID: 23977892 DOI: 10.2460/ajvr.74.9.1198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess effects of in vitro meloxicam exposure on metabolism in articular chondrocytes from dogs with naturally occurring osteoarthritis. SAMPLE Femoral head cartilage from 16 dogs undergoing total hip replacement. PROCEDURES Articular cartilage samples were obtained. Tissue sulfated glycosaminoglycan (SGAG), collagen, and DNA concentrations were measured. Collagen, SGAG, chondroitin sulfate 846, NO, prostaglandin E2 (PGE2), and matrix metalloproteinase (MMP)-2, MMP-3, MMP-9, and MMP-13 concentrations in culture medium were analyzed. Aggrecan, collagen II, MMP-2, MMP-3, MMP-9, MMP-13, ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS)-4, ADAMTS-5, tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2, TIMP-3, interleukin-1β, tumor necrosis factor-α, cyclooxygenase-1, cyclooxygenase-2, and inducible nitric oxide synthase gene expression were evaluated. Comparisons between tissues cultured without (control) and with meloxicam at concentrations of 0.3, 3.0, and 30.0 μg/mL for up to 30 days were performed by means of repeated-measures analysis. RESULTS Meloxicam had no effect on chondrocyte SGAG, collagen, or DNA concentrations. Expression of ADAMTS-5 was significantly decreased in all groups on all days, compared with the day 0 value. On day 3, culture medium PGE2 concentrations were significantly lower in all meloxicam-treated groups, compared with values for controls, and values remained low. Culture medium MMP-3 concentrations were significantly lower on day 30 than on day 3 in all meloxicam-treated groups. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that in vitro meloxicam treatment of osteoarthritic canine cartilage for up to 30 days did not induce matrix degradation or stimulate MMP production. Meloxicam lowered PGE2 release from this tissue, and effects on tissue chondrocyte content and matrix composition were neutral.
Collapse
Affiliation(s)
- Steven C Budsberg
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | | | |
Collapse
|
130
|
Singh Bahia M, Kumar Katare Y, Silakari O, Vyas B, Silakari P. Inhibitors of Microsomal Prostaglandin E2
Synthase-1 Enzyme as Emerging Anti-Inflammatory Candidates. Med Res Rev 2014; 34:825-55. [DOI: 10.1002/med.21306] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Malkeet Singh Bahia
- Molecular Modelling Lab (MML); Department of Pharmaceutical Sciences and Drug Research; Punjabi University; Patiala Punjab 147002 India
| | - Yogesh Kumar Katare
- Radharaman Institute of Pharmaceutical Sciences; Bhopal Madhya Pradesh 462046 India
| | - Om Silakari
- Molecular Modelling Lab (MML); Department of Pharmaceutical Sciences and Drug Research; Punjabi University; Patiala Punjab 147002 India
| | - Bhawna Vyas
- Department of Chemistry; Punjabi University; Patiala Punjab 147002 India
| | - Pragati Silakari
- Adina institute of Pharmaceutical Sciences; Sagar Madhya Pradesh (M.P.) 470001 India
| |
Collapse
|
131
|
Takahashi D, Majima T, Onodera T, Kasahara Y, Inoue M, Irie T, Kasemura T. Celecoxib does not affect the release of hyaluronic acid in end stage osteoarthritic joints. Mod Rheumatol 2014. [DOI: 10.3109/s10165-012-0772-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
132
|
Conditioned media from adipose-tissue-derived mesenchymal stem cells downregulate degradative mediators induced by interleukin-1β in osteoarthritic chondrocytes. Mediators Inflamm 2013; 2013:357014. [PMID: 24363499 PMCID: PMC3864089 DOI: 10.1155/2013/357014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/05/2013] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is the most frequent joint disorder and an important cause of disability. Recent studies have shown the potential of adipose-tissue-derived mesenchymal stem cells (AD-MSC) for cartilage repair. We have investigated whether conditioned medium from AD-MSC (CM) may regulate in OA chondrocytes a number of key mediators involved in cartilage degeneration. CM enhanced type II collagen expression in OA chondrocytes while decreasing matrix metalloproteinase (MMP) activity in cell supernatants as well as the levels of MMP-3 and MMP-13 proteins and mRNA in OA chondrocytes stimulated with interleukin- (IL-) 1β. In addition, CM increased IL-10 levels and counteracted the stimulating effects of IL-1β on the production of tumor necrosis factor-α, IL-6, prostaglandin E2, and NO measured as nitrite and the mRNA expression of these cytokines, CCL-2, CCL-3, CCL-4, CCL-5, CCL-8, CCL-19, CCL-20, CXCL-1, CXCL-2, CXCL-3, CXCL-5, CXCL-8, cyclooxygenase-2, microsomal prostaglandin E synthase-1, and inducible NO synthase. These effects may be dependent on the inhibition of nuclear factor-κB activation by CM. Our data demonstrate the chondroprotective actions of CM and provide support for further studies of this approach in joint disease.
Collapse
|
133
|
Bédouet L, Pascale F, Bonneau M, Laurent A. In vitro evaluation of S-(+)-ibuprofen as drug candidate for intra-articular drug delivery system. Drug Dev Ind Pharm 2013; 41:85-94. [PMID: 24168233 DOI: 10.3109/03639045.2013.850704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intra-articular drug delivery systems (DDSs) are envisaged as interesting alternative to locally release non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen to reduce pain in patients with osteoarthritis. The present study examines the efficacy of S-(+)-ibuprofen on cartilage degradation as drug candidate for DDS loading. Humeral cartilage and joint capsule explants were collected from healthy sheep shoulder joints and they were cultured in mono- or in co-culture for 13 days with LPS in combination with S-(+)-ibuprofen at 50 µM and 1 mM. S-(+)-ibuprofen (50 µM) blocked prostaglandins production in LPS-activated explants but did not reduce cartilage degradation. By contrast, 1 mM S-(+)-ibuprofen treatment of cartilage explants reduced nitric oxide synthesis by 51% (p = 0.0072), proteoglycans degradation by 35% (p = 0.0114) and expression of serum amyloid protein - the main protein induced upon LPS challenge - by 44% (p < 0.0001). On contrary, in presence of synovial membrane, the protective effects of S-(+)-ibuprofen on cartilage damages were significantly diminished. At 1mM, S-(+)-ibuprofen reduced the cell lysis during culture of cartilage and joint capsule either in mono- or in co-culture. This study performed on sheep explants shows that 1 mM S-(+)-ibuprofen inhibited cartilage degradation via a mechanism independent of cyclooxygenase inhibition. Reduction of prostaglandins synthesis at 50 µM in all treatment groups and reduction of cartilage degradation observed at 1 mM suggest that S-(+)-ibuprofen could be considered as a promising drug candidate for the loading of intra-articular DDS.
Collapse
|
134
|
Lee A, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, Im HJ. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 2013; 527:440-7. [PMID: 23830938 PMCID: PMC3745800 DOI: 10.1016/j.gene.2013.05.069] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/27/2013] [Indexed: 01/19/2023]
Abstract
Osteoarthritis afflicts millions of individuals across the world resulting in impaired quality of life and increased health costs. To understand this disease, physicians have been studying risk factors, such as genetic predisposition, aging, obesity, and joint malalignment; however have been unable to conclusively determine the direct etiology. Current treatment options are short-term or ineffective and fail to address pathophysiological and biochemical mechanisms involved with cartilage degeneration and the induction of pain in arthritic joints. OA pain involves a complex integration of sensory, affective, and cognitive processes that integrate a variety of abnormal cellular mechanisms at both peripheral and central (spinal and supraspinal) levels of the nervous system Through studies examined by investigators, the role of growth factors and cytokines has increasingly become more relevant in examining their effects on articular cartilage homeostasis and the development of osteoarthritis and osteoarthritis-associated pain. Catabolic factors involved in both cartilage degradation in vitro and nociceptive stimulation include IL-1, IL-6, TNF-α, PGE2, FGF-2 and PKCδ, and pharmacologic inhibitors to these mediators, as well as compounds such as RSV and LfcinB, may potentially be used as biological treatments in the future. This review explores several biochemical mediators involved in OA and pain, and provides a framework for the understanding of potential biologic therapies in the treatment of degenerative joint disease in the future.
Collapse
Affiliation(s)
- Andrew Lee
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Michael B Ellman
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Dongyao Yan
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Jeffrey S Kroin
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL 60612
| | - Brian J Cole
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery & Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
- Department of Internal Medicine, Section of Rheumatology, Rush University Medical Center, Chicago, IL 60612
- Department of Bioengineering, University of Illinois, Chicago, IL 60612
| |
Collapse
|
135
|
Celecoxib does not affect the release of hyaluronic acid in end stage osteoarthritic joints. Mod Rheumatol 2013; 23:934-8. [DOI: 10.1007/s10165-012-0772-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
|
136
|
MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1β-induced catabolic effects in human articular chondrocytes. Osteoarthritis Cartilage 2013; 21:981-9. [PMID: 23611898 DOI: 10.1016/j.joca.2013.04.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cyclooxygenase-2 (COX-2) is a major prostaglandin E2 (PGE2) synthetic enzyme and is involved in the pathogenesis of chronic inflammation and pain in osteoarthritis (OA). The objective of this study was to directly address whether microRNA (miR)-558 can control the interleukin (IL)-1β-mediated induction of COX-2 and catabolic effects in human articular chondrocytes. MATERIALS AND METHODS Total RNA was extracted from the cartilage tissues of normal and OA donors or cultured human articular chondrocytes. The expression of miR-558 was quantified by TaqMan assay. To investigate the repressive effect of miR-558 on COX-2 expression, human chondrocytes and chondrogenic SW1353 cells were transfected with mature miR-558 or an antisense inhibitor (anti-miR-558). The expression of COX-2 protein was determined by Western blot analysis and the involvement of miR-558 in IL-1β-induced catabolic effects was examined by Western blot analysis and enzyme-linked immunosorbent assay (ELISA). Direct interaction between miR-558 and the putative site in the 3'-untranslated region (UTR) of COX-2 messenger RNA (mRNA) was validated by luciferase reporter assay. RESULTS Normal human articular cartilage expressed miR-558, and its expression was significantly lower in OA cartilage. Stimulation with IL-1β led to a significant reduction in miR-558 expression in normal and OA chondrocytes. IL-1β-induced activation of MAP kinase (MAPK) and nuclear factor-κB (NF-κB) decreased miR-558 expression and induced COX-2 expression in chondrocytes. The overexpression of miR-558 directly suppressed the luciferase activity of a reporter construct containing the 3'-UTR of human COX-2 mRNA and significantly inhibited IL-1β-induced upregulation of COX-2, while treatment with anti-miR-558 enhanced IL-1β-induced COX-2 expression and reporter activity in chondrocytes. Interestingly, IL-1β-induced activation of NF-κB and expression of matrix metalloproteinase (MMP)-1 and MMP-13 was significantly inhibited by miR-558 overexpression. CONCLUSION These findings demonstrated that cartilage homeostasis is influenced by miR-558, which directly targets COX-2 and regulates IL-1β-stimulated catabolic effects in human chondrocytes.
Collapse
|
137
|
Wei ZF, Jiao XL, Wang T, Lu Q, Xia YF, Wang ZT, Guo QL, Chou GX, Dai Y. Norisoboldine alleviates joint destruction in rats with adjuvant-induced arthritis by reducing RANKL, IL-6, PGE(2), and MMP-13 expression. Acta Pharmacol Sin 2013; 34:403-13. [PMID: 23396374 DOI: 10.1038/aps.2012.187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM To explore the effects of norisoboldine (NOR), a major isoquinoline alkaloid in Radix Linderae, on joint destruction in rats with adjuvant-induced arthritis (AIA) and its underlying mechanisms. METHODS AIA was induced in adult male SD rats by intradermal injection of Mycobacterium butyricum in Freund's complete adjuvant at the base of the right hind paw and tail. From d 14 after immunization, the rats were orally given NOR (7.5, 15, or 30 mg/kg) or dexamethasone (0.5 mg/kg) daily for 10 consecutive days. Joint destruction was evaluated with radiological scanning and H&E staining. Fibroblast-like synoviocytes (FLS) were prepared from fresh synovial tissues in the AIA rats. The expression of related proteins and mRNAs were detected by ELISA, Western blotting and RT-PCR. RESULTS In AIA rats, NOR (15 and 30 mg/kg) significantly decreased the swelling of paws and arthritis index scores, and elevated the mean body weight. NOR (30 mg/kg) prevented both the infiltration of inflammatory cells and destruction of bone and cartilage in joints. However, NOR (15 mg/kg) only suppressed the destruction of bone and cartilage, but did not obviously ameliorate synovial inflammation. NOR (15 and 30 mg/kg) significantly decreased the serum levels of receptor activator of nuclear factor κB ligand (RANKL), IL-6, PGE2, and MMP-13, but not the osteoprotegerin and MMP-1 levels. The mRNA levels of RANKL, IL-6, COX-2, and MMP-13 in synovium were also suppressed. Dexamethasone produced similar effects in AIA rats as NOR did, but without elevating the mean body weight. In the cultured FLS, treatment with NOR (10 and 30 mmol/L) significantly decreased the secretion of RANKL, IL-6, PGE2, and MMP-13 proteins. Furthermore, the treatment selectively prevented the activation of MAPKs, AKT and transcription factor AP-1 component c-Jun, but not the recruitment of TRAF6 or the activation of JAK2/STAT3. Treatment of the cultured FLS with the specific inhibitors of p38, ERK, AKT, and AP-1 significantly decreased the secretion of RANKL, IL-6, PGE2, and MMP-13 proteins. CONCLUSION NOR can alleviate joint destruction in AIA rats by reducing RANKL, IL-6, PGE2, and MMP-13 expression via the p38/ERK/AKT/AP-1 pathway.
Collapse
|
138
|
Duesterdieck-Zellmer KF, Driscoll N, Ott JF. Concentration-dependent effects of tiludronate on equine articular cartilage explants incubated with and without interleukin-1β. Am J Vet Res 2013; 73:1530-9. [PMID: 23013178 DOI: 10.2460/ajvr.73.10.1530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine concentration-dependent effects of tiludronate on cartilage explants incubated with or without recombinant equine interleukin-1β (rEq IL-1). SAMPLE Articular cartilage explants from the femorotibial joints of 3 young adult horses. PROCEDURES Cartilage explants were incubated with 1 of 6 concentrations (0, 0.19, 1.9, 19, 190, or 1,900 mg/L) of tiludronate and with or without rEq IL-1 (0.01 ng/mL) for 96 hours. Prostaglandin E(2) (PGE(2)) concentrations in culture medium and explant digests were analyzed via PGE(2) enzyme immunoassay. Sulfated glycosaminoglycan (sGAG) concentrations in culture medium were quantified via 1,9-dimethylmethylene blue assay. Chondrocyte apoptosis in paraffin embedded explant sections was measured via terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Relative gene expression of matrix metalloproteinases (MMPs), interleukin (IL)-6, and IL-8 was determined via the comparative cycle threshold method. RESULTS rEq IL-1 increased PGE(2) concentration, sGAG release from explants, chondrocyte apoptosis, and MMP gene expression. Lower tiludronate concentrations reduced rEq IL-1-induced sGAG release and chondrocyte apoptosis, whereas the higher tiludronate concentrations increased sGAG release and chondrocyte apoptosis. At the highest tiludronate concentration evaluated, IL-8 gene expression was increased independent of whether rEq IL-1 was present. CONCLUSIONS AND CLINICAL RELEVANCE Tiludronate had biphasic concentration-dependent effects on cartilage explants that were independent of PGE(2) secretion or MMP gene expression. Low tiludronate concentrations had some chondroprotective effects, whereas high tiludronate concentrations were detrimental to equine articular cartilage. Administration of tiludronate intra-articularly to horses may be detrimental, dependent on the dose used. In vivo studies are needed before intra-articular tiludronate administration to horses can be recommended.
Collapse
Affiliation(s)
- Katja F Duesterdieck-Zellmer
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
| | | | | |
Collapse
|
139
|
Effect of body-weight loading onto the articular cartilage on the occurrence of quinolone-induced chondrotoxicity in juvenile rats. Toxicol Lett 2013. [DOI: 10.1016/j.toxlet.2012.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
140
|
Huh JE, Seo BK, Baek YH, Lee S, Lee JD, Choi DY, Park DS. Standardized butanol fraction of WIN-34B suppresses cartilage destruction via inhibited production of matrix metalloproteinase and inflammatory mediator in osteoarthritis human cartilage explants culture and chondrocytes. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:256. [PMID: 23241445 PMCID: PMC3559294 DOI: 10.1186/1472-6882-12-256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 11/12/2012] [Indexed: 01/01/2023]
Abstract
Background WIN-34B is a novel Oriental medicine, which represents the n-butanol fraction prepared from dried flowers of Lonicera japonica Thunb and dried roots of Anemarrhena asphodeloides BUNGE. The component herb of WIN-34B is used for arthritis treatment in East Asian countries. The aim of this study was to determine the cartilage-protective effects and mechanisms of WIN-34B and its major phenolic compounds, chlorogenic acid and mangiferin, in osteoarthritis (OA) human cartilage explants culture and chondrocytes. Methods The investigation focused on whether WIN-34B and its standard compounds protected cartilage in interleukin (IL)-1β-stimulated cartilage explants culture and chondrocytes derived from OA patients. Also, the mechanisms of WIN-34B on matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), inflammatory mediators, and mitogen-activated protein kinases (MAPKs) pathways were assessed. Results WIN-34B was not cytotoxic to cultured cartilage explants or chondrocytes. WIN-34B dose-dependently inhibited the release of glycosaminoglycan and type II collagen, increased the mRNA expression of aggrecan and type II collagen, and recovered the intensity of proteoglycan and collagen by histological analysis in IL-1β-stimulated human cartilage explants culture. The cartilage protective effect of WIN-34B was similar to or better than that of chlorogenic acid and mangiferin. Compared to chlorogenic acid and mangiferin, WIN-34B displayed equal or greater decreases in the levels of MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, and markedly up-regulated TIMP-1 and TIMP-3. WIN-34B inhibited inflammatory mediators involved in cartilage destruction, such as prostaglandin E2, nitric oxide, tumor necrosis factor-alpha, and IL-1β. The phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38 was significantly reduced by WIN-34B treatment, while phosphorylation of JNK was only inhibited by chlorogenic acid or mangiferin in IL-1β-stimulated chondrocytes. Conclusions WIN-34B is potentially valuable as a treatment for OA by virtue of its suppression of MMPs, ADAMTSs, and inflammatory mediators, and it’s up-regulation of TIMP-1 and TIMP-3 involved in the MAPK pathway.
Collapse
|
141
|
Klop C, de Vries F, Lalmohamed A, Mastbergen SC, Leufkens HGM, Noort-van der Laan WH, Bijlsma JWJ, Welsing PMJ. COX-2-selective NSAIDs and risk of hip or knee replacements: a population-based case-control study. Calcif Tissue Int 2012; 91:387-94. [PMID: 23052224 DOI: 10.1007/s00223-012-9646-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/27/2012] [Indexed: 12/14/2022]
Abstract
Disease models of osteoarthritis (OA) have shown that COX-2-selective nonsteroidal anti-inflammatory drugs (NSAIDs, coxibs) may have beneficial effects on cartilage. Clinical or epidemiological evidence for this potential association is scarce. The objective of this study was to evaluate the risk of hip or knee replacement in users of coxibs compared to nonselective NSAIDs. A population-based case-control study was conducted with the Dutch PHARMO Record Linkage System. Cases (n = 26,202) had a first replacement of the hip or knee after enrollment (2000-2009). Up to two controls (without hip or knee replacement) were matched by year of birth, gender, healthcare region, and calendar year. Using conditional logistic regression analysis, odds ratios (ORs) for hip or knee replacement were estimated by comparing long-term (≥1 year) nonselective NSAID use with long-term coxib use. Analyses were statistically adjusted for disease and drug history. Long-term use of nonselective NSAIDs was not associated with a different risk of hip replacement (adjusted OR = 0.89, 95 % CI 0.65-1.22) or knee replacement (adjusted OR = 0.74, 95 % CI 0.49-1.11) as compared to long-term coxib use. Results were not different after stratification by gender, age, and cardiovascular or gastrointestinal disease. This study shows that long-term users of nonselective NSAIDs do not have a different risk of hip or knee replacement as compared to long-term coxib users. Therefore, our results do not support that patients with OA could benefit from using coxibs in order to slow progression of this disease.
Collapse
Affiliation(s)
- Corinne Klop
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Fioravanti A, Tinti L, Pascarelli NA, Di Capua A, Lamboglia A, Cappelli A, Biava M, Giordani A, Niccolini S, Galeazzi M, Anzini M. In vitro effects of VA441, a new selective cyclooxygenase-2 inhibitor, on human osteoarthritic chondrocytes exposed to IL-1β. J Pharmacol Sci 2012; 120:6-14. [PMID: 22878602 DOI: 10.1254/jphs.12016fp] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The aim of this in vitro study was to examine the possible effect of [2-methyl-5-(4-methylsulphonyl)phenyl-1-phenyl-3-(2-n-propyloxyethyl)]-1H-pyrrole (VA441), a new selective cyclooxygenase (COX)-2 inhibitor, on human osteoarthritic (OA) chondrocyte cultivated in the presence or absence of interleukin-1β (IL-1β). In particular, we assessed the effects of 1 and 10 μM of VA441, celecoxib, and indomethacin on cell viability, COX-2 and inducible nitric oxide synthase (iNOS) gene expression, prostaglandin E(2) (PGE(2)) production, and nitric oxide (NO) and metalloproteinase-3 (MMP-3) release. Furthermore, we carried out morphological assessment by transmission electron microscopy (TEM). The presence of IL-1β led to a significant increase in PGE(2), MMP-3, and NO production, as well as a significant increase in gene expression of COX-2 and iNOS. All the drugs tested had a statistically significant inhibitory effect on PGE(2) production and gene expression of COX-2 stimulated by IL-1β. VA441 and celecoxib significantly suppressed IL-1β-stimulated MMP-3 and NO and iNOS gene expression in a dose-dependent manner, while indomethacin did not show any significant effect on MMP-3 and NO production or on iNOS gene expression. TEM demonstrated that IL-1β severely alters the structure of chondrocytes; after co-incubation with VA441 or celecoxib, the cells recovered their ultrastructure. Our data suggest that VA441 and celecoxib may have a beneficial effect on chondrocyte metabolism.
Collapse
Affiliation(s)
- Antonella Fioravanti
- Department of Clinical Medicine and Immunology, Rheumatology Unit, University of Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Chen JJ, Hung KC, Lu K, Yu SW, Chang CC, Liu CC, Spielberger J, Ku PY, Tan PH. The pre-emptive analgesic effect of a cyclooxygenase-2 inhibitor in a rat model of acute postoperative pain. Anaesthesia 2012; 67:1225-31. [DOI: 10.1111/j.1365-2044.2012.07246.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
144
|
Choi J, Kim SH, Kim S. Suppressive effects of PG201, an antiarthritic botanical formulation, on lipopolysaccharide-induced inflammatory mediators in Raw264.7 cells. Exp Biol Med (Maywood) 2012; 237:499-508. [PMID: 22442340 DOI: 10.1258/ebm.2011.011203] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PG201, an ethanol extract from a mixture of 12 herbs, has strong antiarthritic activity. To understand the molecular mechanisms underlying its anti-inflammatory effects, PG201-mediated suppression of inflammatory mediators was studied in Raw264.7, a mouse macrophage cell line. PG201 decreased the expression of interleukin (IL)-1β, IL-6 and CC chemokine ligand-2, but not tumor necrosis factor-α, at the protein and mRNA levels in lipopolysaccharide-stimulated Raw264.7 cells. Results from a gel retardation assay indicated that PG201 substantially reduced the DNA-binding activity of the activator protein-1 and cyclic adenosine monophosphate-responsive element-binding protein transcription factors, but not nuclear factor-κB. Western blot and Northern blot analyses showed that PG201 reduced inducible nitric oxide synthase and cytosolic phospholipase A(2) (cPLA(2)) protein expression, but did not affect mRNA expression, ultimately resulting in decreased nitric oxide and prostaglandin E(2). The protein expression of cPLA(2) was decreased by PG201 in the presence of cycloheximide, an inhibitor of translation, suggesting that PG201 may facilitate the degradation of cPLA(2). Taken together, these results suggest that PG201 selectively affects the expression of proteins that play key roles in the inflammatory response at transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Jinyong Choi
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
145
|
Castañeda S, Roman-Blas JA, Largo R, Herrero-Beaumont G. Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol 2012; 83:315-23. [DOI: 10.1016/j.bcp.2011.09.018] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 01/05/2023]
|
146
|
Fukai A, Kamekura S, Chikazu D, Nakagawa T, Hirata M, Saito T, Hosaka Y, Ikeda T, Nakamura K, Chung UI, Kawaguchi H. Lack of a chondroprotective effect of cyclooxygenase 2 inhibition in a surgically induced model of osteoarthritis in mice. ACTA ACUST UNITED AC 2011; 64:198-203. [DOI: 10.1002/art.33324] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
147
|
KAPOOR MOHIT, MINEAU FRANÇOIS, FAHMI HASSAN, PELLETIER JEANPIERRE, MARTEL-PELLETIER JOHANNE. Glucosamine Sulfate Reduces Prostaglandin E2 Production in Osteoarthritic Chondrocytes Through Inhibition of Microsomal PGE Synthase-1. J Rheumatol 2011; 39:635-44. [DOI: 10.3899/jrheum.110621] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objective.Glucosamine sulfate (GS) has been inferred to have a potential antiinflammatory effect on osteoarthritis (OA). We investigated its effect on prostaglandin E2 (PGE2) in human OA chondrocytes, and the level in the PGE2 pathway at which its effect takes place.Methods.We investigated the effect of GS treatment (0.05, 0.2, 1.0, and 2.0 mM) in OA chondrocytes in the absence or presence of interleukin 1ß (IL-1ß; 100 pg/ml). We determined the expression levels and protein production/activity of PGE2, cyclooxygenase-1 (COX-1), COX-2, microsomal PGE synthase-1 (mPGES-1), glutathione, and peroxisome proliferator-activated receptor-γ (PPARγ), using specific primers, antibodies, and assays.Results.GS treatment at 1 and 2 mM significantly inhibited (p ≤ 0.03) production of endogenous and IL-1ß-induced PGE2. GS in both the absence and presence of IL-1ß did not significantly modulate COX-1 protein production, but GS at 1 and 2 mM demonstrated a decrease in COX-2 glycosylation in that it reduced the molecular mass of COX-2 synthesis. Under IL-1ß stimulation, GS significantly inhibited mPGES-1 messenger RNA expression and synthesis at 1 and 2 mM (p ≤ 0.02) as well as the activity of glutathione (p ≤ 0.05) at 2 mM. Finally, in both the absence and presence of IL-1ß, PPARγ was significantly induced by GS at 1 and 2 mM (p ≤ 0.03).Conclusion.Our data document the potential mode of action of GS in reducing the catabolism of OA cartilage. GS inhibits PGE2 synthesis through reduction in the activity of COX-2 and the production and activity of mPGES-1. These findings may, in part, explain the mechanisms by which this drug exerts its positive effect on OA pathophysiology.
Collapse
|
148
|
Wang P, Zhu F, Konstantopoulos K. Interleukin-6 synthesis in human chondrocytes is regulated via the antagonistic actions of prostaglandin (PG)E2 and 15-deoxy-Δ(12,14)-PGJ2. PLoS One 2011; 6:e27630. [PMID: 22096605 PMCID: PMC3214064 DOI: 10.1371/journal.pone.0027630] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/20/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Elevated levels of interleukin-6 (IL-6), prostaglandin (PG)E(2), PGD(2) and its dehydration end product 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) have been detected in joint synovial fluids from patients with rheumatoid arthritis (RA). PGE(2) directly stimulates IL-6 production in human articular chondrocytes. However, the effects of PGD(2) and 15d-PGJ(2) in the absence or presence of PGE(2) on IL-6 synthesis in human chondrocytes have yet to be determined. It is believed that dysregulated overproduction of IL-6 is responsible for the systemic inflammatory manifestations and abnormal laboratory findings in RA patients. METHODOLOGY/PRINCIPAL FINDINGS Using the T/C-28a2 chondrocyte cell line as a model system, we report that exogenous PGE(2) and PGD(2)/15d-PGJ(2) exert antagonistic effects on IL-6 synthesis in human T/C-28a2 chondrocytes. Using a synthesis of sophisticated molecular biology techniques, we determined that PGE(2) stimulates Toll-like receptor 4 (TLR4) synthesis, which is in turn responsible for the activation of the ERK1/2, PI3K/Akt and PKA/CREB pathways that phosphorylate the NF-κB p65 subunit leading to NF-κB activation. Binding of the activated NF-κB p65 subunit to IL-6 promoter induces IL-6 synthesis in human T/C28a2 chondrocytes. PGD(2) or 15d-PGJ(2) concurrently downregulates TLR4 and upregulates caveolin-1, which in turn inhibit the PGE(2)-dependent ERK1/2, PI3-K and PKA activation, and ultimately with NF-κB-dependent IL-6 synthesis in chondrocytes. CONCLUSIONS/SIGNIFICANCE We have delineated the signaling cascade by which PGE(2) and PGD(2)/15d-PGJ(2) exert opposing effects on IL-6 synthesis in human chondrocytes. Elucidation of the molecular pathway of IL-6 synthesis and secretion by chondrocytes will provide insights for developing strategies to reduce inflammation and pain in RA patients.
Collapse
Affiliation(s)
- Pu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fei Zhu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences in Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
149
|
Zweers MC, de Boer TN, van Roon J, Bijlsma JWJ, Lafeber FPJG, Mastbergen SC. Celecoxib: considerations regarding its potential disease-modifying properties in osteoarthritis. Arthritis Res Ther 2011; 13:239. [PMID: 21955617 PMCID: PMC3308065 DOI: 10.1186/ar3437] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive loss of articular cartilage, subchondral bone sclerosis, osteophyte formation, and synovial inflammation, causing substantial physical disability, impaired quality of life, and significant health care utilization. Traditionally, non-steroidal anti-inflammatory drugs (NSAIDs), including selective cyclooxygenase (COX)-2 inhibitors, have been used to treat pain and inflammation in OA. Besides its anti-inflammatory properties, evidence is accumulating that celecoxib, one of the selective COX-2 inhibitors, has additional disease-modifying effects. Celecoxib was shown to affect all structures involved in OA pathogenesis: cartilage, bone, and synovium. As well as COX-2 inhibition, evidence indicates that celecoxib also modulates COX-2-independent signal transduction pathways. These findings raise the question of whether celecoxib, and potentially other coxibs, is more than just an anti-inflammatory and analgesic drug. Can celecoxib be considered a disease-modifying osteoarthritic drug? In this review, these direct effects of celecoxib on cartilage, bone, and synoviocytes in OA treatment are discussed.
Collapse
Affiliation(s)
- Manon C Zweers
- Rheumatology and Clinical Immunology, University Medical Center Utrecht, F02,127, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
150
|
Lu YCS, Evans CH, Grodzinsky AJ. Effects of short-term glucocorticoid treatment on changes in cartilage matrix degradation and chondrocyte gene expression induced by mechanical injury and inflammatory cytokines. Arthritis Res Ther 2011; 13:R142. [PMID: 21888631 PMCID: PMC3308070 DOI: 10.1186/ar3456] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/06/2011] [Accepted: 09/02/2011] [Indexed: 01/13/2023] Open
Abstract
Introduction Traumatic joint injury damages cartilage and causes adjacent joint tissues to release inflammatory cytokines, increasing the risk of developing osteoarthritis. The main objective of this study was to determine whether the combined catabolic effects of mechanical injury, tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6)/soluble IL-6 receptor (sIL-6R) on cartilage could be abolished by short-term treatment with glucocorticoids such as dexamethasone. Methods In an initial dexamethasone-dose-response study, bovine cartilage explants were treated with TNFα and increasing concentrations of dexamethasone. Bovine and human cartilage explants were then subjected to individual and combined treatments with TNFα, IL-6/sIL-6R and injury in the presence or absence of dexamethasone. Treatment effects were assessed by measuring glycosaminoglycans (GAG) release to the medium and synthesis of proteoglycans. Additional experiments tested whether pre-exposure of cartilage to dexamethasone could prevent GAG loss and inhibition of biosynthesis induced by cytokines, and whether post-treatment with dexamethasone could diminish the effects of pre-established cytokine insult. Messenger ribonucleic acid (mRNA) levels for genes involved in cartilage homeostasis (proteases, matrix molecules, cytokines, growth and transcription factors) were measured in explants subjected to combined treatments with injury, TNFα and dexamethasone. To investigate mechanisms associated with dexamethasone regulation of chondrocyte metabolic response, glucocorticoid receptor (GR) antagonist (RU486) and proprotein convertase inhibitor (RVKR-CMK) were used. Results Dexamethasone dose-dependently inhibited GAG loss and the reduction in biosynthesis caused by TNFα. The combination of mechanical injury, TNFα and IL-6/sIL-6R caused the most severe GAG loss; dexamethasone reduced this GAG loss to control levels in bovine and human cartilage. Additionally, dexamethasone pre-treatment or post-treatment of bovine explants lowered GAG loss and increased proteoglycan synthesis in cartilage explants exposed to TNFα. Dexamethasone did not down-regulate aggrecanase mRNA levels. Post-transcriptional regulation by dexamethasone of other genes associated with responses to injury and cytokines was noted. GR antagonist reversed the effect of dexamethasone on sulfate incorporation. RVKR-CMK significantly reduced GAG loss caused by TNFα + IL-6 + injury. Conclusions Short-term glucocorticoid treatment effectively abolished the catabolic effects exerted by the combination of pro-inflammatory cytokines and mechanical injury: dexamethasone prevented proteoglycan degradation and restored biosynthesis. Dexamethasone appears to regulate the catabolic response of chondrocytes post-transcriptionally, since the abundance of transcripts encoding aggrecanases was still elevated in the presence of dexamethasone.
Collapse
Affiliation(s)
- Yihong C S Lu
- Department of Biological Engineering, MIT, 500 Technology Square NE47-377, Cambridge, MA 02139, USA
| | | | | |
Collapse
|