101
|
Deb D, Dey N. Synthetic Salicylic acid inducible recombinant promoter for translational research. J Biotechnol 2019; 297:9-18. [PMID: 30880184 DOI: 10.1016/j.jbiotec.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 01/24/2023]
Abstract
In the present study, we have developed an inter-molecularly shuffled caulimoviral promoter for protein over-expression by placing the Upstream Activation Sequence (UAS) of Figwort Mosaic Virus (FMV; -249 to -54) at the 5'-end of the Cassava Vein Mosaic Virus (CsVMV) promoter fragment 8 (CsVMV8; -215 to +166) to design a hybrid promoter; FUASCsV8CP. The FUASCsV8CP promoter exhibited approximately 2.1 and 2.0 times higher GUS-activities than that obtained from the CaMV35S promoter, in tobacco (Xanthi Brad) protoplasts and in Agroinfiltration assays respectively. Hereto, when FUASCsV8CP was assayed using transgenic tobacco plants (T2- generation), it showed 2.0 times stronger activity than CaMV35S promoter and almost equivalent activity to that of CaMV35S2 promoter. The promoter displayed Salicylic acid (SA) inducibility and hence can also be used for ensuring effective gene expression in plants under constitutive as well as specific inducible conditions. Furthermore, FUASCsV8CP was used to drive the expression of victoviral Vin gene (encoding Victoriocin) transiently in tobacco. The recombinant Victoriocin could be successfully detected by western blotting three days post infiltration. Also, the in vitro Agar-based killing zone assays employing plant-derived Victoriocin-His (obtained from transient expression of Vin) revealed enhanced antifungal activity of Victoriocin against hemi-biotrophic pathogen Phoma exigua Desm. var. exigua.
Collapse
Affiliation(s)
- Debasish Deb
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India.
| |
Collapse
|
102
|
Wang J, Zhai H, Rexida R, Shen Y, Hou J, Bao X. Developing synthetic hybrid promoters to increase constitutive or diauxic shift-induced expression in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:5094560. [PMID: 30203049 DOI: 10.1093/femsyr/foy098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/07/2018] [Indexed: 11/12/2022] Open
Abstract
Fine-tuning of the expression of genes is crucial for cell factory construction. Promoters are the most important tools to control gene expression. However, native promoters are often limited by their transcriptional ability. In this study, we sought to overcome the limitations of native promoters in Saccharomyces cerevisiae through the construction of hybrid promoter libraries for both constitutive promoters and promoters induced by diauxic shift. A series of hybrid constitutive promoters were constructed by combing the upstream activation sequences and changing the core promoter elements. The transcriptional capacity of the strongest promoter was 2-fold higher than that of the yeast native TEF1 promoter. Aside from the constitutive promoters, hybrid promoters that were induced in the post-diauxic phase were also constructed. These promoters had low transcriptional ability during growth on glucose and automatically activated upon growth with a diauxic shift. The strength of these promoters was also increased by replacing the core promoter with strong core promoters. Our study provides a series of constitutive and diauxic shift-induced promoters with a broad range of transcriptional capacity and will facilitate synthetic biology and metabolic engineering application.
Collapse
Affiliation(s)
- Jiajing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, China
| | - Haotian Zhai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, China
| | - Reheman Rexida
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, China
| |
Collapse
|
103
|
Gilman J, Singleton C, Tennant RK, James P, Howard TP, Lux T, Parker DA, Love J. Rapid, Heuristic Discovery and Design of Promoter Collections in Non-Model Microbes for Industrial Applications. ACS Synth Biol 2019; 8:1175-1186. [PMID: 30995831 DOI: 10.1021/acssynbio.9b00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Well-characterized promoter collections for synthetic biology applications are not always available in industrially relevant hosts. We developed a broadly applicable method for promoter identification in atypical microbial hosts that requires no a priori understanding of cis-regulatory element structure. This novel approach combines bioinformatic filtering with rapid empirical characterization to expand the promoter toolkit and uses machine learning to improve the understanding of the relationship between DNA sequence and function. Here, we apply the method in Geobacillus thermoglucosidasius, a thermophilic organism with high potential as a synthetic biology chassis for industrial applications. Bioinformatic screening of G. kaustophilus, G. stearothermophilus, G. thermodenitrificans, and G. thermoglucosidasius resulted in the identification of 636 100 bp putative promoters, encompassing the genome-wide design space and lacking known transcription factor binding sites. Eighty of these sequences were characterized in vivo, and activities covered a 2-log range of predictable expression levels. Seven sequences were shown to function consistently regardless of the downstream coding sequence. Partition modeling identified sequence positions upstream of the canonical -35 and -10 consensus motifs that were predicted to strongly influence regulatory activity in Geobacillus, and artificial neural network and partial least squares regression models were derived to assess if there were a simple, forward, quantitative method for in silico prediction of promoter function. However, the models were insufficiently general to predict pre hoc promoter activity in vivo, most probably as a result of the relatively small size of the training data set compared to the size of the modeled design space.
Collapse
Affiliation(s)
- James Gilman
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| | - Chloe Singleton
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| | - Richard K. Tennant
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| | - Paul James
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| | - Thomas P. Howard
- School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle-upon-Tyne NE1 7RU, U.K
| | - Thomas Lux
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich 85764, Germany
| | - David A. Parker
- Biodomain, Shell Technology Center Houston, 3333 Highway 6 South, Houston, Texas 77082-3101, United States
| | - John Love
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| |
Collapse
|
104
|
Presnell KV, Flexer-Harrison M, Alper HS. Design and synthesis of synthetic UP elements for modulation of gene expression in Escherichia coli. Synth Syst Biotechnol 2019; 4:99-106. [PMID: 31080900 PMCID: PMC6501063 DOI: 10.1016/j.synbio.2019.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 11/29/2022] Open
Abstract
Metabolic engineering requires fine-tuned gene expression for most pathway optimization applications. To develop a suitable suite of promoters, traditional bacterial promoter engineering efforts have focused on modifications to the core region, especially the −10 and −35 regions, of native promoters. Here, we demonstrate an alternate, unexplored route of promoter engineering through randomization of the UP element of the promoter—a region that contacts the alpha subunit carboxy-terminal domain instead of the sigma subunit of the RNA polymerase holoenzyme. Through this work, we identify five novel UP element sequences through library-based searches in Escherichia coli. The resulting elements were used to activate the E. coli core promoter, rrnD promoter, to levels on par and higher than the prevalent strong bacterial promoter, OXB15. These relative levels of expression activation were transferrable when applied upstream of alternate core promoter sequences, including rrnA and rrnH. This work thus presents and validates a novel strategy for bacterial promoter engineering with transferability across varying core promoters and potential for transferability across bacterial species.
Collapse
Affiliation(s)
- Kristin V Presnell
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Madeleine Flexer-Harrison
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| |
Collapse
|
105
|
Zhong W, Yang M, Mu T, Wu F, Hao X, Chen R, Sharshar MM, Thygesen A, Wang Q, Xing J. Systematically redesigning and optimizing the expression of D-lactate dehydrogenase efficiently produces high-optical-purity D-lactic acid in Saccharomyces cerevisiae. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
106
|
Xu N, Wei L, Liu J. Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World J Microbiol Biotechnol 2019; 35:33. [DOI: 10.1007/s11274-019-2606-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/23/2019] [Indexed: 01/24/2023]
|
107
|
Wang P, Wei W, Ye W, Li X, Zhao W, Yang C, Li C, Yan X, Zhou Z. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discov 2019; 5:5. [PMID: 30652026 PMCID: PMC6331602 DOI: 10.1038/s41421-018-0075-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Synthetic biology approach has been frequently applied to produce plant rare bioactive compounds in microbial cell factories by fermentation. However, to reach an ideal manufactural efficiency, it is necessary to optimize the microbial cell factories systemically by boosting sufficient carbon flux to the precursor synthesis and tuning the expression level and efficiency of key bioparts related to the synthetic pathway. We previously developed a yeast cell factory to produce ginsenoside Rh2 from glucose. However, the ginsenoside Rh2 yield was too low for commercialization due to the low supply of the ginsenoside aglycone protopanaxadiol (PPD) and poor performance of the key UDP-glycosyltransferase (UGT) (biopart UGTPg45) in the final step of the biosynthetic pathway. In the present study, we constructed a PPD-producing chassis via modular engineering of the mevalonic acid pathway and optimization of P450 expression levels. The new yeast chassis could produce 529.0 mg/L of PPD in shake flasks and 11.02 g/L in 10 L fed-batch fermentation. Based on this high PPD-producing chassis, we established a series of cell factories to produce ginsenoside Rh2, which we optimized by improving the C3–OH glycosylation efficiency. We increased the copy number of UGTPg45, and engineered its promoter to increase expression levels. In addition, we screened for more efficient and compatible UGT bioparts from other plant species and mutants originating from the direct evolution of UGTPg45. Combining all engineered strategies, we built a yeast cell factory with the greatest ginsenoside Rh2 production reported to date, 179.3 mg/L in shake flasks and 2.25 g/L in 10 L fed-batch fermentation. The results set up a successful example for improving yeast cell factories to produce plant rare natural products, especially the glycosylated ones.
Collapse
Affiliation(s)
- Pingping Wang
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| | - Wei Wei
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| | - Wei Ye
- 2University of Chinese Academy of Sciences, Beijing, 100049 China.,Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai, 200031 China
| | - Xiaodong Li
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenfang Zhao
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| | - Chengshuai Yang
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chaojing Li
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xing Yan
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| | - Zhihua Zhou
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| |
Collapse
|
108
|
Zhu J, Schwartz C, Wheeldon I. Controlled intracellular trafficking alleviates an expression bottleneck in S. cerevisiae ester biosynthesis. Metab Eng Commun 2018; 8:e00085. [PMID: 30622894 PMCID: PMC6317282 DOI: 10.1016/j.mec.2018.e00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/17/2023] Open
Abstract
In metabolic engineering, most available pathway engineering strategies aim to control enzyme expression by making changes at the transcriptional level with an underlying assumption that translation and functional expression follow suit. In this work, we engineer expression of a key reaction step in medium chain ester biosynthesis that does not follow this common assumption. The native Saccharomyces cerevisiae alcohol acyltransferses Eeb1 and Eht1 condense acyl-CoAs with ethanol to produce the corresponding ester, a reaction that is rate limiting in engineering ester biosynthesis pathways. By changing the N- and C-termini of Eeb1 to those of Eht1, Eeb1 localization is changed from the mitochondria to lipid droplets. The change has no significant effect on transcription, but increases protein expression by 23-fold thus enabling a 3-fold increase in enzyme activity. This system demonstrates one example of the impact of protein trafficking on functional pathway expression, and will guide future metabolic engineering of ester biosynthesis and, potentially, other pathways with critical membrane-bound enzymes. Intracellular localization can control membrane-associated enzyme expression. Terminal domain swapping of Eht1 and Eeb1 alters intracellular localization. Eeb1 expression and activity are increased with lipid droplet targeting.
Collapse
Affiliation(s)
- Jie Zhu
- Biochemistry, University of California Riverside, Riverside, CA 92521, USA
| | - Cory Schwartz
- Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521 USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521 USA.,Center for Industrial Biotechnology, Bourns College of Engineering, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
109
|
Meng F, Zhu X, Nie T, Lu F, Bie X, Lu Y, Trouth F, Lu Z. Enhanced Expression of Pullulanase in Bacillus subtilis by New Strong Promoters Mined From Transcriptome Data, Both Alone and in Combination. Front Microbiol 2018; 9:2635. [PMID: 30450090 PMCID: PMC6224515 DOI: 10.3389/fmicb.2018.02635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/16/2018] [Indexed: 11/13/2022] Open
Abstract
Pullulanase plays an important role as a starch hydrolysis enzyme in the production of bio-fuels and animal feed, and in the food industry. Compared to the methods currently used for pullulanase production, synthesis by Bacillus subtilis would be safer and easier. However, the current yield of pullulanase from B. subtilis is low to meet industrial requirements. Therefore, it is necessary to improve the yield of pullulanase by B. subtilis. In this study, we mined 10 highly active promoters from B. subtilis based on transcriptome and bioinformatic data. Individual promoters and combinations of promoters were used to improve the yield of pullulanase in B. subtilis BS001. Four recombinant strains with new promoters (Phag, PtufA, PsodA, and PfusA) had higher enzyme activity than the control (PamyE). The strain containing PsodA+fusA (163 U/mL) and the strain containing PsodA+fusA+amyE (336 U/mL) had the highest activity among the analyzed dual- and triple-promoter construct stains in shake flask, which were 2.29 and 4.73 times higher than that of the strain with PamyE, respectively. Moreover, the activity of the strain containing PsodA+fusA+amyE showed a maximum activity of 1,555 U/mL, which was 21.9 times higher than that of the flask-grown PamyE strain in a 50-liter fermenter. Our work showed that these four strong promoters mined from transcriptome data and their combinations could reliably increase the yield of pullulanase in quantities suitable for industrial applications.
Collapse
Affiliation(s)
- Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ting Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yingjian Lu
- Department of Food Science and Nutrition, University of Maryland, College Park, MD, United States
| | - Frances Trouth
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
110
|
Lian J, Mishra S, Zhao H. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab Eng 2018; 50:85-108. [DOI: 10.1016/j.ymben.2018.04.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
|
111
|
Fang X, Qu Y. Metabolic Engineering of Fungal Strains for Efficient Production of Cellulolytic Enzymes. FUNGAL CELLULOLYTIC ENZYMES 2018:27-41. [PMCID: PMC7120360 DOI: 10.1007/978-981-13-0749-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Filamentous fungi are widely used for production of cellulase and other cellulolytic enzymes. Metabolic engineering of filamentous fungal strains has been applied to improve enzyme production, and rapid progress has been made in the recent years. In this chapter, genetic tools and methods to develop superior enzyme producers are summarized, which includes establishment of genetic modification systems, selection and redesign of promoters, and metabolic engineering using either native transcription factors or artificial ones. In addition, enhancement of cellulase production through morphology engineering was also discussed. Emerging tools including CRISPR-Cas9-based genome editing and synthetic biology are highlighted, which are speeding up mechanisms elucidation and strain development, and will further facilitate economic cellulolytic enzyme production.
Collapse
Affiliation(s)
- Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong China
| |
Collapse
|
112
|
Cui DY, Zhang Y, Xu J, Zhang CY, Li W, Xiao DG. PGK1 Promoter Library for the Regulation of Acetate Ester Production in Saccharomyces cerevisiae during Chinese Baijiu Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7417-7427. [PMID: 29939025 DOI: 10.1021/acs.jafc.8b02114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Appropriate concentrations and proportion of acetate esters and higher alcohols improve the quality of Chinese Baijiu. To regulate the concentrations of acetate esters in Chinese Baijiu, we constructed a PGK1 promoter library through error-prone PCR. Then, we used an enhanced green fluorescent protein as a reporter to characterize the activities of PGK1p mutants. The PGK1p library contained 28 PGK1p mutants and spanned an activity that ranged between 0.1% and 141% of wild-type PGK1p. Seven PGK1p mutants were characterized by an additional reporter β-galactosidase and then used for the overexpression of ATF1 with BAT2 deletion in Saccharomyces cerevisiae a45. The production of ethyl acetate in strains A8, A17, A18, A27, A22, A25, A28, and AWT were 1.66-, 3.09-, 10.59-, 13.07-, 15.99-, 22.67-, 24.06-, and 27.22-fold higher than that of the parental strain. The results on alcohol acetyltransferase (AATase) activity showed that the PGK1p library precisely controlled ATF1 expression and regulated the acetate esters production.
Collapse
Affiliation(s)
- Dan-Yao Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Yu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Jia Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Cui-Ying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Wei Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| |
Collapse
|
113
|
Synthetic biology toolkits and applications in Saccharomyces cerevisiae. Biotechnol Adv 2018; 36:1870-1881. [PMID: 30031049 DOI: 10.1016/j.biotechadv.2018.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Abstract
Synthetic biologists construct biological components and systems to look into biological phenomena and drive a myriad of practical applications that aim to tackle current global challenges in energy, healthcare and the environment. While most tools have been established in bacteria, particularly Escherichia coli, recent years have seen parallel developments in the model yeast strain Saccharomyces cerevisiae, one of the most well-understood eukaryotic biological system. Here, we outline the latest advances in yeast synthetic biology tools based on a framework of abstraction hierarchies of parts, circuits and genomes. In brief, the creation and characterization of biological parts are explored at the transcriptional, translational and post-translational levels. Using characterized parts as building block units, the designing of functional circuits is elaborated with examples. In addition, the status and potential applications of synthetic genomes as a genome level platform for biological system construction are also discussed. In addition to the development of a toolkit, we describe how those tools have been applied in the areas of drug production and screening, study of disease mechanisms, pollutant sensing and bioremediation. Finally, we provide a future outlook of yeast as a workhorse of eukaryotic genetics and a chosen chassis in this field.
Collapse
|
114
|
Yan Q, Fong SS. Design and modularized optimization of one‐step production of
N‐
acetylneuraminic acid from chitin in
Serratia marcescens. Biotechnol Bioeng 2018; 115:2255-2267. [DOI: 10.1002/bit.26782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 06/28/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Qiang Yan
- Department of Chemical and Life Science EngineeringVirginia Commonwealth University Richmond Virginia
| | - Stephen S. Fong
- Department of Chemical and Life Science EngineeringVirginia Commonwealth University Richmond Virginia
- Center for the Study of Biological Complexity, Virginia Commonwealth UniversityRichmond Virginia
| |
Collapse
|
115
|
de Paiva DP, Rocha TB, Rubini MR, Nicola AM, Reis VCB, Torres FAG, de Moraes LMP. A study on the use of strain-specific and homologous promoters for heterologous expression in industrial Saccharomyces cerevisiae strains. AMB Express 2018; 8:82. [PMID: 29785587 PMCID: PMC5962522 DOI: 10.1186/s13568-018-0613-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/12/2018] [Indexed: 02/08/2023] Open
Abstract
Polymorphism is well known in Saccharomyces cerevisiae strains used for different industrial applications, however little is known about its effects on promoter efficiency. In order to test this, five different promoters derived from an industrial and a laboratory (S288c) strain were used to drive the expression of eGFP reporter gene in both cells. The ADH1 promoter (PADH1) in particular, which showed more polymorphism among the promoters analyzed, also exhibited the highest differences in intracellular fluorescence production. This was further confirmed by Northern blot analysis. The same behavior was also observed when the gene coding for secreted α-amylase from Cryptococcus flavus was placed under the control of either PADH1. These results underline the importance of the careful choice of the source of the promoter to be used in industrial yeast strains for heterologous expression.
Collapse
|
116
|
Wang Z, Jiang M, Guo X, Liu Z, He X. Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:60. [PMID: 29642888 PMCID: PMC5896102 DOI: 10.1186/s12934-018-0907-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/03/2018] [Indexed: 11/12/2022] Open
Abstract
Background 2-phenylethanol (2-PE) is an important aromatic compound with a lovely rose-like scent. Saccharomyces cerevisiae is a desirable microbe for 2-PE production but its natural yield is not high, and one or two crucial genes’ over-expression in S. cerevisiae did not improve 2-PE greatly. Results A new metabolic module was established here, in which, permease Gap1p for l-phenylalanine transportation, catalytic enzymes Aro8p, Aro10p and Adh2p in Ehrlich pathway respectively responsible for transamination, decarboxylation and reduction were assembled, besides, glutamate dehydrogenase Gdh2p was harbored for re-supplying another substrate 2-oxoglutarate, relieving product glutamate repression and regenerating cofactor NADH. Due to different promoter strengths, GAP1, ARO8, ARO9, ARO10, ADH2 and GDH2 in the new modularized YS58(G1-A8-A10-A2)-GDH strain enhanced 11.6-, 15.4-, 3.6-, 17.7-, 12.4- and 7.5-folds respectively, and crucial enzyme activities of aromatic aminotransferases and phenylpyruvate decarboxylase were 4.8- and 7-folds respectively higher than that of the control. Conclusions Under the optimum medium and cell density, YS58(G1-A8-A10-A2)-GDH presented efficient 2-PE synthesis ability with ~ 6.3 g L−1 of 2-PE titer in 5-L fermenter reaching 95% of conversation ratio. Under fed-batch fermentation, 2-PE productivity at 24 h increased 29% than that of single-batch fermentation. Metabolic modularization with promoter strategy provides a new prospective for efficient 2-PE production.
Collapse
Affiliation(s)
- Zhaoyue Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Mingyue Jiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuena Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
117
|
Xiong L, Zeng Y, Tang RQ, Alper HS, Bai FW, Zhao XQ. Condition-specific promoter activities in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:58. [PMID: 29631591 PMCID: PMC5891911 DOI: 10.1186/s12934-018-0899-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/26/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Saccharomyces cerevisiae is widely studied for production of biofuels and biochemicals. To improve production efficiency under industrially relevant conditions, coordinated expression of multiple genes by manipulating promoter strengths is an efficient approach. It is known that gene expression is highly dependent on the practically used environmental conditions and is subject to dynamic changes. Therefore, investigating promoter activities of S. cerevisiae under different culture conditions in different time points, especially under stressful conditions is of great importance. RESULTS In this study, the activities of various promoters in S. cerevisiae under stressful conditions and in the presence of xylose were characterized using yeast enhanced green fluorescent protein (yEGFP) as a reporter. The stresses include toxic levels of acetic acid and furfural, and high temperature, which are related to fermentation of lignocellulosic hydrolysates. In addition to investigating eight native promoters, the synthetic hybrid promoter P3xC-TEF1 was also evaluated. The results revealed that P TDH3 and the synthetic promoter P3xC-TEF1 showed the highest strengths under almost all the conditions. Importantly, these two promoters also exhibited high stabilities throughout the cultivation. However, the strengths of P ADH1 and P PGK1 , which are generally regarded as 'constitutive' promoters, decreased significantly under certain conditions, suggesting that cautions should be taken to use such constitutive promoters to drive gene expression under stressful conditions. Interestingly, P HSP12 and P HSP26 were able to response to both high temperature and acetic acid stress. Moreover, P HSP12 also led to moderate yEGFP expression when xylose was used as the sole carbon source, indicating that this promoter could be used for inducing proper gene expression for xylose utilization. CONCLUSION The results here revealed dynamic changes of promoter activities in S. cerevisiae throughout batch fermentation in the presence of inhibitors as well as using xylose. These results provide insights in selection of promoters to construct S. cerevisiae strains for efficient bioproduction under practical conditions. Our results also encouraged applications of synthetic promoters with high stability for yeast strain development.
Collapse
Affiliation(s)
- Liang Xiong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yu Zeng
- State Key Laboratory of Microbial Metabolism (SKLMM), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui-Qi Tang
- State Key Laboratory of Microbial Metabolism (SKLMM), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hal S Alper
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism (SKLMM), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism (SKLMM), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
118
|
Ottoz DSM, Rudolf F. Constitutive and Regulated Promoters in Yeast: How to Design and Make Use of Promoters in S. cerevisiae. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Diana S. M. Ottoz
- ETH Zurich; Department of Biosystems Science and Engineering; Mattenstrasse 26 4058 Basel Switzerland
- Yale University; Department of Molecular Biophysics and Biochemistry; 333 Cedar street SHM C-111 New Haven CT 06520 USA
| | - Fabian Rudolf
- ETH Zurich; Department of Biosystems Science and Engineering; Mattenstrasse 26 4058 Basel Switzerland
| |
Collapse
|
119
|
Pothoulakis G, Ellis T. Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression. PLoS One 2018; 13:e0194588. [PMID: 29566038 PMCID: PMC5864024 DOI: 10.1371/journal.pone.0194588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/06/2018] [Indexed: 11/18/2022] Open
Abstract
Engineered promoters with predefined regulation are a key tool for synthetic biology that enable expression on demand and provide the logic for genetic circuits. To expand the availability of synthetic biology tools for S. cerevisiae yeast, we here used hybrid promoter engineering to construct tightly-controlled, externally-inducible promoters that only express in haploid mother cells that have contributed a daughter cell to the population. This is achieved by combining elements from the native HO promoter and from a TetR-repressible synthetic promoter, with the performance of these promoters characterized by both flow cytometry and microfluidics-based fluorescence microscopy. These new engineered promoters are provided as an enabling tool for future synthetic biology applications that seek to exploit differentiation within a yeast population.
Collapse
Affiliation(s)
- Georgios Pothoulakis
- Centre for Synthetic Biology and Innovation, Imperial College London, London, United Kingdom.,Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Tom Ellis
- Centre for Synthetic Biology and Innovation, Imperial College London, London, United Kingdom.,Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
120
|
Decoene T, Peters G, De Maeseneire SL, De Mey M. Toward Predictable 5'UTRs in Saccharomyces cerevisiae: Development of a yUTR Calculator. ACS Synth Biol 2018; 7:622-634. [PMID: 29366325 DOI: 10.1021/acssynbio.7b00366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fine-tuning biosynthetic pathways is crucial for the development of economic feasible microbial cell factories. Therefore, the use of computational models able to predictably design regulatory sequences for pathway engineering proves to be a valuable tool, especially for modifying genes at the translational level. In this study we developed a computational approach for the de novo design of 5'-untranslated regions (5'UTRs) in Saccharomyces cerevisiae with a predictive outcome on translation initiation rate. On the basis of existing data, a partial least-squares (PLS) regression model was trained and showed good performance on predicting protein abundances of an independent test set. This model was further used for the construction of a "yUTR calculator" that can design 5'UTR sequences with a diverse range of desired translation efficiencies. The predictive power of our yUTR calculator was confirmed in vivo by different representative case studies. As such, these results show the great potential of data driven approaches for reliable pathway engineering in S. cerevisiae.
Collapse
Affiliation(s)
- Thomas Decoene
- Centre
for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Gert Peters
- Centre
for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Sofie L. De Maeseneire
- Centre
for Industrial Biotechnology and Biocatalysis, Ghent University, Coupure
links 653, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
121
|
Vogl T, Sturmberger L, Fauland PC, Hyden P, Fischer JE, Schmid C, Thallinger GG, Geier M, Glieder A. Methanol independent induction in
Pichia pastoris
by simple derepressed overexpression of single transcription factors. Biotechnol Bioeng 2018; 115:1037-1050. [DOI: 10.1002/bit.26529] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Thomas Vogl
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | | | - Pia C. Fauland
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Patrick Hyden
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Jasmin E. Fischer
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Christian Schmid
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Gerhard G. Thallinger
- Institute of Computational BiotechnologyGraz University of TechnologyGrazAustria
- OMICS Center GrazBioTechMed GrazGrazAustria
| | - Martina Geier
- Austrian Centre of Industrial Biotechnology (ACIB GmbH)GrazAustria
| | - Anton Glieder
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| |
Collapse
|
122
|
Chen X, Yang X, Shen Y, Hou J, Bao X. Screening Phosphorylation Site Mutations in Yeast Acetyl-CoA Carboxylase Using Malonyl-CoA Sensor to Improve Malonyl-CoA-Derived Product. Front Microbiol 2018; 9:47. [PMID: 29422886 PMCID: PMC5788913 DOI: 10.3389/fmicb.2018.00047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/09/2018] [Indexed: 01/08/2023] Open
Abstract
Malonyl-coenzyme A (malonyl-CoA) is a critical precursor for the biosynthesis of a variety of biochemicals. It is synthesized by the catalysis of acetyl-CoA carboxylase (Acc1p), which was demonstrated to be deactivated by the phosphorylation of Snf1 protein kinase in yeast. In this study, we designed a synthetic malonyl-CoA biosensor and used it to screen phosphorylation site mutations of Acc1p in Saccharomyces cerevisiae. Thirteen phosphorylation sites were mutated, and a combination of three site mutations in Acc1p, S686A, S659A, and S1157A, was found to increase malonyl-CoA availability. ACC1S686AS659AS1157A expression also improved the production of 3-hydroxypropionic acid, a malonyl-CoA-derived chemical, compared to both wild type and the previously reported ACC1S659AS1157A mutation. This mutation will also be beneficial for other malonyl-CoA-derived products.
Collapse
Affiliation(s)
- Xiaoxu Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Xiaoyu Yang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Jinan, China
| |
Collapse
|
123
|
Yang S, Liu Q, Zhang Y, Du G, Chen J, Kang Z. Construction and Characterization of Broad-Spectrum Promoters for Synthetic Biology. ACS Synth Biol 2018; 7:287-291. [PMID: 29061047 DOI: 10.1021/acssynbio.7b00258] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Characterization of genetic circuits and biosynthetic pathways in different hosts always requires promoter substitution and redesigning. Here, a strong, broad-spectrum promoter, Pbs, for Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae was constructed, and it was incorporated into the minimal E. coli-B. subtilis-S. cerevisiae shuttle plasmid pEBS (5.8 kb). By applying a random mutation strategy, three broad-spectrum promoters Pbs1, Pbs2, and Pbs3, with different strengths were generated and characterized. These broad-spectrum promoters will expand the synthetic biology toolbox for E. coli, B. subtilis, and S. cerevisiae.
Collapse
Affiliation(s)
- Sen Yang
- The
Key Laboratory of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qingtao Liu
- The
Key Laboratory of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yunfeng Zhang
- The
Key Laboratory of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The
Key Laboratory of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Synergetic
Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- The
Key Laboratory of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Synergetic
Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhen Kang
- The
Key Laboratory of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Synergetic
Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
124
|
Varman AM, Follenfant R, Liu F, Davis RW, Lin YK, Singh S. Hybrid phenolic-inducible promoters towards construction of self-inducible systems for microbial lignin valorization. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:182. [PMID: 29988329 PMCID: PMC6022352 DOI: 10.1186/s13068-018-1179-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/19/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Engineering strategies to create promoters that are both higher strength and tunable in the presence of inexpensive compounds are of high importance to develop metabolic engineering technologies that can be commercialized. Lignocellulosic biomass stands out as the most abundant renewable feedstock for the production of biofuels and chemicals. However, lignin a major polymeric component of the biomass is made up of aromatic units and remains as an untapped resource. Novel synthetic biology tools for the expression of heterologous proteins are critical for the effective engineering of a microbe to valorize lignin. This study demonstrates the first successful attempt in the creation of engineered promoters that can be induced by aromatics present in lignocellulosic hydrolysates to increase heterologous protein production. RESULTS A hybrid promoter engineering approach was utilized for the construction of phenolic-inducible promoters of higher strength. The hybrid promoters were constructed by replacing the spacer region of an endogenous promoter, PemrR present in E. coli that was naturally inducible by phenolics. In the presence of vanillin, the engineered promoters Pvtac, Pvtrc, and Pvtic increased protein expression by 4.6-, 3.0-, and 1.5-fold, respectively, in comparison with a native promoter, PemrR. In the presence of vanillic acid, Pvtac, Pvtrc, and Pvtic improved protein expression by 9.5-, 6.8-, and 2.1-fold, respectively, in comparison with PemrR. Among the cells induced with vanillin, the emergence of a sub-population constituting the healthy and dividing cells using flow cytometry was observed. The analysis also revealed this smaller sub-population to be the primary contributor for the increased expression that was observed with the engineered promoters. CONCLUSIONS This study demonstrates the first successful attempt in the creation of engineered promoters that can be induced by aromatics to increase heterologous protein production. Employing promoters inducible by phenolics will provide the following advantages: (1) develop substrate inducible systems; (2) lower operating costs by replacing expensive IPTG currently used for induction; (3) develop dynamic regulatory systems; and (4) provide flexibility in operating conditions. The flow cytometry findings strongly suggest the need for novel approaches to maintain a healthy cell population in the presence of phenolics to achieve increased heterologous protein expression and, thereby, valorize lignin efficiently.
Collapse
Affiliation(s)
- Arul M. Varman
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA USA 94550
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 USA
| | - Rhiannon Follenfant
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA USA 94550
| | - Fang Liu
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA USA 94550
| | - Ryan W. Davis
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA USA 94550
| | - Yone K. Lin
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA USA 94550
| | - Seema Singh
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA USA 94550
- Joint Bioenergy Institute, Emeryville, CA USA 94608
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108 USA
| |
Collapse
|
125
|
Influence of cis Element Arrangement on Promoter Strength in Trichoderma reesei. Appl Environ Microbiol 2017; 84:AEM.01742-17. [PMID: 29079620 PMCID: PMC5734013 DOI: 10.1128/aem.01742-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/23/2017] [Indexed: 11/21/2022] Open
Abstract
Trichoderma reesei can produce up to 100 g/liter of extracellular proteins. The major and industrially relevant products are cellobiohydrolase I (CBHI) and the hemicellulase XYNI. The genes encoding both enzymes are transcriptionally activated by the regulatory protein Xyr1. The first 850 nucleotides of the cbh1 promoter contain 14 Xyr1-binding sites (XBS), and 8 XBS are present in the xyn1 promoter. Some of these XBS are arranged in tandem and others as inverted repeats. One such cis element, an inverted repeat, plays a crucial role in the inducibility of the xyn1 promoter. We investigated the impact of the properties of such cis elements by shuffling them by insertion, exchange, deletion, and rearrangement of cis elements in both the cbh1 and xyn1 promoter. A promoter-reporter assay using the Aspergillus nigergoxA gene allowed us to measure changes in the promoter strength and inducibility. Most strikingly, we found that an inverted repeat of XBS causes an important increase in cbh1 promoter strength and allows induction by xylan or wheat straw. Furthermore, evidence is provided that the distances of cis elements to the transcription start site have important influence on promoter activity. Our results suggest that the arrangement and distances of cis elements have large impacts on the strength of the cbh1 promoter, whereas the sheer number of XBS has only secondary importance. Ultimately, the biotechnologically important cbh1 promoter can be improved by cis element rearrangement. IMPORTANCE In the present study, we demonstrate that the arrangement of cis elements has a major impact on promoter strength and inducibility. We discovered an influence on promoter activity by the distances of cis elements to the transcription start site. Furthermore, we found that the configuration of cis elements has a greater effect on promoter strength than does the sheer number of transactivator binding sites present in the promoter. Altogether, the arrangement of cis elements is an important factor that should not be overlooked when enhancement of gene expression is desired.
Collapse
|
126
|
Dossani ZY, Reider Apel A, Szmidt-Middleton H, Hillson NJ, Deutsch S, Keasling JD, Mukhopadhyay A. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering. Yeast 2017; 35:273-280. [PMID: 29084380 PMCID: PMC5873372 DOI: 10.1002/yea.3292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/08/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022] Open
Abstract
Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domain of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. This set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.
Collapse
Affiliation(s)
- Zain Y Dossani
- DOE Joint Bioenergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Amanda Reider Apel
- DOE Joint Bioenergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Heather Szmidt-Middleton
- DOE Joint Bioenergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nathan J Hillson
- DOE Joint Bioenergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,DOE Joint Genome Institute, Walnut Creek, California, USA.,DOE Agile BioFoundry, Emeryville, California, USA
| | - Samuel Deutsch
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,DOE Joint Genome Institute, Walnut Creek, California, USA.,DOE Agile BioFoundry, Emeryville, California, USA
| | - Jay D Keasling
- DOE Joint Bioenergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Kemitorvet, 2800Kgs, Lyngby, Denmark
| | - Aindrila Mukhopadhyay
- DOE Joint Bioenergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
127
|
Morse NJ, Gopal MR, Wagner JM, Alper HS. Yeast Terminator Function Can Be Modulated and Designed on the Basis of Predictions of Nucleosome Occupancy. ACS Synth Biol 2017; 6:2086-2095. [PMID: 28771342 DOI: 10.1021/acssynbio.7b00138] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The design of improved synthetic parts is a major goal of synthetic biology. Mechanistically, nucleosome occupancy in the 3' terminator region of a gene has been found to correlate with transcriptional expression. Here, we seek to establish a predictive relationship between terminator function and predicted nucleosome positioning to design synthetic terminators in the yeast Saccharomyces cerevisiae. In doing so, terminators improved net protein output from these expression cassettes nearly 4-fold over their original sequence with observed increases in termination efficiency to 96%. The resulting terminators were indeed depleted of nucleosomes on the basis of mapping experiments. This approach was successfully applied to synthetic, de novo, and native terminators. The mode of action of these modifications was mainly through increased termination efficiency, rather than half-life increases, perhaps suggesting a role in improved mRNA maturation. Collectively, these results suggest that predicted nucleosome depletion can be used as a heuristic approach for improving terminator function, though the underlying mechanism remains to be shown.
Collapse
Affiliation(s)
- Nicholas J. Morse
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Madan R. Gopal
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - James M. Wagner
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Hal S. Alper
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
- Institute
for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, United States
| |
Collapse
|
128
|
Shi S, Zhao H. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals. Front Microbiol 2017; 8:2185. [PMID: 29167664 PMCID: PMC5682390 DOI: 10.3389/fmicb.2017.02185] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/25/2017] [Indexed: 01/23/2023] Open
Abstract
Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.
Collapse
Affiliation(s)
- Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore, Singapore
| | - Huimin Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
129
|
Deaner M, Mejia J, Alper HS. Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae. ACS Synth Biol 2017; 6:1931-1943. [PMID: 28700213 DOI: 10.1021/acssynbio.7b00163] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Standard approaches for dCas9-based modification of gene expression are limited in the ability to multiplex targets, establish streamlined cassettes, and utilize commonly studied Pol II promoters. In this work, we repurpose the dCas9-VPR activator to act as a dual-mode activator/repressor that can be programmed solely on the basis of target position at gene loci. Furthermore, we implement this approach using a streamlined Pol II-ribozyme system that allows expression of many sgRNAs from a single transcript. By "stepping" dCas9-VPR within the promoter region and ORF we create graded activation and repression (respectively) of target genes, allowing precise control over multiplexed gene modulation. Expression from the Pol II system increased the net amount of sgRNA production in cells by 3.88-fold relative to the Pol III SNR52 promoter, leading to a significant improvement in dCas9-VPR repression strength. Finally, we utilize our Pol II system to create galactose-inducible switching of gene expression states and multiplex constructs capable of modulating up to 4 native genes from a single vector. Our approach represents a significant step toward minimizing DNA required to assemble CRISPR systems in eukaryotes while enhancing the efficacy (greater repression strength), scale (more sgRNAs), and scope (inducibility) of dCas9-mediated gene regulation.
Collapse
Affiliation(s)
- Matthew Deaner
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| | - Julio Mejia
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| | - Hal S. Alper
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
- Institute
for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, United States
| |
Collapse
|
130
|
Decoene T, De Paepe B, Maertens J, Coussement P, Peters G, De Maeseneire SL, De Mey M. Standardization in synthetic biology: an engineering discipline coming of age. Crit Rev Biotechnol 2017; 38:647-656. [PMID: 28954542 DOI: 10.1080/07388551.2017.1380600] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Leaping DNA read-and-write technologies, and extensive automation and miniaturization are radically transforming the field of biological experimentation by providing the tools that enable the cost-effective high-throughput required to address the enormous complexity of biological systems. However, standardization of the synthetic biology workflow has not kept abreast with dwindling technical and resource constraints, leading, for example, to the collection of multi-level and multi-omics large data sets that end up disconnected or remain under- or even unexploited. PURPOSE In this contribution, we critically evaluate the various efforts, and the (limited) success thereof, in order to introduce standards for defining, designing, assembling, characterizing, and sharing synthetic biology parts. The causes for this success or the lack thereof, as well as possible solutions to overcome these, are discussed. CONCLUSION Akin to other engineering disciplines, extensive standardization will undoubtedly speed-up and reduce the cost of bioprocess development. In this respect, further implementation of synthetic biology standards will be crucial for the field in order to redeem its promise, i.e. to enable predictable forward engineering.
Collapse
Affiliation(s)
- Thomas Decoene
- a Centre for Synthetic Biology, Ghent University , Ghent , Belgium
| | - Brecht De Paepe
- a Centre for Synthetic Biology, Ghent University , Ghent , Belgium
| | - Jo Maertens
- a Centre for Synthetic Biology, Ghent University , Ghent , Belgium
| | | | - Gert Peters
- a Centre for Synthetic Biology, Ghent University , Ghent , Belgium
| | - Sofie L De Maeseneire
- b InBio.be, Centre for Industrial Biotechnology and Biocatalysis, Ghent University , Ghent , Belgium
| | - Marjan De Mey
- a Centre for Synthetic Biology, Ghent University , Ghent , Belgium
| |
Collapse
|
131
|
Zhu Z, Zhou YJ, Kang MK, Krivoruchko A, Buijs NA, Nielsen J. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast. Metab Eng 2017; 44:81-88. [PMID: 28939277 DOI: 10.1016/j.ymben.2017.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/15/2023]
Abstract
Microbial synthesis of medium chain aliphatic hydrocarbons, attractive drop-in molecules to gasoline and jet fuels, is a promising way to reduce our reliance on petroleum-based fuels. In this study, we enabled the synthesis of straight chain hydrocarbons (C7-C13) by yeast Saccharomyces cerevisiae through engineering fatty acid synthases to control the chain length of fatty acids and introducing heterologous pathways for alkane or 1-alkene synthesis. We carried out enzyme engineering/screening of the fatty aldehyde deformylating oxygenase (ADO), and compartmentalization of the alkane biosynthesis pathway into peroxisomes to improve alkane production. The two-step synthesis of alkanes was found to be inefficient due to the formation of alcohols derived from aldehyde intermediates. Alternatively, the drain of aldehyde intermediates could be circumvented by introducing a one-step decarboxylation of fatty acids to 1-alkenes, which could be synthesized at a level of 3mg/L, 25-fold higher than that of alkanes produced via aldehydes.
Collapse
Affiliation(s)
- Zhiwei Zhu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Yongjin J Zhou
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Min-Kyoung Kang
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Anastasia Krivoruchko
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Nicolaas A Buijs
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Hørsholm, Denmark; Science for Life Laboratory, Royal Institute of Technology, SE-17121 Stockholm, Sweden.
| |
Collapse
|
132
|
Shabbir Hussain M, Wheeldon I, Blenner MA. A Strong Hybrid Fatty Acid Inducible Transcriptional Sensor Built From Yarrowia lipolytica Upstream Activating and Regulatory Sequences. Biotechnol J 2017; 12. [PMID: 28731568 DOI: 10.1002/biot.201700248] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/21/2017] [Indexed: 01/24/2023]
Abstract
The engineering of Yarrowia lipolytica to accumulate lipids with high titers and productivities has been enabled with a handful of constitutive promoters for pathway engineering. However, the development of promoters that are both strong and lipid responsive could greatly benefit the bioproduction efficiency of lipid-derived oleochemicals in oleaginous yeast. In this study, a fatty acid regulated hybrid promoter for use in Y. lipolytica is engineered. A 200 bp upstream regulatory sequence in the peroxisomal acyl CoA oxidase 2 (POX2) promoter is identified. Further analysis of the promoter sequence reveal a regulatory sequence, that when used in tandem repeats, lead to a 48-fold induction of gene expression relative to glucose and fourfold higher than the native POX2 promoter. To date, this is the strongest inducible promoter reported in Y. lipolytica. Taken together, the results show that it is possible to engineer strong promoters that retain strong inducibility. These types of promoters will be useful in controlling metabolism and as fatty acid sensors.
Collapse
Affiliation(s)
| | - Ian Wheeldon
- Chemical & Environmental Engineering, University of California Riverside, Riverside, CA, USA
| | - Mark A Blenner
- Chemical & Biomolecular Engineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
133
|
Öztürk S, Ergün BG, Çalık P. Double promoter expression systems for recombinant protein production by industrial microorganisms. Appl Microbiol Biotechnol 2017; 101:7459-7475. [DOI: 10.1007/s00253-017-8487-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/19/2023]
|
134
|
Leavitt JM, Wagner JM, Tu CC, Tong A, Liu Y, Alper HS. Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae. Biotechnol J 2017; 12. [PMID: 28296355 DOI: 10.1002/biot.201600687] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/28/2017] [Indexed: 12/12/2022]
Abstract
Muconic acid is a valuable platform chemical with potential applications in the production of polymers such as nylon and polyethylene terephthalate (PET). The conjugate base, muconate, has been previously biosynthesized in the bacterial host Escherichia coli. Likewise, previous significant pathway engineering lead to the first reported instance of rationally engineered production of muconic acid in the yeast Saccharomyces cerevisiae. To further increase muconic acid production in this host, a combined adaptive laboratory evolution (ALE) strategy and rational metabolic engineering is employed. To this end, a biosensor module that responds to the endogenous aromatic amino acid (AAA) as a surrogate for pathway flux is adapted. Following two rounds of ALE coupled with an anti-metabolite feeding strategy, the strains with improved AAA pathway flux is isolated. Next, it is demonstrated that this increased flux can be redirected into the composite muconic acid pathway with a threefold increase in the total titer of the composite pathway compared to our previously engineered strain. Finally, a truncation of the penta-functional ARO1 protein is complemented and overexpress an endogenous aromatic decarboxylase to establish a final strain capable of producing 0.5 g L-1 muconic acid in shake flasks and 2.1 g L-1 in a fed-batch bioreactor with a yield of 12.9 mg muconic acid/g glucose at the rate of 9.0 mg h-1 . This value represents the highest titer of muconic acid reported to date in S. cerevisiae, in addition to the highest reported titer of a shikimate pathway derivative in this host.
Collapse
Affiliation(s)
- John M Leavitt
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| | - James M Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Cuong C Tu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Alice Tong
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| | - Yanyi Liu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA.,McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| |
Collapse
|
135
|
Abstract
The judicious choice of promoter to drive gene expression remains one of the most important considerations for synthetic biology applications. Constitutive promoter sequences isolated from nature are often used in laboratory settings or small-scale commercial production streams, but unconventional microbial chassis for new synthetic biology applications require well-characterized, robust and orthogonal promoters. This review provides an overview of the opportunities and challenges for synthetic promoter discovery and design, including molecular methodologies, such as saturation mutagenesis of flanking regions and mutagenesis by error-prone PCR, as well as the less familiar use of computational and statistical analyses for de novo promoter design.
Collapse
|
136
|
Moses T, Mehrshahi P, Smith AG, Goossens A. Synthetic biology approaches for the production of plant metabolites in unicellular organisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4057-4074. [PMID: 28449101 DOI: 10.1093/jxb/erx119] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthetic biology is the repurposing of biological systems for novel objectives and applications. Through the co-ordinated and balanced expression of genes, both native and those introduced from other organisms, resources within an industrial chassis can be siphoned for the commercial production of high-value commodities. This developing interdisciplinary field has the potential to revolutionize natural product discovery from higher plants, by providing a diverse array of tools, technologies, and strategies for exploring the large chemically complex space of plant natural products using unicellular organisms. In this review, we emphasize the key features that influence the generation of biorefineries and highlight technologies and strategic solutions that can be used to overcome engineering pitfalls with rational design. Also presented is a succinct guide to assist the selection of unicellular chassis most suited for the engineering and subsequent production of the desired natural product, in order to meet the global demand for plant natural products in a safe and sustainable manner.
Collapse
Affiliation(s)
- Tessa Moses
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
137
|
Zhang J, Cai Y, Du G, Chen J, Wang M, Kang Z. Evaluation and application of constitutive promoters for cutinase production by Saccharomyces cerevisiae. J Microbiol 2017; 55:538-544. [PMID: 28664516 DOI: 10.1007/s12275-017-6514-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/01/2017] [Accepted: 03/10/2017] [Indexed: 10/19/2022]
Abstract
Cutinase as a promising biocatalyst has been intensively studied and applied in processes targeted for industrial scale. In this work, the cutinase gene tfu from Thermobifida fusca was artificially synthesized according to codon usage bias of Saccharomyces cerevisiae and investigated in Saccharomyces cerevisiae. Using the α-factor signal peptide, the T. fusca cutinase was successfully overexpressed and secreted with the GAL1 expression system. To increase the cutinase level and overcome some of the drawbacks of induction, four different strong promoters (ADH1, HXT1, TEF1, and TDH3) were comparatively evaluated for cutinase production. By comparison, promoter TEF1 exhibited an outstanding property and significantly increased the expression level. By fed-batch fermentation with a constant feeding approach, the activity of cutinase was increased to 29.7 U/ml. The result will contribute to apply constitutive promoter TEF1 as a tool for targeted cutinase production in S. cerevisiae cell factory.
Collapse
Affiliation(s)
- Juan Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China. .,School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Yanqiu Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jian Chen
- School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Miao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, 214122, P. R. China
| | - Zhen Kang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China. .,School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
138
|
Gander MW, Vrana JD, Voje WE, Carothers JM, Klavins E. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. Nat Commun 2017; 8:15459. [PMID: 28541304 PMCID: PMC5458518 DOI: 10.1038/ncomms15459] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
Natural genetic circuits enable cells to make sophisticated digital decisions. Building equally complex synthetic circuits in eukaryotes remains difficult, however, because commonly used components leak transcriptionally, do not arbitrarily interconnect or do not have digital responses. Here, we designed dCas9-Mxi1-based NOR gates in Saccharomyces cerevisiae that allow arbitrary connectivity and large genetic circuits. Because we used the chromatin remodeller Mxi1, our gates showed minimal leak and digital responses. We built a combinatorial library of NOR gates that directly convert guide RNA (gRNA) inputs into gRNA outputs, enabling the gates to be 'wired' together. We constructed logic circuits with up to seven gRNAs, including repression cascades with up to seven layers. Modelling predicted the NOR gates have effectively zero transcriptional leak explaining the limited signal degradation in the circuits. Our approach enabled the largest, eukaryotic gene circuits to date and will form the basis for large, synthetic, cellular decision-making systems.
Collapse
Affiliation(s)
- Miles W. Gander
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Justin D. Vrana
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - William E. Voje
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - James M. Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, USA
| | - Eric Klavins
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
139
|
Ji H, Lu X, Zong H, Zhuge B. A synthetic hybrid promoter for D-xylonate production at low pH in the tolerant yeast Candida glycerinogenes. Bioengineered 2017; 8:700-706. [PMID: 28471311 DOI: 10.1080/21655979.2017.1312229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The tolerant yeast Candida glycerinogenes, with high D-xylonate and low-pH tolerances, was used as the host for D-xylonate production at low pH in this study. A low-pH inducible promoter, pGUKd, was engineered using the core promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (pGAP) combined with the upstream activating sequence of the promoter of the guanylate kinase gene (pGUK1) that had substituted pH-responsive TF binding sites. The recombinant cells that expressed GFP from the hybrid promoter pGUKd displayed dramatically increased fluorescence intensity at pH 2.5, thus verifying that pGUKd is a low-pH inducible promoter. The promoter pGUKd was then used to express the D-xylose dehydrogenase gene xylB, resulting in increased expression levels of xylB at low pH. The recombinant protein exhibited higher specific activities under lower pH conditions and produced 38 g/l D-xylonate at pH 2.5. This rate is much higher than that produced by fermentation at pH 5.5. These results suggest that the novel hybrid promoter pGUKd functions to direct the production of D-xylonate at low pH, and we provide a candidate genetic tool for the stress tolerant yeast C. glycerinogenes.
Collapse
Affiliation(s)
- Hao Ji
- a The Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology , Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China
| | - Xinyao Lu
- a The Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology , Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China
| | - Hong Zong
- a The Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology , Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China
| | - Bin Zhuge
- a The Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology , Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China
| |
Collapse
|
140
|
Kang MK, Zhou YJ, Buijs NA, Nielsen J. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae. Microb Cell Fact 2017; 16:74. [PMID: 28464872 PMCID: PMC5414326 DOI: 10.1186/s12934-017-0683-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/18/2017] [Indexed: 02/10/2023] Open
Abstract
Background Low catalytic activities of pathway enzymes are often a limitation when using microbial based chemical production. Recent studies indicated that the enzyme activity of aldehyde decarbonylase (AD) is a critical bottleneck for alkane biosynthesis in Saccharomyces cerevisiae. We therefore performed functional screening to identify efficient ADs that can improve alkane production by S. cerevisiae. Results A comparative study of ADs originated from a plant, insects, and cyanobacteria were conducted in S. cerevisiae. As a result, expression of aldehyde deformylating oxygenases (ADOs), which are cyanobacterial ADs, from Synechococcus elongatus and Crocosphaera watsonii converted fatty aldehydes to corresponding Cn−1 alkanes and alkenes. The CwADO showed the highest alkane titer (0.13 mg/L/OD600) and the lowest fatty alcohol production (0.55 mg/L/OD600). However, no measurable alkanes and alkenes were detected in other AD expressed yeast strains. Dynamic expression of SeADO and CwADO under GAL promoters increased alkane production to 0.20 mg/L/OD600 and no fatty alcohols, with even number chain lengths from C8 to C14, were detected in the cells. Conclusions We demonstrated in vivo enzyme activities of ADs by displaying profiles of alkanes and fatty alcohols in S. cerevisiae. Among the AD enzymes evaluated, cyanobacteria ADOs were found to be suitable for alkane biosynthesis in S. cerevisiae. This work will be helpful to decide an AD candidate for alkane biosynthesis in S. cerevisiae and it will provide useful information for further investigation of AD enzymes with improved activities. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0683-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min-Kyoung Kang
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Yongjin J Zhou
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Gothenburg, Sweden.,Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Nicolaas A Buijs
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.,Evolva Biotech, Lersø Parkalle, 40-42, 2100, Copenhagen, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle allé, 2970, Hørsholm, Denmark. .,Science for Life Laboratory, Royal Institute of Technology, 17121, Solna, Sweden.
| |
Collapse
|
141
|
Portela RM, Vogl T, Kniely C, Fischer JE, Oliveira R, Glieder A. Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species. ACS Synth Biol 2017; 6:471-484. [PMID: 27973777 PMCID: PMC5359585 DOI: 10.1021/acssynbio.6b00178] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Indexed: 01/24/2023]
Abstract
Synthetic biology and metabolic engineering experiments frequently require the fine-tuning of gene expression to balance and optimize protein levels of regulators or metabolic enzymes. A key concept of synthetic biology is the development of modular parts that can be used in different contexts. Here, we have applied a computational multifactor design approach to generate de novo synthetic core promoters and 5' untranslated regions (UTRs) for yeast cells. In contrast to upstream cis-regulatory modules (CRMs), core promoters are typically not subject to specific regulation, making them ideal engineering targets for gene expression fine-tuning. 112 synthetic core promoter sequences were designed on the basis of the sequence/function relationship of natural core promoters, nucleosome occupancy and the presence of short motifs. The synthetic core promoters were fused to the Pichia pastoris AOX1 CRM, and the resulting activity spanned more than a 200-fold range (0.3% to 70.6% of the wild type AOX1 level). The top-ten synthetic core promoters with highest activity were fused to six additional CRMs (three in P. pastoris and three in Saccharomyces cerevisiae). Inducible CRM constructs showed significantly higher activity than constitutive CRMs, reaching up to 176% of natural core promoters. Comparing the activity of the same synthetic core promoters fused to different CRMs revealed high correlations only for CRMs within the same organism. These data suggest that modularity is maintained to some extent but only within the same organism. Due to the conserved role of eukaryotic core promoters, this rational design concept may be transferred to other organisms as a generic engineering tool.
Collapse
Affiliation(s)
- Rui M.
C. Portela
- REQUIMTE/LAQV,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Thomas Vogl
- Institute
for Molecular Biotechnology, NAWI Graz University
of Technology, Petersgasse 14/2, 8010 Graz, Austria
| | - Claudia Kniely
- Institute
for Molecular Biotechnology, NAWI Graz University
of Technology, Petersgasse 14/2, 8010 Graz, Austria
| | - Jasmin E. Fischer
- Institute
for Molecular Biotechnology, NAWI Graz University
of Technology, Petersgasse 14/2, 8010 Graz, Austria
| | - Rui Oliveira
- REQUIMTE/LAQV,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Anton Glieder
- Institute
for Molecular Biotechnology, NAWI Graz University
of Technology, Petersgasse 14/2, 8010 Graz, Austria
| |
Collapse
|
142
|
Mehrotra R, Renganaath K, Kanodia H, Loake GJ, Mehrotra S. Towards combinatorial transcriptional engineering. Biotechnol Adv 2017; 35:390-405. [PMID: 28300614 DOI: 10.1016/j.biotechadv.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 01/31/2023]
Abstract
The modular nature of the transcriptional unit makes it possible to design robust modules with predictable input-output characteristics using a ‘parts- off a shelf’ approach. Customized regulatory circuits composed of multiple such transcriptional units have immense scope for application in diverse fields of basic and applied research. Synthetic transcriptional engineering seeks to construct such genetic cascades. Here, we discuss the three principle strands of transcriptional engineering: promoter and transcriptional factor engineering, and programming inducibilty into synthetic modules. In this context, we review the scope and limitations of some recent technologies that seek to achieve these ends. Our discussion emphasizes a requirement for rational combinatorial engineering principles and the promise this approach holds for the future development of this field.
Collapse
Affiliation(s)
- Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India.
| | - Kaushik Renganaath
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| | - Harsh Kanodia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| |
Collapse
|
143
|
Ludwigsen J, Pfennig S, Singh AK, Schindler C, Harrer N, Forné I, Zacharias M, Mueller-Planitz F. Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail. eLife 2017; 6. [PMID: 28109157 PMCID: PMC5305211 DOI: 10.7554/elife.21477] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/20/2017] [Indexed: 01/08/2023] Open
Abstract
ISWI-family nucleosome remodeling enzymes need the histone H4 N-terminal tail to mobilize nucleosomes. Here we mapped the H4-tail binding pocket of ISWI. Surprisingly the binding site was adjacent to but not overlapping with the docking site of an auto-regulatory motif, AutoN, in the N-terminal region (NTR) of ISWI, indicating that AutoN does not act as a simple pseudosubstrate as suggested previously. Rather, AutoN cooperated with a hitherto uncharacterized motif, termed AcidicN, to confer H4-tail sensitivity and discriminate between DNA and nucleosomes. A third motif in the NTR, ppHSA, was functionally required in vivo and provided structural stability by clamping the NTR to Lobe 2 of the ATPase domain. This configuration is reminiscent of Chd1 even though Chd1 contains an unrelated NTR. Our results shed light on the intricate structural and functional regulation of ISWI by the NTR and uncover surprising parallels with Chd1. DOI:http://dx.doi.org/10.7554/eLife.21477.001 In the cells of animals, plants and other eukaryotes, DNA wraps tightly around proteins called histones to form structures known as nucleosomes that resemble beads on a string. When nucleosomes are sufficiently close to each other they interact and clump together, which compacts the DNA and prevents the genes in that stretch of DNA being activated. But how do cells mobilize their nucleosomes? A nucleosome remodeling enzyme called ISWI can slide nucleosomes along DNA. ISWI becomes active when it interacts with a ‘tail’ region of a histone protein called H4. However, the H4 tail prefers to interact with neighboring nucleosomes instead of with ISWI. Therefore when ISWI slides a nucleosome close to another one, the H4 tail of the nucleosome binds instead to its new neighbor so that ISWI cannot continue to slide. By this mechanism, ISWI is proposed to pile up nucleosomes, which subsequently compact, leading to the inactivation of this part of the genome. To investigate how ISWI recognizes the H4 tail, Ludwigsen et al. mapped where the H4 tail binds to ISWI by combining the biochemical methods of cross-linking and mass spectrometry. In addition, mutagenesis experiments identified a new motif in the enzyme that is essential for recognizing the H4 tail. In the absence of the nucleosome, this motif – called AcidicN – works with a neighboring motif called AutoN to keep ISWI in an inactive state. The two motifs also work together to enable ISWI to distinguish between nucleosomes and DNA. Further evidence suggests that other remodeling enzymes have similar regulation mechanisms; therefore this method of controlling nucleosome remodeling may have been conserved throughout evolution. Further studies are now needed to detect the shape changes that occur in ISWI as it recognizes the histone tail and work out how this leads to nucleosome remodeling. Inside cells, ISWI is usually found within large complexes that consist of many proteins. It therefore also remains to be discovered whether the proteins in these complexes impose additional layers of regulation and complexity on the activity of ISWI. DOI:http://dx.doi.org/10.7554/eLife.21477.002
Collapse
Affiliation(s)
- Johanna Ludwigsen
- Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sabrina Pfennig
- Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ashish K Singh
- Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christina Schindler
- Physics Department (T38), Technische Universität München, Munich, Germany.,Center for Integrated Protein Science Munich, Munich, Germany
| | - Nadine Harrer
- Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ignasi Forné
- Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Zacharias
- Physics Department (T38), Technische Universität München, Munich, Germany.,Center for Integrated Protein Science Munich, Munich, Germany
| | | |
Collapse
|
144
|
Zhou S, Du G, Kang Z, Li J, Chen J, Li H, Zhou J. The application of powerful promoters to enhance gene expression in industrial microorganisms. World J Microbiol Biotechnol 2017; 33:23. [DOI: 10.1007/s11274-016-2184-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/24/2016] [Indexed: 01/01/2023]
|
145
|
Scholes C, DePace AH, Sánchez Á. Combinatorial Gene Regulation through Kinetic Control of the Transcription Cycle. Cell Syst 2016; 4:97-108.e9. [PMID: 28041762 DOI: 10.1016/j.cels.2016.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/09/2016] [Accepted: 11/23/2016] [Indexed: 11/20/2022]
Abstract
Cells decide when, where, and to what level to express their genes by "computing" information from transcription factors (TFs) binding to regulatory DNA. How is the information contained in multiple TF-binding sites integrated to dictate the rate of transcription? The dominant conceptual and quantitative model is that TFs combinatorially recruit one another and RNA polymerase to the promoter by direct physical interactions. Here, we develop a quantitative framework to explore kinetic control, an alternative model in which combinatorial gene regulation can result from TFs working on different kinetic steps of the transcription cycle. Kinetic control can generate a wide range of analog and Boolean computations without requiring the input TFs to be simultaneously bound to regulatory DNA. We propose experiments that will illuminate the role of kinetic control in transcription and discuss implications for deciphering the cis-regulatory "code."
Collapse
Affiliation(s)
- Clarissa Scholes
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Álvaro Sánchez
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA.
| |
Collapse
|
146
|
A Synthetic Hybrid Promoter for Xylose-Regulated Control of Gene Expression in Saccharomyces Yeasts. Mol Biotechnol 2016; 59:24-33. [DOI: 10.1007/s12033-016-9991-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
147
|
Liu D, Liu H, Li BZ, Qi H, Jia B, Zhou X, Du HX, Zhang W, Yuan YJ. Multigene Pathway Engineering with Regulatory Linkers (M-PERL). ACS Synth Biol 2016; 5:1535-1545. [PMID: 27389125 DOI: 10.1021/acssynbio.6b00123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multigene pathway engineering usually needs amounts of part libraries on transcriptional and translational regulation as well as mutant enzymes to achieve the optimal part combinations of the target pathways. We report a new strategy for multigene pathway engineering with regulatory linkers (M-PERL) focusing on tuning the transcriptional start site (TSS) of yeast promoters. The regulatory linkers are composed of two homologous ends of two adjacent gene parts for assembly and a central regulatory region between them. We investigated the effect of the homologous end's length on multigene assembly, analyzed the influences of truncated, replaced, and elongated TSS and the adjacent region on promoters, and introduced 5 to 40 random bases of N (A/T/C/G) in the central regulatory region of the linkers which effectively varied the promoter's strengths. The distinct libraries of five regulatory linkers were used simultaneously to assemble and tune all five genes in the violacein synthesis pathway. The gene expressions affected the product profiles significantly, and the recombinants for enhanced single component synthesis and varied composition synthesis were obtained. This study offers an efficient tool to assemble and regulate multigene pathways.
Collapse
Affiliation(s)
- Duo Liu
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Hong Liu
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Bing-Zhi Li
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Hao Qi
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Bin Jia
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Xiao Zhou
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Hao-Xing Du
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Wei Zhang
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Ying-Jin Yuan
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
148
|
Song W, Li J, Liang Q, Marchisio MA. Can terminators be used as insulators into yeast synthetic gene circuits? J Biol Eng 2016; 10:19. [PMID: 28018483 PMCID: PMC5162094 DOI: 10.1186/s13036-016-0040-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/04/2016] [Indexed: 11/16/2022] Open
Abstract
Background In bacteria, transcription units can be insulated by placing a terminator in front of a promoter. In this way promoter leakage due to the read-through from an upstream gene or RNA polymerase unspecific binding to the DNA is, in principle, removed. Differently from bacterial terminators, yeast S. cerevisiae terminators contain a hexamer sequence, the efficiency element, that strongly resembles the eukaryotic TATA box i.e. the promoter sequence recognized and bound by RNA polymerase II. Results By placing different yeast terminators (natural and synthetic) in front of the CYC1 yeast constitutive promoter stripped of every upstream activating sequences and TATA boxes, we verified that the efficiency element is able to bind RNA polymerase II, hence working as a TATA box. Moreover, terminators put in front of strong and medium-strength constitutive yeast promoters cause a non-negligible decrease in the promoter transcriptional activity. Conclusions Our data suggests that RNA polymerase II molecules upon binding the insulator efficiency element interfere with protein expression by competing either with activator proteins at the promoter enhancers or other RNA polymerase II molecules targeting the TATA box. Hence, it seems preferable to avoid the insulation of non-weak promoters when building synthetic gene circuit in yeast S. cerevisiae. Electronic supplementary material The online version of this article (doi:10.1186/s13036-016-0040-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjiang Song
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Nan Gang District, Harbin, 150080 People's Republic of China
| | - Jing Li
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Nan Gang District, Harbin, 150080 People's Republic of China
| | - Qiang Liang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Nan Gang District, Harbin, 150080 People's Republic of China
| | - Mario Andrea Marchisio
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Nan Gang District, Harbin, 150080 People's Republic of China
| |
Collapse
|
149
|
Zhang J, Sonnenschein N, Pihl TPB, Pedersen KR, Jensen MK, Keasling JD. Engineering an NADPH/NADP + Redox Biosensor in Yeast. ACS Synth Biol 2016; 5:1546-1556. [PMID: 27419466 DOI: 10.1021/acssynbio.6b00135] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science and biotechnology. Still, there is a need for bioprospecting and engineering of more biosensors to enable real-time monitoring of specific cellular states and controlling downstream actuation. In this study, we report the engineering and application of a transcription factor-based NADPH/NADP+ redox biosensor in the budding yeast Saccharomyces cerevisiae. Using the biosensor, we are able to monitor the cause of oxidative stress by chemical induction, and changes in NADPH/NADP+ ratios caused by genetic manipulations. Because of the regulatory potential of the biosensor, we also show that the biosensor can actuate upon NADPH deficiency by activation of NADPH regeneration. Finally, we couple the biosensor with an expression of dosage-sensitive genes (DSGs) and thereby create a novel tunable sensor-selector useful for synthetic selection of cells with higher NADPH/NADP+ ratios from mixed cell populations. We show that the combination of exploitation and rational engineering of native signaling components is applicable for diagnosis, regulation, and selection of cellular redox states.
Collapse
Affiliation(s)
- Jie Zhang
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Nikolaus Sonnenschein
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Thomas P. B. Pihl
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kasper R. Pedersen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Michael K. Jensen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Jay D. Keasling
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
150
|
Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications. World J Microbiol Biotechnol 2016; 33:19. [PMID: 27905091 DOI: 10.1007/s11274-016-2185-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Pichia pastoris: (reclassified as Komagataella phaffii), a methylotrophic yeast strain has been widely used for heterologous protein production because of its unique advantages, such as readily achievable high-density fermentation, tractable genetic modifications and typical eukaryotic post-translational modifications. More recently, P. pastoris as a metabolic pathway engineering platform has also gained much attention. In this mini-review, we addressed recent advances of molecular toolboxes, including synthetic promoters, signal peptides, and genome engineering tools that established for P. pastoris. Furthermore, the applications of P. pastoris towards synthetic biology were also discussed and prospected especially in the context of genome-scale metabolic pathway analysis.
Collapse
|