101
|
Zhang JQ, Hu D, Wang J, Ni B, Ren H. Bimetallic Metal-Organic Coordination Polymers Facilitated the Selective C-F Cleavage of Polyfluoroarenes. Org Lett 2022; 24:7905-7911. [PMID: 36269221 DOI: 10.1021/acs.orglett.2c02918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective C-F bond cleavage of polyfluoroarenes has attracted tremendous interest due to its promising applications in introducing fluorinated building blocks into organic molecules. However, it remains a challenge to achieve highly site-selective C-F bond cleavage because of the intrinsic inertness of the C-F bond and the difficulty in distinguishing specific C-F bonds on the aromatic ring. Herein we report an efficient nucleophilic aromatic substitution (SNAr) reaction of polyfluoroarenes with Grignard reagents that employs MnFe-based bimetallic metal-organic coordination polymers (MOCPs) as recyclable and reusable heterogeneous catalysts. Significantly, in this reaction, the prepared MOCP (Mn-Fe) catalyst exhibited excellent activity in selective C-F bond cleavage and afforded a series of functionalized polyfluoroarenes in moderate to excellent yields (up to 96%). This work highlights the potential of MOCP catalysts to serve as a tunable platform in Lewis acid catalysis.
Collapse
Affiliation(s)
- Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jiali Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Bukuo Ni
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas 75429-3011, United States
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
| |
Collapse
|
102
|
Fedin VV, Usachev SA, Obydennov DL, Sosnovskikh VY. Reactions of Trifluorotriacetic Acid Lactone and Hexafluorodehydroacetic Acid with Amines: Synthesis of Trifluoromethylated 4-Pyridones and Aminoenones. Molecules 2022; 27:7098. [PMID: 36296691 PMCID: PMC9610390 DOI: 10.3390/molecules27207098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Dehydroacetic acid and triacetic acid lactone are known to be versatile substrates for the synthesis of a variety of azaheterocycles. However, their fluorinated analogs were poorly described in the literature. In the present work, we have investigated reactions of trifluorotriacetic acid lactone and hexafluorodehydroacetic acid with primary amines, phenylenediamine, and phenylhydrazine. While hexafluorodehydroacetic acid reacted the same way as non-fluorinated analog giving 2,6-bis(trifluoromethyl)-4-pyridones, trifluorotriacetic acid lactone had different regioselectivity of nucleophilic attack compared to the parent structure, and corresponding 3-amino-6,6,6-trifluoro-5-oxohex-3-eneamides were formed as the products. In the case of binucleophiles, further cyclization took place, forming corresponding benzodiazepine and pyrazoles. The obtained 2,6-bis(trifluoromethyl)-4-pyridones were able to react with active methylene compounds giving fluorinated merocyanine dyes.
Collapse
Affiliation(s)
| | | | | | - Vyacheslav Y. Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russia
| |
Collapse
|
103
|
Zeng YF, Zhou MX, Li YN, Wu X, Guo Y, Wang Z. Switchable Reductive N-Trifluoroethylation and N-Trifluoroacetylation of Indoles with Trifluoroacetic Acid and Trimethylamine Borane. Org Lett 2022; 24:7440-7445. [PMID: 36173131 DOI: 10.1021/acs.orglett.2c03011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The metal-free reductive N-trifluoroethylation and N-trifluoroacetylation of indoles have been developed. Bench stable and inexpensive trimethylamine borane and trifluoroacetic acid (TFA) were utilized as the reductive and fluorinating reagents, respectively. These transformations were switchable on the basis of altering the loading of trimethylamine borane and TFA. Preliminary experiments indicated indoline was the common intermediate in these two transformations.
Collapse
Affiliation(s)
- Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ming-Xi Zhou
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Na Li
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xin Wu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu Guo
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
104
|
Csenki JT, Tóth BL, Béke F, Varga B, P. Fehér P, Stirling A, Czégény Z, Bényei A, Novák Z. Synthesis of Hydrofluoroolefin-Based Iodonium Reagent via Dyotropic Rearrangement and Its Utilization in Fluoroalkylation. Angew Chem Int Ed Engl 2022; 61:e202208420. [PMID: 35876269 PMCID: PMC9540448 DOI: 10.1002/anie.202208420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/25/2022]
Abstract
[1,2]-shift of atoms in alkyl fragments belongs to the class of dyotropic rearrangements. Various atoms, including halogens can be involved in the migration, however participation of iodine is unprecedented. Herein, we report our experimental and DFT studies on the oxidation triggered dyotropic rearrangement of iodo and chloro functions via butterfly-type transition state to demonstrate the migrating ability of λ3 -iodane centre. With the exploitation of dyotropic rearrangement we designed and synthesized a novel fluoroalkyl iodonium reagent from industrial feedstock gas HFO-1234yf. We demonstrated that the hypervalent reagent serves as an excellent fluoroalkylation agent for various amines and nitrogen heterocycles.
Collapse
Affiliation(s)
- János T. Csenki
- ELTE “Lendület” Catalysis and Organic Synthesis Research Group DepartmentInstitute of ChemistryEötvös Loránd UniversityPázmány Péter stny. 1/A1117BudapestHungary
| | - Balázs L. Tóth
- ELTE “Lendület” Catalysis and Organic Synthesis Research Group DepartmentInstitute of ChemistryEötvös Loránd UniversityPázmány Péter stny. 1/A1117BudapestHungary
| | - Ferenc Béke
- ELTE “Lendület” Catalysis and Organic Synthesis Research Group DepartmentInstitute of ChemistryEötvös Loránd UniversityPázmány Péter stny. 1/A1117BudapestHungary
| | - Bálint Varga
- ELTE “Lendület” Catalysis and Organic Synthesis Research Group DepartmentInstitute of ChemistryEötvös Loránd UniversityPázmány Péter stny. 1/A1117BudapestHungary
| | - Péter P. Fehér
- Research Centre for Natural SciencesEötvös Loránd Research NetworkMagyar Tudósok körútja 21117BudapestHungary
| | - András Stirling
- Research Centre for Natural SciencesEötvös Loránd Research NetworkMagyar Tudósok körútja 21117BudapestHungary
- Department of ChemistryEszterházy Károly Catholic UniversityLeányka u. 63300EgerHungary
| | - Zsuzsanna Czégény
- Research Centre for Natural SciencesEötvös Loránd Research NetworkMagyar Tudósok körútja 21117BudapestHungary
| | - Attila Bényei
- Department of Physical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Zoltán Novák
- ELTE “Lendület” Catalysis and Organic Synthesis Research Group DepartmentInstitute of ChemistryEötvös Loránd UniversityPázmány Péter stny. 1/A1117BudapestHungary
| |
Collapse
|
105
|
Yang Y, Hammond G, Umemoto T. Self‐Sustaining Fluorination of Active Methylene Compounds andFluorination of Aryl and Alkenyl Lithium Species with a StericallyHindered N‐Fluorosulfonamide Reagent. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuhao Yang
- University of Louisville College of Arts and Sciences Chemistry UNITED STATES
| | - Gerald Hammond
- University of Louisville College of Arts and Sciences Chemistry 2320 S. Brook 40208 Louisville UNITED STATES
| | - Teruo Umemoto
- University of Louisville College of Arts and Sciences Chemistry UNITED STATES
| |
Collapse
|
106
|
Abstract
Fluorinated organic compounds are common among pharmaceuticals, agrochemicals and materials. The significant strength of the C-F bond results in chemical inertness that, depending on the context, is beneficial, problematic or simply a formidable synthetic challenge. Electrosynthesis is a rapidly expanding methodology that can enable new reactivity and selectivity for cleavage and formation of chemical bonds. Here, a comprehensive overview of synthetically relevant electrochemically driven protocols for C-F bond activation and functionalization is presented, including photoelectrochemical strategies.
Collapse
Affiliation(s)
- Johannes L Röckl
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | | | - Helena Lundberg
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
107
|
Khan BA, Ashfaq M, Muhammad S, Munawar KS, Tahir MN, Al-Sehemi AG, Alarfaji SS. Exploring Highly Functionalized Tetrahydropyridine as a Dual Inhibitor of Monoamine Oxidase A and B: Synthesis, Structural Analysis, Single Crystal XRD, Supramolecular Assembly Exploration by Hirshfeld Surface Analysis, and Computational Studies. ACS OMEGA 2022; 7:29452-29464. [PMID: 36033707 PMCID: PMC9404513 DOI: 10.1021/acsomega.2c03909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Ethyl 4-(4-fluorophenylamino)-2,6-bis(4-(trifluoromethyl)phenyl)-1-(4-fluoro-phenyl)-1,2,5,6-tetrahydropyridine-3-carboxylate (FTEAA) has been synthesized efficiently in an iodine-catalyzed five-component reaction of 4-fluoroaniline, 4-trifluoromethyl benzaldehyde, and ethyl acetoacetate in methanol at 55 °C for 12 h. Various spectro-analytical techniques such as 1H and 13C NMR and Fourier-transform infrared spectroscopy have validated the structure of FTEAA. Further confirmation of the structure of FTEAA has been established on the basis of single-crystal X-ray diffraction analysis. The supramolecular assembly of FTEAA in terms of strong and comparatively weak noncovalent interactions is fully investigated by Hirshfeld surface analysis, the interaction energy between pairs of molecules, and energy frameworks. The void analysis is conducted to explore the strength and stability of the crystal structure. Furthermore, molecular docking analysis was computationally performed to see the potential intermolecular interactions between the selected proteins and FTEAA. The binding interaction energies are found to be -8.8 and -9.6 kcal/mol for the proteins MAO-B (PDB ID: 2V5Z) and MAO-A (PDB ID: 2Z5X), respectively. These reasonably good binding energies (more negative values) indicate the efficient associations between the FTEAA and target proteins. The proteins and FTEAA were also analyzed for intermolecular interactions. FTEAA and proteins interact in a variety of ways, like conventional hydrogen bonds, carbon-hydrogen bonds, alkyl, π-alkyl, and halide interactions.
Collapse
Affiliation(s)
- Bilal Ahmad Khan
- Department
of Chemistry, University of Azad Jammu and
Kashmir, Muzaffarabad 13100, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha, Punjab 40100, Pakistan
| | - Shabbir Muhammad
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Khurram Shahzad Munawar
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
- Department
of Chemistry, University of Mianwali, Mianwali 42200, Pakistan
| | | | - Abdullah G. Al-Sehemi
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Saleh S. Alarfaji
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
108
|
Planas O, Peciukenas V, Leutzsch M, Nöthling N, Pantazis DA, Cornella J. Mechanism of the Aryl-F Bond-Forming Step from Bi(V) Fluorides. J Am Chem Soc 2022; 144:14489-14504. [PMID: 35921250 PMCID: PMC9394462 DOI: 10.1021/jacs.2c01072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 01/10/2023]
Abstract
In this article, we describe a combined experimental and theoretical mechanistic investigation of the C(sp2)-F bond formation from neutral and cationic high-valent organobismuth(V) fluorides, featuring a dianionic bis-aryl sulfoximine ligand. An exhaustive assessment of the substitution pattern in the ligand, the sulfoximine, and the reactive aryl on neutral triarylbismuth(V) difluorides revealed that formation of dimeric structures in solution promotes facile Ar-F bond formation. Noteworthy, theoretical modeling of reductive elimination from neutral bismuth(V) difluorides agrees with the experimentally determined kinetic and thermodynamic parameters. Moreover, the addition of external fluoride sources leads to inactive octahedral anionic Bi(V) trifluoride salts, which decelerate reductive elimination. On the other hand, a parallel analysis for cationic bismuthonium fluorides revealed the crucial role of tetrafluoroborate anion as fluoride source. Both experimental and theoretical analyses conclude that C-F bond formation occurs through a low-energy five-membered transition-state pathway, where the F anion is delivered to a C(sp2) center, from a BF4 anion, reminiscent of the Balz-Schiemann reaction. The knowledge gathered throughout the investigation permitted a rational assessment of the key parameters of several ligands, identifying the simple sulfone-based ligand family as an improved system for the stoichiometric and catalytic fluorination of arylboronic acid derivatives.
Collapse
Affiliation(s)
- Oriol Planas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Vytautas Peciukenas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
109
|
Turksoy A, Bouayad‐Gervais S, Schoenebeck F. N
‐CF
3
Imidazolidin‐2‐one Derivatives via Photocatalytic and Silver‐Catalyzed Cyclizations. Chemistry 2022; 28:e202201435. [DOI: 10.1002/chem.202201435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Abdurrahman Turksoy
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Samir Bouayad‐Gervais
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
110
|
Mo X, Huang H, Zhang G. Tetrasubstituted Carbon Stereocenters via Copper-Catalyzed Asymmetric Sonogashira Coupling Reactions with Cyclic gem-Dihaloketones and Tertiary α-Carbonyl Bromides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xueling Mo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Han Huang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Guozhu Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
111
|
Csenki JT, Tóth BL, Béke F, Varga B, Fehér PP, Stirling A, Czégény Z, Bényei A, Novák Z. Synthesis of Hydrofluoroolefin‐based Iodonium Reagent via Dyotropic Rearrangement and Its Utilization in Fluoroalkylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- János Tivadar Csenki
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Institute of Chemistry HUNGARY
| | - Balázs László Tóth
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Institute of Chemistry HUNGARY
| | - Ferenc Béke
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Institute of Chemistry HUNGARY
| | - Bálint Varga
- Eötvös Loránd Tudományegyetem: Eotvos Lorand Tudomanyegyetem Institute of Chemistry HUNGARY
| | - Péter Pál Fehér
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont HUNGARY
| | - András Stirling
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont HUNGARY
| | - Zsuzsanna Czégény
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont HUNGARY
| | - Attila Bényei
- University of Debrecen: Debreceni Egyetem Department of Physical Chemistry HUNGARY
| | - Zoltán Novák
- Eotvos Lorand Tudomanyegyetem Institute of Chemistry Pázány Péter stny 1/a 1117 Budapest HUNGARY
| |
Collapse
|
112
|
Berger M, Lenhard MS, Waldvogel SR. Para-Fluorination of Anilides Using Electrochemically Generated Hypervalent Iodoarenes. Chemistry 2022; 28:e202201029. [PMID: 35510825 PMCID: PMC9401020 DOI: 10.1002/chem.202201029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/23/2022]
Abstract
The para-selective fluorination reaction of anilides using electrochemically generated hypervalent ArIF2 is reported, with Et3 N ⋅ 5HF serving as fluoride source and as supporting electrolyte. This electrochemical reaction is characterized by a simple set-up, easy scalability and affords a broad variety of fluorinated anilides from easily accessible anilides in good yields up to 86 %.
Collapse
Affiliation(s)
- Michael Berger
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Marola S. Lenhard
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
113
|
Baguia H, Evano G. Direct Perfluoroalkylation of C−H Bonds in (Hetero)arenes. Chemistry 2022; 28:e202200975. [DOI: 10.1002/chem.202200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
114
|
Chen D, Jiang J, Wan J. Advances in the Transition Metal‐Free C‐H Trifluoromethylation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Demao Chen
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jianwen Jiang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jie‐Ping Wan
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
115
|
Ma Z, Deng Y, He J, Cao S. Solvent-controlled base-free synthesis of bis(trifluoromethyl)-cyclopropanes and -pyrazolines via cycloaddition of 2-trifluoromethyl-1,3-enynes with 2,2,2-trifluorodiazoethane. Org Biomol Chem 2022; 20:5071-5075. [PMID: 35704947 DOI: 10.1039/d2ob00894g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A highly efficient solvent-controlled synthesis of bis(trifluoromethyl)cyclopropanes and bis(trifluoromethyl)pyrazolines via a [2 + 1] or [3 + 2] cycloaddition reaction of 2-trifluoromethyl-1,3-conjugated enynes with CF3CHN2 was developed. The reactions of 2-trifluoromethyl-1,3-conjugated enynes with CF3CHN2 proceeded smoothly under transition-metal and base-free conditions, affording the expected cycloaddition products in good to excellent yields. When DMAc (N,N-dimethylacetamide) was used as the solvent, bis(trifluoromethyl)pyrazolines were obtained; however, in contrast, bis(trifluoromethyl)cyclopropanes were formed by changing the solvent from DMAc to DCE (1,2-dichloroethane).
Collapse
Affiliation(s)
- Zhihong Ma
- Biotalk Company Limited, Shanghai, 200090, China
| | - Yupian Deng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Jingjing He
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| |
Collapse
|
116
|
Guo MM, Song XD, Liu X, Zheng YW, Chu XQ, Rao W, Shen ZL. Iron(III)‐catalyzed difluoroalkylation of aryl alkynes with difluoroenol silyl ether in the presence of trimethylsilyl chloride. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
117
|
Ma C, Li S, Lv X, Ren J, Feng L. A Direct Method for Synthesis of Fluorinated Quinazolinones and Quinoxalines Using Fluorinated Acids without Metals or Additives. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1824-6352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe trifluoromethyl group only exists in synthetic compounds. Owing to the unique bioactivities of this group, the trifluoromethylation of alkanes, arenes, unsaturated compounds like olefins, aldehydes, and ketones, and heterocycles has been studied constantly in recent decades. Herein, a direct method using trifluoroacetic acid as a CF3 source for the synthesis of 2-(trifluoromethyl)quinazolin-4-ones and 4-(trifluoromethyl)pyrrolo/indolo[1,2-a]quinoxalines without any catalysts or additives is reported; a wide range of fluorinated compounds were obtained in 52%–94% yield.
Collapse
|
118
|
Lee S, Chung W. Enantioselective halogenation via asymmetric
phase‐transfer
catalysis. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sunggi Lee
- Department of Physics and Chemistry DGIST Daegu Republic of Korea
| | - Won‐jin Chung
- Department of Chemistry GIST Gwangju Republic of Korea
| |
Collapse
|
119
|
Yang X, Lu D, Guan W, Yin SF, Kambe N, Qiu R. Synthesis of (Deoxy)difluoromethylated Phosphines by Reaction of R 2P(O)H with TMSCF 3 and Their Application in Cu(I) Clusters in Sonogashira Coupling. J Org Chem 2022; 87:7720-7733. [PMID: 35620903 DOI: 10.1021/acs.joc.2c00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
R2PCF2H ligands and their R2P(O)CF2H precursors were synthesized from R2P(O)H with TMSCF3 by simply modulating the H2O concentration via deoxydifluoromethylation and difluoromethylation. The air sensitive R2PCF2H phosphines can be stabilized in Cu(I) clusters as ligands. Within these Cu(I) clusters, the Sonogashira cross-coupling reaction can proceed fast and efficiently using terminal alkynes and aryl iodides within 15 min at room temperature under air to give a variety of diaryl(alkyl)acetylenes in good yields (49 examples, yields of ≤99%). Six of the internal alkynes present in drug precursors can be obtained using this protocol in good yields. The mechanism is proposed on the basis of control experiments.
Collapse
Affiliation(s)
- Xiaogang Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Dong Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wenjian Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Nobuaki Kambe
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
120
|
Zheng C, Cui X, Wu J, Wu P, Yu Y, Liu H, Wu F. Synthesis and Application of Monofluoroalkyl Building Blocks: α‐Halo‐α‐fluoroketones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Zheng
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Xuhui Cui
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Jingjing Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 200032 Shanghai P.R.China
| | - Pingjie Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Yanyan Yu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Hanwen Liu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Fanhong Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| |
Collapse
|
121
|
Si Y, Liu Y, Lai W, Ma Y, Shi J, Wang B, Liu M, Yu T. A New Enthalpy of Formation Test Set Designed for Organic Fluorine Containing Compounds. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yitao Si
- State Key Laboratory of Fluorine and Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an 710065 P. R. China
- International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yingzhe Liu
- State Key Laboratory of Fluorine and Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an 710065 P. R. China
| | - Weipeng Lai
- State Key Laboratory of Fluorine and Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an 710065 P. R. China
| | - Yiding Ma
- State Key Laboratory of Fluorine and Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an 710065 P. R. China
| | - Jinwen Shi
- International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Bozhou Wang
- State Key Laboratory of Fluorine and Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an 710065 P. R. China
| | - Maochang Liu
- International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Tao Yu
- State Key Laboratory of Fluorine and Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an 710065 P. R. China
- School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 P. R. China
| |
Collapse
|
122
|
Vennelakanti V, Mehmood R, Kulik HJ. Are Vanadium Intermediates Suitable Mimics in Non-Heme Iron Enzymes? An Electronic Structure Analysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
123
|
Son Y, Hwang S, Bak S, Kim HE, Choi JH, Chung WJ. α-Fluoroamine synthesis via P(III)-mediated deoxygenative geminal fluorosulfonimidation of 1,2-diketones. Org Biomol Chem 2022; 20:3263-3267. [PMID: 35354199 DOI: 10.1039/d2ob00498d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A deoxygenative geminal fluorosulfonimidation of 1,2-diketones was achieved for the synthesis of tetrasubstituted α-fluoroamines under mild conditions. In this study, a transition metal-free formal N-F insertion of N-fluorobenzenesulfonimide was enabled via the Kukhtin-Ramirez reaction employing a dealkylation-resistant P(III) reagent developed in our laboratory. Computational analysis was also performed to obtain a general mechanistic picture, which explained the reactivity and selectivity for this type of reaction.
Collapse
Affiliation(s)
- Yeri Son
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Sunjoo Hwang
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Sujin Bak
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Ha Eun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Won-Jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
124
|
Rachor SG, Jaeger R, Braun T. Au(I) Fluorido Phosphine Complexes: Tools for the Hydrofluorination of Alkynes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Simon G. Rachor
- Humboldt-Universität zu Berlin: Humboldt-Universitat zu Berlin Chemistry GERMANY
| | - Ruben Jaeger
- Humboldt University of Berlin: Humboldt-Universitat zu Berlin Chemistry GERMANY
| | - Thomas Braun
- Humboldt University Chemistry Brook-Taylor Str. 2 12489 Berlin GERMANY
| |
Collapse
|
125
|
Zhang Q, Yuan W, Shi Y, Pan F. Organophotocatalytic ring opening/remote trifluoromethylselenolation of cycloalkanols. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
126
|
Strickland DA, Villani SM, Cox KD. Optimizing Use of DMI Fungicides for Management of Apple Powdery Mildew Caused by Podosphaera leucotricha in New York State. PLANT DISEASE 2022; 106:1226-1237. [PMID: 34854765 DOI: 10.1094/pdis-09-21-2025-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Powdery mildew, caused by the ascomycete Podosphaera leucotricha, is an endemic disease found wherever apples are grown that reduces both tree vigor and fresh market yield. In the absence of durable host resistance, chemical management is the primary means of disease control. Demethylation inhibitor (DMI) fungicides are widely used to manage apple powdery mildew, but members within this fungicide class have been observed to differ in efficacy with respect to disease control. Moreover, debate exists as to the optimal timing of DMI fungicide applications for management of apple powdery mildew. In this regard, the goal of this study was to determine the best-use practices for DMI fungicides to manage apple powdery mildew in New York State. Multiyear trials were conducted to evaluate the potential differential efficacy performance of four common DMI fungicides, and additional trials were conducted to assess optimal application timing. In all years, we observed that treatments of flutriafol and myclobutanil consistently had the lowest incidences of powdery mildew compared with difenoconazole and fenbuconazole. In the 2018 and 2021 trials, the newly registered mefentrifluconazole was more comparable to the difenoconazole program with respect to powdery mildew disease incidence. We hypothesize that differences in DMI efficacy may result from each fungicide's water solubility and lipophilicity characteristics and thus their ability to move systemically in the host or more easily penetrate the surface of germinating conidia. Applications timed between petal fall and first cover resulted in the lowest incidence of powdery mildew on terminal leaves of apple shoots compared with applications timed before petal fall. These observations are contrary to previous studies conducted in regions with differing climates. We also found that the incidence of secondary powdery mildew observed 2 weeks after petal fall was influenced by applications of DMI fungicides during the previous season. For example, management programs consisting of applications of flutriafol or myclobutanil in the previous season tended to have lower incidence of apple powdery in the next spring, presumably because of reductions in overwintering inoculum. Despite reports of DMI resistance in other apple pathosystems, the DMI fungicide class is still relevant for the successful management of apple powdery mildew in New York State.
Collapse
Affiliation(s)
- David A Strickland
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Sara M Villani
- Department of Entomology and Plant Pathology, Mountain Horticulture and Crops Research & Extension Center, North Carolina State University, Mills River, NC 28759
| | - Kerik D Cox
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
127
|
Biallas P, Yamazaki K, Dixon DJ. Difluoroalkylation of Tertiary Amides and Lactams by an Iridium-Catalyzed Reductive Reformatsky Reaction. Org Lett 2022; 24:2002-2007. [PMID: 35258311 PMCID: PMC9082613 DOI: 10.1021/acs.orglett.2c00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 12/16/2022]
Abstract
An iridium-catalyzed, reductive alkylation of abundant tertiary lactams and amides using 1-2 mol % of Vaska's complex (IrCl(CO)(PPh3)2), tetramethyldisiloxane (TMDS), and difluoro-Reformatsky reagents (BrZnCF2R) for the general synthesis of medicinally relevant α-difluoroalkylated tertiary amines is described. A broad scope (46 examples), including N-aryl- and N-heteroaryl-substituted lactams, demonstrated an excellent functional group tolerance. Furthermore, late-stage drug functionalizations, a gram-scale synthesis, and common downstream transformations proved the potential synthetic relevance of this new methodology.
Collapse
Affiliation(s)
- Phillip Biallas
- Chemistry Research Laboratory, Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 2JD, U.K.
| | - Ken Yamazaki
- Chemistry Research Laboratory, Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 2JD, U.K.
| | - Darren J. Dixon
- Chemistry Research Laboratory, Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 2JD, U.K.
| |
Collapse
|
128
|
Sun Z, Zhou L. Synthesis of 5-Fluoro-dihydroindolizines from Pyrrole-2-acetic Acids and Trifluoromethyl Alkenes via Dual C-F Bond Cleavage in a CF 3 Group. J Org Chem 2022; 87:4801-4812. [PMID: 35297252 DOI: 10.1021/acs.joc.2c00077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we describe the synthesis of 5-fluoro-dihydroindolizines via dual C-F bond cleavage in a trifluoromethyl group. The photocatalytic defluorinative coupling of pyrrole-2-acetic acids and α-trifluoromethyl alkenes cleaved the first C-F bond, providing gem-difluoroalkenes bearing an unprotected pyrrole motif. Subsequently, an intramolecular SNV reaction closed the ring by forming a C-N bond concomitantly with the cleavage of the second C-F bond. Using indole-2-acetic acids as the substrates, the reactions also allow the assembly of 6-fluoro-dihydropyrido[1,2-a]indoles.
Collapse
Affiliation(s)
- Zhengchang Sun
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
129
|
Dong L, Feng T, Xiong D, Xu Z, Cheng J, Xu X, Shao X, Li Z. Copper(II)-Catalyzed Direct C-H Trifluoroethylation of Heteroarenes. Org Lett 2022; 24:1913-1917. [PMID: 35261242 DOI: 10.1021/acs.orglett.2c00245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Trifluoroethyl (CH2CF3) is an important functional group in many pharmaceutical and agrochemical compounds. Herein, we report an efficient method for the copper-catalyzed direct trifluoroethylation of heteroarenes. The reaction exhibited good compatibility to various substrates, and the desired products were obtained in good yields. Preliminary mechanistic investigations indicate the trifluoroethyl radical is involved in the catalytic circle. Moreover, the late-stage modification of bioactive molecules further confirmed the practical applications of this method.
Collapse
Affiliation(s)
- Lefeng Dong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Tingting Feng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Dongdong Xiong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
130
|
Louis-Goff T, Trinh HV, Chen E, Rheingold AL, Ehm C, Hyvl J. Stabilizing Effect of Pre-equilibria: A Trifluoromethyl Complex as a CF 2 Reservoir in Catalytic Olefin Difluorocarbenation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Louis-Goff
- Department of Chemistry, University of Hawai‘i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Huu Vinh Trinh
- Department of Chemistry, University of Hawai‘i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Eileen Chen
- Department of Chemistry, University of Hawai‘i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Arnold L. Rheingold
- Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Christian Ehm
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Jakub Hyvl
- Department of Chemistry, University of Hawai‘i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
131
|
Mahamudul Hassan MM, Mondal B, Singh S, Haldar C, Chaturvedi J, Bisht R, Sunoj RB, Chattopadhyay B. Ir-Catalyzed Ligand-Free Directed C–H Borylation of Arenes and Pharmaceuticals: Detailed Mechanistic Understanding. J Org Chem 2022; 87:4360-4375. [DOI: 10.1021/acs.joc.2c00046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mirja Md Mahamudul Hassan
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Biplab Mondal
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sukriti Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chabush Haldar
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Jagriti Chaturvedi
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Ranjana Bisht
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Buddhadeb Chattopadhyay
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
132
|
Selectfluor Mediated Difunctionalization of Olefins towards the Synthesis of Fluoromethylated Morpholines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
133
|
Wackett LP. Nothing lasts forever: understanding microbial biodegradation of polyfluorinated compounds and perfluorinated alkyl substances. Microb Biotechnol 2022; 15:773-792. [PMID: 34570953 PMCID: PMC8913905 DOI: 10.1111/1751-7915.13928] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Poly- and perfluorinated chemicals, including perfluorinated alkyl substances (PFAS), are pervasive in today's society, with a negative impact on human and ecosystem health continually emerging. These chemicals are now subject to strict government regulations, leading to costly environmental remediation efforts. Commercial polyfluorinated compounds have been called 'forever chemicals' due to their strong resistance to biological and chemical degradation. Environmental cleanup by bioremediation is not considered practical currently. Implementation of bioremediation will require uncovering and understanding the rare microbial successes in degrading these compounds. This review discusses the underlying reasons why microbial degradation of heavily fluorinated compounds is rare. Fluorinated and chlorinated compounds are very different with respect to chemistry and microbial physiology. Moreover, the end product of biodegradation, fluoride, is much more toxic than chloride. It is imperative to understand these limitations, and elucidate physiological mechanisms of defluorination, in order to better discover, study, and engineer bacteria that can efficiently degrade polyfluorinated compounds.
Collapse
Affiliation(s)
- Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMN55108USA
| |
Collapse
|
134
|
Tezcan B, Gök Y, Sevinçek R, Taslimi P, Taskin‐Tok T, Aktaş A, Güzel B, Aygün M, Gülçin I. Benzimidazolium salts bearing the trifluoromethyl group as organofluorine compounds: Synthesis, characterization, crystal structure, in silico study, and inhibitory profiles against acetylcholinesterase and α‐glycosidase. J Biochem Mol Toxicol 2022; 36:e23001. [DOI: 10.1002/jbt.23001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Burcu Tezcan
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Science Inonu University Malatya Turkey
| | - Resul Sevinçek
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Turkey
- Department of Bioinformatics and Computational Biology Institute of Health Sciences, Gaziantep University Gaziantep Turkey
| | - Aydın Aktaş
- Department of Pathology, Vocational School of Health Service Inonu University Malatya Turkey
| | - Bilgehan Güzel
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science Atatürk University Erzurum Turkey
| |
Collapse
|
135
|
Tetramethylammonium Fluoride: Fundamental Properties and Applications in C-F Bond-Forming Reactions and as a Base. Catalysts 2022. [DOI: 10.3390/catal12020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleophilic ionic sources of fluoride are essential reagents in the synthetic toolbox to access high added-value fluorinated building blocks unattainable by other means. In this review, we provide a concise description and rationale of the outstanding features of one of these reagents, tetramethylammonium fluoride (TMAF), as well as disclosing the different methods for its preparation, and how its physicochemical properties and solvation effects in different solvents are intimately associated with its reactivity. Furthermore, herein we also comprehensively describe its historic and recent utilization, up to December 2021, in C-F bond-forming reactions with special emphasis on nucleophilic aromatic substitution fluorinations with a potential sustainable application in industrial settings, as well as its use as a base capable of rendering unprecedented transformations.
Collapse
|
136
|
Liu Q, Mu Y, Koengeter T, Schrock RR, Hoveyda AH. Stereodefined alkenes with a fluoro-chloro terminus as a uniquely enabling compound class. Nat Chem 2022; 14:463-473. [PMID: 35177787 PMCID: PMC9769398 DOI: 10.1038/s41557-022-00893-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022]
Abstract
Trisubstituted alkenyl fluorides are important compounds for drug discovery, agrochemical development and materials science. Despite notable progress, however, many stereochemically defined trisubstituted fluoroalkenes either cannot be prepared efficiently or can only be accessed in one isomeric form. Here we outline a general solution to this problem by first unveiling a practical, widely applicable and catalytic strategy for stereodivergent synthesis of olefins bearing a fluoro-chloro terminus. This has been accomplished by cross-metathesis between two trisubstituted olefins, one of which is a purchasable but scarcely utilized trihaloalkene. Subsequent cross-coupling can then be used to generate an assortment of trisubstituted alkenyl fluorides. The importance of the advance is highlighted by syntheses of, among others, a fluoronematic liquid-crystal component, peptide analogues bearing an E- or a Z-amide bond mimic, and all four stereoisomers of difluororumenic ester (an anti-cancer compound).
Collapse
Affiliation(s)
- Qinghe Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Yucheng Mu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Tobias Koengeter
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Richard R Schrock
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA. .,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France.
| |
Collapse
|
137
|
Butcher TW, Amberg WM, Hartwig JF. Transition‐Metal‐Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by C−C Bond Formation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Trevor W. Butcher
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Willi M. Amberg
- Department of Chemistry and Applied Biosciences Laboratory of Organic Chemistry ETH Zϋrich 8093 Zϋrich Switzerland
| | - John F. Hartwig
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
138
|
Visible-light induced C3-H trifluoromethylation of quinoxalin-2(1H)-ones with CF3SO2Cl under external photocatalyst-free conditions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
139
|
Znidar D, Dallinger D, Kappe CO. Practical Guidelines for the Safe Use of Fluorine Gas Employing Continuous Flow Technology. ACS CHEMICAL HEALTH & SAFETY 2022. [DOI: 10.1021/acs.chas.1c00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Desiree Znidar
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Doris Dallinger
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
140
|
Convenient and efficient access to tri- and tetra-substituted 4-fluoropyridines via a [3 + 2]/[2 + 1] cyclization reaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
141
|
Fluorine-containing agrochemicals in the last decade and approaches for fluorine incorporation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
142
|
Niu B, Sachidanandan K, Blackburn BG, Cooke MV, Laulhé S. Photoredox Polyfluoroarylation of Alkyl Halides via Halogen Atom Transfer. Org Lett 2022; 24:916-920. [PMID: 35023751 PMCID: PMC9650968 DOI: 10.1021/acs.orglett.1c04267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Polyfluoroarene moieties are of interest in medicinal chemistry, agrochemicals, and material sciences. Herein, we present the first polyfluoroarylation of unactivated alkyl halides via a halogen atom transfer process. This method converts primary, secondary, and tertiary alkyl halides into the respective polyfluoroaryl compounds in good yields in the presence of amide, carbamate, ester, aromatic, and sulfonamide moieties, including derivatives of complex bioactive molecules. Mechanistic work revealed that this transformation proceeds through an alkyl radical generated after the halogen atom transfer.
Collapse
Affiliation(s)
- Ben Niu
- Department of Chemistry and Chemical Biology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Krishnakumar Sachidanandan
- Department of Chemistry and Chemical Biology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Bryan G. Blackburn
- Department of Chemistry and Chemical Biology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Maria Victoria Cooke
- Department of Chemistry and Chemical Biology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Sébastien Laulhé
- Department of Chemistry and Chemical Biology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
143
|
Zeng JL, Xu ZH, Niu LF, Yao C, Liang LL, Zou YL, Yang L. Generating Monofluoro‐Substituted Amines and Amino Acids by the Interaction of Inexpensive KF and Sulfamidates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun-Liang Zeng
- Xuchang University College of chemical and materials engineering 88 Bayi Road, Weidu District, 461000 Xuchang City CHINA
| | - Zhi-Hong Xu
- Xuchang University college of chemical and materials engineering CHINA
| | - Liang-Feng Niu
- Xuchang University college of chemical and materials engineering CHINA
| | - Chuan Yao
- Xuchang University college of chemical and matericals engineering CHINA
| | - Lu-Lu Liang
- Xuchang University college of chemical and materials engineering CHINA
| | - Yu-Lu Zou
- Xuchang University college of chemical and matericals engineering CHINA
| | - Lijun Yang
- Chinese Academy of Medical Sciences & Peking Union Medical College key laboratory of radiopharmacokinetics for innovative drugs CHINA
| |
Collapse
|
144
|
Chen XQ, Lu H, Chen CX, Zeng R, Wang DY, Shi CY, Zhang A. Palladium-Catalyzed gem-Difluoroallylation Reaction between Aryltributyltin and Bromodifluoromethylated Alkenes. J Org Chem 2022; 87:2935-2946. [PMID: 35075894 DOI: 10.1021/acs.joc.1c02800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A robust Stille gem-difluoroallylation of arylstannanes with 3-bromo-3,3-difluoropropenes has been established. The catalyst was found to exert critical effect on the reaction chemoselectivity. By using Pd(OH)2/C as the catalyst, a series of 3-(hetero)aryl/vinyl-3,3-difluoropropenes were obtained in high efficiency with α-substitution regioselectivity. The reaction has a broad substrate scope, and various substitution patterns were well tolerated in both substrates. Notably, the reaction can be easily extended to late-stage gem-difluoroallylation of many bioactive molecules with good chemoselectivity.
Collapse
Affiliation(s)
- Xiao-Qu Chen
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Heng Lu
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chuan-Xin Chen
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruoqing Zeng
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dong-Yu Wang
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chang-Yun Shi
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ao Zhang
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
145
|
Canty AJ, Ariafard A. Two-Stage Catalysis in the Pd-Catalyzed Formation of 2,2,2-Trifluoroethyl-Substituted Acrylamides: Oxidative Alkylation of PdII by an IIII Reagent and Roles for Acetate, Triflate, and Triflic Acid. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Allan J. Canty
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alireza Ariafard
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
146
|
Monteith JJ, Scotchburn K, Mills LR, Rousseaux SAL. Ni-Catalyzed Synthesis of Thiocarboxylic Acid Derivatives. Org Lett 2022; 24:619-624. [PMID: 34978834 DOI: 10.1021/acs.orglett.1c04074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Ni-catalyzed cross-coupling of readily accessible O-alkyl xanthate esters or thiocarbonyl imidazolides and organozinc reagents for the synthesis of thiocarboxylic acid derivatives has been developed. This method benefits from a fast reaction time, mild reaction conditions, and ease of starting material synthesis. The use of transition-metal catalysis to access a diverse range of thiocarbonyl-containing compounds provides a useful complementary approach when compared with previously established methodologies.
Collapse
Affiliation(s)
- John J Monteith
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Katerina Scotchburn
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - L Reginald Mills
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
147
|
Jang E, Kim HI, Jang HS, Sim J. Photoredox-Catalyzed Oxidative Radical-Polar Crossover Enables the Alkylfluorination of Olefins. J Org Chem 2022; 87:2640-2650. [PMID: 35020397 DOI: 10.1021/acs.joc.1c02607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The three-component alkylfluorination of olefins via an oxidative radical-polar crossover under visible light-induced photocatalysis is disclosed. A key feature of this reaction is the incorporation of two synthetically meaningful components involving a three-dimensional alkyl group and a fluorine atom using easily preparable N-hydroxyphthalimide esters as the alkyl donors and a low-cost hydrogen fluoride as the fluorine source. Furthermore, a one-step procedure using commercially available carboxylic acids demonstrated the versatility of this new method.
Collapse
Affiliation(s)
- Eunbin Jang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Hoe In Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Hye Su Jang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
148
|
Kundu G, Opincal F, Sperger T, Schoenebeck F. Air-Stable Pd I Dimer Enabled Remote Functionalization: Access to Fluorinated 1,1-Diaryl Alkanes with Unprecedented Speed. Angew Chem Int Ed Engl 2022; 61:e202113667. [PMID: 34735037 PMCID: PMC9299613 DOI: 10.1002/anie.202113667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/14/2022]
Abstract
While remote functionalization via chain walking has the potential to enable access to molecules via novel disconnections, such processes require relatively long reaction times and can be in need of elevated temperatures. This work features a remote arylation in less than 10 min reaction time at room temperature over a distance of up to 11 carbons. The unprecedented speed is enabled by the air-stable PdI dimer [Pd(μ-I)(PCy2 t Bu)]2 , which in contrast to its Pt Bu3 counterpart does not trigger direct coupling at the initiation site, but regioconvergent and chemoselective remote functionalization to yield valuable fluorinated 1,1-diaryl alkanes. Our combined experimental and computational studies rationalize the origins of switchability, which are primarily due to differences in dispersion interactions.
Collapse
Affiliation(s)
- Gourab Kundu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Filip Opincal
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Theresa Sperger
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
149
|
Kundu G, Opincal F, Sperger T, Schoenebeck F. Air‐Stable Pd
I
Dimer Enabled Remote Functionalization: Access to Fluorinated 1,1‐Diaryl Alkanes with Unprecedented Speed. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gourab Kundu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Filip Opincal
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Theresa Sperger
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
150
|
Xiong W, Qin WB, Zhao YS, Fu KZ, Liu GK. Direct C(sp3)−H Difluoromethylation via Radical-Radical Cross-Coupling by Visible-Light Photoredox Catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00192f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the radical-radical cross-coupling strategy for direct difluoromethylation of C(sp3)−H bond is reported. This transformation was readily accomplished under transition metal-free photoredox catalysis in the presence of 3 mol% of...
Collapse
|