101
|
Maria DA, da Silva MGL, Correia MC, Ruiz IRG. Antiproliferative effect of the jararhagin toxin on B16F10 murine melanoma. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:446. [PMID: 25407317 PMCID: PMC4289281 DOI: 10.1186/1472-6882-14-446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/14/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Malignant melanoma is a less common but highly dangerous form of skin cancer; it starts in the melanocytes cells found in the outer layer of the skin. Jararhagin toxin, a metalloproteinase isolated from Bothrops jararaca snake venom acts upon several biological processes, as inflammation, pain, platelet aggregation, proliferation and apoptosis, though not yet approved for use, may one day be employed to treat tumors. METHODS B16F10 murine melanoma cells were treated with jararhagin (jara), a disintegrin-like metalloproteinase isolated from Bothrops jararaca snake venom, and jari (catalytic domain inactivated with 1,10-phenanthroline). Viability and adhesion cells were evaluated by MTT assay. The expression of caspase-3 active, phases of the cell cycle and apoptosis were assessed by flow cytometry. We analyze in vivo the effects of jararhagin on melanoma growth, apoptosis and metastasis. RESULTS The tumor cells acquired round shapes, lost cytoplasmic expansions, formed clusters in suspension and decreased viability. Jari was almost 20 times more potent toxin than jara based on IC50 values and on morphological changes of the cells, also observed by scanning electron microscopy. Flow cytometry analysis showed 48.3% decrease in the proliferation rate of cells and 47.2% increase in apoptosis (jara) and necrosis (jari), following 1.2 μM jara and 0.1 μM jari treatments. Caspase-3 activity was increased whereas G0/G1 cell cycle phase was on the decline. Proliferative rate was assessed by staining with 5,6-carboxyfluoresceindiacetate succinimidyl ester, showing a significant decrease in proliferation at all concentrations of both toxins. CONCLUSIONS In vivo treatment of the toxins was observed reduction in the incidence of nodules, and metastasis and antiproliferative inhibition capacity. This data strengthens the potential use jararhagin as an anti-neoplastic drug.
Collapse
Affiliation(s)
- Durvanei Augusto Maria
- />Biochemistry and Biophysics Laboratory, Butantan Institute, Av. Vital Brasil 1500, CEP 05503-900 Sao Paulo, SP Brazil
| | | | | | | |
Collapse
|
102
|
|
103
|
Abstract
Targeting prostate cancer metastasis has very high therapeutic potential. Prostate cancer is the second most common cause of cancer death among men in the USA, and death results from the development of metastatic disease. In order to metastasize, cancer cells must complete a series of steps that together constitute the metastatic cascade. Each step therefore offers the opportunity for therapeutic targeting. However, practical limitations have served as limiting roadblocks to successfully targeting the metastatic cascade. They include our still-emerging understanding of the underlying biology, as well as the fact that many of the dysregulated processes have critical functionality in otherwise normal cells. We provide a discussion of the underlying biology, as it relates to therapeutic targeting. Therapeutic inroads are rapidly being made, and we present a series of case studies to highlight key points. Finally, future perspectives related to drug discovery for antimetastatic agents are discussed.
Collapse
|
104
|
Pastushenko I, Vermeulen PB, Van den Eynden GG, Rutten A, Carapeto FJ, Dirix LY, Van Laere S. Mechanisms of tumour vascularization in cutaneous malignant melanoma: clinical implications. Br J Dermatol 2014; 171:220-33. [PMID: 24641095 DOI: 10.1111/bjd.12973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/02/2023]
Abstract
Malignant melanoma represents < 10% of all skin cancers but is responsible for the majority of skin-cancer-related deaths. Metastatic melanoma has historically been considered as one of the most therapeutically challenging malignancies. Fortunately, for the first time after decades of basic research and clinical investigation, new drugs have produced major clinical responses. Angiogenesis has been considered an important target for cancer treatment. Initial efforts have focused primarily on targeting endothelial and tumour-related vascular endothelial growth factor signalling. Here, we review different mechanisms of tumour vascularization described in melanoma and discuss the potential clinical implications.
Collapse
Affiliation(s)
- I Pastushenko
- Department of Dermatology, Hospital Clínico Universitario 'Lozano Blesa', Zaragoza, 50009, Spain
| | | | | | | | | | | | | |
Collapse
|
105
|
Ortenberg R, Galore-Haskel G, Greenberg I, Zamlin B, Sapoznik S, Greenberg E, Barshack I, Avivi C, Feiler Y, Zan-Bar I, Besser MJ, Azizi E, Eitan F, Schachter J, Markel G. CEACAM1 promotes melanoma cell growth through Sox-2. Neoplasia 2014; 16:451-60. [PMID: 24931667 PMCID: PMC4198694 DOI: 10.1016/j.neo.2014.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The prognostic value of the carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) in melanoma was demonstrated more than a decade ago as superior to Breslow score. We have previously shown that intercellular homophilic CEACAM1 interactions protect melanoma cells from lymphocyte-mediated elimination. Here, we study the direct effects of CEACAM1 on melanoma cell biology. By employing tissue microarrays and low-passage primary cultures of metastatic melanoma, we show that CEACAM1 expression gradually increases from nevi to metastatic specimens, with a strong dominance of the CEACAM1-Long tail splice variant. Using experimental systems of CEACAM1 knockdown and overexpression of selective variants or truncation mutants, we prove that only the full-length long tail variant enhances melanoma cell proliferation in vitro and in vivo. This effect is not reversed with a CEACAM1-blocking antibody, suggesting that it is not mediated by intercellular homophilic interactions. Downstream, CEACAM1-Long increases the expression of Sox-2, which we show to be responsible for the CEACAM1-mediated enhanced proliferation. Furthermore, analysis of the CEACAM1 promoter reveals two single-nucleotide polymorphisms (SNPs) that significantly enhance the promoter's activity compared with the consensus nucleotides. Importantly, case-control genetic SNP analysis of 134 patients with melanoma and matched healthy donors show that patients with melanoma do not exhibit the Hardy-Weinberg balance and that homozygous SNP genotype enhances the hazard ratio to develop melanoma by 35%. These observations shed new mechanistic light on the role of CEACAM1 in melanoma, forming the basis for development of novel therapeutic and diagnostic technologies.
Collapse
Affiliation(s)
- Rona Ortenberg
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gilli Galore-Haskel
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilanit Greenberg
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel
| | - Bella Zamlin
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Sapoznik
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel
| | - Eyal Greenberg
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Institute of Pathology, Sheba Medical Center, Ramat-Gan 526260, Israel
| | - Camila Avivi
- Institute of Pathology, Sheba Medical Center, Ramat-Gan 526260, Israel
| | - Yulia Feiler
- Cancer Research Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Israel Zan-Bar
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal J Besser
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ester Azizi
- Department of Dermatology, Sheba Medical Center, Ramat-Gan, Israel
| | - Friedman Eitan
- The Susanne-Levy Gertner Oncogenetics Unit, Danek Gertner Institute of Human Genetics, Ramat-Gan, Israel
| | - Jacob Schachter
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel
| | - Gal Markel
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Talpiot Medical Leadership Program, Sheba Medical Center, Ramat-Gan, Israel.
| |
Collapse
|
106
|
Kapp TG, Rechenmacher F, Sobahi TR, Kessler H. Integrin modulators: a patent review. Expert Opin Ther Pat 2014; 23:1273-95. [PMID: 24050747 DOI: 10.1517/13543776.2013.818133] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Integrins are heterodimeric cell surface receptors, which enable adhesion, proliferation, and migration of cells by recognizing binding motifs in extracellular matrix (ECM) proteins. As transmembrane linkers between the cytoskeleton and the ECM, they are able to recruit a huge variety of proteins and to influence signaling pathways bidirectionally, thereby regulating gene expression and cell survival. Hence, integrins play a key role in various physiological as well as pathological processes, which has turned them into an attractive target for pharmaceutical research. AREAS COVERED In this review, the latest therapeutic developments of drug candidates and recently patented integrin ligands are summarized. EXPERT OPINION Integrins have been proven to be valuable therapeutic targets in the treatment of several inflammatory and autoimmune diseases, where leukocyte adhesion processes are regulated by them. Furthermore, they play an important role in pathological angiogenesis and tumor metastasis, being a promising target for cancer therapy.
Collapse
Affiliation(s)
- Tobias G Kapp
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching , Germany
| | | | | | | |
Collapse
|
107
|
Håkanson M, Cukierman E, Charnley M. Miniaturized pre-clinical cancer models as research and diagnostic tools. Adv Drug Deliv Rev 2014; 69-70:52-66. [PMID: 24295904 PMCID: PMC4019677 DOI: 10.1016/j.addr.2013.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/09/2013] [Accepted: 11/24/2013] [Indexed: 12/14/2022]
Abstract
Cancer is one of the most common causes of death worldwide. Consequently, important resources are directed towards bettering treatments and outcomes. Cancer is difficult to treat due to its heterogeneity, plasticity and frequent drug resistance. New treatment strategies should strive for personalized approaches. These should target neoplastic and/or activated microenvironmental heterogeneity and plasticity without triggering resistance and spare host cells. In this review, the putative use of increasingly physiologically relevant microfabricated cell-culturing systems intended for drug development is discussed. There are two main reasons for the use of miniaturized systems. First, scaling down model size allows for high control of microenvironmental cues enabling more predictive outcomes. Second, miniaturization reduces reagent consumption, thus facilitating combinatorial approaches with little effort and enables the application of scarce materials, such as patient-derived samples. This review aims to give an overview of the state-of-the-art of such systems while predicting their application in cancer drug development.
Collapse
Affiliation(s)
- Maria Håkanson
- CSEM SA, Section for Micro-Diagnostics, 7302 Landquart, Switzerland
| | - Edna Cukierman
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | - Mirren Charnley
- Centre for Micro-Photonics and Industrial Research Institute Swinburne, Swinburne University of Technology, Victoria 3122, Australia.
| |
Collapse
|
108
|
Chung HJ, Mahalingam M. Angiogenesis, vasculogenic mimicry and vascular invasion in cutaneous malignant melanoma – implications for therapeutic strategies and targeted therapies. Expert Rev Anticancer Ther 2014; 14:621-39. [DOI: 10.1586/14737140.2014.883281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
109
|
Bramswig KH, Poettler M, Unseld M, Wrba F, Uhrin P, Zimmermann W, Zielinski CC, Prager GW. Soluble carcinoembryonic antigen activates endothelial cells and tumor angiogenesis. Cancer Res 2013; 73:6584-96. [PMID: 24121495 DOI: 10.1158/0008-5472.can-13-0123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carcinoembryonic antigen (CEA, CD66e, CEACAM-5) is a cell-surface-bound glycoprotein overexpressed and released by many solid tumors that has an autocrine function in cancer cell survival and differentiation. Soluble CEA released by tumors is present in the circulation of patients with cancer, where it is used as a marker for cancer progression, but whether this form of CEA exerts any effects in the tumor microenvironment is unknown. Here, we present evidence that soluble CEA is sufficient to induce proangiogenic endothelial cell behaviors, including adhesion, spreading, proliferation, and migration in vitro and tumor microvascularization in vivo. CEA-induced activation of endothelial cells was dependent on integrin β-3 signals that activate the focal-adhesion kinase and c-Src kinase and their downstream MAP-ERK kinase/extracellular signal regulated kinase and phosphoinositide 3-kinase/Akt effector pathways. Notably, while interference with VEGF signaling had no effect on CEA-induced endothelial cell activation, downregulation with the CEA receptor in endothelial cells attenuated CEA-induced signaling and tumor angiogenesis. Corroborating these results clinically, we found that tumor microvascularization was higher in patients with colorectal cancer exhibiting higher serum levels of soluble CEA. Together, our results elucidate a novel function for soluble CEA in tumor angiogenesis.
Collapse
Affiliation(s)
- Kira H Bramswig
- Authors' Affiliations: Clinical Division of Oncology, Department of Medicine I and Comprehensive Cancer Center; Institute of Clinical Pathology; Department of Vascular Biology and Thrombosis Research, Centre for Bio-Molecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria; and Tumor Immunology Laboratory, LIFE-Center, Klinikum Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Fang H, Declerck YA. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 2013; 73:4965-77. [PMID: 23913938 DOI: 10.1158/0008-5472.can-13-0661] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is clear that tumor cells do not act alone but in close interaction with the extracellular matrix and with stromal cells in the tumor microenvironment (TME). As our understanding of tumor cell-stroma interactions increased over the last two decades, significant efforts have been made to develop agents that interfere with these interactions. Here, we discuss four different therapeutic strategies that target the TME, focusing on agents that are at the most advanced stage of preclinical or clinical development. We end this review by outlining some of the lessons we have learned so far from the development of TME-targeting agents.
Collapse
Affiliation(s)
- Hua Fang
- Division of Hematology-Oncology, University of Southern California, Los Angeles, Los Angeles, USA
| | | |
Collapse
|
111
|
Abstract
Integrins are transmembrane receptors that mediate cell adhesion to neighboring cells and to the extracellular matrix. Here, the various modes in which integrin-mediated adhesion regulates intracellular signaling pathways impinging on cell survival, proliferation, and differentiation are considered. Subsequently, evidence that integrins also control crucial signaling cascades in cancer cells is discussed. Lastly, the important role of integrin signaling in tumor cells as well as in stromal cells that support cancer growth, metastasis, and therapy resistance indicates that integrin signaling may be an attractive target for (combined) cancer therapy strategies. Current approaches to target integrins in this context are reviewed.
Collapse
|
112
|
Fibroblast-mediated drug resistance in cancer. Biochem Pharmacol 2013; 85:1033-41. [DOI: 10.1016/j.bcp.2013.01.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 02/07/2023]
|
113
|
Abstract
During angiogenesis, αv integrins are overexpressed on the endothelial cell surface to facilitate the growth and survival of newly forming vessels. Accordingly, blocking αv integrin function by disrupting ligand binding can produce an antiangiogenic effect. Although the integrin ectodomain regulates ligand binding specificity, the short cytoplasmic tail facilitates intracellular signaling pathways through the recruitment and activation of specific kinases and signaling intermediates. This in turn controls endothelial cell adhesion, morphology, migration, invasion, proliferation, and survival. These same integrin-mediated signaling pathways are exploited in cancer to promote the invasiveness and survival of tumor cells and to manipulate the host microenvironment to provide ample blood vessel and stromal resources to support tumor growth and metastatic spread. Because expression of αv integrins on distinct cell types contributes to cancer growth, αv integrin antagonists have the potential to disrupt multiple aspects of disease progression.
Collapse
Affiliation(s)
- Sara M Weis
- Moores UCSD Cancer Center, and University of California, San Diego, La Jolla, California 92093-0803, USA; Department of Pathology, University of California, San Diego, La Jolla, California 92093-0803, USA
| | | |
Collapse
|
114
|
A randomized phase II study of cilengitide (EMD 121974) in patients with metastatic melanoma. Melanoma Res 2012; 22:294-301. [PMID: 22668797 DOI: 10.1097/cmr.0b013e32835312e4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cilengitide (EMD 121974) is a selective inhibitor of integrins αvβ3 and αvβ5. The αvβ3 promotes the proliferation of tumor-associated endothelial cells and potentially the survival of melanoma cells. We conducted a randomized phase II trial in patients with metastatic melanoma to evaluate the clinical efficacy of cilengitide. Patients with stage IV or unresectable stage III melanoma who were either chemonaive or who had previously received one systemic therapy were enrolled. Patients were randomly assigned to either 500 or 2000 mg of cilengitide administered intravenously twice weekly. The primary aim of this study was to determine the progression-free survival rate at 8 weeks. Tumor samples and blood samples were collected for pharmacodynamic and pharmacokinetic studies. Twenty-nine patients were enrolled, of whom 26 were treated (14 at 500 mg and 12 at 2000 mg). Among those treated, only three were progression free at 8 weeks: two in the 500 mg arm and one in the 2000 mg arm. One patient in the 2000 mg arm showed a prolonged partial response after an initial 28% enlargement of her target lesions. The treatment was well tolerated without clinically significant adverse events. The sole responder and one of two patients with stable disease had no αvβ3 expression at baseline. Overall, αvβ3 expression was decreased by day 8 of the treatment (P=0.05). Cilengitide was well tolerated by patients in both the treatment arms but had minimal clinical efficacy as a single-agent therapy for metastatic melanoma, and the efficacy was not related to baseline αvβ3 expression.
Collapse
|
115
|
Georgoulis A, Havaki S, Drosos Y, Goutas N, Vlachodimitropoulos D, Aleporou-Marinou V, Kittas C, Marinos E, Kouloukoussa M. RGD binding to integrin alphavbeta3 affects cell motility and adhesion in primary human breast cancer cultures. Ultrastruct Pathol 2012. [PMID: 23181508 DOI: 10.3109/01913123.2012.681834] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Integrins mediate cell adhesion to the extracellular matrix. Integrin alphavbeta3 recognizes the RGD motif as a ligand-binding site and has been associated with high malignant potential in breast cancer cells, signaling the onset of widespread metastasis. In recent years, several antagonists of integrin alphavbeta3, including RGD peptides, have been used as potential anti-cancer agents. In the present work, the effect of the linear RGD hexapeptide GRGDSP was studied, for the first time, on breast tumor explants, as well as on well-spread human breast cancer cells from primary cultures, using the explant technique, to clarify the role of this peptide in the suppression of breast cancer cell migration. The results showed that incubation of breast tumor explants with RGD peptide at the beginning of culture development inhibited completely the migration of cancer cells out of the tissue fragment as revealed by electron microscopy. RGD incubation of well-spread breast cancer cells from primary culture resulted in rounding and shrinkage of the cells accompanied by altered distribution of integrin alphavbeta3 and concomitant F-actin cytoskeletal disorganization, as revealed by immunofluorescence. Electron immunocytochemistry showed aggregation of integrin alphavbeta3 at the cell periphery and its detection in noncoated vesicles. However, Western immunoblotting showed no change in beta3 subunit expression, despite the altered distribution of the integrin alphavbeta3. In light of the above, it appears that the RGD peptide plays an important role in the modulation of cell motility and in the perturbation of cell attachment affecting the malignant potential of breast cancer cells in primary cultures.
Collapse
Affiliation(s)
- Anastasios Georgoulis
- Laboratory of Histology and Embryology, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Velho TR. Metastatic melanoma - a review of current and future drugs. Drugs Context 2012; 2012:212242. [PMID: 24432031 PMCID: PMC3885142 DOI: 10.7573/dic.212242] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 12/21/2022] Open
Abstract
Background: Melanoma is one of the most aggressive cancers, and it is estimated that 76,250 men and women will be diagnosed with melanoma of the skin in the USA in 2012. Over the last few decades many drugs have been developed but only in 2011 have new drugs demonstrated an impact on survival in metastatic melanoma. Methods: A systematic search of literature was conducted, and studies providing data on the effectiveness of current and/or future drugs used in the treatment of metastatic melanoma were selected for review. This review discusses the advantages and limitations of these agents, evaluating past, current and future clinical trials designed to overcome such limitations. Results: To date, there are four drugs approved by the Food and Drug Administration for melanoma (dacarbazine, interleukin-2, ipilimumab and vemurafenib). Despite efforts to develop new drugs, few of them have demonstrated any clinical benefits. Approved in 1975, dacarbazine remains the gold standard in chemotherapy, although ipilimumab and vemurafenib have raised many hopes in the last few years. Combining dacarbazine or other chemotherapy agents with new pharmacological agents may be a new way to achieve better clinical responses in patients with metastatic melanoma. Discussion: Advances in the molecular knowledge of melanoma have led to major improvements in the treatment of patients with metastatic melanoma, providing new targets and insights. However, heterogeneity amongst study populations, different approaches to treatment and the different melanoma types and localisations included in the trials makes their comparison difficult. New studies focusing on drugs developed in recent decades are warranted.
Collapse
|
117
|
Zhang J, Liu J. Tumor stroma as targets for cancer therapy. Pharmacol Ther 2012; 137:200-15. [PMID: 23064233 DOI: 10.1016/j.pharmthera.2012.10.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 12/16/2022]
Abstract
Cancer is not only composed malignant epithelial component but also stromal components such as fibroblasts, endothelial cells, and inflammatory cells, by which an appropriate tumor microenvironment (TME) is formed to promote tumorigenesis, progression, and metastasis. As the most abundant component in the TME, cancer-associated fibroblasts (CAFs) are involved in multifaceted mechanistic details including remodeling the extracellular matrix, suppressing immune responses, and secreting growth factors and cytokines that mediate signaling pathways to extensively affect tumor cell growth and invasiveness, differentiation, angiogenesis, and chronic inflammatory milieu. Today, more and more therapeutic strategies are purposefully designed to target the TME as well as tumor cells. This review will focus on the role of CAFs in tumor development and the novel strategies to target this component to inhibit the tumor growth.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology, State Key Laboratory of Tumor Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| | | |
Collapse
|
118
|
A novel radiofluorinated agouti-related protein for tumor angiogenesis imaging. Amino Acids 2012; 44:673-81. [PMID: 22945905 DOI: 10.1007/s00726-012-1391-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
A novel protein scaffold based on the cystine knot domain of the agouti-related protein (AgRP) has been used to engineer mutants that can bind to the α(v)β(3) integrin receptor with high affinity and specificity. In the current study, an (18)F-labeled AgRP mutant (7C) was prepared and evaluated as a positron emission tomography (PET) probe for imaging tumor angiogenesis. AgRP-7C was synthesized by solid phase peptide synthesis and site-specifically conjugated with 4-nitrophenyl 2-(18/19)F-fluoropropionate ((18/19)F-NFP) to produce the fluorinated peptide, (18/19)F-FP-AgRP-7C. Competition binding assays were used to measure the relative affinities of AgRP-7C and (19)F-FP-AgRP-7C to human glioblastoma U87MG cells that overexpress α(v)β(3) integrin. In addition, biodistribution, metabolic stability, and small animal PET imaging studies were conducted with (18)F-FP-AgRP-7C using U87MG tumor-bearing mice. Both AgRP-7C and (19)F-FP-AgRP-7C specifically competed with (125)I-echistatin for binding to U87MG cells with half maximal inhibitory concentration (IC(50)) values of 9.40 and 8.37 nM, respectively. Non-invasive small animal PET imaging revealed that (18)F-FP-AgRP-7C exhibited rapid and good tumor uptake (3.24 percentage injected dose per gram [% ID/g] at 0.5 h post injection [p.i.]). The probe was rapidly cleared from the blood and from most organs, resulting in excellent tumor-to-normal tissue contrasts. Tumor uptake and rapid clearance were further confirmed with biodistribution studies. Furthermore, co-injection of (18)F-FP-AgRP-7C with a large molar excess of blocking peptide c(RGDyK) significantly inhibited tumor uptake in U87MG xenograft models, demonstrating the integrin-targeting specificity of the probe. Metabolite assays showed that the probe had high stability, making it suitable for in vivo applications. (18)F-FP-AgRP-7C exhibits promising in vivo properties such as rapid tumor targeting, good tumor uptake, and excellent tumor-to-normal tissue ratios, and warrants further investigation as a novel PET probe for imaging tumor angiogenesis.
Collapse
|
119
|
|
120
|
Besse B, Tsao LC, Chao DT, Fang Y, Soria JC, Almokadem S, Belani CP. Phase Ib safety and pharmacokinetic study of volociximab, an anti-α5β1 integrin antibody, in combination with carboplatin and paclitaxel in advanced non-small-cell lung cancer. Ann Oncol 2012; 24:90-6. [PMID: 22904239 DOI: 10.1093/annonc/mds281] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This phase Ib study evaluated volociximab, an anti-α5β1 integrin antibody, in combination with carboplatin (Eli Lilly and Co., Indianapolis, IN) and paclitaxel (Taxol) in advanced, untreated non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Three cohorts were treated with volociximab (10, 20, or 30 mg/kg) for up to six 3-week cycles in combination with carboplatin-paclitaxel chemotherapy and continued as maintenance therapy for patients with stable disease (SD) or better. Dose-limiting toxic effects, adverse events (AEs), pharmacokinetics, and anti-volociximab antibodies were assessed. RESULTS A maximum tolerated dose was not reached up to the maximum planned dose of 30 mg/kg. In 29 patients who received volociximab, the most common grade≥3 AEs were neutropenia (24%), hyponatremia (17%), and fatigue (10%). Three patients experienced volociximab-related serious AEs. No hemorrhages were observed. Of 33 patients enrolled, 8 (24%) achieved a partial response and 17 (52%) had SD. The median progression-free survival was 6.3 months (95% confidence interval 5.5-8.1). Levels of potential biomarkers of angiogenesis or metastasis were reduced following six cycles of treatment. CONCLUSIONS Volociximab combined with carboplatin and paclitaxel was generally well-tolerated and showed preliminary evidence of efficacy in advanced NSCLC.
Collapse
Affiliation(s)
- B Besse
- Cancer Medicine/Thoracic Unit, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
121
|
Transforming growth factor (TGF)-β expression and activation mechanisms as potential targets for anti-tumor therapy and tumor imaging. Pharmacol Ther 2012; 135:123-32. [DOI: 10.1016/j.pharmthera.2012.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 11/23/2022]
|
122
|
Antiangiogenic therapy for glioma. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:483040. [PMID: 22830012 PMCID: PMC3399341 DOI: 10.1155/2012/483040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 01/18/2023]
Abstract
Currently, antiangiogenic agents are routinely used for the treatment of patients with glioma. However, despite advances in pharmacological and surgical therapy, glioma remains an incurable disease. Indeed, the formation of an abnormal tumor vasculature and the invasion of glioma cells along neuronal tracts are proposed to comprise the major factors that are attributed to the therapeutic resistance of these tumors. The development of curative therapeutic modalities for the treatment of glioma requires further investigation of the molecular mechanisms regulating angiogenesis and invasion. In this review, we discuss the molecular characteristics of angiogenesis and invasion in human malignant glioma, we present several available drugs that are used or can potentially be utilized for the inhibition of angiogenesis in glioma, and we focus our attention on the key mediators of the molecular mechanisms underlying the resistance of glioma to antiangiogenic therapy.
Collapse
|
123
|
Goodman SL, Picard M. Integrins as therapeutic targets. Trends Pharmacol Sci 2012; 33:405-12. [DOI: 10.1016/j.tips.2012.04.002] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 01/26/2023]
|
124
|
Edkins AL, Borland G, Acharya M, Cogdell RJ, Ozanne BW, Cushley W. Differential regulation of monocyte cytokine release by αV and β(2) integrins that bind CD23. Immunology 2012; 136:241-51. [PMID: 22348662 DOI: 10.1111/j.1365-2567.2012.03576.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The human soluble CD23 (sCD23) protein displays highly pleiotropic cytokine-like activity. Monocytic cells express the sCD23-binding integrins αVβ(3), αVβ(5), αMβ(2) and αXβ(2), but it is unclear which of these four integrins most acutely regulates sCD23-driven cytokine release. The hypothesis that ligation of different sCD23-binding integrins promoted release of distinct subsets of cytokines was tested. Lipopolysaccharide (LPS) and sCD23 promoted release of distinct groups of cytokines from the THP-1 model cell line. The sCD23-driven cytokine release signature was characterized by elevated amounts of RANTES (CCL5) and a striking increase in interleukin-8 (IL-8; CXCL8) secretion, but little release of macrophage inflammatory protein 1β (MIP-1β; CCL4). Antibodies to αVβ(3) or αXβ(2) both promoted IL-8 release, consistent with the sCD23-driven pattern, but both also evoked strong MIP-1β secretion; simultaneous ligation of these two integrins further increased cytokine secretion but did not alter the pattern of cytokine output. In both model cell lines and primary tissue, integrin-mediated cytokine release was more pronounced in immature monocyte cells than in mature cells. The capacity of anti-integrin monoclonal antibodies to elicit a cytokine release response is epitope-dependent and also reflects the differentiation state of the cell. Although a pattern of cytokine release identical to that provoked by sCD23 could not be elicited with any individual anti-integrin monoclonal antibody, αXβ(2) and αVβ(3) appear to regulate IL-8 release, a hallmark feature of sCD23-driven cytokine secretion, more acutely than αMβ(2) or αVβ(5).
Collapse
Affiliation(s)
- Adrienne L Edkins
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
125
|
Waterhouse DN, Yapp D, Verreault M, Anantha M, Sutherland B, Bally MB. Lipid-based nanoformulation of irinotecan: dual mechanism of action allows for combination chemo/angiogenic therapy. Nanomedicine (Lond) 2012; 6:1645-54. [PMID: 22077466 DOI: 10.2217/nnm.11.140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A number of studies have outlined the antiangiogenic effects of cytotoxic agents when administered frequently at low doses. These studies suggest that the effect of the cytotoxic agent is on the vasculature within the tumor and it is assumed that there is little or negligible cytotoxicity. Liposomal drug delivery systems have the ability to provide a dual mechanism of activity where tumor accumulation can deliver high local concentrations of the drug at the site of action with concomitant slow release of the drug from carriers in the blood compartment that results in antivascular effects, similar to that achieved when dosing frequently at low levels. Although this dual mechanism of activity may be linked to other lipid nanoparticle formulations of anticancer drugs, this article summarizes the evidence supporting direct (cytotoxic) and indirect (antivascular) actions of a liposomal formulation of irinotecan.
Collapse
Affiliation(s)
- Dawn N Waterhouse
- BC Cancer Agency, Department of Experimental Therapeutics, 675 West 10th Avenue, Vancouver BC Canada, V5Z 1L3.
| | | | | | | | | | | |
Collapse
|
126
|
Cukierman E, Bassi DE. The mesenchymal tumor microenvironment: a drug-resistant niche. Cell Adh Migr 2012; 6:285-96. [PMID: 22568991 DOI: 10.4161/cam.20210] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Drug and radiation resistance represent a challenge for most anticancer therapies. Diverse experimental approaches have provided evidence that the tumor-associated microenvironment constitutes both a protective shell that impedes drug or radiation access and a permissive or promotive microenvironment that encourages a nurturing cancer (i.e., cancer stem cell) niche where tumor cells overcome treatment- and cancer-induced stresses. Better understanding of the effects of the tumor microenvironment on cancer cells before, during and immediately after chemo- or radiotherapy is imperative to design new therapies aimed at targeting this tumor-protective niche. This review summarizes some of the known mesenchymal stromal effects that account for drug resistance, the main signal transduction pathways associated with this resistance and the therapeutic efforts directed to increase the success of current therapies. Special emphasis is given to environment-mediated drug resistance in general and to cell adhesion-mediated drug resistance in particular.
Collapse
Affiliation(s)
- Edna Cukierman
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | | |
Collapse
|
127
|
Martí RM, Sorolla A, Yeramian A. New therapeutic targets in melanoma. ACTAS DERMO-SIFILIOGRAFICAS 2012; 103:579-90. [PMID: 22261672 DOI: 10.1016/j.ad.2011.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/25/2011] [Accepted: 08/10/2011] [Indexed: 01/07/2023] Open
Abstract
Research into molecular targets for drug development in melanoma is starting to bear fruit. Of the drugs tested to date in patients with metastatic melanoma, those that have yielded the best results are V600E BRAF inhibitors in melanomas carrying the V600E mutation; c-kit tyrosine kinase activity inhibitors in melanomas carrying c-kit mutations; and anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) antibodies, which block the mechanisms involved in immune tolerance. Many problems have yet to be resolved in these areas, however, such as the rapid development of resistance to BRAF and c-kit inhibitors and the lack of biomarkers to predict treatment response in the case of CTLA-4 blockers. We review the results of targeted therapy with these and other drugs in metastatic melanoma and discuss what the future holds for this field.
Collapse
Affiliation(s)
- R M Martí
- Servicio de Dermatología, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLLEIDA, Lleida, Spain.
| | | | | |
Collapse
|
128
|
Abdullah SE, Perez-Soler R. Mechanisms of resistance to vascular endothelial growth factor blockade. Cancer 2011; 118:3455-67. [PMID: 22086782 DOI: 10.1002/cncr.26540] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/28/2011] [Accepted: 08/09/2011] [Indexed: 12/13/2022]
Abstract
Angiogenesis is essential for the growth of primary tumors and for their metastasis. This process is induced by factors, such as vascular endothelial growth factors (VEGFs), that bind to transmembrane VEGF receptors (VEGFRs). VEGF-A is the primary factor involved with angiogenesis; it binds to both VEGFR-1 and VEGFR-2. The inhibition of angiogenesis by obstructing VEGF-A signaling has been investigated as a method to treat solid tumors, but the development of resistance to this blockade has complicated treatment. The major mechanisms of this resistance to VEGF-A blockade include signaling by redundant receptors, such as the fibroblast growth factors, angiopoietin-1, ephrins, and other forms of VEGF. Other major mechanisms of resistance are increased metastasis of hypoxia-resistant tumor cells, recruitment of cell types capable of promoting VEGF-independent angiogenesis, and increased circulation of nontumor proangiogenic factors. Additional mechanisms of resistance to VEGF-A blockade include heterogeneity of responsiveness among tumor cells, use of anti-VEGF-A agents at insufficient doses or for insufficient duration, altered sensitivity to anti-VEGF-A agents by mutations in endothelial cells or vascular remodeling, maintenance of vascular sleeves that allow for easy regrowth of tumor vasculature upon discontinuation of therapy, vascular cooption, and intussusceptive angiogenesis. An understanding of these mechanisms may lead to the development of targeted therapies that overcome this resistance. Some of these approaches include the combined inhibition of redundant angiogenic pathways, proper patient selection for various therapies based on gene expression profiles, blockade of cellular migration by inhibition of colony-stimulating factor, or the use of agents to disrupt vascular architecture.
Collapse
Affiliation(s)
- Shaad E Abdullah
- Division of Hematology/Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | | |
Collapse
|
129
|
Integrin-mediated cell-matrix interaction in physiological and pathological blood vessel formation. JOURNAL OF ONCOLOGY 2011; 2012:125278. [PMID: 21941547 PMCID: PMC3175391 DOI: 10.1155/2012/125278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/15/2011] [Indexed: 02/07/2023]
Abstract
Physiological as well as pathological blood vessel formation are fundamentally dependent on cell-matrix interaction. Integrins, a family of major cell adhesion receptors, play a pivotal role in development, maintenance, and remodeling of the vasculature. Cell migration, invasion, and remodeling of the extracellular matrix (ECM) are integrin-regulated processes, and the expression of certain integrins also correlates with tumor progression. Recent advances in the understanding of how integrins are involved in the regulation of blood vessel formation and remodeling during tumor progression are highlighted. The increasing knowledge of integrin function at the molecular level, together with the growing repertoire of integrin inhibitors which allow their selective pharmacological manipulation, makes integrins suited as potential diagnostic markers and therapeutic targets.
Collapse
|
130
|
Palmer TD, Ashby WJ, Lewis JD, Zijlstra A. Targeting tumor cell motility to prevent metastasis. Adv Drug Deliv Rev 2011; 63:568-81. [PMID: 21664937 PMCID: PMC3132821 DOI: 10.1016/j.addr.2011.04.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/31/2011] [Accepted: 04/05/2011] [Indexed: 01/15/2023]
Abstract
Mortality and morbidity in patients with solid tumors invariably result from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities.
Collapse
Affiliation(s)
- Trenis D. Palmer
- Department of Pathology, Vanderbilt University, C2104A Medical Center North 1161 21 Ave. S., Nashville TN, 37232
| | - William J. Ashby
- Department of Pathology, Vanderbilt University, C2104A Medical Center North 1161 21 Ave. S., Nashville TN, 37232
| | - John D. Lewis
- London Regional Cancer Program, London Health Science Centre, A4-823 790 Commissioners Rd E London ON, N6A 4L6
| | - Andries Zijlstra
- Department of Pathology, Vanderbilt University, C2104A Medical Center North 1161 21 Ave. S., Nashville TN, 37232
| |
Collapse
|
131
|
Reardon DA, Neyns B, Weller M, Tonn JC, Nabors LB, Stupp R. Cilengitide: an RGD pentapeptide ανβ3 and ανβ5 integrin inhibitor in development for glioblastoma and other malignancies. Future Oncol 2011; 7:339-54. [PMID: 21417900 DOI: 10.2217/fon.11.8] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cilengitide, a cyclicized arginine-glycine-aspartic acid-containing pentapeptide, potently blocks ανβ3 and ανβ5 integrin activation. Integrins are upregulated in many malignancies and mediate a wide variety of tumor-stroma interactions. Cilengitide and other integrin-targeting therapeutics have preclinical activity against many cancer subtypes including glioblastoma (GBM), the most common and deadliest CNS tumor. Cilengitide is active against orthotopic GBM xenografts and can augment radiotherapy and chemotherapy in these models. In Phase I and II GBM trials, cilengitide and the combination of cilengitide with standard temozolomide and radiation demonstrate consistent antitumor activity and a favorable safety profile. Cilengitide is currently under evaluation in a pivotal, randomized Phase III study (Cilengitide in Combination With Temozolomide and Radiotherapy in Newly Diagnosed Glioblastoma Phase III Randomized Clinical Trial [CENTRIC]) for newly diagnosed GBM. In addition, randomized controlled Phase II studies with cilengitide are ongoing for non-small-cell lung cancer and squamous cell carcinoma of the head and neck. Cilengitide is the first integrin inhibitor in clinical Phase III development for oncology.
Collapse
Affiliation(s)
- David A Reardon
- Department of Surgery, Division of Neurosurgery, 047 Baker House, Duke University Medical Center, Box 3624, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
132
|
Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res Treat 2011; 128:7-21. [PMID: 21499686 DOI: 10.1007/s10549-011-1499-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/31/2011] [Indexed: 01/13/2023]
Abstract
Metastasis is responsible for the majority of breast cancer-related deaths. The metastatic spread of cancer cells is a complicated process that requires considerable flexibility in the adhesive properties of both tumor cells and other interacting cells. Cell adhesion molecules (CAMs) are membrane receptors that mediate cell-cell and cell-matrix interactions, and are essential for transducing intracellular signals responsible for adhesion, migration, invasion, angiogensis, and organ-specific metastasis. This review will discuss the recent advances in our understanding on the biological functions, signaling mechanisms, and therapeutic potentials of important CAMs involved in breast cancer metastasis.
Collapse
|
133
|
Abstract
Monoclonal antibodies (mAbs) have become one of the largest classes of new therapeutic agents approved for use in oncology, and have revolutionised the treatment of many human malignancies. Clinically useful mAbs can function through several different mechanisms, including inhibition of tumour-related signalling, induction of apoptosis, inhibition of angiogenesis, enhancing host immune response against cancer and targeted delivery of payloads (such as toxins, cytotoxic agents or radioisotopes) to the tumour site. The increasing knowledge of key molecules and cellular pathways involved in tumour induction and progression has led to a rise in the proportion of therapeutic mAbs entering clinical trials. These mAbs consist of various conventional or recombinant, murine, humanised, chimeric or fully human and fusion constructs. In this review, we provide an overview of mAbs approved for use in clinical oncology and those currently in clinical development. We also discuss the mechanisms of action of anti-cancer mAbs, as well as the antigen targets recognised by these antibodies.
Collapse
Affiliation(s)
- Vinochani Pillay
- Ludwig Institute for Cancer Research, Austin Hospital, Heidelberg, Victoria 3084, Australia
| | | | | |
Collapse
|
134
|
Hiscox S, Barrett-Lee P, Nicholson RI. Therapeutic targeting of tumor-stroma interactions. Expert Opin Ther Targets 2011; 15:609-21. [PMID: 21388336 DOI: 10.1517/14728222.2011.561201] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Cancers exist within a complex microenvironment populated by diverse cell types within a protein-rich extracellular matrix. It is becoming increasingly apparent that molecular interactions between epithelial cells and cells in the surrounding stroma promote growth, invasion and spread of the tumor itself and thus represents a crucial underlying driving force in tumorigenesis. AREAS COVERED This article reviews how key interactions between tumor epithelial cells and surrounding mesenchymal and immune cells can promote tumor progression and highlights molecular elements that might represent novel therapeutic targets. EXPERT OPINION The tumor microenvironment is increasingly being viewed as a potential therapeutic target with a number of strategies being developed to disrupt tumor-stroma interactions, in order to delay or circumvent tumor progression. Targeting elements of the tumor microenvironment, or signaling pathways in tumor cells activated as a consequence of stromal interactions, may prove a useful therapeutic strategy to prevent tumor development and progression. However, given the tumor cells' ability to circumvent various therapeutic agents when given as monotherapy, the success of these agents is likely to be seen when used in combination with existing treatments.
Collapse
Affiliation(s)
- Stephen Hiscox
- Cardiff University, Welsh School of Pharmacy, Cardiff, UK.
| | | | | |
Collapse
|
135
|
Abstract
Integrins are heterodimeric, transmembrane receptors that function as mechanosensors, adhesion molecules and signal transduction platforms in a multitude of biological processes. As such, integrins are central to the etiology and pathology of many disease states. Therefore, pharmacological inhibition of integrins is of great interest for the treatment and prevention of disease. In the last two decades several integrin-targeted drugs have made their way into clinical use, many others are in clinical trials and still more are showing promise as they advance through preclinical development. Herein, this review examines and evaluates the various drugs and compounds targeting integrins and the disease states in which they are implicated.
Collapse
|
136
|
Current World Literature. Curr Opin Support Palliat Care 2010; 4:293-304. [DOI: 10.1097/spc.0b013e328340e983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
137
|
Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 2010; 9:804-20. [PMID: 20885411 DOI: 10.1038/nrd3266] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets.
Collapse
Affiliation(s)
- Dermot Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| | | | | |
Collapse
|
138
|
Roesli C, Neri D. Methods for the identification of vascular markers in health and disease: from the bench to the clinic. J Proteomics 2010; 73:2219-29. [PMID: 20541635 DOI: 10.1016/j.jprot.2010.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/25/2010] [Accepted: 05/30/2010] [Indexed: 02/07/2023]
Abstract
Several diseases are characterized by changes in the molecular composition of vascular structures, thus offering the opportunity to use specific ligands (e.g., monoclonal antibodies) for imaging and therapy application. This novel pharmaceutical strategy, often referred to as "vascular targeting", promises to facilitate the discovery and development of selective biopharmaceuticals for the management of angiogenesis-related diseases. This article reviews novel biomedical applications based on vascular targeting strategies, as well as methodologies which have been used for the discovery of vascular markers of pathology.
Collapse
Affiliation(s)
- Christoph Roesli
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
139
|
Tumour-microenvironmental interactions: paths to progression and targets for treatment. Semin Cancer Biol 2010; 20:128-38. [DOI: 10.1016/j.semcancer.2010.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/24/2010] [Indexed: 01/01/2023]
|