101
|
Dubbeldam JL, den Boer-Visser AM. The central mesencephalic grey in birds: nucleus intercollicularis and substantia grisea centralis. Brain Res Bull 2002; 57:349-52. [PMID: 11922987 DOI: 10.1016/s0361-9230(01)00689-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The question discussed in this paper is, whether the dorsomedial part of the intercollicular nucleus and central mesencephalic grey of birds are comparable to (parts of) the periaqueductal grey in mammals. The mammalian periaqueductal grey, and the avian dorsomedial part of the intercollicular nucleus + central mesencephalic grey are each part of pathways in control of functions such as vocalization and sexual behavior. The connectivity and histochemical features of the dorsomedial intercollicular nucleus and central mesencephalic grey are partly different and also differ partly from those of the mammalian periaqueductal grey. It is suggested that these areas in mammals and birds form comparable links in the emotional motor pathway that has been defined before in mammals.
Collapse
Affiliation(s)
- J L Dubbeldam
- Evolutionary Morphology, IEES, Leiden University, The, Leiden, Netherlands.
| | | |
Collapse
|
102
|
Budzynski CA, Gagliardo A, Ioalé P, Bingman VP. Participation of the homing pigeon thalamofugal visual pathway in sun-compass associative learning. Eur J Neurosci 2002; 15:197-210. [PMID: 11860519 DOI: 10.1046/j.0953-816x.2001.01833.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ascending thalamofugal visual pathway in pigeons (Columba livia) terminates in the telencephalic wulst. Characterizing the role of this pathway in visually guided behaviour has remained a challenge. To determine whether this pathway, and in particular the wulst, may participate in sun-compass-guided behaviour in homing pigeons, intact, ectostriatum-lesioned or wulst-lesioned pigeons were trained to use their sun compass to locate the direction of a food reward in an outdoor, octagonal arena. Control and ectostriatum-lesioned pigeons learned the task well, and orientated appropriately during the first trial of the last three training sessions and after a phase-shift manipulation. In contrast, the wulst-lesioned pigeons learned the task but they took more sessions to learn, and their directional choices were more scattered during the first trial of the last three training sessions and after the phase-shift manipulation. A subsequent regression analysis indicated that deeper layers of the wulst might have made more of a contribution to the observed behavioural impairments. The data indicate that the homing pigeon wulst participates in visually guided behaviour when the sun compass is used to learn the directional location of a goal.
Collapse
Affiliation(s)
- Cheri A Budzynski
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind & Behaviour, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | | | | | | |
Collapse
|
103
|
Gould KL, Newman SW, Tricomi EM, DeVoogd TJ. The distribution of substance P and neuropeptide Y in four songbird species: a comparison of food-storing and non-storing birds. Brain Res 2001; 918:80-95. [PMID: 11684045 DOI: 10.1016/s0006-8993(01)02961-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The distributions of the neuropeptides substance P (SP) and neuropeptide Y (NPY) were investigated in four songbird species that differ in their food-storing behavior. The food-storing black-capped chickadee (Parus atricapillus) was compared to the non-storing blue tit (Parus caeruleus) and great tit (Parus major) within the avian family Paridae, as well as to the non-storing dark-eyed junco (Junco hyemalis). All four species showed a similar distribution of SP throughout the brain with the exception of two areas, the hippocampal complex (including hippocampus (Hp) and parahippocampus (APH)) and the Wulst (including the hyperstriatum accessorium (HA)). SP-like immunoreactivity was found in cells of the Hp in juncos, but not in the three parid species. Two areas within the APH and HA showed SP-like immunoreactivity in all four species. The more medial of these (designated SPm) is a distinctive field of fibers and terminals found throughout the APH and extending into the HA. A positive relationship between SPm and Hp volume was found for all four species with the chickadee having a significantly larger SPm area relative to telencephalon than the other species. The distribution of SP in this region may be related to differences in food-storing behavior. In contrast to substance P, NPY distribution throughout the brain was similar in all four species. Further, NPY-immunoreactive cells were found in the Hp of all four species and no species differences in the number of NPY cells was observed.
Collapse
Affiliation(s)
- K L Gould
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
104
|
Watanabe S. Effects of hippocampal lesions on repeated acquisition of spatial discrimination in pigeons. Behav Brain Res 2001; 120:59-66. [PMID: 11173085 DOI: 10.1016/s0166-4328(00)00358-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Anatomical studies of avian hippocampus suggest this structure is a counterpart of that of mammals, and allometric studies of food storing birds support the idea that the avian hippocampus has spatial cognitive functions. In the present study, the spatial cognitive function of hippocampus in pigeons was examined by lesion experiments. Pigeons were trained on either a spatial discrimination, or a spatial discrimination with an added color cue, using a repeated acquisition procedure. In the spatial task, the pigeons were trained to discriminate the position of three keys. Each time the subjects reached the criterion, they were trained on different discriminations in which one out of two previously incorrect keys became the correct key. In the task with color added, each key had its own color, so the subject had both spatial and color cues for the discrimination. The hippocampal lesions disturbed the acquisition of the spatial discrimination, but not in the task in which color cues were added. These results suggest that the avian hippocampus have a crucial role in acquisition of spatial discriminations.
Collapse
Affiliation(s)
- S Watanabe
- Department of Psychology, Keio University, Mita 2-15-45, Minato-Ku, Tokyo, Japan.
| |
Collapse
|
105
|
Gagliardo A, Ioalè P, Odetti F, Bingman VP, Siegel JJ, Vallortigara G. Hippocampus and homing in pigeons: left and right hemispheric differences in navigational map learning. Eur J Neurosci 2001; 13:1617-24. [PMID: 11328355 DOI: 10.1046/j.0953-816x.2001.01522.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One-month-old, inexperienced homing pigeons, prior to any opportunity to learn a navigational map, were subjected to either right or left unilateral ablation of the hippocampal formation (HF). These pigeons were then held together with a group of age-matched control birds in an outdoor aviary, where they were kept for about 3 months with the opportunity to learn a navigational map. When subsequently tested for navigational map learning at about 4 months of age posthatching, control and right HF-ablated pigeons were equally good at orienting homeward from distant, unfamiliar locations, indicating successful navigational map learning. By contrast, left HF-ablated pigeons were impaired in orienting homeward, indicating a failure to learn a navigational map. Interestingly, both right and left HF-ablated pigeons displayed impaired homing performance relative to controls. These results suggest that different aspects of homing pigeon navigation may be lateralized to different hemispheres, and in particular, the HF of the different hemispheres. The left HF appears critical for navigational map learning, i.e. determining an approximate direction home from distant, unfamiliar locations. The right HF, and possibly the left HF as well, appear to play an important role in local navigation near the loft, which is likely based on familiar landmarks.
Collapse
Affiliation(s)
- A Gagliardo
- Dipartimento di Etologia, Ecologia ed Evoluzione, Università di Pisa, Via Volta 6, I-56126 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
106
|
Day LB, Crews D, Wilczynski W. Effects of medial and dorsal cortex lesions on spatial memory in lizards. Behav Brain Res 2001; 118:27-42. [PMID: 11163631 DOI: 10.1016/s0166-4328(00)00308-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In mammals and birds, the hippocampus is a major learning and memory center that plays a prominent role in spatial memory, the use of distal cues to guide navigation. The role of reptilian hippocampal homologues, the medial and dorsal cortex, in spatial memory has not been thoroughly investigated. The medial and dorsal cortex of reptiles is known to play a role in learning both tasks that are hippocampally dependent and tasks that are not hippocampally dependent in mammals and birds. In order to examine the specific role of the medial and dorsal cortex in spatial memory, we trained medial cortex, dorsal cortex, and sham lesioned Cnemidophorus inornatus lizards to locate the one heated rock of four identical rocks spaced evenly around the perimeter of a circular, sand filled, arena in a cool room. We used probe trials to examine the strategies used by lizards to locate the goal. Medial cortex lesions and dorsal cortex lesions slowed acquisition and altered the strategies used to locate the goal. However, none of the lizards adopted a spatial strategy to locate the goal suggesting that the dorsal cortex and medial cortex are involved in using non-spatial strategies for navigation.
Collapse
Affiliation(s)
- L B Day
- Department of Ecology Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
107
|
Colombo M, Broadbent N. Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neurosci Biobehav Rev 2000; 24:465-84. [PMID: 10817844 DOI: 10.1016/s0149-7634(00)00016-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of hippocampal lesions on the processing and retention of visual and spatial information in birds and mammals is reviewed. Both birds and mammals with damage to the hippocampus are severely impaired on a variety of spatial tasks, such as navigation, maze learning, and the retention of spatial information. In contrast, both birds and mammals with damage to the hippocampus are not impaired on a variety of visual tasks, such as delayed matching-to-sample, concurrent discrimination, or retention of a visual discrimination. In addition, both birds and mammals with hippocampal damage display impairments in the acquisition of an autoshaped response, as well as alterations in response suppression. These findings suggest that the avian hippocampus is a functional homologue of the mammalian hippocampus, and that in both birds and mammals the hippocampus is important for the processing and retention of spatial, rather than purely visual information.
Collapse
Affiliation(s)
- M Colombo
- Department of Psychology and The Center for Neuroscience, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
108
|
Abstract
In experiment 1, pigeons were trained on spatial or color autodiscrimination. Presentation of one of two keys or one of two colors was followed by food presentation. However, the other side of the keys or the other color was not. The hippocampal lesions disturbed the acquisition of spatial discrimination but not of color discrimination. In experiment 2, pigeons were preoperatively trained the spatial autodiscrimination, then received the hippocampal lesions. The subjects maintained the discrimination. These results suggest that the avian hippocampus plays a crucial role in acquisition of spatial discrimination.
Collapse
Affiliation(s)
- S Watanabe
- Department of Psychology, Keio University, Tokyo, Japan.
| |
Collapse
|
109
|
Abstract
Recent studies in rodents have implicated the hippocampal formation in "path integration": the ability to use self-motion cues (ideothesis) to guide spatial behavior. Such models of hippocampal function assume that self-motion information arises from the vestibular system. In the present study we used the retrograde tracer cholera toxin subunit B, the anterograde tracer biotinylated dextran amine, and standard extracellular recording techniques to investigate whether the hippocampal formation [which consists of the hippocampus proper and the area parahippocampalis (Hp/APH) in pigeons] receives information from the accessory optic system (AOS). The AOS is a visual pathway dedicated to the analysis of the "optic flow fields" that result from self-motion. Optic flow constitutes a rich source of ideothetic information that could be used for navigation. Both the nucleus of the basal optic root (nBOR) and nucleus lentiformis mesencephali of the AOS were shown to project to the area ventralis of Tsai (AVT), which in turn was shown to project to the Hp/APH. A smaller direct projection from the nBOR pars dorsalis to the hippocampus was also revealed. During extracellular recording experiments, about half of the cells within the AVT responded to optic flow stimuli. Together these results illustrate that the Hp/APH receives information about self-motion from the AOS. We postulate that this optic flow information is used for path integration. A review of the current literature suggests that an analogous neuronal circuit exists in mammals, but it has simply been overlooked.
Collapse
|
110
|
Kröner S, Güntürkün O. Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): a retro- and anterograde pathway tracing study. J Comp Neurol 1999; 407:228-60. [PMID: 10213093 DOI: 10.1002/(sici)1096-9861(19990503)407:2<228::aid-cne6>3.0.co;2-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The avian caudolateral neostriatum (NCL) was first identified on the basis of its dense dopaminergic innervation. This fact and data from lesion studies have led to the notion that NCL might be the avian equivalent of prefrontal cortex (PFC). A key feature of the PFC is the ability to integrate information from all modalities needed for the generation of motor plans. By using antero- and retrograde pathway tracing techniques, we investigated the organization of sensory afferents to the NCL and the connections with limbic and somatomotor centers in the basal ganglia and archistriatum. Data from all tracing experiments were compared with the distribution of tyrosine-hydroxylase (TH)-immunoreactive fibers, serving as a marker of dopaminergic innervation. The results show that NCL is reciprocally connected with the secondary sensory areas of all modalities and with at least two parasensory areas. Retrograde tracing also demonstrated further afferents from the deep layers of the Wulst and from the frontolateral neostriatum as well as the sources of thalamic input. Efferents of NCL project onto parts of the avian basal ganglia considered to serve somatomotor or limbic functions. Projections to the archistriatum are mainly directed to the somatomotor part of the intermediate archistriatum. In addition, cells in caudal NCL were found to be connected with the ventral and posterior archistriatum, which are considered avian equivalents of mammalian amygdala. All afferents and projection neurons were confined to the plexus of densest TH innervation. Our results show that the NCL is positioned to amalgamate information from all modalities and to exert control over limbic and somatomotor areas. This organization might comprise the neural basis for such complex behaviours as working memory or spatial orientation.
Collapse
Affiliation(s)
- S Kröner
- AE Biopsychologie, Fakultät für Psychologie, Ruhr-Universität Bochum, Germany.
| | | |
Collapse
|
111
|
Wieraszko A. Avian hippocampus as a model to study spatial orientation-related synaptic plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 446:107-29. [PMID: 10079840 DOI: 10.1007/978-1-4615-4869-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- A Wieraszko
- Department of Biology/Program in Neuroscience, College of Staten Island/CUNY, New York 10314, USA.
| |
Collapse
|
112
|
Abstract
The avian hippocampal formation (HP) is considered to be homologous to the mammalian hippocampus on the basis of topography, developmental origin and its role in processing spatial memory. However, the morphological organization of the avian HP is very different from that of mammals and components similar to the subdivisions of the mammalian structure are not readily recognizable. In passerine birds, three spatially and morphologically distinct populations of Calbindin immunoreactive neurones are found in the dorsolateral (DL), dorsomedial (DM) and ventral (V) aspects of HP. Iontophoresis of Phaseolus vulgaris leucoagglutinin revealed three consistently different projection patterns arising from the different subregions. Generally, there is a medial-to-lateral topographical organization of efferents in relation to the septal complex. The DL region could be paralleled to the subiculum of mammals with its main projections to the basal ganglia, the limbic archistriatum, the lateral septum and the paraxial meso-diencephalic centres. The 'V' subdivision is likely to be homologous to the Ammon's horn of mammals with its commissural projections to the contralateral HP. Based on its purely intrinsic connectivity, the DM region could be a good candidate for an equivalent of the dentate gyrus. Nitric oxide synthase (NOS) containing neural structures display a specific distribution within the hippocampal subregions which is uniform in all passerine species studied. However, there is a marked difference in the level of diffuse neuropil reactivity between food-storers versus non-storers. Unlike the mammalian homologue, avian hippocampal NOS positive neurones do not show a near complete co-localization with the inhibitory transmitter GABA.
Collapse
Affiliation(s)
- A D Székely
- Department of Anatomy, Histology and Embryology, Semmelweis University of Medicine, Budapest, Hungary.
| |
Collapse
|
113
|
Abstract
Birds and primates are vertebrates that possess the most advanced, efficient visual systems. Although lineages leading to these two classes were separated about 300 million years ago, there are striking similarities in their underlying neural mechanisms for visual processing. This paper discusses such similarities with special emphasis on the visual circuits in the avian telencephalon. These similarities include: (1) the existence of two parallel visual pathways and their distinct telencephalic targets, (2) anatomical and functional segregation within the visual pathways, (3) laminar organization of the telencephalic targets of the pathways (e.g. striate cortex in primates), and (4) possible interactions between multiple visual areas. Additional extensive analyses are necessary to determine whether these similarities are due to inheritance from a common ancestral stock or the consequences of convergent evolution based on adaptive response to similar selective pressures. Nevertheless, such a comparison is important to identify the general and specific principles of visual processing in amniotes (reptiles, birds, and mammals). Furthermore, these principles in turn will provide a critical foundation for understanding the evolution of the brain in amniotes.
Collapse
Affiliation(s)
- T Shimizu
- Department of Psychology, University of South Florida, Tampa 33620, USA.
| | | |
Collapse
|
114
|
Stewart MG, Cristol D, Philips R, Steele RJ, Stamatakis A, Harrison E, Clayton N. A quantitative autoradiographic comparison of binding to glutamate receptor sub-types in hippocampus and forebrain regions of a food-storing and a non-food-storing bird. Behav Brain Res 1999; 98:89-94. [PMID: 10210525 DOI: 10.1016/s0166-4328(98)00055-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In two species of birds, food-storing marsh tits, P. palustris, and non-storing blue tits, P. caeruleus, quantitative receptor autoradiography was used to localize NMDA (N-methyl-D-aspartate)-sensitive [3H]glutamate, [3H]MK801, and [3H]AMPA binding sites, in six regions of the forebrain: hippocampus and parahippocampus, hyperstriatum accessorium (vision) and ventrale (sensory integration), neostriatum (auditory), and lobus parolfactorius (basal ganglia). In both species high levels of labelling to both NMDA and AMPA receptors were observed throughout the forebrain. However, a marked difference in receptor labelling was apparent between the two species, with levels of binding to NMDA ion channel sites being significantly lower (20%) in both the hippocampus and parahippocampus, in food storers compared to non-food storers. The levels of binding to other forebrain regions were remarkably similar in the two species. No differences were seen in the binding to AMPA receptors in forebrain regions of either species.
Collapse
Affiliation(s)
- M G Stewart
- Department of Biology, The Open University, Milton Keynes, UK.
| | | | | | | | | | | | | |
Collapse
|
115
|
Riters LV, Bingman VP. The effects of lesions to the caudolateral neostriatum on sun compass based spatial learning in homing pigeons. Behav Brain Res 1999; 98:1-15. [PMID: 10210517 DOI: 10.1016/s0166-4328(98)00045-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
To better define the role of the avian caudolateral neostriatum (NCL) in spatial behavior, we used homing pigeons to explore the effects of NCL lesions on a sun compass based spatial learning task. Although NCL lesioned birds learned the task, they required more sessions to reach criterion than controls. NCL lesioned pigeons were also able to acquire a color discrimination task that was procedurally similar to the sun compass spatial learning task, but they made more errors than controls. Both the deficits observed in sun compass based spatial learning and color discrimination were correlated with the volume of lesion damage to dorsal rather than ventral portions of NCL. Overall, these findings suggest that the role of NCL in homing pigeon navigation from distant unfamiliar locations is not related to a bird's ability to learn stimulus-direction associations using a sun compass. However NCL does appear involved in a pigeon's ability to perform at least some behaviors common to both the color discrimination and the sun compass based spatial learning tasks.
Collapse
Affiliation(s)
- L V Riters
- Department of Psychology, Bowling Green State University, Ohio 43403-0228, USA.
| | | |
Collapse
|
116
|
Horner CH, Davies HA, Stewart MG. Hippocampal synaptic density and glutamate immunoreactivity following transient cerebral ischaemia in the chick. Eur J Neurosci 1998; 10:3913-7. [PMID: 9875369 DOI: 10.1046/j.1460-9568.1998.00435.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A transient ischaemic episode of 10 min duration was induced in 1-day-old chicks. After a 1-week survival period, synapse density was assessed in the ventral hippocampus using the 'disector' technique. A significant decrease was observed in asymmetric synapses, markedly greater than that observed previously in the dorsal hippocampus. Because the effect occurred mainly on excitatory synapses, the distribution of glutamate in the ventral hippocampus was also assessed by a postembedding immunogold labelling technique. The density of gold particles was significantly greater in both boutons and neuropil in the ischaemic group compared to controls, lending support to the theory of excitotoxicity as an explanation for ischaemic neural degeneration.
Collapse
Affiliation(s)
- C H Horner
- Department of Biology, Open University, Milton Keynes, UK.
| | | | | |
Collapse
|
117
|
Hartmann B, Güntürkün O. Selective deficits in reversal learning after neostriatum caudolaterale lesions in pigeons: possible behavioral equivalencies to the mammalian prefrontal system. Behav Brain Res 1998; 96:125-33. [PMID: 9821549 DOI: 10.1016/s0166-4328(98)00006-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The neostriatum caudolaterale (NCL) of birds is thought to be equivalent to the mammalian prefrontal cortex (PFC) due to its dense dopaminergic innervation, its associative structure, and its importance for cognitive tasks which are known to be affected in mammals with prefrontal lesions. The aim of the present study was to analyze the functional importance of the NCL and its main thalamic afferent structure, the n. dorsolateralis posterior thalami (DLP), in reversal and go/no-go tasks, two behavioral procedures which are often used to assess mammalian prefrontal functions. Using a multiple regression analysis in which structure-specific lesion extents are correlated with different postoperative behavioral measures, the specific contribution of the relevant structures were differentiated from the neighbouring areas CDL (area corticoidea dorsolateralis) and NC (neostriatum caudale). The analyses showed a highly significant contribution of the NCL to reversal but not to go/no-go or to visual discrimination performance, while all other structures under analysis had no impact on any behavioral measure. These results underline the specific contribution of the pigeons' NCL on a subset of cognitive tasks which are known to be affected by prefrontal lesions in mammals.
Collapse
Affiliation(s)
- B Hartmann
- Labor Neurobiologie, Zoologisches Institut, Universität Basel, Switzerland
| | | |
Collapse
|
118
|
|
119
|
Wylie DR, Glover R, Lau K. Projections from the accessory optic system and pretectum to the dorsolateral thalamus in the pigeon (
Columbia livia
): A study using both anterograde and retrograde tracers. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980222)391:4<456::aid-cne4>3.0.co;2-#] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Douglas R.W. Wylie
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - R.G. Glover
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - K.L. Lau
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| |
Collapse
|
120
|
Davies DC, Csillag A, Székely AD, Kabai P. Efferent connections of the domestic chick archistriatum: a phaseolus lectin anterograde tracing study. J Comp Neurol 1997; 389:679-93. [PMID: 9421147 DOI: 10.1002/(sici)1096-9861(19971229)389:4<679::aid-cne10>3.0.co;2-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The archistriatum of the domestic chick has been implicated in both fear behaviour and learning. However, relatively little is known about its organisation. The efferent connections of discrete anatomical regions of the chick archistriatum were therefore investigated by iontophoresis of the anterograde tracer Phaseolus vulgaris leucoagglutinin into its anterior, dorsal intermediate, ventral intermediate, medial, and posterior parts. The results of this study suggest that the chick archistriatum can be divided into two basic divisions according to whether they project to the following limbic structures: the hippocampal formation, septal areas, lobus parolfactorius, nucleus accumbens, ventral paleostriatum, and dorsomedial thalamus. The limbic archistriatum includes the posterior archistriatum and extends rostrally through the ventral intermediate archistriatum into the anterior archistriatum. The non-limbic archistriatum comprises the dorsal intermediate and medial archistriatum and largely gives rise to specific sensory, somatosensory, and motor telencephalofugal efferents. There may not be distinct borders between these two divisions of the chick archistriatum.
Collapse
Affiliation(s)
- D C Davies
- Department of Anatomy and Developmental Biology, St. George's Hospital Medical School, London, United Kingdom.
| | | | | | | |
Collapse
|
121
|
Medina L, Reiner A. The efferent projections of the dorsal and ventral pallidal parts of the pigeon basal ganglia, studied with biotinylated dextran amine. Neuroscience 1997; 81:773-802. [PMID: 9316028 DOI: 10.1016/s0306-4522(97)00204-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present study we have investigated the efferent projections of both the dorsal and the ventral pallidum of the pigeon basal ganglia, using the sensitive anterograde tracer biotinylated dextran amine [Veenman C. L. et al. (1992) J. Neurosci. Meth. 41, 239-254]. Injections of biotinylated dextran amine in the pigeon dorsal pallidum produced numerous fibers and terminals in specific nuclei of the thalamus, hypothalamus, pretectum and midbrain tegmentum. In the thalamus, labeled fibers and terminals were observed in the avian thalamic reticular nucleus, the proposed motor part of the avian ventral tier (ventrointermediate area), the avian parafascicular nucleus (nucleus dorsointermedius posterior), as well as in the avian nucleus subrotundus (which may be comparable to the posterior intralaminar nuclei of mammals). Labeled fibers and terminals were also observed in the avian subthalamic nucleus (anterior nucleus of the ansa lenticularis), in the pretectum (nucleus spiriformis lateralis) and in the avian substantia nigra pars reticulata. Injections of biotinylated dextran amine in the pigeon ventral pallidum produced fibers and terminals in specific centers of the telencephalon, hypothalamus, thalamus, epithalamus, and midbrain and isthmic tegmentum. Labeled fibers and terminals were also observed in the avian subthalamic nucleus and the inmediately adjacent lateral hypothalamus, the avian thalamic reticular nucleus, the avian medidorsal nucleusaand posterior intralaminar nuclei, and the lateral habenula. Finally, labeled fibers and terminals were found in the ventral tegmental area, the avian substantia nigra pars compacta and the midbrain/isthmic tegmentum, which includes the pedunculopontine tegmental nucleus. Our results indicate that both the dorsal and ventral pallida of birds have unique and specific projection patterns, which are very similar to those of their counterparts in mammals. Our study suggests that these avian basal ganglia regions may be related mainly to somatomotor and limbic functions, respectively.
Collapse
Affiliation(s)
- L Medina
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
122
|
Miceli D, Repérant J, Bavikati R, Rio JP, Volle M. Brain-stem afferents upon retinal projecting isthmo-optic and ectopic neurons of the pigeon centrifugal visual system demonstrated by retrograde transneuronal transport of rhodamine beta-isothiocyanate. Vis Neurosci 1997; 14:213-24. [PMID: 9147474 DOI: 10.1017/s0952523800011354] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brain-stem afferents to the n. isthmo-opticus (NIO) and ectopic neurons (EN) of the centrifugal visual system (CVS) were determined in the pigeon using the retrograde transneuronal transport of the fluorescent dye Rhodamine beta-isothiocyanate (RITC) after its intraocular injection. In other experiments, either RITC was injected into various periocular tissues (controls) or the retrograde tracer Fluoro-gold (FG) was injected stereotaxically in the NIO. Following intraocular injections, the RITC retrograde labeling of cell bodies was observed contralaterally in the NIO and EN and transneuronally in layers 9/10 of the optic tectum, area ventralis-Tsai, zona peri-NIII, mesencephalic and pontine reticular formation (PRF), n. linearis caudalis-raphe, and bilaterally within a region referred to as zona peri-n.NVI (Zp-n.NVI) immediately underlying the abducens nerve nucleus. None of the above structures were labeled after RITC periocular injections. The FG labeling revealed that the tectal efferent neurons were mainly medium-sized, multipolar cells whose dendrites extended superficially to retino-recipient tectal layers 6 and 5. Quantitative measurements of the distribution of layers 9/10 RITC-labeled neurons indicated the highest densities to be localized within the ventral tectum corresponding to the representation of the dorsal retina and inferior visual field. We suggest that visual and nonvisual brain-stem afferents upon NIO and EN may play a role in the proposed mechanism of the avian CVS in attention, ground-feeding behavior, and modulation of retinal sensitivity.
Collapse
Affiliation(s)
- D Miceli
- Laboratoire de Neuropsychologie Expérimentale et Comparée, Université du Québec, Trois-Rivières, Canada
| | | | | | | | | |
Collapse
|
123
|
Atoji Y, Shibata N, Yamamoto Y, Suzuki Y. Distribution of neurotensin-containing neurons in the central nervous system of the pigeon and the chicken. J Comp Neurol 1996; 375:187-211. [PMID: 8915825 DOI: 10.1002/(sici)1096-9861(19961111)375:2<187::aid-cne2>3.0.co;2-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurotensin is widely located in neurons of the central and peripheral nervous systems among mammalian species. To obtain a comparative evaluation, we examined the distribution of neurotensin-containing cell bodies and fibers in the central nervous system of the pigeon and the chicken. The pattern of localization of neurotensin immunoreactivity was similar in the two species. Abundant accumulations of neurotensin-containing cell bodies were found in the dorsolateral corticoid area, the piriform cortex, the parahippocampal area, the medial part of the frontal neostriatum, the lateral part of the caudal neostriatum, nucleus accumbens, the bed nucleus of the stria terminalis, ventral paleostriatum, the preoptic area, the ventromedial hypothalamic nucleus, the inferior hypothalamic nucleus, the infundibular hypothalamic nucleus, and the mammillary nuclei. Extremely dense networks of neurotensin-containing fibers were found in the pallial commissure, the lateral septal nucleus, the preoptic area, the periventricular gray around the third ventricle, the dorsalis hypothalamic area, the hypothalamic nuclei, the parabrachial nucleus, the locus ceruleus, and the dorsal vagal complex. Major differences of immunoreactivity between the two species were as follows. 1) The chicken neurohypophysis contained an extremely large accumulation of immunoreactive fibers, but there were few in the median eminence. The reverse was found in the pigeon. 2) The optic tectum in the pigeon contained immunoreactive cells and fibers in layers 2 and 4, but no immunoreactivity was seen in the chicken optic tectum. 3) The cerebellar cortex in the pigeon contained a small number of immunoreactive fibers, whereas that in the chicken did not. 4) The pigeon spinal cord contained immunoreactive neurons in the subependymal layer, but the chicken spinal cord did not. Our observations suggest the presence of a very wide network of neurotensin-containing neurons in the avian brain and spinal cord, which is also the case in mammals.
Collapse
Affiliation(s)
- Y Atoji
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Gifu University, Japan.
| | | | | | | |
Collapse
|
124
|
Leutgeb S, Husband S, Riters LV, Shimizu T, Bingman VP. Telencephalic afferents to the caudolateral neostriatum of the pigeon. Brain Res 1996; 730:173-81. [PMID: 8883901 DOI: 10.1016/0006-8993(96)00444-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The pigeon caudolateral neostriatum (NCL) shares a dopaminergic innervation with mammalian frontal cortical areas and is implicated in the regulation of avian cognitive behavior. Retrograde tracing methods were used to identify forebrain projections to NCL and to suggest a possible role of this area in mediating spatial behavior. NCL receives telencephalic projections from the hyperstriatum accessorium, cells along the border of hyperstriatum dorsale and hyperstriatum ventrale, anterolateral hyperstriatum adjacent to the vallecula, confined cell groups within the anterior neostriatum, and subdivisions of the archistriatum. In addition, labeling of a small number of large cells near the fasciculus prosencephali lateralis was observed at the level of the anterior commissure. In accordance with previous studies, projections of subtelencephalic areas were revealed to originate from the thalamic posterior dorsolateral nucleus and nucleus subrotundus, as well as from the tegmental nucleus pedunculopontinus and locus coeruleus. Forebrain connections of NCL show that somatosensory, visual, and olfactory information can combine in this division of the neostriatum. NCL is therefore suited to participate in a neural circuit that regulates spatial behavior. Moreover, the present study reveals that NCL is reached by a limbic projection from the nucleus taeniae. This projection also suggests similarity between NCL and mammalian frontal cortical areas.
Collapse
Affiliation(s)
- S Leutgeb
- Bowling Green State University, Department of Psychology, OH 43403, USA.
| | | | | | | | | |
Collapse
|
125
|
Gagliardo A, Bonadonna F, Divac I. Behavioural effects of ablations of the presumed 'prefrontal cortex' or the corticoid in pigeons. Behav Brain Res 1996; 78:155-62. [PMID: 8864047 DOI: 10.1016/0166-4328(95)00243-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study further explored functional similarities of mammalian prefrontal cortex and its presumed equivalent in pigeons. Our results show that the performance of delayed alternation of pigeons in an Y-maze is impaired following ablations of the prefrontal equivalent together with the corticoid but not of the corticoid alone. In the same maze, discrimination between vertical and horizontal stripes was unimpaired regardless of the lesion. Our results added the following new information. (1) Corticoid is not essentially involved in mediation of delayed responding. (2) Like monkeys, pigeons take much fewer trials to learn delayed alternation in a maze than in an operant chamber. (3) Lesions of the pigeon equivalent of the prefrontal cortex impair delayed responding also in the new apparatus. (4) These lesions do not impair visual pattern discrimination. Our results do not contradict the hypothesis that the postero-dorso-lateral neostriatum in pigeons is comparable to the prefrontal cortex in mammals.
Collapse
Affiliation(s)
- A Gagliardo
- Dipartamento di Scienze del Comportamento animale e dell'Uomo, Universita di Pisa, Italy
| | | | | |
Collapse
|
126
|
Shapiro E, Wieraszko A. Comparative, in vitro, studies of hippocampal tissue from homing and non-homing pigeon. Brain Res 1996; 725:199-206. [PMID: 8836526 DOI: 10.1016/0006-8993(96)00247-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this research was to characterize morphologically and electrophysiologically tissue slices obtained from the hippocampus of homing and non-homing pigeons. When hippocampal slices from the brain of homing and non-homing pigeons are observed under the dissecting microscope, diffuse fiber paths can be seen. These fiber pathways appeared to be identical with the medial fiber tract (VM) previously described histologically in the hippocampus of homing pigeon. Visualization of these tracts in living slices allowed placement of stimulating and recording electrodes in corresponding locations in these slices in both homing and non-homing pigeons. Extracellular potentials recorded from VM regions of the brains of both homing and non-homing pigeons were sensitive to CNQX indicating that glutamate may be a neurotransmitter in this area of pigeon hippocampus. These potentials could undergo long-term potentiation (LTP) following high frequency stimulation. This LTP was blocked by NMDA receptor antagonist APV in the hippocampus of homing pigeon, but was APV-resistant in the hippocampus of non-homing pigeon. Extracellular potentials from the hippocampus of homing pigeons were increased in amplitude when slices were perfused with Mg(2+)-free Ringer, while potential recorded from hippocampal slices from non-homing pigeons wre unaffected by Mg(2+)-free solutions. Intracellular recordings from the hippocampal slices of homing pigeons revealed that about half the cells demonstrated excitatory synaptic potentials evoked by extracellular stimulation. The EPSP was sometimes large enough to trigger an action potential. Neurons filled with the fluorescent dye, Lucifer Yellow, in the hippocampus of homing pigeons showed multipolar structure. The response of these cells to extracellular stimulation provides the activity responsible for the extracellular potentials which can undergo LTP.
Collapse
Affiliation(s)
- E Shapiro
- CSI/IBR Center for Developmental Neuroscience and Developmental Disabilities, College of Staten Island/CUNY 10314, USA
| | | |
Collapse
|
127
|
Székely AD, Krebs JR. Efferent connectivity of the hippocampal formation of the zebra finch (Taenopygia guttata): an anterograde pathway tracing study using Phaseolus vulgaris leucoagglutinin. J Comp Neurol 1996; 368:198-214. [PMID: 8725302 DOI: 10.1002/(sici)1096-9861(19960429)368:2<198::aid-cne3>3.0.co;2-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The avian hippocampal formation (HP) is considered to be homologous to the mammalian hippocampus, being involved in memory formation and spatial memory in particular. The subdivisions and boundaries of the pigeon hippocampus have been defined previously by various morphological methods to detect further similarities with the mammalian homologue. We studied the efferent projections of the zebra finch hippocampus by applying Phaseolus vulgaris leucoagglutinin, and three main subdivisions were distinguished on the basis of the connectivity patterns. Dorsolateral injections gave rise to projections innervating the rostralmost extension of the HP, a laminar complex including the dorsal and ventral hyperstriata and the lamina frontalis superior, the rostral lobus parolfactorius, the medial and ventral paleostriatal regions, the lateral septal nucleus, the nucleus of the diagonal band, the dorsolateral corticoid area, the archistriatum posterius, and the nucleus taeniae in the telencephalon. In the diencephalon, labelled axons were seen in the periventricular and lateral hypothalamus, including the lateral mammillary nuclei, and in the dorsolateral and the dorsomedial posterior thalamic nuclei, whereas, in the midbrain, only the area ventralis of Tsai contained hippocampal fibres. With the exception of the bilateral archistriatal efferents, all projections were ipsilateral. Dorsomedial injections gave rise to a local fibre system that was almost completely restricted to the ipsilateral hippocampal formation. In addition, lectin-containing fibres continued in the dorsal septal region and a thin band in the hyperstriatum accessorium, adjacent to the lateral ventricle. Ventral injections gave rise to axons innervating ipsilaterally the dorsolateral subdivision, and bilaterally the medial septal nuclei and the contralateral ventral hippocampus.
Collapse
Affiliation(s)
- A D Székely
- Department of Pharmacology, University of Oxford, United Kingdom
| | | |
Collapse
|
128
|
Challet E, Miceli D, Pierre J, Repérant J, Masicotte G, Herbin M, Vesselkin NP. Distribution of serotonin-immunoreactivity in the brain of the pigeon (Columba livia). ANATOMY AND EMBRYOLOGY 1996; 193:209-27. [PMID: 8881471 DOI: 10.1007/bf00198325] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
The distribution of serotonin (5-HT)-containing perikarya, fibers and terminals in the brain of the pigeon (Columba livia) was investigated, using immunohistochemical and immunofluorescence methods combined with retrograde axonal transport. Twenty-one different groups of 5-HT immunoreactive (IR) cells were identified, 2 of which were localized at the hypothalamic level (periventricular organ, infundibular recess) and 19 at the tegmental-mesencephalic and rhombencephalic levels. Ten of the cell groups were situated within the region of the midline from the isthmic to the posterior rhombencephalic level and constituted the raphe system (nucleus annularis, decussatio brachium conjunctivum, area ventralis, external border of the nucleus interpeduncularis, zona peri-nervus oculomotorius, zona perifasciculus longitudinalis medialis, zona inter-flm, nucleus linearis caudalis, nucleus raphe superior pars ventralis, nucleus raphe inferior). The 9 other cell populations belonged to the lateral group and extended from the posterior mesencephalic tegmentum to the caudal rhombencephalon [formatio reticularis mesencephali, nucleus ventrolateralis tegmenti, ectopic area (Ec) of the nucleus isthmo-opticus (NIO), nucleus subceruleus, nucleus ceruleus, nucleus reticularis pontis caudalis, nucleus vestibularis medialis, nucleus reticularis parvocellularis and nucleus reticularis magnocellularis]. Combining the retrograde axonal transport of rhodamine beta-isothiocyanate (RITC) after intraocular injection and immunohistofluorescence (fluoresceine isothiocyanate: FITC/5-HT) showed the centrifugal neurons (NIO, Ec) to be immunonegative. Serotonin-IR fibers and terminals were found to be very broadly distributed within the brain and were particularly prominent in several structures of the telencephalon (archistriatum pars dorsalis, nucleus taeniae, area parahippocampalis, septum), diencephalon (nuclei preopticus medianus, magnocellularis, nucleus geniculatus lateralis pars ventralis, nucleus triangularis, nucleus pretectalis), mesencephalon-rhombencephalon (superficial layers of the optic tectum, nucleus ectomamillaris, nucleus isthmo-opticus and in most of the cranial nerve nuclei). Comparing the present results with those of previous studies in birds suggests some major serotonin-containing pathways in the avian brain and clarifies the possible origin of the serotonin innervation of some parts of the brain. Moreover, comparing our results in birds with those obtained in other vertebrate species shows that the organization of the serotoninergic system in many regions of the avian brain is much like that found in reptiles and mammals.
Collapse
Affiliation(s)
- E Challet
- Laboratoire de Neuromorphologie, INSERM U 106, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
129
|
Clayton NS. Development of food-storing and the hippocampus in juvenile marsh tits (Parus palustris). Behav Brain Res 1996; 74:153-9. [PMID: 8851924 DOI: 10.1016/0166-4328(95)00049-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Food-storing birds, e.g., marsh tits, Parus palustris, use memory to retrieve stored food and have a larger hippocampus relative to the rest of the telencephalon than do species that store little or no food, e.g., blue tits, P. caeruleus. The difference in relative hippocampal volume arises after the young have fledged from the nest and recent work on the dual ontogeny of the hippocampus and memory in hand-raised marsh tits suggests that the hippocampal growth depends upon some aspect of the experience of storing and retrieving food. The aim of this experiment was to test whether hippocampal growth precedes or accompanies changes in food-storing behaviour. Hand-raised marsh tits were provided with the opportunity to store and retrieve food every third day from day 35 post-hatch and the volume of the hippocampus and remainder of the telencephalon was measured and compared with those of age-matched controls at three different stages (days 41, 47 and 56 post-hatch). Experience had no significant effect on telencephalon volume but experienced birds had larger absolute and relative hippocampal volumes than did controls at all stages of the experiment, even before the increase in food-storing intensity on day 44. The stage at which the birds were killed had a significant effect on the absolute volume of both the hippocampus and telencephalon but there was no significant interaction between experience and stage. The results suggest that both hippocampus and telencephalon continue to increase in volume between days 35 and 56 but that the hippocampus shows a additional increase in volume relative to telencephalon in the experienced groups. One interpretation of these results is that the one or two seeds stored before day 44 may have been sufficient to stimulate the growth of the hippocampus and that there is an increase in relative hippocampal volume in preparation for the increased memory demands associated with the sharp increase in food-storing.
Collapse
Affiliation(s)
- N S Clayton
- Department of Zoology, Oxford University, UK
| |
Collapse
|
130
|
Kohler EC, Messer WS, Bingman VP. Evidence for muscarinic acetylcholine receptor subtypes in the pigeon telencephalon. J Comp Neurol 1995; 362:271-82. [PMID: 8576438 DOI: 10.1002/cne.903620209] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
At least five subtypes of muscarinic acetylcholine receptors are expressed in various mammalian tissue preparations. The following experiment, through the use of direct binding assays (using tritiated quinuclidinyl benzilate), competitive binding assays (using tritiated quinuclidinyl benzilate and unlabeled pirenzepine or AF-DX 116), and autoradiographic techniques, examined whether two of these five putative muscarinic acetylcholine receptor subtypes can be found in avian brain. Accordingly, autoradiographic mapping of pirenzepine-sensitive (M1-like) and AF-DX 116-sensitive (M2-like) muscarinic acetylcholine receptor subtypes in the pigeon telencephalon was conducted. Although both ligands bound throughout the brain, most telencephalic regions, including the archistriatum, the neostriatum, and basal ganglia structures like lobus paraolfactorius, nucleus accumbens, and paleostriatum, showed a higher density of M1-like sites. The exception to this finding was the nucleus basalis which appeared as a region where M2-like sites predominated. Moreover, the telencephalic region with the largest ratio of M1-like to M2-like sites was the lateral portion of the parahippocampus; a characteristic shared with the mammalian dentate gyrus. The findings reported here are generally consistent with previous reports of mammalian M1/M2 receptor distributions.
Collapse
Affiliation(s)
- E C Kohler
- Department of Psychology, Bowling Green State University, Ohio 43403, USA
| | | | | |
Collapse
|
131
|
Shen P, Schlinger BA, Campagnoni AT, Arnold AP. An atlas of aromatase mRNA expression in the zebra finch brain. J Comp Neurol 1995; 360:172-84. [PMID: 7499563 DOI: 10.1002/cne.903600113] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neural conversion of androgen to estrogen by aromatase is an important step in the development and expression of masculine behavior in mammals and birds. In contrast to the low telencephalic levels of aromatase in adult mammals and nonsongbirds, the zebra finch telencephalon possesses high aromatase activity. This study maps, by in situ hybridization, cells that express aromatase mRNA in the adult zebra finch telencephalon, diencephalon, midbrain, and pons. High aromatase mRNA expression was observed in the caudal neostriatum, limbic archistriatum, and hypothalamus. The hippocampus, parahippocampal area, and hyperstriatum accessorium contained cells expressing moderate amounts of aromatase message. Weakly labeled cells were found in the rostral neostriatum, lobus parolfactorius, and mesencephalic reticular formation. These findings are consistent with aromatase activity measurements of zebra finch tissue and document with anatomical precision both the widespread expression of aromatase mRNA in the brain and novel sites of brain aromatase. This study identifies the caudal neostriatum as a major site of telencephalic aromatase. A previous survey (Gahr et al., 1993: J. Comp. Neurol. 327:112-122) of several avian species found that the presence of estrogen receptors in parts of the caudal neostriatum is unique to songbirds, which are the only birds to possess the elaborated telencephalic song system. Together, these findings suggest that the heightened estrogen synthesis and estrogen sensitivity of the passerine caudal neostriatum may have some functional relation with the telencephalic circuits responsible for song.
Collapse
Affiliation(s)
- P Shen
- Mental Retardation Research Center, University of California, Los Angeles 90095, USA
| | | | | | | |
Collapse
|
132
|
Shimizu T, Cox K, Karten HJ. Intratelencephalic projections of the visual wulst in pigeons (Columba livia). J Comp Neurol 1995; 359:551-72. [PMID: 7499547 DOI: 10.1002/cne.903590404] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The visual wulst is the telencephalic target of the thalamofugal visual pathway of birds, and thus the avian equivalent of the striate cortex of mammals. The anterograde tracer Phaseolus vulgaris leucoagglutinin was used to follow the intratelencephalic connections of the major constituents of the visual wulst in pigeons. In particular, efferent pathways from the granular layer (Intercalated nucleus of the hyperstriatum accessorium, IHA), supragranular layer (hyperstriatum accessorium, HA), and infragranular layers (hyperstriatum intercalatus superior and/or hyperstriatum dorsale, HIS/HD) were investigated. These efferent projections were confirmed by injections of the retrograde tracer cholera toxin subunit B into their terminal fields. When a deposit of the anterograde tracer was centered in IHA, which receives the visual thalamic input, efferent fibers were seen mainly dorsomedially to IHA. When a deposit of the anterograde tracer was centered in HA, efferent fibers were seen to extend mainly in three directions: 1) medially to the tractus septomesencephalicus, which sends projections to extratelencephalic visual nuclei: 2) ventrolaterally to the lateral portion of the neostriatum frontale, where there were also labeled cells after the retrograde tracer was injected in HA; and 3) ventromedially to the paleostriatal complex, which is the avian equivalent of the mammalian caudale, 5) neostriatum intermedium, 6) archistriatum intermedium, and 7) hyperstriatum laterale. Finally, HIS/HD have projections predominantly to HA and the dorsocaudal telencephalon (area corticoidea dorsolateralis and area parahippocampalis), as well as relatively minor projections to the areas which also receive projections from HA. No anterogradely labeled fibers were seen in the tractus septomesencephalicus following the tracer injections in HIS/HD. These results indicate that the visual information from the granular layer is distributed via the supragranular layer HA to multiple areas within the telencephalon, such as the neostriatum frontale and paleostriatal complex. In addition, HA is the source of an extratelencephalic projection via the tractus septomesencephalicus. Thus, the avian supragranular layer HA contains neurons which are the source of both intratelencephalic and extratelencephalic projections, whereas neurons of the mammalian cortex are segregated into two distinct layers, supragranular and infragranular layers, based on the targets of their projections. The findings are further discussed and compared to the mammalian striate cortex.
Collapse
Affiliation(s)
- T Shimizu
- Department of Psychology, University of South Florida, Tampa, 33620, USA
| | | | | |
Collapse
|
133
|
Wynne B, Güntürkün O. Dopaminergic innervation of the telencephalon of the pigeon (Columba livia): a study with antibodies against tyrosine hydroxylase and dopamine. J Comp Neurol 1995; 357:446-64. [PMID: 7673478 DOI: 10.1002/cne.903570309] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The dopaminergic structures in the telencephalon of the pigeon were investigated with antisera against glutaraldehyde-conjugated dopamine (DA) and tyrosine hydroxylase (TH). Our goal was to describe the morphological patterns of the labelled axons and to provide a detailed map of the density and regional distribution of the dopaminergic innervation in relation to cytoarchitectonic areas. DA- and TH-like fibers reached their highest density in the paleostriatum augmentatum and the lobus parolfactorius of the basal ganglia. The paleostriatum primitivum was characterized by a dichotomous DA-positive innervation with a diffuse fiber network contacting enpassant granular cells and a more specific input that completely wrapped up large cells, which probably represent relay neurons. Two distinct DA-positive pathways could be followed back from the forebrain leading to the dopaminergic cell groups of the nucleus tegmenti pedunuculopontinus pars lateralis and the area ventralis tegmentalis. The primary sensory areas of the visual, auditory, somatosensory, and trigeminal systems within the forebrain of the pigeon were virtually devoid of DA-like fibers and demonstrated only TH-positive axons, probably of a noradrenergic nature. Among the limbic structures, the neostriatum caudolaterale (a possible equivalent of the mammalian prefrontal cortex), the septum, the nucleus accumbens, and parts of the archistriatum were heavily labelled by DA-like axons. A highly characteristic morphological feature of the catecholaminergic innervation was the presence of "baskets," which are constituted by TH- and DA-positive fibers coiled up around large perikarya, so that the surrounded somata were virtually visible by the presence of labelled axons. The density of basket and nonbasket type innervations seemed to be independently regulated, so that each forebrain structure could be characterized by a mixture consisting of the individual degrees of these two features. Our results demonstrate that the dopaminergic innervation of the forebrain of the pigeon is widespread but shows important regional variations. Similar to mammals, associative and motor structures are heavily innervated by dopaminergic fibers, whereas sensory areas are dominated by their noradrenergic input. The basket and nonbasket type innervations observed in virtually all of these subdivisions of the telencephalon may indicate the presence of two main classes of catecholaminergic afferents with different mechanisms of modulation of forebrain activity patterns.
Collapse
Affiliation(s)
- B Wynne
- Universität Konstanz, Germany
| | | |
Collapse
|
134
|
Smulders TV, Sasson AD, DeVoogd TJ. Seasonal variation in hippocampal volume in a food-storing bird, the black-capped chickadee. JOURNAL OF NEUROBIOLOGY 1995; 27:15-25. [PMID: 7643072 DOI: 10.1002/neu.480270103] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Black-capped chickadees (Parus atricapillus) in upstate New York show a peak in food-hoarding intensity in October. We caught chickadees at six different times of the year and measured the volume of several brain structures. We found that the hippocampal formation, which is involved in spatial memory for cached food items, has a larger volume, relative to the rest of the brain, in October than at any other time of the year. We conclude that there is an association between the intensity of food hoarding and the volume of the hippocampal formation and suggest that the enhanced anatomy might be caused by the increased use of spatial memory.
Collapse
Affiliation(s)
- T V Smulders
- Department of Psychology, Cornell University, Ithaca, New York, USA
| | | | | |
Collapse
|
135
|
Abstract
As a result of natural history studies, it has been hypothesized that food-storing birds may develop a special kind of memory to cope with the demand imposed by their food-storing behaviour (i.e. the ability to retrieve food from a wide variety of stores over varying amounts of time after storage). Recent studies on food-storing birds suggest that, at a relatively late stage in their development, the specific memories associated with food-storing behaviour can stimulate growth of the hippocampus, an area of the brain concerned with memory processing.
Collapse
Affiliation(s)
- N S Clayton
- Department of Zoology, Oxford University, UK
| | | |
Collapse
|
136
|
Veenman CL, Wild JM, Reiner A. Organization of the avian "corticostriatal" projection system: a retrograde and anterograde pathway tracing study in pigeons. J Comp Neurol 1995; 354:87-126. [PMID: 7615877 DOI: 10.1002/cne.903540108] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Birds have well-developed basal ganglia within the telencephalon, including a striatum consisting of the medially located lobus parolfactorius (LPO) and the laterally located paleostriatum augmentatum (PA). Relatively little is known, however, about the extent and organization of the telencephalic "cortical" input to the avian basal ganglia (i.e., the avian "corticostriatal" projection system). Using retrograde and anterograde neuroanatomical pathway tracers to address this issue, we found that a large continuous expanse of the outer pallium projects to the striatum of the basal ganglia in pigeons. This expanse includes the Wulst and archistriatum as well as the entire outer rind of the pallium intervening between Wulst and archistriatum, termed by us the pallium externum (PE). In addition, the caudolateral neostriatum (NCL), pyriform cortex, and hippocampal complex also give rise to striatal projections in pigeon. A restricted number of these pallial regions (such as the "limbic" NCL, pyriform cortex, and ventral/caudal parts of the archistriatum) project to such ventral striatal structures as the olfactory tubercle (TO), nucleus accumbens (Ac), and bed nucleus of the stria terminalis (BNST). Such "limbic" pallial areas also project to medialmost LPO and lateralmost PA, while the hyperstriatum accessorium portion of the Wulst, the PE, and the dorsal parts of the archistriatum were found to project primarily to the remainder of LPO (the lateral two-thirds) and PA (the medial four-fifths). The available evidence indicates that the diverse pallial regions projecting to the striatum in birds, as in mammals, are parts of higher order sensory or motor systems. The extensive corticostriatal system in both birds and mammals appears to include two types of pallial neurons: 1) those that project to both striatum and brainstem (i.e., those in the Wulst and the archistriatum) and 2) those that project to striatum but not to brainstem (i.e., those in the PE). The lack of extensive corticostriatal projections from either type of neuron in anamniotes suggests that the anamniote-amniote evolutionary transition was marked by the emergence of the corticostriatal projection system as a prominent source of sensory and motor information for the striatum, possibly facilitating the role of the basal ganglia in movement control.
Collapse
Affiliation(s)
- C L Veenman
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis 38163, USA
| | | | | |
Collapse
|
137
|
Molnar M, Casini G, Davis BM, Bagnoli P, Brecha NC. Distribution of preproenkephalin mRNA in the chicken and pigeon telencephalon. J Comp Neurol 1994; 348:419-32. [PMID: 7844256 DOI: 10.1002/cne.903480308] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bioassay and immunological studies have detected the presence of opioid peptides in the nervous system of representatives of all classes of vertebrates. The present study evaluates the expression and localization of preproenkephalin (PPE) mRNA to determine the sites of synthesis of the enkephalin peptides in the adult chicken and pigeon telencephalon using in situ hybridization histochemistry. We used a 500-base-pair chicken RNA probe corresponding to chicken PPE cDNA. In both the chicken and the pigeon telencephalon, the highest concentration of PPE mRNA-containing cells was observed in the lobus parolfactorius, paleostriatum augmentatum, nucleus accumbens, and septum. Distinct populations of labeled cells were also detected in the hyperstriatum accessorium, hippocampus, area parahippocampalis, nucleus of the diagonal band, cortex dorsolateralis, and cortex piriformis. Differences in PPE mRNA expression between chicken and pigeon were observed in several telencephalic regions. For instance, the bulbus olfactorius was heavily labeled in the pigeon, but was not labeled in the chicken, and numerous PPE mRNA-containing cells were present in the area parahippocampalis of pigeons but not of chickens. In contrast, in the hyperstriatum dorsale and hyperstriatum ventrale, numerous PPE mRNA-expressing cells were detected in the chicken but not in the pigeon. Overall, PPE mRNA-expressing cells were more numerous than enkephalin-immunoreactive cells described in previous studies. In addition, our results suggest that the general pattern of enkephalin expression in the avian telencephalon is similar to that found in other vertebrates. Finally, the results of the present study illustrate some differences in the pattern of PPE mRNA distribution between closely related species, indicating the existence of species-specific neurochemical pathways, which may influence and perhaps mediate different behaviors characteristics of these species.
Collapse
Affiliation(s)
- M Molnar
- Department of Physiology and Biochemistry, University of Pisa, Italy
| | | | | | | | | |
Collapse
|
138
|
Doupe AJ. Seeds of instruction: hippocampus and memory in food-storing birds. Proc Natl Acad Sci U S A 1994; 91:7381-4. [PMID: 8052595 PMCID: PMC44404 DOI: 10.1073/pnas.91.16.7381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- A J Doupe
- Department of Psychiatry, University of California, San Francisco 94143
| |
Collapse
|
139
|
Erichsen JT, Ciocchetti A, Fontanesi G, Bagnoli P. Neuroactive substances in the developing dorsomedial telencephalon of the pigeon (Columba livia): differential distribution and time course of maturation. J Comp Neurol 1994; 345:537-61. [PMID: 7525663 DOI: 10.1002/cne.903450406] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The avian hippocampal formation has previously been shown to contain many of the same neurotransmitters and related enzymes that are found in mammals. In order to determine whether the relatively delayed development of the mammalian hippocampus is typical of other vertebrates, we investigated the maturation of a variety of neuroactive substances in the hippocampal formation of the homing pigeon. The distribution of two transmitter-related enzymes, choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH), the neurotransmitter GABA, and four neuropeptides (substance P, enkephalin, neuropeptide Y, and somatostatin) was studied by immunohistochemistry in the developing hippocampal complex. The pattern and/or the time course of changes in the distribution of immunoreactivity varied among the different neuroactive substances examined. Immunoreactivity to ChAT and TH was found exclusively in fibers and terminal-like processes, whereas GABA and peptide immunoreactivity was seen in cells and neuropil. Quantitative differences in the density, number, and size of stained cells were assessed by a computer-assisted image analyzer. For the majority of the substances, developmental patterns in the distribution of immunoreactivity differ between the hippocampus proper and the area parahippocampalis, the two major areas that together make up the avian hippocampal complex. The adult pattern of immunoreactivity was generally attained by 3 weeks after hatching. For many of the neuroactive substances found in cell bodies, there was a gradual decrease in the density of immunoreactive cells with a concomitant increase in the density of immunoreactive neuropil. The actual number of stained cells usually increased to a peak at 9 days posthatching and then declined until 3 weeks posthatching, when the adult value was reached. These results are discussed in relation to the advantages that the pigeon hippocampal complex may provide in the study of developmental processes. Parallels with the distribution of the same neuroactive substances in the mammalian hippocampus are used to suggest possible functional similarities between the avian and mammalian hippocampal regions.
Collapse
Affiliation(s)
- J T Erichsen
- Department of Neurobiology and Behavior, SUNY at Stony Brook 11794
| | | | | | | |
Collapse
|
140
|
Medina L, Reiner A. Distribution of choline acetyltransferase immunoreactivity in the pigeon brain. J Comp Neurol 1994; 342:497-537. [PMID: 8040363 DOI: 10.1002/cne.903420403] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have investigated the distribution of cholinergic perikarya and fibers in the brain of the pigeon (Columba livia). With this aim, pigeon brain sections were processed immunohistochemically by using an antiserum specific for chicken choline acetyltransferase. Our results show cholinergic neurons in the pigeon basal telencephalon, the hypothalamus, the habenula, the pretectum, the midbrain tectum, the dorsal isthmus,the isthmic tegmentum, and the cranial nerve motor nuclei. Cholinergic fibers were prominent in the dorsal telencephalon, the striatum, the thalamus, the tectum, and the interpeduncular nucleus. Comparison of our results with previous studies in birds suggests some major cholinergic pathways in the avian brain and clarifies the possible origin of the cholinergic innervation of some parts of the avian brain. In addition, comparison of our results in birds with those in other vertebrate species shows that the organization of the cholinergic systems in many regions of the avian brain (such as the basal forebrain, the epithalamus, the isthmus, and the hindbrain) is much like that in reptiles and mammals. In contrast, however, birds appear largely to lack intrinsic cholinergic neurons in the dorsal ("neocortex-like") parts of the telencephalon.
Collapse
Affiliation(s)
- L Medina
- Department of Anatomy and Neurobiology, College of Medicine, Memphis 38163
| | | |
Collapse
|
141
|
Dinopoulos A. Reciprocal connections of the motor neocortical area with the contralateral thalamus in the hedgehog (Erinaceus europaeus) brain. Eur J Neurosci 1994; 6:374-80. [PMID: 8019674 DOI: 10.1111/j.1460-9568.1994.tb00280.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Horseradish peroxidase unilateral injections in various neocortical areas (prefrontal, somatosensory, auditory, visual) of the hedgehog (Erinaceus europaeus) brain resulted in labelling of nuclei in the ipsilateral thalamus known from studies in other species and in the hedgehog to project to these areas. However, injections in the motor area resulted in retrograde and anterograde labelling of nuclei in both the ipsilateral and contralateral thalamus. These nuclei included the ventral lateral nucleus (VL), the intralaminar nuclei (ILN), the mediodorsal nucleus (MD) and midline nuclei. Large unilateral injections located mainly laterally in the thalamus labelled cells, contralaterally, in the ventral lateral geniculate nucleus, the intergeniculate leaflet and the reticular nucleus of the thalamus, but never in VL, ILN and MD. The present results confirm previously described bilateral thalamocortical projections from the VL to the somatosensorimotor area in this species (Regidor and Divac, Brain Behav. Evol., 39, 265-269, 1992) and in addition demonstrate that (i) bilateral thalamocortical projections are established preferentially with the motor area, (ii) several nuclei are involved in such connections, (iii) these connections are reciprocal and topographically organized, and (iv) labelling in the contralateral thalamus observed in the present study is not a result of transneuronal transport of the tracer through thalamothalamic connections. This organization is unique among mammals and supports previous anatomical and electrophysiological findings, on the basis of which it has been suggested that the hedgehog retains a primitive character in neocortical and thalamic evolution.
Collapse
Affiliation(s)
- A Dinopoulos
- Department of Anatomy, School of Veterinary Medicine, University of Thessaloniki, Greece
| |
Collapse
|
142
|
Veenman CL, Reiner A. The distribution of GABA-containing perikarya, fibers, and terminals in the forebrain and midbrain of pigeons, with particular reference to the basal ganglia and its projection targets. J Comp Neurol 1994; 339:209-50. [PMID: 8300906 DOI: 10.1002/cne.903390205] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Immunohistochemical techniques were used to study the distributions of glutamic acid decarboxylase (GAD) and gamma-aminobutyric acid (GABA) in pigeon forebrain and midbrain to determine the organization of GABAergic systems in these brain areas in birds. In the basal ganglia, numerous medium-sized neurons throughout the striatum were labeled for GABA, while pallidal neurons, as well as a small population of large, aspiny striatal neurons, labeled for GAD and GABA. GAD+ and GABA+ fibers and terminals were abundant throughout the basal ganglia, and GABAergic fibers were found in all extratelencephalic targets of the basal ganglia. Most of these targets also contained numerous GABAergic neurons. In pallial regions, approximately 10-12% of the neurons were GABAergic. The outer rind of the pallium was more intensely labeled for GABAergic fibers than the core. The olfactory tubercle region, the ventral pallidum, and the hypothalamus were extremely densely labeled for GABAergic fibers, while GABAergic neurons were unevenly distributed in the hypothalamus. GABAergic neurons and fibers were abundant in the dorsalmost part of thalamus and the dorsal geniculate region, while GABAergic neurons and fibers were sparse (or lightly labeled) in the thalamic nuclei rotundus, triangularis, and ovoidalis. Further, GABAergic neurons were abundant in the superficial tectal layers, the magnocellular isthmic nucleus, the inferior colliculus, the intercollicular region, the central gray, and the reticular formation. GABAergic fibers were particularly abundant in the superficial tectal layers, the parvocellular isthmic nucleus, the inferior colliculus, the intercollicular region, the central gray, and the interpeduncular nucleus. These results suggest that GABA plays a role as a neurotransmitter in nearly all fore- and midbrain regions of birds, and in many instances the observed distributions of GABAergic neurons and fibers closely resemble the patterns seen in mammals, as well as in other vertebrates.
Collapse
Affiliation(s)
- C L Veenman
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis 38163
| | | |
Collapse
|
143
|
Sherry DF, Forbes MR, Khurgel M, Ivy GO. Females have a larger hippocampus than males in the brood-parasitic brown-headed cowbird. Proc Natl Acad Sci U S A 1993; 90:7839-43. [PMID: 8356091 PMCID: PMC47238 DOI: 10.1073/pnas.90.16.7839] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Females of the brood-parasitic brown-headed cowbird (Molothrus ater) search for host nests in which to lay their eggs. Females normally return to lay a single egg from one to several days after first locating a potential host nest and lay up to 40 eggs in a breeding season. Male brown-headed cowbirds do not assist females in locating nests. We predicted that the spatial abilities required to locate and return accurately to host nests may have produced a sex difference in the size of the hippocampal complex in cowbirds, in favor of females. The size of the hippocampal complex, relative to size of the telencephalon, was found to be greater in female than in male cowbirds. No sex difference was found in two closely related nonparasitic icterines, the red-winged blackbird (Agelaius phoeniceus) and the common grackle (Quiscalus quiscula). Other differences among these species in parental care, migration, foraging, and diet are unlikely to have produced the sex difference attributed to search for host nests by female cowbirds. This is one of few indications, in any species, of greater specialization for spatial ability in females and confirms that use of space, rather than sex, breeding system, or foraging behavior per se, can influence the relative size of the hippocampus.
Collapse
Affiliation(s)
- D F Sherry
- Department of Psychology, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
144
|
Montagnese CM, Krebs JR, Székely AD, Csillag A. A subpopulation of large calbindin-like immunopositive neurones is present in the hippocampal formation in food-storing but not in non-storing species of bird. Brain Res 1993; 614:291-300. [PMID: 8348321 DOI: 10.1016/0006-8993(93)91047-v] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The avian hippocampal formation (HP) is thought to play a role in the processing of spatial memory related to food-storing behaviour. The HP of two food-storing species (marsh tit (Parus palustris) and magpie (Pica pica)) and two non-storing species (great tit (Parus major) and jackdaw (Corvus monedula)) were compared following calbindin-like immunostaining. In the dorsal hippocampal region, both species of food-storing birds had larger calbindin-immunoreactive cells than did the two non-storing species. The fact that this association between storing behaviour and cell morphology is seen in two unrelated families of birds, the Paridae (marsh tit versus great tit) and Corvidae (magpie versus jackdaw) suggests that there may be a direct link between food-storing behaviour and the dorsal hippocampal calbindin-immunoreactive cell population.
Collapse
|
145
|
Abstract
The effect of hippocampal lesions on performance in two psychophysical measures of spatial vision (acuity and size-difference threshold) was examined in 7 pigeons. No difference between the preoperative and postoperative thresholds of the experimental birds was found. The visual performance of pigeons in the psychophysical tasks failed to reveal a role of the hippocampal formation in vision. The results argue strongly that the behavioral deficits found in pigeons with hippocampal lesions when tested in a variety of memory-related spatial tasks is not based on a defect in spatial vision but impaired spatial cognition.
Collapse
Affiliation(s)
- V P Bingman
- Department of Psychology, Bowling Green State University, OH 43403
| | | |
Collapse
|
146
|
Abstract
The hippocampus plays an important role in spatial memory and spatial cognition in birds and mammals. Natural selection, sexual selection and artificial selection have resulted in an increase in the size of the hippocampus in a remarkably diverse group of animals that rely on spatial abilities to solve ecologically important problems. Food-storing birds remember the locations of large numbers of scattered caches. Polygynous male voles traverse large home ranges in search of mates. Kangaroo rats both cache food and exhibit a sex difference in home range size. In all of these species, an increase in the size of the hippocampus is associated with superior spatial ability. Artificial selection for homing ability has produced a comparable increase in the size of the hippocampus in homing pigeons, compared with other strains of domestic pigeon. Despite differences among these animals in their histories of selection and the genetic backgrounds on which selection has acted, there is a common relationship between relative hippocampal size and spatial ability.
Collapse
Affiliation(s)
- D F Sherry
- Dept of Psychology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
147
|
Sandi C, Rose SP, Patterson TA. Unilateral hippocampal lesions prevent recall of a passive avoidance task in day-old chicks. Neurosci Lett 1992; 141:255-8. [PMID: 1436644 DOI: 10.1016/0304-3940(92)90907-o] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The role of the hippocampal system in learning and memory processes in the chick was investigated. A series of experiments examined the effects of lesions in the hippocampal system on the acquisition and retention of a passive avoidance task. Chicks given pretraining bilateral hippocampal lesions showed a decrease of retention of the avoidance response evaluated 3 h posttraining. When given unilaterally, left, but not right lesions, resulted in reduced avoidance. However, bilateral posttraining lesions, made 1 h after training, did not interfere with retention of the task. These results suggest an involvement of the hippocampal system in learning processes in the chick.
Collapse
Affiliation(s)
- C Sandi
- Brain and Behaviour Research Group, Open University, Milton Keynes, UK
| | | | | |
Collapse
|
148
|
Bingman VP. The importance of comparative studies and ecological validity for understanding hippocampal structure and cognitive function. Hippocampus 1992; 2:213-9. [PMID: 1308185 DOI: 10.1002/hipo.450020302] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Building from the premise that hippocampal cognitive function has been molded by natural selection under natural environmental conditions, it is argued that traditional laboratory studies likely do not reveal the richness and complexity of hippocampal function. Research on the role of the hippocampal formation in the navigational behavior of homing pigeons is offered as an example to illustrate the advantages of using an ecological approach to understand hippocampal function. It is further proposed that dissimilarities in hippocampal anatomy, physiology, and neurochemistry found between species reflect species differences in the range of functions served by the hippocampal formation, as well as possibly the molecular and cellular mechanisms that support such functions. These differences notwithstanding, it is suggested that, from an evolutionary perspective, the primary function of the hippocampal formation is a role in some aspect of spatial cognition. Dissimilarities in hippocampal structure and function among extant species are viewed as resulting from differences in evolutionary selective pressure and evolutionary history.
Collapse
Affiliation(s)
- V P Bingman
- Department of Psychology, Bowling Green State University, OH 43403
| |
Collapse
|
149
|
Güntürkün O, Karten HJ. An immunocytochemical analysis of the lateral geniculate complex in the pigeon (Columba livia). J Comp Neurol 1991; 314:721-49. [PMID: 1687743 DOI: 10.1002/cne.903140407] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The lateral geniculate complex (GL) of pigeons was investigated with respect to its immunohistochemical characteristics, retinal afferents, and the putative transmitters/modulators of its neurons. The distributions of serotonin-, choline acetyltransferase-, glutamic acid decarboxylase-, tyrosine hydroxylase-, neuropeptide Y- (NPY), substance P- (SP), neurotensin- (NT), cholecystokinin- (CCK), and leucine-enkephalin- (L-ENK) like immunoreactive perikarya and fibers were mapped. Retinal projections were studied following injections of Rhodamine-B-isothiocyanate into the vitreous. Transmitter-specific projections onto the visual Wulst and the optic tectum were studied by simultaneous double-labelling of retrograde tracer molecules and immunocytochemical labelling. The GL can be divided into three major subdivisions, the n. geniculatus lateralis, pars dorsalis (GLd; previously designated as the n. opticus principalis thalami, OPT), the n. marginalis tractus optici (nMOT), and the n. geniculatus lateralis, pars ventralis (GLv). All three subdivisions are retinorecipient. The GLd can be further subdivided into at least five components differing in their immunohistochemical characteristics: n. lateralis anterior (LA); n. dorsolateralis anterior thalami, pars lateralis (DLL), n. dorsolateralis anterior thalami, pars magnocellularis (DLAmc); n. lateralis dorsalis nuclei optici principalis thalami (LdOPT); and n. suprarotundus (SpRt). The LdOPT consists of an area of dense CCK-like and NT-like terminals of probable retinal origin. Three subnuclei (DLL, DLAmc, SpRt) were shown to project to the visual Wulst. Cholinergic and cholecystokinergic relay neurons participated in this projection. The nMOT occupies a position between the GLd and GLv and encircles the rostral pole of n. rotundus and the LA. It is characterized mainly by medium sized NPY-like perikarya which were shown to project onto the ipsilateral optic tectum. Bands of NPY-like fibers in the tectal layers 2, 4, and 7 could at least in part be due to this projection of the nMOT. Most of the antisera used revealed transmitter/modulator-specific fiber systems in the GLv which often showed a layer-specific distribution. Perikaryal labelling was only obtained with glutamic acid decarboxylase. On the basis of its chemoarchitectonics, topography, and connectional pattern, the GLd complex of pigeons is most directly equivalent to the mammalian GLd. However, although the different subdivisions of the avian GLd may represent functionally different channels within the thalamofugal pathway similar to the lamina-specific differentiation within the mammalian geniculostriate projection, direct comparison of subnuclei of birds and mammals is not justified at this time. The nMOT appears similar to the intergeniculate leaflet (IGL) and the avian GLv clearly corresponds in many features to the mammalian GLv.
Collapse
Affiliation(s)
- O Güntürkün
- Allgemeine Psychologie, Universität Konstanz, Federal Republic of Germany
| | | |
Collapse
|
150
|
Erichsen JT, Bingman VP, Krebs JR. The distribution of neuropeptides in the dorsomedial telencephalon of the pigeon (Columba livia): a basis for regional subdivisions. J Comp Neurol 1991; 314:478-92. [PMID: 1726107 DOI: 10.1002/cne.903140306] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distribution of six neuropeptides [substance P (SP), leucine (leu5-) enkephalin (LENK), vasoactive intestinal polypeptide (VIP), cholecystokinin (CCK), neuropeptide Y (NPY), and somatostatin (SS)] in the dorsomedial telencephalon (hippocampal region) of the pigeon was studied by immunohistochemistry. All six peptides were found in fibers passing through the septo-hippocampal junction and along the medial wall of the hippocampal region. NPY-, SS-, and VIP-like staining of fibers was seen in the hippocampal commissure. NPY and SS had similar distributions within the hippocampal region, both being most conspicuous in cell bodies, terminals, and fibers of the medial hippocampal region. VIP-positive cells were found in an area dorsal to the SS/NPY cell region. CCK-like immunoreactivity was found in terminal baskets surrounding large cells of a v-shaped structure in the ventromedial hippocampal region. SP- and LENK-like immunoreactivity was found in neuropils in a lateral-dorsal region, the two substances showing similar distributions. This region is thought to lie lateral to the limit of the hippocampal region. Parallels with the distribution of immunoreactivity in the mammalian hippocampus are used to suggest possible equivalent subdivisions of the avian and mammalian hippocampal regions.
Collapse
Affiliation(s)
- J T Erichsen
- Department of Neurobiology and Behavior, SUNY, Stony Brook, 11794
| | | | | |
Collapse
|