101
|
Lin KT, Ma R, Wang P, Xin J, Zhang J, Wolcott MP, Zhang X. Deep Eutectic Solvent Assisted Facile Synthesis of Lignin-Based Cryogel. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kuan-Ting Lin
- Voiland School of Chemical Engineering & Bioengineering Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, Washington 99354, United States
| | - Ruoshui Ma
- Voiland School of Chemical Engineering & Bioengineering Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, Washington 99354, United States
- Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Peipei Wang
- Voiland School of Chemical Engineering & Bioengineering Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, Washington 99354, United States
| | - Junna Xin
- Composite Materials & Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Jinwen Zhang
- Composite Materials & Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Michael P. Wolcott
- Composite Materials & Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Xiao Zhang
- Voiland School of Chemical Engineering & Bioengineering Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, Washington 99354, United States
- Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
102
|
Song Y, Mobley JK, Motagamwala AH, Isaacs M, Dumesic JA, Ralph J, Lee AF, Wilson K, Crocker M. Gold-catalyzed conversion of lignin to low molecular weight aromatics. Chem Sci 2018; 9:8127-8133. [PMID: 30542563 PMCID: PMC6238880 DOI: 10.1039/c8sc03208d] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 11/21/2022] Open
Abstract
A heterogeneous catalyst system, employing Au nanoparticles (NPs) and Li-Al (1 : 2) layered double hydroxide (LDH) as support, showed excellent activity in aerobic oxidation of the benzylic alcohol group in β-O-4 linked lignin model dimers to the corresponding carbonyl products using molecular oxygen under atmospheric pressure. The synergistic effect between Au NPs and the basic Li-Al LDH support induces further reaction of the oxidized model compounds, facilitating facile cleavage of the β-O-4 linkage. Extension to oxidation of γ-valerolactone (GVL) extracted lignin and kraft lignin using Au/Li-Al LDH under similar conditions produced a range of aromatic monomers in high yield. Hydrolysis of the Au/Li-Al LDH oxidized lignin was found to increase the degree of lignin depolymerization, with monomer yields reaching 40% for GVL extracted lignin. Based on these results, the Au/Li-Al LDH + O2 catalyst system shows potential to be an environmentally friendly means of depolymerizing lignin to low molecular weight aromatics under mild conditions.
Collapse
Affiliation(s)
- Yang Song
- Department of Chemistry , University of Kentucky , 505 Rose Street , Lexington , KY 40506 , USA
- Center for Applied Energy Research (CAER) , University of Kentucky , 2540 Research Park Drive , Lexington , KY 40511 , USA .
| | - Justin K Mobley
- Great Lakes Bioenergy Research Center , The Wisconsin Energy Institute , University of Wisconsin-Madison , 1552 University Avenue , Madison , WI 53726 , USA
| | - Ali Hussain Motagamwala
- Great Lakes Bioenergy Research Center , The Wisconsin Energy Institute , University of Wisconsin-Madison , 1552 University Avenue , Madison , WI 53726 , USA
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , WI 53726 , USA
| | - Mark Isaacs
- European Bioenergy Research Institute , Aston University , Aston Triangle , Birmingham , B4 7ET , UK
| | - James A Dumesic
- Great Lakes Bioenergy Research Center , The Wisconsin Energy Institute , University of Wisconsin-Madison , 1552 University Avenue , Madison , WI 53726 , USA
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , WI 53726 , USA
| | - John Ralph
- Great Lakes Bioenergy Research Center , The Wisconsin Energy Institute , University of Wisconsin-Madison , 1552 University Avenue , Madison , WI 53726 , USA
- Department of Biochemistry , University of Wisconsin-Madison , 433 Babcock Drive , Madison , WI 53706 , USA
| | - Adam F Lee
- School of Science , RMIT University , 124 La Trobe Street , Melbourne , VIC 3000 , Australia
| | - Karen Wilson
- School of Science , RMIT University , 124 La Trobe Street , Melbourne , VIC 3000 , Australia
| | - Mark Crocker
- Department of Chemistry , University of Kentucky , 505 Rose Street , Lexington , KY 40506 , USA
- Center for Applied Energy Research (CAER) , University of Kentucky , 2540 Research Park Drive , Lexington , KY 40511 , USA .
| |
Collapse
|
103
|
Dai J, Styles GN, Patti AF, Saito K. CuSO 4/H 2O 2-Catalyzed Lignin Depolymerization under the Irradiation of Microwaves. ACS OMEGA 2018; 3:10433-10441. [PMID: 31459170 PMCID: PMC6645013 DOI: 10.1021/acsomega.8b01978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 05/26/2023]
Abstract
The increasing demand for renewable materials in the world has resulted in sustained efforts to utilize biomass in a better way. Lignin, a natural and abundant polymer in plants, has provided an ongoing challenge for many researchers seeking ways to better utilize this abundant resource. Here, we report a very efficient lignin depolymerization strategy with the assistant of microwave radiation. Copper sulphate (CuSO4) and hydrogen peroxide (H2O2) were used to generate hydroxyl radicals to depolymerize lignin under the irradiation of microwaves. Three different types of lignin, organosolv lignin, kraft lignin, and alkali lignin, were all successfully depolymerized using microwave irradiation at a temperature of 110 °C for 7 min. The use of 1H/13C two-dimensional nuclear magnetic resonance spectroscopy enabled the confirmation of structural changes, comparing before and after depolymerization. Liquid chromatography-mass spectrometry was used to characterize the products. Both monomers and oligomers were detected after depolymerization.
Collapse
Affiliation(s)
| | | | | | - Kei Saito
- E-mail: . Phone: +61(0)399054600 (K.S.)
| |
Collapse
|
104
|
Li X, He J, Zhang Y. BBr 3-Assisted Preparation of Aromatic Alkyl Bromides from Lignin and Lignin Model Compounds. J Org Chem 2018; 83:11019-11027. [PMID: 30088928 DOI: 10.1021/acs.joc.8b01628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
For the first time, BBr3-assisted nucleophilic substitution was applied to a variety of β-O-4 and α-O-4 model compounds for the highly effective cleavage of different C-O bonds, including C-Oα-OH, Cβ-O/Cα-O and CMe-O bonds (<0.5 h and >99% conversion for most cases). Without any pretreatment, the substitution proceeds at room temperature in the absence of any catalyst, or additive, selectively affording phenols and important organic synthesis reagents, aromatic alkyl bromides, in high to excellent yields (up to 98%). Preliminary studies also highlight the prospect of this method for the effective cleavage of different types of C-O bonds in real lignin. A total 14 wt % yield of aromatic alkyl bromide, 4-(1,2-dibromo-3-hydroxypropyl)benzene-1,2-diol (10), has been obtained from an extracted lignin through this method.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| |
Collapse
|
105
|
Catalytic Strategies Towards Lignin-Derived Chemicals. Top Curr Chem (Cham) 2018; 376:36. [PMID: 30151801 DOI: 10.1007/s41061-018-0214-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022]
Abstract
Lignin valorization represents a crucial, yet underexploited component in current lignocellulosic biorefineries. An alluring opportunity is the selective depolymerization of lignin towards chemicals. Although challenged by lignin's recalcitrant nature, several successful (catalytic) strategies have emerged. This review provides an overview of different approaches to cope with detrimental lignin structural alterations at an early stage of the biorefinery process, thus enabling effective routes towards lignin-derived chemicals. A first general strategy is to isolate lignin with a better preserved native-like structure and therefore an increased amenability towards depolymerization in a subsequent step. Both mild process conditions as well as active stabilization methods will be discussed. An alternative is the simultaneous depolymerization-stabilization of native lignin towards stable lignin monomers. This approach requires a fast and efficient stabilization of reactive lignin intermediates in order to minimize lignin repolymerization and maximize the envisioned production of chemicals. Finally, the obtained lignin-derived compounds can serve as a platform towards a broad range of bio-based products. Their implementation will improve the sustainability of the chemical industry, but equally important will generate opportunities towards product innovations based on unique biobased chemical structures.
Collapse
|
106
|
Alternatives for Chemical and Biochemical Lignin Valorization: Hot Topics from a Bibliometric Analysis of the Research Published During the 2000–2016 Period. Processes (Basel) 2018. [DOI: 10.3390/pr6080098] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A complete bibliometric analysis of the Scopus database was performed to identify the research trends related to lignin valorization from 2000 to 2016. The results from this analysis revealed an exponentially increasing number of publications and a high relevance of interdisciplinary collaboration. The simultaneous valorization of the three main components of lignocellulosic biomass (cellulose, hemicellulose, and lignin) has been revealed as a key aspect and optimal pretreatment is required for the subsequent lignin valorization. Research covers the determination of the lignin structure, isolation, and characterization; depolymerization by thermal and thermochemical methods; chemical, biochemical and biological conversion of depolymerized lignin; and lignin applications. Most methods for lignin depolymerization are focused on the selective cleavage of the β-O-4 linkage. Although many depolymerization methods have been developed, depolymerization with sodium hydroxide is the dominant process at industrial scale. Oxidative conversion of lignin is the most used method for the chemical lignin upgrading. Lignin uses can be classified according to its structure into lignin-derived aromatic compounds, lignin-derived carbon materials and lignin-derived polymeric materials. There are many advances in all approaches, but lignin-derived polymeric materials appear as a promising option.
Collapse
|
107
|
Ma R, Zhang X, Wang Y, Zhang X. New Insights Toward Quantitative Relationships between Lignin Reactivity to Monomers and Their Structural Characteristics. CHEMSUSCHEM 2018; 11:2146-2155. [PMID: 29702732 DOI: 10.1002/cssc.201800550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/26/2018] [Indexed: 05/02/2023]
Abstract
The heterogeneous and complex structural characteristics of lignin present a significant challenge to predict its processability (e.g., depolymerization, modifications etc.) to valuable products. This study provides a detailed characterization and comparison of structural properties of seven representative biorefinery lignin samples derived from forest and agricultural residues, which were subjected to representative pretreatment methods. A range of wet chemistry and spectroscopy methods were applied to determine specific lignin structural characteristics such as functional groups, inter-unit linkages, and peak molecular weight. In parallel, oxidative depolymerization of these lignin samples to either monomeric phenolic compounds or dicarboxylic acids were conducted, and the product yields were quantified. Based on these results (lignin structural characteristics and monomer yields), we applied for the first time the multivariable linear estimation (MVLE) approach using R Statistics (an open-source programming language and software environment for statistical computing and graphics) to gain insight toward a quantitative correlation between lignin structural properties and their conversion reactivity toward oxidative depolymerization to monomers.
Collapse
Affiliation(s)
- Ruoshui Ma
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Xiumei Zhang
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yi Wang
- College of Civil Engineering, Portland State University, 1825 SW Broadway, Portland, OR, 97207, USA
| | - Xiao Zhang
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| |
Collapse
|
108
|
Gao R, Li Y, Kim H, Mobley JK, Ralph J. Selective Oxidation of Lignin Model Compounds. CHEMSUSCHEM 2018; 11:2045-2050. [PMID: 29719142 DOI: 10.1002/cssc.201800598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO2 Cl2 (DMSO)2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin.
Collapse
Affiliation(s)
- Ruili Gao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Yanding Li
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Hoon Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Justin K Mobley
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Present address: NMR Center Director, Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0174, USA
| | - John Ralph
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| |
Collapse
|
109
|
Sun Z, Barta K. Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chem Commun (Camb) 2018; 54:7725-7745. [PMID: 29926013 DOI: 10.1039/c8cc02937g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structural complexity of lignocellulose offers unique opportunities for the development of entirely new, energy efficient and waste-free pathways in order to obtain valuable bio-based building blocks. Such sustainable catalytic methods - specifically tailored to address the efficient conversion of abundant renewable starting materials - are necessary to successfully compete, in the future, with fossil-based multi-step processes. In this contribution we give a summary of recent developments in this field and describe our "cleave and couple" strategy, where "cleave" refers to the catalytic deconstruction of lignocellulose to aromatic and aliphatic alcohol intermediates, and "couple" involves the development of novel, sustainable transformations for the formation of C-C and C-N bonds in order to obtain a range of attractive products from lignocellulose.
Collapse
Affiliation(s)
- Zhuohua Sun
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | | |
Collapse
|
110
|
Vangeel T, Schutyser W, Renders T, Sels BF. Perspective on Lignin Oxidation: Advances, Challenges, and Future Directions. Top Curr Chem (Cham) 2018; 376:30. [PMID: 29974271 DOI: 10.1007/s41061-018-0207-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/19/2018] [Indexed: 01/09/2023]
Abstract
Lignin valorization has gained increasing attention over the past decade. Being the world's largest source of renewable aromatics, its valorization could pave the way towards more profitable and more sustainable lignocellulose biorefineries. Many lignin valorization strategies focus on the disassembly of lignin into aromatic monomers, which can serve as platform molecules for the chemical industry. Within this framework, the oxidative conversion of lignin is of great interest because it enables the formation of highly functionalized, valuable compounds. This work provides a brief overview and critical discussion of lignin oxidation research. In the first part, oxidative conversion of lignin models and isolated lignin streams is reviewed. The second part highlights a number of challenges with respect to the substrate, catalyst, and operating conditions, and proposes some future directions regarding the oxidative conversion of lignin.
Collapse
Affiliation(s)
- Thijs Vangeel
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Wouter Schutyser
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Tom Renders
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Bert F Sels
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.
| |
Collapse
|
111
|
Kuznetsov B, Chesnokov N, Sudakova I, Garyntseva N, Kuznetsova S, Malyar Y, Yakovlev V, Djakovitch L. Green catalytic processing of native and organosolv lignins. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
112
|
Cauley AN, Wilson JN. Functionalized lignin biomaterials for enhancing optical properties and cellular interactions of dyes. Biomater Sci 2018; 5:2114-2121. [PMID: 28831468 DOI: 10.1039/c7bm00518k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report a library of functionalized lignins and demonstrate their utility as nanocontainers for organic dyes in biologically relevant applications. Kraft lignin was modified via SN2 reaction at the phenolic -OH group utilizing a mild base, potassium carbonate, and various alkyl halides, several bearing additional functionalities, with dimethylsulfoxide as solvent. The resulting phenoxy ethers were characterized by 1H-NMR and IR spectroscopy, as well as DLS and SEM to evaluate their morphology and supramolecular organization. Lignin modified with long-chain hydrocarbon tails was found to effectively encapsulate DiD, a cyanine dye, decrease aggregation, enhance optical transitions and exert a photoprotective effect. The dye-lignin assemblies were also examined as imaging agents, via confocal microscopy, and found to accumulate intracellularly with no leaching of the dye to hydrophobic subcellular components observed. Lignin functionalized with short chain carboxylic acids interacts with ligands directed at the norepinephrine transporter (NET), suggesting applications in sequestration of neuroactive compounds.
Collapse
Affiliation(s)
- Anthony N Cauley
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33124, USA.
| | | |
Collapse
|
113
|
Klapiszewski Ł, Szalaty TJ, Kurc B, Stanisz M, Zawadzki B, Skrzypczak A, Jesionowski T. Development of Acidic Imidazolium Ionic Liquids for Activation of Kraft Lignin by Controlled Oxidation: Comprehensive Evaluation and Practical Utility. Chempluschem 2018; 83:361-374. [PMID: 31957359 DOI: 10.1002/cplu.201800123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 11/11/2022]
Abstract
A novel, eco-friendly method for the activation of lignin by controlled oxidation was studied. The results obtained for six acidic imidazolium ionic liquids containing the hydrogen sulfate anion were compared. The key goal of this research was to increase the content of carbonyl groups in the lignin structure because these may play the main role in the transport of protons and electrons in active materials for electrochemical applications. By means of a variety of analytical techniques (FTIR, 13 C CP/MAS NMR, and X-ray photoelectron spectroscopy; selected reactions to determine the presence of carbonyl groups; SEM; zeta-potential analysis; thermogravimetric analysis/differential thermogravimetric analysis; and porous structure analysis), it was determined that the product obtained after treatment with 3-cyclohexyloxymethy-1-methylimidazolium hydrogen sulfate had favorable properties, in terms of the target application. Electrochemical tests proved that the obtained materials could be used as anodes in lithium batteries. The results show that the activation of lignin with ionic liquids can increase its capacity and maintain stability.
Collapse
Affiliation(s)
- Łukasz Klapiszewski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Tadeusz J Szalaty
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Beata Kurc
- Institute of Chemical and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Małgorzata Stanisz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Bartosz Zawadzki
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Andrzej Skrzypczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| |
Collapse
|
114
|
Sarma R, Islam MS, Running MP, Bhattacharyya D. Multienzyme immobilized polymeric membrane reactor for transformation of lignin model compound. Polymers (Basel) 2018; 10:463. [PMID: 30719335 PMCID: PMC6358281 DOI: 10.3390/polym10040463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/20/2018] [Indexed: 01/06/2023] Open
Abstract
We have developed a multienzyme functionalized membrane reactor for bioconversion of lignin model compound involving enzymatic catalysis. Layer-by-layer approach was used to immobilize three different enzymes (glucose oxidase, peroxidase and laccase) into pH-responsive membranes. This novel membrane reactor couples the in situ generation of hydrogen peroxide (by glucose oxidase) to oxidative conversion of a lignin model compound, guaiacylglycerol-B-guaiacylether (GGE). Preliminary investigation of the efficacy of these functional membranes towards GGE degradation is demonstrated under convective flow mode. Over 90% of the initial feed could be degraded with the multienzyme immobilized membranes at a residence time of approximately 22 seconds. GGE conversion product analysis revealed formation of oligomeric oxidation products with peroxidase, which might be potential hazard to membrane bioreactors. These oxidation products could be further degraded by laccase enzymes in the multienzymatic membranes explaining the potential of multienzyme membrane reactors. The multienzyme incorporated membrane reactors were active for about a month time of storage at 4 °C, and retention of activity was demonstrated after repetitive use.
Collapse
Affiliation(s)
- Rupam Sarma
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA; (R.S.); (M.S.I.)
| | - Md. Saiful Islam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA; (R.S.); (M.S.I.)
| | - Mark P. Running
- Department of Biology, University of Louisville, Louisville, KY 40292, USA;
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA; (R.S.); (M.S.I.)
| |
Collapse
|
115
|
Review on Catalytic Cleavage of C–C Inter-unit Linkages in Lignin Model Compounds: Towards Lignin Depolymerisation. Top Catal 2018. [DOI: 10.1007/s11244-018-0909-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
116
|
Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 2018; 47:852-908. [PMID: 29318245 DOI: 10.1039/c7cs00566k] [Citation(s) in RCA: 848] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon-carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the complexity. This particular upgrading approach is termed funneling, and includes both chemocatalytic and biological strategies.
Collapse
Affiliation(s)
- W Schutyser
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | | | | | | | | | |
Collapse
|
117
|
Selective hydrodeoxygenation of lignin β-O-4 model compounds and aromatic ketones promoted by palladium chloride with acidic CO2/MeOH system. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
118
|
|
119
|
Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K. Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chem Rev 2018; 118:614-678. [PMID: 29337543 PMCID: PMC5785760 DOI: 10.1021/acs.chemrev.7b00588] [Citation(s) in RCA: 765] [Impact Index Per Article: 127.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 11/28/2022]
Abstract
Lignin, a major component of lignocellulose, is the largest source of aromatic building blocks on the planet and harbors great potential to serve as starting material for the production of biobased products. Despite the initial challenges associated with the robust and irregular structure of lignin, the valorization of this intriguing aromatic biopolymer has come a long way: recently, many creative strategies emerged that deliver defined products via catalytic or biocatalytic depolymerization in good yields. The purpose of this review is to provide insight into these novel approaches and the potential application of such emerging new structures for the synthesis of biobased polymers or pharmacologically active molecules. Existing strategies for functionalization or defunctionalization of lignin-based compounds are also summarized. Following the whole value chain from raw lignocellulose through depolymerization to application whenever possible, specific lignin-based compounds emerge that could be in the future considered as potential lignin-derived platform chemicals.
Collapse
Affiliation(s)
- Zhuohua Sun
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bálint Fridrich
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Alessandra de Santi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saravanakumar Elangovan
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Katalin Barta
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
120
|
Yu HT, Chen BY, Li BY, Tseng MC, Han CC, Shyu SG. Efficient pretreatment of lignocellulosic biomass with high recovery of solid lignin and fermentable sugars using Fenton reaction in a mixed solvent. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:287. [PMID: 30377446 PMCID: PMC6195684 DOI: 10.1186/s13068-018-1288-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/09/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pretreatment of biomass to maximize the recovery of fermentable sugars as well as to minimize the amount of enzyme inhibitors formed during the pretreatment is a challenge in biofuel process. We develop a modified Fenton pretreatment in a mixed solvent (water/DMSO) to combine the advantages of organosolv and Fenton pretreatments. The hemicellulose and cellulose in corncob were effectively degraded into xylose, glucose, and soluble glucose oligomers in a few hours. This saccharide solution, separated from the solid lignin simply by filtration, can be directly applied to the subsequent enzymatic hydrolysis and ethanol fermentation. RESULTS After the pretreatment, 94% carbohydrates were recovered as soluble monosaccharide (xylose and glucose) and glucose oligomers in the filtrates, and 87% of solid lignin was recovered as the filter residue. The filtrates were directly applied to enzymatic hydrolysis, and 92% of raw corncob glucose was recovered. The hydrolysates containing the glucose and xylose from the enzymatic hydrolysis were directly applied to ethanol fermentation with ethanol yield equals 79% of theoretical yield. The pretreatment conditions (130 °C, 1.5 bar; 30 min to 4 h) are mild, and the pretreatment reagents (H2O2, FeCl3, and solvent) had low impact to environment. Using ferrimagnetic Fe3O4 resulted in similar pretreatment efficiency and Fe3O4 could be removed by filtration. CONCLUSIONS A modified Fenton pretreatment of corncob in DMSO/water was developed. Up to 94% of the carbohydrate content of corncob was recovered as a saccharide solution simply by filtration. Such filtrate was directly applied to the subsequent enzymatic hydrolysis and where 92% of the corncob glucose content was obtained. The hydrolysate so obtained was directly applied to ethanol fermentation with good fermentability. The pretreatment method is simple, and the additives and solvents used have a low impact to the environment. This method provides the opportunity to substantially maximize the carbohydrate and solid lignin recovery of biomass with a comparatively green process, such that the efficiency of biorefinery as well as the bioethanol production process can be improved. The pretreatment is still relatively energy intensive and expensive, and further optimization of the process is required in large-scale operation.
Collapse
Affiliation(s)
- Hui-Tse Yu
- Institute of Chemistry, Academia Sinica, Taipei, 11529 Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Bo-Yu Chen
- Institute of Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Bing-Yi Li
- Institute of Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Chien-Chung Han
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Shin-Guang Shyu
- Institute of Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
121
|
Wang Q, Tian D, Hu J, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y. Fates of hemicellulose, lignin and cellulose in concentrated phosphoric acid with hydrogen peroxide (PHP) pretreatment. RSC Adv 2018; 8:12714-12723. [PMID: 35541248 PMCID: PMC9079361 DOI: 10.1039/c8ra00764k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/27/2018] [Indexed: 11/30/2022] Open
Abstract
Xylan, de-alkaline lignin and microcrystalline cellulose were employed as representative models of hemicellulose, lignin and cellulose in lignocellulosic biomass. These three model compounds, together with the real-world biomass, wheat straw were pretreated using the newly developed PHP pretreatment (concentrated phosphoric acid plus hydrogen peroxide) to better understand the structural changes of the recovered solid and chemical fractions in the liquid. Results showed that almost all xylan and higher than 70% lignin were removed from wheat straw, and more than 90% cellulose was recovered in the solid fraction. The pretreated model xylan recovered via ethanol-precipitation still maintained its original structural features. The degree of polymerization of soluble xylooligosaccharides in liquid was reduced, resulting in the increase of monomeric xylose release. Further xylose oxidization via the path of 2-furancarboxylic acid → 2(5H)-furanone → acrylic acid → formic acid was mainly responsible for xylan degradation. The chemical structure of de-alkaline lignin was altered significantly by PHP pretreatment. Basic guaiacyl units of lignin were depolymerized, and aromatic rings and side aliphatic chains were partially decomposed. Ring-opening reactions of the aromatics and cleavage of C–O–C linkages were two crucial paths to lignin oxidative degradation. In contrast to lignin, no apparent changes occurred on microcrystalline cellulose. The reason was likely that acid-depolymerization and oxidative degradation of cellulose were greatly prevented by the formed cellulose phosphate. The transformation of cellulose, hemicellulose, and lignin in lignocellulosic biomass in a novel pretreatment are elucidated based on model fractions.![]()
Collapse
|
122
|
Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects. Int J Mol Sci 2017; 18:ijms18112421. [PMID: 29140301 PMCID: PMC5713389 DOI: 10.3390/ijms18112421] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 11/17/2022] Open
Abstract
This review discusses principal patterns that govern the processes of lignins' catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde) and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde). It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10-15%) inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali) in the process-over 10 mol per mol of obtained vanillin-is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed.
Collapse
|
123
|
Acharjee TC, Jiang Z, Haynes RD, Lee YY. Evaluation of chlorine dioxide as a supplementary pretreatment reagent for lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2017; 244:1049-1054. [PMID: 28851159 DOI: 10.1016/j.biortech.2017.08.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 05/24/2023]
Abstract
Chlorine dioxide (ClO2) is a bleaching reagent used in paper industry. Two different types of pretreatment methods were investigated incorporating ClO2 as a secondary reagent: (a) alkaline followed by ClO2 treatment; (b) dilute-sulfuric acid followed ClO2 treatment. In these methods, ClO2 treatment has shown little effect on delignification. Scheme-a has shown a significant improvement in enzymatic digestibility of glucan far above that treated by ammonia alone. On the contrary, dilute-acid followed by ClO2 treatment has shown negative effect on the enzymatic hydrolysis. The main factors affecting the enzymatic hydrolysis are the changes of the chemical structure of lignin and its distribution on the biomass surface. ClO2 treatment significantly increases the carboxylic acid content and reduces phenolic groups of lignin, affecting hydrophobicity of lignin and the H-bond induced association between the enzyme and lignin. This collectively led to reduction of unproductive binding of enzyme with lignin, consequently increasing the digestibility.
Collapse
Affiliation(s)
- Tapas C Acharjee
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA; Alabama Center for Paper & Bioresource Engineering, Auburn University, 356 Ross Hall, Auburn, AL 36849, USA
| | - Zhihua Jiang
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA; Alabama Center for Paper & Bioresource Engineering, Auburn University, 356 Ross Hall, Auburn, AL 36849, USA
| | | | - Yoon Y Lee
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA.
| |
Collapse
|
124
|
Dai J, Patti AF, Longé L, Garnier G, Saito K. Oxidized Lignin Depolymerization using Formate Ionic Liquid as Catalyst and Solvent. ChemCatChem 2017. [DOI: 10.1002/cctc.201700632] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jinhuo Dai
- School of Chemistry; Monash University; Clayton VIC 3800 Australia
| | - Antonio F. Patti
- School of Chemistry; Monash University; Clayton VIC 3800 Australia
| | - Lionel Longé
- School of Chemistry; Monash University; Clayton VIC 3800 Australia
| | - Gil Garnier
- Department of Chemical Engineering; Monash University; Clayton VIC 3800 Australia
| | - Kei Saito
- School of Chemistry; Monash University; Clayton VIC 3800 Australia
| |
Collapse
|
125
|
Cheng C, Wang J, Shen D, Xue J, Guan S, Gu S, Luo KH. Catalytic Oxidation of Lignin in Solvent Systems for Production of Renewable Chemicals: A Review. Polymers (Basel) 2017; 9:E240. [PMID: 30970917 PMCID: PMC6432089 DOI: 10.3390/polym9060240] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022] Open
Abstract
Lignin as the most abundant source of aromatic chemicals in nature has attracted a great deal of attention in both academia and industry. Solvolysis is one of the promising methods to convert lignin to a number of petroleum-based aromatic chemicals. The process involving the depolymerization of the lignin macromolecule and repolymerization of fragments is complicated influenced by heating methods, reaction conditions, presence of a catalyst and solvent systems. Recently, numerous investigations attempted unveiling the inherent mechanism of this process in order to promote the production of valuable aromatics. Oxidative solvolysis of lignin can produce a number of the functionalized monomeric or oligomeric chemicals. A number of research groups should be greatly appreciated with regard to their contributions on the following two concerns: (1) the cracking mechanism of inter-unit linkages during the oxidative solvolysis of lignin; and (2) the development of novel catalysts for oxidative solvolysis of lignin and their performance. Investigations on lignin oxidative solvolysis are extensively overviewed in this work, concerning the above issues and the way-forward for lignin refinery.
Collapse
Affiliation(s)
- Chongbo Cheng
- Key Lab of Thermal Energy Conversion and Control of MoE, Southeast University, Nanjing 210096, China.
| | - Jinzhi Wang
- Key Lab of Thermal Energy Conversion and Control of MoE, Southeast University, Nanjing 210096, China.
| | - Dekui Shen
- Key Lab of Thermal Energy Conversion and Control of MoE, Southeast University, Nanjing 210096, China.
| | - Jiangtao Xue
- Jiangsu Frontier Electric Power Technology Co., Ltd., Nanjing 211102, China.
| | - Sipian Guan
- Jiangsu Frontier Electric Power Technology Co., Ltd., Nanjing 211102, China.
| | - Sai Gu
- Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Surrey GU2 7XH, UK.
| | - Kai Hong Luo
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK.
| |
Collapse
|
126
|
Eberle A, Bhatt A, Zhang Y, Heath G. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5879-5888. [PMID: 28445051 DOI: 10.1021/acs.est.7b00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain major source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called "major" or "minor") has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.
Collapse
Affiliation(s)
- Annika Eberle
- National Renewable Energy Laboratory, Golden, Colorado 80401 United States
| | - Arpit Bhatt
- National Renewable Energy Laboratory, Golden, Colorado 80401 United States
| | - Yimin Zhang
- National Renewable Energy Laboratory, Golden, Colorado 80401 United States
| | - Garvin Heath
- National Renewable Energy Laboratory, Golden, Colorado 80401 United States
| |
Collapse
|
127
|
Tang C, Shan J, Chen Y, Zhong L, Shen T, Zhu C, Ying H. Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin. BIORESOURCE TECHNOLOGY 2017; 232:222-228. [PMID: 28231540 DOI: 10.1016/j.biortech.2017.02.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
A novel and efficient organic amine and organosolv synergetic pretreatment method was developed to overcome the recalcitrance of lignocellulose to produce fermentable sugars and high-quality salt-free lignin. After optimization of the process parameters, a delignification of 81.7% and total sugar yield of 83.2% (87.1% glucose, 75.4% xylose) could be obtained using n-propylamine (10mmol/g, biomass) as a catalyst and aqueous ethanol (60%, v/v) as a solvent. The susceptibility of the substrates to enzymatic digestibility was explained by their physical and chemical characteristics. The physical structure of extracted lignin showed higher β-aryl ether bonds content and functionalities, offering the potential for further downstream upgrading. The role of organic amine catalyst and a synergistic mechanism is proposed for the present system.
Collapse
Affiliation(s)
- Chenglun Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Junqiang Shan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Yanjun Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Lingxia Zhong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Tao Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China.
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| |
Collapse
|
128
|
Podkościelna B, Gordobil O, Riazanova AV, Dobele G, Labidi J, Lindström ME, Gun'ko VM, Sevastyanova O. Novel Porous Materials Obtained from Technical Lignins and Their Methacrylate Derivatives Copolymerized with Styrene and Divinylbenzene. ChemistrySelect 2017. [DOI: 10.1002/slct.201601827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Beata Podkościelna
- Department of Polymer Chemistry, Faculty of Chemistry; Maria Curie-Skłodowska University; pl. M. Curie-Skłodowskiej 5 20-031 Lublin Poland
| | - Oihana Gordobil
- Department of Chemical and Environmental Engineering; University of the Basque Country; Plaza Europa 1 20018 Donostia-San Sebastián Spain
| | - Anastasia V. Riazanova
- Department of Fibre and Polymer Technology; KTH - The Royal Institute of Technology; Teknikringen 56, SE- 10044 Stockholm Sweden
- Wallenberg Wood Science Center (WWSC); KTH - The Royal Institute of Technology; Teknikringen 56, SE- 10044 Stockholm Sweden
| | - Galina Dobele
- Laboratory of Lignin Chemistry; Latvian State Institute of Wood Chemistry; Dzerbenes Str. 27, LV 1006 Riga Latvia
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering; University of the Basque Country; Plaza Europa 1 20018 Donostia-San Sebastián Spain
| | - Mikael E. Lindström
- Department of Fibre and Polymer Technology; KTH - The Royal Institute of Technology; Teknikringen 56, SE- 10044 Stockholm Sweden
| | - Vladimir M. Gun'ko
- Department of Amorphous and Structurally Ordered Oxides; Chuiko Institute of Surface Chemistry; The National Academy of Sciences of Ukraine; General Naumov Str. 17 03164 Kyiv Ukraine
| | - Olena Sevastyanova
- Department of Fibre and Polymer Technology; KTH - The Royal Institute of Technology; Teknikringen 56, SE- 10044 Stockholm Sweden
- Wallenberg Wood Science Center (WWSC); KTH - The Royal Institute of Technology; Teknikringen 56, SE- 10044 Stockholm Sweden
| |
Collapse
|
129
|
Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. BIORESOUR BIOPROCESS 2017; 4:7. [PMID: 28163994 PMCID: PMC5241333 DOI: 10.1186/s40643-017-0137-9] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
Lignocellulosic feedstock materials are the most abundant renewable bioresource material available on earth. It is primarily composed of cellulose, hemicellulose, and lignin, which are strongly associated with each other. Pretreatment processes are mainly involved in effective separation of these complex interlinked fractions and increase the accessibility of each individual component, thereby becoming an essential step in a broad range of applications particularly for biomass valorization. However, a major hurdle is the removal of sturdy and rugged lignin component which is highly resistant to solubilization and is also a major inhibitor for hydrolysis of cellulose and hemicellulose. Moreover, other factors such as lignin content, crystalline, and rigid nature of cellulose, production of post-pretreatment inhibitory products and size of feed stock particle limit the digestibility of lignocellulosic biomass. This has led to extensive research in the development of various pretreatment processes. The major pretreatment methods include physical, chemical, and biological approaches. The selection of pretreatment process depends exclusively on the application. As compared to the conventional single pretreatment process, integrated processes combining two or more pretreatment techniques is beneficial in reducing the number of process operational steps besides minimizing the production of undesirable inhibitors. However, an extensive research is still required for the development of new and more efficient pretreatment processes for lignocellulosic feedstocks yielding promising results.
Collapse
Affiliation(s)
- Adepu Kiran Kumar
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand, 388 120 Gujarat India
| | - Shaishav Sharma
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand, 388 120 Gujarat India
| |
Collapse
|
130
|
Mar BD, Kulik HJ. Depolymerization Pathways for Branching Lignin Spirodienone Units Revealed with ab Initio Steered Molecular Dynamics. J Phys Chem A 2017; 121:532-543. [PMID: 28005362 DOI: 10.1021/acs.jpca.6b11414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lignocellulosic biomass is an abundant, rich source of aromatic compounds, but direct utilization of raw lignin has been hampered by both the high heterogeneity and variability of linking bonds in this biopolymer. Ab initio steered molecular dynamics (AISMD) has emerged both as a fruitful direct computational screening approach to identify products that occur through mechanical depolymerization (i.e., in sonication or ball-milling) and as a sampling approach. By varying the direction of force and sampling over 750 AISMD trajectories, we identify numerous possible pathways through which lignin depolymerization may occur in pyrolysis or through catalytic depolymerization as well. Here, we present eight unique major depolymerization pathways discovered via AISMD for the recently characterized spirodienone lignin branching linkage that may comprise around 10% weight of all lignin in some softwoods. We extract representative trajectories from AISMD and carry out reaction pathway analysis to identify energetically favorable pathways for lignin depolymerization. Importantly, we identify dynamical effects that could not be observed through more traditional calculations of bond dissociation energies. Such effects include thermodynamically favorable recovery of aromaticity in the dienone ring that leads to near-barrierless subsequent ether cleavage and hydrogen-bonding effects that stabilize newly formed radicals. Some of the most stable spirodienone fragments that reside at most 1 eV above the reactant structure are formed with only 2 eV barriers for C-C bond cleavage, suggesting key targets for catalyst design to drive targeted depolymerization of lignin.
Collapse
Affiliation(s)
- Brendan D Mar
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
131
|
Ramalingam B, Sana B, Seayad J, Ghadessy FJ, Sullivan MB. Towards understanding of laccase-catalysed oxidative oligomerisation of dimeric lignin model compounds. RSC Adv 2017. [DOI: 10.1039/c6ra26975c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The isolation of early intermediates in the laccase-catalysed oligomerisation of lignin model compounds indicated the preferential formation of C5–C5′ over C5–O–C4′ linkages.
Collapse
Affiliation(s)
- B. Ramalingam
- Organic Chemistry
- Institute of Chemical and Engineering Sciences
- Singapore 138 665
| | - B. Sana
- p53 Laboratory
- Singapore 138 648
| | - J. Seayad
- Organic Chemistry
- Institute of Chemical and Engineering Sciences
- Singapore 138 665
| | | | - M. B. Sullivan
- Institute of High Performance Computing
- Singapore 138 632
| |
Collapse
|
132
|
Hemmilä V, Adamopoulos S, Karlsson O, Kumar A. Development of sustainable bio-adhesives for engineered wood panels – A Review. RSC Adv 2017. [DOI: 10.1039/c7ra06598a] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stricter legislation on formaldehyde emissions as well as growing consumer interest in sustainable raw materials and products are the main driving factors behind research on bio-based adhesives, as alternatives to amino-based ones, for wood panels.
Collapse
Affiliation(s)
- Venla Hemmilä
- Department of Forestry and Wood Technology
- Linnaeus University
- 351 95 Växjö
- Sweden
| | | | - Olov Karlsson
- Wood Technology
- TVM
- Luleå University of Technology
- 931 87 Skellefteå
- Sweden
| | - Anuj Kumar
- Department of Forestry and Wood Technology
- Linnaeus University
- 351 95 Växjö
- Sweden
| |
Collapse
|
133
|
Saha S, Abd Hamid SB. CuZrO 3nanoparticles catalyst in aerobic oxidation of vanillyl alcohol. RSC Adv 2017; 7:9914-9925. [DOI: 10.1039/c6ra26370d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
A highly crystalline, mesoporous and perovskite type CuZrO3nanoparticles catalyst was preparedviaa simple and facile one pot solvent evaporation method.
Collapse
Affiliation(s)
- Subrata Saha
- Nanotechnology and Catalysis Research Center (NANOCAT)
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Sharifah Bee Abd Hamid
- Nanotechnology and Catalysis Research Center (NANOCAT)
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| |
Collapse
|
134
|
Catalytic Aerobic Oxidation of 5-Hydroxymethylfurfural (HMF) into 2,5-Furandicarboxylic Acid and Its Derivatives. PRODUCTION OF PLATFORM CHEMICALS FROM SUSTAINABLE RESOURCES 2017. [DOI: 10.1007/978-981-10-4172-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
135
|
Galkin MV, Smit AT, Subbotina E, Artemenko KA, Bergquist J, Huijgen WJJ, Samec JSM. Hydrogen-free catalytic fractionation of woody biomass. CHEMSUSCHEM 2016; 9:3280-3287. [PMID: 27860308 DOI: 10.1002/cssc.201600648] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 10/03/2016] [Indexed: 05/14/2023]
Abstract
The pulping industry could become a biorefinery if the lignin and hemicellulose components of the lignocellulose are valorized. Conversion of lignin into well-defined aromatic chemicals is still a major challenge. Lignin depolymerization reactions often occur in parallel with irreversible condensation reactions of the formed fragments. Here, we describe a strategy that markedly suppresses the undesired condensation pathways and allows to selectively transform lignin into a few aromatic compounds. Notably, applying this strategy to woody biomass at organosolv pulping conditions, the hemicellulose, cellulose, and lignin were separated and in parallel the lignin was transformed into aromatic monomers. In addition, we were able to utilize a part of the lignocellulose as an internal source of hydrogen for the reductive lignin transformations. We hope that the presented methodology will inspire researchers in the field of lignin valorization as well as pulp producers to develop more efficient biomass fractionation processes in the future.
Collapse
Affiliation(s)
- Maxim V Galkin
- Department of Organic Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Arjan T Smit
- Energy Research Centre of the Netherlands (ECN), Biomass & Energy Efficiency, Westerduinweg 3, 1755, LE, Petten, The Netherlands
| | - Elena Subbotina
- Department of Organic Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Konstantin A Artemenko
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, 751 24, Uppsala, Sweden
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, 751 24, Uppsala, Sweden
| | - Wouter J J Huijgen
- Energy Research Centre of the Netherlands (ECN), Biomass & Energy Efficiency, Westerduinweg 3, 1755, LE, Petten, The Netherlands
| | - Joseph S M Samec
- Department of Organic Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
136
|
Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 2016; 42:40-53. [DOI: 10.1016/j.copbio.2016.02.030] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/15/2016] [Accepted: 02/24/2016] [Indexed: 02/08/2023]
|
137
|
Kuznetsov BN, Sudakova IG, Garyntseva NV, Djakovitch L, Pinel C. Kinetic studies and optimization of abies wood fractionation by hydrogen peroxide under mild conditions with TiO2 catalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2016. [DOI: 10.1007/s11144-016-1100-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
138
|
Dai J, Patti AF, Saito K. Recent developments in chemical degradation of lignin: catalytic oxidation and ionic liquids. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.084] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
139
|
Kärkäs MD, Matsuura BS, Monos TM, Magallanes G, Stephenson CRJ. Transition-metal catalyzed valorization of lignin: the key to a sustainable carbon-neutral future. Org Biomol Chem 2016; 14:1853-914. [PMID: 26732312 DOI: 10.1039/c5ob02212f] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of a sustainable, carbon-neutral biorefinery has emerged as a prominent scientific and engineering goal of the 21st century. As petroleum has become less accessible, biomass-based carbon sources have been investigated for utility in fuel production and commodity chemical manufacturing. One underutilized biomaterial is lignin; however, its highly crosslinked and randomly polymerized composition have rendered this biopolymer recalcitrant to existing chemical processing. More recently, insight into lignin's molecular structure has reinvigorated chemists to develop catalytic methods for lignin depolymerization. This review examines the development of transition-metal catalyzed reactions and the insights shared between the homogeneous and heterogeneous catalytic systems towards the ultimate goal of valorizing lignin to produce value-added products.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Bryan S Matsuura
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Timothy M Monos
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Gabriel Magallanes
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Corey R J Stephenson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
140
|
Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin. Int J Biol Macromol 2016; 91:1081-9. [DOI: 10.1016/j.ijbiomac.2016.06.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022]
|
141
|
|
142
|
Yan L, Ma R, Li L, Fu J. Hot Water Pretreatment of Lignocellulosic Biomass: An Effective and Environmentally Friendly Approach to Enhance Biofuel Production. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201600394] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
143
|
Affiliation(s)
- Xue-Fei Zhou
- Kunming University of Science and Technology; Kunming 650051 China
- State Key Laboratory Breeding Base-Key, Laboratory of Qinghai Province for Plateau Crop Germplasm Innovation and Utilization; Xining 810016 China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology; Guangxi University; Nanning 530004 China
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems of Ministry of Education of China; Chongqing University; Chongqing 400044 China
- School of Tropical eco-Environment Protection; Hainan Tropical Ocean University; Sanya 572022 China
| | - Xu-Jie Lu
- School of Tropical eco-Environment Protection; Hainan Tropical Ocean University; Sanya 572022 China
| |
Collapse
|
144
|
Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew Chem Int Ed Engl 2016; 55:8164-215. [PMID: 27311348 PMCID: PMC6680216 DOI: 10.1002/anie.201510351] [Citation(s) in RCA: 796] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/28/2016] [Indexed: 12/23/2022]
Abstract
Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple "upstream" (i.e., lignin bioengineering, lignin isolation and "early-stage catalytic conversion of lignin") and "downstream" (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a "beginning-to-end" analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of lignin's biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.
Collapse
Affiliation(s)
- Roberto Rinaldi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Robin Jastrzebski
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Matthew T Clough
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - John Ralph
- Department of Energy's Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, and Department of Biochemistry, University of Wisconsin, Madison, WI, 53726, USA.
| | - Marco Kennema
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Pieter C A Bruijnincx
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands.
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
145
|
Galkin MV, Samec JSM. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery. CHEMSUSCHEM 2016; 9:1544-58. [PMID: 27273230 DOI: 10.1002/cssc.201600237] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Indexed: 05/08/2023]
Abstract
Current processes for the fractionation of lignocellulosic biomass focus on the production of high-quality cellulosic fibers for paper, board, and viscose production. The other fractions that constitute a major part of lignocellulose are treated as waste or used for energy production. The transformation of lignocellulose beyond paper pulp to a commodity (e.g., fine chemicals, polymer precursors, and fuels) is the only feasible alternative to current refining of fossil fuels as a carbon feedstock. Inspired by this challenge, scientists and engineers have developed a plethora of methods for the valorization of biomass. However, most studies have focused on using one single purified component from lignocellulose that is not currently generated by the existing biomass fractionation processes. A lot of effort has been made to develop efficient methods for lignin depolymerization. The step to take this fundamental research to industrial applications is still a major challenge. This review covers an alternative approach, in which the lignin valorization is performed in concert with the pulping process. This enables the fractionation of all components of the lignocellulosic biomass into valorizable streams. Lignocellulose fractions obtained this way (e.g., lignin oil and glucose) can be utilized in a number of existing procedures. The review covers historic, current, and future perspectives, with respect to catalytic lignocellulose fractionation processes.
Collapse
Affiliation(s)
- Maxim V Galkin
- Department of Organic Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Joseph S M Samec
- Department of Organic Chemistry, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
146
|
Ma R, Guo M, Lin KT, Hebert VR, Zhang J, Wolcott MP, Quintero M, Ramasamy KK, Chen X, Zhang X. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds. Chemistry 2016; 22:10884-91. [PMID: 27373451 DOI: 10.1002/chem.201600546] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/08/2022]
Abstract
Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.
Collapse
Affiliation(s)
- Ruoshui Ma
- Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Mond Guo
- Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Kuan-Ting Lin
- Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Vincent R Hebert
- Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Jinwen Zhang
- Wood Materials and Engineering Laboratory, Washington State University, Pullman, WA, 99164, USA
| | - Michael P Wolcott
- Wood Materials and Engineering Laboratory, Washington State University, Pullman, WA, 99164, USA
| | - Melissa Quintero
- Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Karthikeyan K Ramasamy
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Xiaowen Chen
- National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd, Golden, CO, 80127, USA
| | - Xiao Zhang
- Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA.
| |
Collapse
|
147
|
Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM. Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510351] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roberto Rinaldi
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ Großbritannien
| | - Robin Jastrzebski
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| | - Matthew T. Clough
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - John Ralph
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, and Department of Biochemistry University of Wisconsin Madison WI 53726 USA
| | - Marco Kennema
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Pieter C. A. Bruijnincx
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| |
Collapse
|
148
|
Heterogeneously catalyzed lignin depolymerization. APPLIED PETROCHEMICAL RESEARCH 2016; 6:243-256. [PMID: 32355588 PMCID: PMC7175707 DOI: 10.1007/s13203-016-0157-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/24/2016] [Indexed: 01/12/2023] Open
Abstract
Biomass offers a unique resource for the sustainable production of bio-derived chemical and fuels as drop-in replacements for the current fossil fuel products. Lignin represents a major component of lignocellulosic biomass, but is particularly recalcitrant for valorization by existing chemical technologies due to its complex cross-linking polymeric network. Here, we highlight a range of catalytic approaches to lignin depolymerisation for the production of aromatic bio-oil and monomeric oxygenates.
Collapse
|
149
|
O’Callaghan K. Technologies for the utilisation of biogenic waste in the bioeconomy. Food Chem 2016; 198:2-11. [DOI: 10.1016/j.foodchem.2015.11.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/19/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|
150
|
Wang C, Kelley SS, Venditti RA. Lignin-Based Thermoplastic Materials. CHEMSUSCHEM 2016; 9:770-83. [PMID: 27059111 DOI: 10.1002/cssc.201501531] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Indexed: 05/22/2023]
Abstract
Lignin-based thermoplastic materials have attracted increasing interest as sustainable, cost-effective, and biodegradable alternatives for petroleum-based thermoplastics. As an amorphous thermoplastic material, lignin has a relatively high glass-transition temperature and also undergoes radical-induced self-condensation at high temperatures, which limits its thermal processability. Additionally, lignin-based materials are usually brittle and exhibit poor mechanical properties. To improve the thermoplasticity and mechanical properties of technical lignin, polymers or plasticizers are usually integrated with lignin by blending or chemical modification. This Review attempts to cover the reported approaches towards the development of lignin-based thermoplastic materials on the basis of published information. Approaches reviewed include plasticization, blending with miscible polymers, and chemical modifications by esterification, etherification, polymer grafting, and copolymerization. Those lignin-based thermoplastic materials are expected to show applications as engineering plastics, polymeric foams, thermoplastic elastomers, and carbon-fiber precursors.
Collapse
Affiliation(s)
- Chao Wang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
- H.B. Fuller Company, 1200 Willow Lake Blvd, St. Paul, MN, 55110, USA
| | - Stephen S Kelley
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
| | - Richard A Venditti
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|