101
|
Kavelaars A, Heijnen CJ. T Cells as Guardians of Pain Resolution. Trends Mol Med 2021; 27:302-313. [PMID: 33431239 PMCID: PMC8005447 DOI: 10.1016/j.molmed.2020.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023]
Abstract
Despite successful research efforts aimed at understanding pain mechanisms, there is still no adequate treatment for many patients suffering from chronic pain. The contribution of neuroinflammation to chronic pain is widely acknowledged. Here, we summarize findings indicating that T cells play a key role in the suppression of pain. An active contribution of the immune system to resolution of pain may explain why immunosuppressive drugs are often not sufficient to control pain. This would also imply that dysregulation of certain immune functions promote transition to chronic pain. Conversely, stimulating the endogenous immune-mediated resolution pathways may provide a potent approach to treat chronic pain.
Collapse
Affiliation(s)
- Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas, M.D. Anderson Cancer Center, Zayed Building, M.D. Anderson Boulevard, Houston, TX 77030, USA.
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas, M.D. Anderson Cancer Center, Zayed Building, M.D. Anderson Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
102
|
Bucheli OTM, Sigvaldadóttir I, Eyer K. Measuring single-cell protein secretion in immunology: Technologies, advances, and applications. Eur J Immunol 2021; 51:1334-1347. [PMID: 33734428 PMCID: PMC8252417 DOI: 10.1002/eji.202048976] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
The dynamics, nature, strength, and ultimately protective capabilities of an active immune response are determined by the extracellular constitution and concentration of various soluble factors. Generated effector cells secrete such mediators, including antibodies, chemo‐ and cytokines to achieve functionality. These secreted factors organize the individual immune cells into functional tissues, initiate, orchestrate, and regulate the immune response. Therefore, a single‐cell resolved analysis of protein secretion is a valuable tool for studying the heterogeneity and functionality of immune cells. This review aims to provide a comparative overview of various methods to characterize immune reactions by measuring single‐cell protein secretion. Spot‐based and cytometry‐based assays, such as ELISpot and flow cytometry, respectively, are well‐established methods applied in basic research and clinical settings. Emerging novel technologies, such as microfluidic platforms, offer new ways to measure and exploit protein secretion in immune reactions. Further technological advances will allow the deciphering of protein secretion in immunological responses with unprecedented detail, linking secretion to functionality. Here, we summarize the development and recent advances of tools that allow the analysis of protein secretion at the single‐cell level, and discuss and contrast their applications within immunology.
Collapse
Affiliation(s)
- Olivia T M Bucheli
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Ingibjörg Sigvaldadóttir
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
103
|
Wendel P, Reindl LM, Bexte T, Künnemeyer L, Särchen V, Albinger N, Mackensen A, Rettinger E, Bopp T, Ullrich E. Arming Immune Cells for Battle: A Brief Journey through the Advancements of T and NK Cell Immunotherapy. Cancers (Basel) 2021; 13:cancers13061481. [PMID: 33807011 PMCID: PMC8004685 DOI: 10.3390/cancers13061481] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review is intended to provide an overview on the history and recent advances of T cell and natural killer (NK) cell-based immunotherapy. While the thymus was discovered as the origin of T cells in the 1960s, and NK cells were first described in 1975, the clinical application of adoptive cell therapies (ACT) only began in the early 1980s with the first lymphokine activated killer (LAK) cell product for the treatment of cancer patients. Over the past decades, further immunotherapies have been developed, including ACT using cytokine-induced killer (CIK) cells, products based on the NK cell line NK-92 as well as specific T and NK cell preparations. Recent advances have successfully improved the effectiveness of T, NK, CIK or NK-92 cells towards tumor-targeting antigens generated by genetic engineering of the immune cells. Herein, we summarize the promising development of ACT over the past decades in the fight against cancer. Abstract The promising development of adoptive immunotherapy over the last four decades has revealed numerous therapeutic approaches in which dedicated immune cells are modified and administered to eliminate malignant cells. Starting in the early 1980s, lymphokine activated killer (LAK) cells were the first ex vivo generated NK cell-enriched products utilized for adoptive immunotherapy. Over the past decades, various immunotherapies have been developed, including cytokine-induced killer (CIK) cells, as a peripheral blood mononuclear cells (PBMCs)-based therapeutic product, the adoptive transfer of specific T and NK cell products, and the NK cell line NK-92. In addition to allogeneic NK cells, NK-92 cell products represent a possible “off-the-shelf” therapeutic concept. Recent approaches have successfully enhanced the specificity and cytotoxicity of T, NK, CIK or NK-92 cells towards tumor-specific or associated target antigens generated by genetic engineering of the immune cells, e.g., to express a chimeric antigen receptor (CAR). Here, we will look into the history and recent developments of T and NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Philipp Wendel
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Lisa Marie Reindl
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Tobias Bexte
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Leander Künnemeyer
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, 60528 Frankfurt am Main, Germany;
| | - Nawid Albinger
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Mackensen
- Department of Medicine 5, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Eva Rettinger
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, Germany
- University Cancer Center Mainz, University Medical Center, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 69120 Heidelberg, Germany
| | - Evelyn Ullrich
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
104
|
Guo R, Lü M, Cao F, Wu G, Gao F, Pang H, Li Y, Zhang Y, Xing H, Liang C, Lyu T, Du C, Li Y, Guo R, Xie X, Li W, Liu D, Song Y, Jiang Z. Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment. Biomark Res 2021; 9:15. [PMID: 33648605 PMCID: PMC7919996 DOI: 10.1186/s40364-021-00265-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Knowledge of immune cell phenotypes, function, and developmental trajectory in acute myeloid leukemia (AML) microenvironment is essential for understanding mechanisms of evading immune surveillance and immunotherapy response of targeting special microenvironment components. METHODS Using a single-cell RNA sequencing (scRNA-seq) dataset, we analyzed the immune cell phenotypes, function, and developmental trajectory of bone marrow (BM) samples from 16 AML patients and 4 healthy donors, but not AML blasts. RESULTS We observed a significant difference between normal and AML BM immune cells. Here, we defined the diversity of dendritic cells (DC) and macrophages in different AML patients. We also identified several unique immune cell types including T helper cell 17 (TH17)-like intermediate population, cytotoxic CD4+ T subset, T cell: erythrocyte complexes, activated regulatory T cells (Treg), and CD8+ memory-like subset. Emerging AML cells remodels the BM immune microenvironment powerfully, leads to immunosuppression by accumulating exhausted/dysfunctional immune effectors, expending immune-activated types, and promoting the formation of suppressive subsets. CONCLUSION Our results provide a comprehensive AML BM immune cell census, which can help to select pinpoint targeted drug and predict efficacy of immunotherapy.
Collapse
Affiliation(s)
- Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengdie Lü
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Fujiao Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guanghua Wu
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haili Pang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yadan Li
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Liang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tianxin Lyu
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Delong Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
105
|
Gil-Etayo FJ, Suàrez-Fernández P, Cabrera-Marante O, Arroyo D, Garcinuño S, Naranjo L, Pleguezuelo DE, Allende LM, Mancebo E, Lalueza A, Díaz-Simón R, Paz-Artal E, Serrano A. T-Helper Cell Subset Response Is a Determining Factor in COVID-19 Progression. Front Cell Infect Microbiol 2021; 11:624483. [PMID: 33718270 PMCID: PMC7952877 DOI: 10.3389/fcimb.2021.624483] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
The immune response type organized against viral infection is determinant in the prognosis of some infections. This work has aimed to study Th polarization in acute COVID-19 and its possible association with the outcome through an observational prospective study. Fifty-eight COVID-19 patients were recruited in the Medicine Department of the hospital “12 de Octubre,” 55 patients remaining after losses to follow-up. Four groups were established according to maximum degree of disease progression. T-helper cell percentages and phenotypes, analyzed by flow cytometer, and serum cytokines levels, analyzed by Luminex, were evaluated when the microbiological diagnosis (acute phase) of the disease was obtained. Our study found a significant reduction of %Th1 and %Th17 cells with higher activated %Th2 cells in the COVID-19 patients compared with reference population. A higher percent of senescent Th2 cells was found in the patients who died than in those who survived. Senescent Th2 cell percentage was an independent risk factor for death (OR: 13.88) accompanied by the numbers of total lymphocytes (OR: 0.15) with an AUC of 0.879. COVID-19 patients showed a profile of pro-inflammatory serum cytokines compared to controls, with higher levels of IL-2, IL-6, IL-15, and IP-10. IL-10 and IL-13 were also elevated in patients compared to controls. Patients who did not survive presented significantly higher levels of IL-15 than those who recovered. No significant differences were observed according to disease progression groups. The study has shown that increased levels of IL-15 and a high Th2 response are associated with a fatal outcome of the disease.
Collapse
Affiliation(s)
| | - Patricia Suàrez-Fernández
- Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Daniel Arroyo
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sara Garcinuño
- Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Naranjo
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Luis M Allende
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Esther Mancebo
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Antonio Lalueza
- Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Raquel Díaz-Simón
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Departamento de Inmunología, Oftalmología y Otorrinolaringología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Serrano
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Epidemiology, Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
106
|
Del Zotto G, Preijers F, Tárnok A. Phenotype reports: Sharing the knowledge: (An expert is a man who has made all the mistakes which can be made in a very narrow field. by Niels Bohr). Cytometry A 2021; 99:216-217. [PMID: 33580601 DOI: 10.1002/cyto.a.24318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Genny Del Zotto
- Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Frank Preijers
- Department of Laboratory Medicine - Laboratory for Hematology, Radboud UMC, Nijmegen, The Netherlands
| | - Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.,Department of Therapy Validation, Fraunhofer Institute for Cell Therapy, and Immunology IZI, Leipzig, Germany.,Department for Precision Instrument, Tsinghua University, Beijing, China
| |
Collapse
|
107
|
Richardson JR, Schöllhorn A, Gouttefangeas C, Schuhmacher J. CD4+ T Cells: Multitasking Cells in the Duty of Cancer Immunotherapy. Cancers (Basel) 2021; 13:596. [PMID: 33546283 PMCID: PMC7913359 DOI: 10.3390/cancers13040596] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy activates the immune system to specifically target malignant cells. Research has often focused on CD8+ cytotoxic T cells, as those have the capacity to eliminate tumor cells after specific recognition upon TCR-MHC class I interaction. However, CD4+ T cells have gained attention in the field, as they are not only essential to promote help to CD8+ T cells, but are also able to kill tumor cells directly (via MHC-class II dependent recognition) or indirectly (e.g., via the activation of other immune cells like macrophages). Therefore, immunotherapy approaches have shifted from only stimulating CD8+ T cells to targeting and assessing both, CD4+ and CD8+ T cell subsets. Here, we discuss the various subsets of CD4+ T cells, their plasticity and functionality, their relevance in the antitumor immune response in patients affected by cancer, and their ever-growing role in therapeutic approaches for human cancer.
Collapse
Affiliation(s)
- Jennifer R. Richardson
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
| | - Anna Schöllhorn
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, 72076 Tübingen, Germany
| | - Juliane Schuhmacher
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
108
|
Tsogas FK, Majerczyk D, Hart PC. Possible Role of Metformin as an Immune Modulator in the Tumor Microenvironment of Ovarian Cancer. Int J Mol Sci 2021; 22:ijms22020867. [PMID: 33467127 PMCID: PMC7830067 DOI: 10.3390/ijms22020867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests that the immune component of the tumor microenvironment (TME) may be highly involved in the progression of high-grade serous ovarian cancer (HGSOC), as an immunosuppressive TME is associated with worse patient outcomes. Due to the poor prognosis of HGSOC, new therapeutic strategies targeting the TME may provide a potential path forward for preventing disease progression to improve patient survival. One such postulated approach is the repurposing of the type 2 diabetes medication, metformin, which has shown promise in reducing HGSOC tumor progression in retrospective epidemiological analyses and through numerous preclinical studies. Despite its potential utility in treating HGSOC, and that the immune TME is considered as a key factor in the disease’s progression, little data has definitively shown the ability of metformin to target this component of the TME. In this brief review, we provide a summary of the current understanding of the effects of metformin on leukocyte function in ovarian cancer and, coupled with data from other related disease states, posit the potential mechanisms by which the drug may enhance the anti-tumorigenic effects of immune cells to improve HGSOC patient survival.
Collapse
Affiliation(s)
- Faye K. Tsogas
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL 60173, USA; (F.K.T.); (D.M.)
| | - Daniel Majerczyk
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL 60173, USA; (F.K.T.); (D.M.)
- Loyola Medicine, Berwyn, IL 60402, USA
| | - Peter C. Hart
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL 60173, USA; (F.K.T.); (D.M.)
- Correspondence:
| |
Collapse
|
109
|
Chen JB, Kong XF, Mu F. High-flow hydrogen inhalation might suppresses the immune function of middle-aged participants: a self-controlled study. Med Gas Res 2021; 11:12-17. [PMID: 33642332 PMCID: PMC8103974 DOI: 10.4103/2045-9912.310054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/10/2023] Open
Abstract
Hydrogen inhalation therapy has been proven to be safe and effective in disease treatment in multiple clinical reports, but the gas flow rates used in different studies vary greatly. Since there is no upper limit for the safe concentration of hydrogen, this study tested the effects of high-flow (not high concentration) hydrogen inhalation on immune function. From October 2019 to January 2020, 20 adult participants (31-60 years old) were enrolled in a self-controlled study to check the immune function in peripheral blood lymphocyte subsets before and after a 2-week hydrogen inhalation protocol. The participants inhaled hydrogen for 2 or 4 hours each day. After 2 weeks of hydrogen inhalation, statistically significant changes were observed in follicular helper T cells, helper and cytotoxic T cells, natural killer and natural killer T cells, and gamma delta T cells, generally suggesting a decrease in their proportions. These results show that high-flow hydrogen inhalation has an inhibitory effect on the immune function of healthy participants. The study protocol received ethical approval from the Ethics Committee of Fuda Cancer Hospital, Jinan University on December 7, 2018 (approval No. Fuda20181207).
Collapse
Affiliation(s)
- Ji-Bing Chen
- Fuda Cancer Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiao-Feng Kong
- Xu Kecheng Care Health Studio of Guangdong Province, Guangzhou, Guangdong Province, China
| | - Feng Mu
- Fuda Cancer Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
110
|
Gu XX, Jin Y, Fu T, Zhang XM, Li T, Yang Y, Li R, Zhou W, Guo JX, Zhao R, Li JJ, Dong C, Gu ZF. Relevant Characteristics Analysis Using Natural Language Processing and Machine Learning Based on Phenotypes and T-Cell Subsets in Systemic Lupus Erythematosus Patients With Anxiety. Front Psychiatry 2021; 12:793505. [PMID: 34955935 PMCID: PMC8703039 DOI: 10.3389/fpsyt.2021.793505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Anxiety is frequently observed in patients with systemic lupus erythematosus (SLE) and the immune system could act as a trigger for anxiety. To recognize abnormal T-cell and B-cell subsets for SLE patients with anxiety, in this study, patient disease phenotypes data from electronic lupus symptom records were extracted by using natural language processing. The Hospital Anxiety and Depression Scale (HADS) was used to distinguish patients, and 107 patients were selected to meet research requirements. Then, peripheral blood was collected from two patient groups for multicolor flow cytometry experiments. The characteristics of 75 T-cell and 15 B-cell subsets were investigated between SLE patients with- (n = 23) and without-anxiety (n = 84) groups by four machine learning methods. The findings showed 13 T-cell subsets were significantly different between the two groups. Furthermore, BMI, fatigue, depression, unstable emotions, CD27+CD28+ Th/Treg, CD27-CD28- Th/Treg, CD45RA-CD27- Th, and CD45RA+HLADR+ Th cells may be important characteristics between SLE patients with- and without-anxiety groups. The findings not only point out the difference of T-cell subsets in SLE patients with or without anxiety, but also imply that T cells might play the important role in patients with anxiety disorder.
Collapse
Affiliation(s)
- Xi-Xi Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yi Jin
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ting Fu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiao-Ming Zhang
- Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Teng Li
- Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ying Yang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Rong Li
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhou
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Xin Guo
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Rui Zhao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing-Jing Li
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Feng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
111
|
Li Y, Zheng JN, Wang EH, Gong CJ, Lan KF, Ding X. The m6A reader protein YTHDC2 is a potential biomarker and associated with immune infiltration in head and neck squamous cell carcinoma. PeerJ 2020; 8:e10385. [PMID: 33304653 PMCID: PMC7700739 DOI: 10.7717/peerj.10385] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background Increasing evidence has shown that N6-methyladenosine (m6A) RNA methylation regulators have important biological functions in human cancers. However, there are few studies on the value of m6A reader protein YTHDC2 in the diagnosis and tumor-infiltrating of head and neck squamous cell carcinoma (HNSCC). Therefore, it is important to understand the potential clinical value of YTHDC2 in the prognosis and immune infiltration of HNSCC. Methods In this study, gene expression profiles and the corresponding clinical information of 270 HNSCC patients were downloaded from the Gene Expression Omnibus (GEO) database. The gene co-expression network was established to verify whether YTHDC2 was related to the prognosis of HNSCC and verified again in the public database. The correlations between YTHDC2 and immune infiltration was investigated via Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA). Results The results showed that YTHDC2 appeared in the blue module related to survival time and survival state and had a close correlation with the prognosis and immune infiltration level of HNSCC in public database. Patients with low expression of YTHDC2 had poor overall survival (OS) and recurrence-free survival (RFS) than those with high expression. In addition, the expression of YTHDC2 was positively correlated with the level of CD4+ T cell subpopulations infiltration in HNSCC. Conclusions Through this study, we found that YTHDC2 is a tumor suppressor gene with high expression in normal tissues and low expression in tumor tissues. In addition, YTHDC2 is correlated with the immune infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, neutrophils, and dendritic cells in HNSCC, which may become a potential marker for prognosis and immune infiltration of HNSCC.
Collapse
Affiliation(s)
- Yang Li
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Ji-Na Zheng
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - En-Hao Wang
- Department of Otolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chan-Juan Gong
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Keng-Fu Lan
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - XiaoJun Ding
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
112
|
Del Zotto G, Principi E, Antonini F, Baratto S, Panicucci C, Bruno C, Raffaghello L. Comprehensive Phenotyping of Peripheral Blood T Lymphocytes in Healthy Mice. Cytometry A 2020; 99:243-250. [PMID: 33098601 DOI: 10.1002/cyto.a.24246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023]
Abstract
T lymphocytes play a central role in antigen-specific immune responses. They modulate the function of different immune cells both through a direct contact (receptor binding) and through the secretion of cytokines. At the same time, they are deeply involved in the direct killing of aberrant target cells. T lymphocytes derive from a bone marrow precursor that migrates in the thymus where the main differentiation steps take place. Mature CD4 and CD8 single-positive cells, then, leave the thymus to reach the secondary lymphoid organs. T-cell subsets and their maturation steps can be identified mainly based on the expression of extracellular markers, intracellular transcription factors and cytokine production profiles. In this review, we report, from a cytometric point of view, an overview of the most important T-cell subpopulations and their differentiation state. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Genny Del Zotto
- Core Facilities, Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Elisa Principi
- Center of Translational and Experimental Myology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Francesca Antonini
- Core Facilities, Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto G. Gaslini, Genoa, Italy
| |
Collapse
|
113
|
Niu HQ, Zhao XC, Li W, Xie JF, Liu XQ, Luo J, Zhao WP, Li XF. Characteristics and reference ranges of CD4 +T cell subpopulations among healthy adult Han Chinese in Shanxi Province, North China. BMC Immunol 2020; 21:44. [PMID: 32746780 PMCID: PMC7397677 DOI: 10.1186/s12865-020-00374-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunophenotyping of blood lymphocytes is an essential tool to evaluate the immune function of patients with immunodeficiency or autoimmunity. Predominately identified CD4+T cell subsets, Th1, Th2, Th17, as well as regulatory T (Treg) cells, play crucial roles in several immunological and pathological conditions. Considering the variations in cell counts among populations and ethnicities, specific CD4+T cell subset reference values need to be locally established to enable meaningful comparisons and accurate data interpretation in clinical and research settings. Therefore, the aim of this study was to establish distributions and reference ranges for blood CD4+T cell subpopulations in age- and sex-balanced healthy adults of a Han Chinese population in Shanxi Province, North China. METHODS Peripheral blood CD4+T cell subsets were examined in 150 healthy volunteers (75 males, 75 females) aged 20-70 years with a four-color FACSCalibur flow cytometer. RESULTS Reference value percentages (absolute counts, cells/μl) were defined as 95% of the population for cell types as follows: CD4+T, 23.78-51.07 (360-1127); Th1, 0.43-39.62 (2.64-276.21); Th2, 0.27-3.57 (1.80-27.14); Th17, 0.22-2.62 (1.10-19.54); and Treg, 2.17-7.94 (13.47-64.58). The ranges for the Th1:Th2 and Th17:Treg ratios were 0.59-52.37 and 0.04-0.76, respectively. Notably, a significant increase was observed in the values of Treg cells in older individuals, and the numbers of Treg cells in females also tended to decrease when compared to those in males. Therefore, we established the distribution and reference range of CD4+T cell subsets based on age and sex, demonstrating the lowest values of Treg cells in younger females. CONCLUSIONS Collectively, our data provide population-, age-, and sex-specific distributions and reference ranges of circulating CD4+T cell subpopulations, which can be adopted to guide clinical decisions and interpretation of immunophenotyping data in the Han Chinese population in Taiyuan, Shanxi Province, China. In addition, the low expression of peripheral Treg cells in younger females may be associated with the predisposition of females to autoimmune diseases.
Collapse
Affiliation(s)
- Hong-Qing Niu
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China
| | - Xiang-Cong Zhao
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China
| | - Wei Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China
| | - Jian-Fang Xie
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China
| | - Xiao-Qing Liu
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China
| | - Jing Luo
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China
| | - Wen-Peng Zhao
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China.
| | - Xiao-Feng Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China
| |
Collapse
|
114
|
Osborne LM, Gilden J, Kamperman AM, Hoogendijk WJ, Spicer J, Drexhage HA, Bergink V. T-cell defects and postpartum depression. Brain Behav Immun 2020; 87:397-403. [PMID: 31926288 PMCID: PMC7316619 DOI: 10.1016/j.bbi.2020.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Most studies of immune dysregulation in perinatal mood and anxiety disorders have focused on peripheral cytokines, but literature from non-perinatal mood disorders also implicates T-cell defects. We sought to characterize proportions of T-cell subtypes in women with postpartum depression. MATERIALS AND METHODS We enrolled 21 women with postpartum depression (PPD), 39 healthy postpartum controls, and 114 healthy non-postpartum women. Blood was collected in sodium-heparin EDTA tubes and was analyzed using flow cytometry. We conducted statistical tests including linear regression analysis that were aimed at determining differences in proportions of T cell populations among groups. RESULTS Mean counts of T-cells (all CD3+ T cells), T-helper cells, (CD3+CD4+ T cells), and T-cytotoxic cells (CD3+CD8+ T cells) were significantly increased in healthy postpartum women compared to healthy non-postpartum controls (p < 0.001, p = 0.007, and p = 0.002, respectively), but not in women with PPD. The increases in healthy postpartum women were driven by increases in TH1 cells and T regulatory cells, increases that were nonexistent or attenuated in women with postpartum depression. Mean counts of CD4+ T-helper memory cells were also increased in healthy postpartum women (p = 0.009), but slightly decreased in women with PPD (p = 0.066), when compared to healthy non-postpartum controls. CONCLUSIONS Our study confirms that the postpartum period in healthy women is a time of enhanced T cell activity. Women with postpartum depression failed to show physiological enhanced T-cell activity postpartum, and future research is needed to elucidate etiological mechanisms and consequences.
Collapse
Affiliation(s)
- Lauren M. Osborne
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Corresponding author: Lauren M. Osborne, MD, Women’s Mood Disorders Center, Johns Hopkins University School of Medicine, 550 N. Broadway, Suite 305, Baltimore, MD 21205, 410-955-9986 (phone),
| | - Janneke Gilden
- Department of Psychiatry, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Astrid M Kamperman
- Department of Psychiatry, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Julie Spicer
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai
| | - Hemmo A. Drexhage
- Department of Immunology, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands,Department of Psychiatry, Icahn School of Medicine at Mt. Sinai,Department of Obstetrics & Gynecology, Icahn School of Medicine at Mt. Sinai
| |
Collapse
|
115
|
Cossarizza A, Gibellini L, De Biasi S, Lo Tartaro D, Mattioli M, Paolini A, Fidanza L, Bellinazzi C, Borella R, Castaniere I, Meschiari M, Sita M, Manco G, Clini E, Gelmini R, Girardis M, Guaraldi G, Mussini C. Handling and Processing of Blood Specimens from Patients with COVID-19 for Safe Studies on Cell Phenotype and Cytokine Storm. Cytometry A 2020; 97:668-673. [PMID: 32275124 PMCID: PMC7262259 DOI: 10.1002/cyto.a.24009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023]
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 heavily involves all those working in a laboratory. Samples from known infected patients or donors who are considered healthy can arrive, and a colleague might be asymptomatic but able to transmit the virus. Working in a clinical laboratory is posing several safety challenges. Few years ago, International Society for Advancement of Cytometry published guidelines to safely analyze and sort human samples that were revised in these days. We describe the procedures that we have been following since the first patient appeared in Italy, which have only slightly modified our standard one, being all human samples associated with risks. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and AdultsSchool of Medicine, University of Modena and Reggio EmiliaModenaItaly
- National Institute for Cardiovascular ResearchBolognaItaly
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and AdultsSchool of Medicine, University of Modena and Reggio EmiliaModenaItaly
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and AdultsSchool of Medicine, University of Modena and Reggio EmiliaModenaItaly
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and AdultsSchool of Medicine, University of Modena and Reggio EmiliaModenaItaly
| | - Marco Mattioli
- Department of Medical and Surgical Sciences for Children and AdultsSchool of Medicine, University of Modena and Reggio EmiliaModenaItaly
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and AdultsSchool of Medicine, University of Modena and Reggio EmiliaModenaItaly
| | - Lucia Fidanza
- Department of Medical and Surgical Sciences for Children and AdultsSchool of Medicine, University of Modena and Reggio EmiliaModenaItaly
| | - Caterina Bellinazzi
- Department of Medical and Surgical Sciences for Children and AdultsSchool of Medicine, University of Modena and Reggio EmiliaModenaItaly
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and AdultsSchool of Medicine, University of Modena and Reggio EmiliaModenaItaly
| | - Ivana Castaniere
- Respiratory Diseases UnitAOU Policlinico and University of Modena and Reggio EmiliaModenaItaly
| | - Marianna Meschiari
- Infectious Diseases Clinics, AOU Policlinico and University of Modena and Reggio EmiliaModenaItaly
| | - Marco Sita
- Department of Anesthesia and Intensive Care UnitAOU Policlinico and University of Modena and Reggio EmiliaModenaItaly
| | - Gianrocco Manco
- Department of SurgeryAOU Policlinico and University of Modena and Reggio EmiliaModenaItaly
| | - Enrico Clini
- Respiratory Diseases UnitAOU Policlinico and University of Modena and Reggio EmiliaModenaItaly
| | - Roberta Gelmini
- Department of SurgeryAOU Policlinico and University of Modena and Reggio EmiliaModenaItaly
| | - Massimo Girardis
- Department of Anesthesia and Intensive Care UnitAOU Policlinico and University of Modena and Reggio EmiliaModenaItaly
| | - Giovanni Guaraldi
- Infectious Diseases Clinics, AOU Policlinico and University of Modena and Reggio EmiliaModenaItaly
| | - Cristina Mussini
- Infectious Diseases Clinics, AOU Policlinico and University of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
116
|
Bortolomeazzi M, Keddar MR, Ciccarelli FD, Benedetti L. Identification of non-cancer cells from cancer transcriptomic data. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194445. [PMID: 31654804 PMCID: PMC7346884 DOI: 10.1016/j.bbagrm.2019.194445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
Interactions between cancer cells and non-cancer cells composing the tumour microenvironment play a primary role in determining cancer progression and shaping the response to therapy. The qualitative and quantitative characterisation of the different cell populations in the tumour microenvironment is therefore crucial to understand its role in cancer. In recent years, many experimental and computational approaches have been developed to identify the cell populations composing heterogeneous tissue samples, such as cancer. In this review, we describe the state-of-the-art approaches for the quantification of non-cancer cells from bulk and single-cell cancer transcriptomic data, with a focus on immune cells. We illustrate the main features of these approaches and highlight their applications for the analysis of the tumour microenvironment in solid cancers. We also discuss techniques that are complementary and alternative to RNA sequencing, particularly focusing on approaches that can provide spatial information on the distribution of the cells within the tumour in addition to their qualitative and quantitative measurements. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.
Collapse
Affiliation(s)
- Michele Bortolomeazzi
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE11UL, UK
| | - Mohamed Reda Keddar
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE11UL, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE11UL, UK.
| | - Lorena Benedetti
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE11UL, UK.
| |
Collapse
|
117
|
Roth S, Zamzow K, Gaida MM, Heikenwälder M, Tjaden C, Hinz U, Bose P, Michalski CW, Hackert T. Evolution of the immune landscape during progression of pancreatic intraductal papillary mucinous neoplasms to invasive cancer. EBioMedicine 2020; 54:102714. [PMID: 32259711 PMCID: PMC7132171 DOI: 10.1016/j.ebiom.2020.102714] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Intraductal papillary mucinous neoplasms (IPMNs) are precursor lesions of pancreatic cancer, which is characterized by an immunosuppressive microenvironment. Yet, the spatial distribution of the immune infiltrate and how it changes during IPMN progression is just beginning to be understood. METHODS We obtained tissue samples from patients who underwent pancreatic surgery for IPMN, and performed comprehensive immunohistochemical analyses to investigate the clinical significance, composition and spatial organization of the immune microenvironment during progression of IPMNs. Survival analysis of pancreatic cancer patients was stratified by tumour infiltrating immune cell subtypes. FINDINGS The immune microenvironment evolves from a diverse T cell mixture, comprising CD8+ T cells, Th/c1 and Th/c2 as major players combined with Th9, Th/c17, Th22, and Treg cells in low-grade IPMN, to a Treg dominated immunosuppressive state in invasive pancreatic cancer. Organized lymphoid clusters formed in IPMN surrounding stroma and accumulated immunosuppressive cell types during tumour progression. Survival of pancreatic cancer patients correlated with Th2 signatures in the tumour microenvironment. INTERPRETATION The major change with regards to T cell composition during IPMN progression occurs at the step of tissue invasion, indicating that malignant transformation only occurs when tumour immune surveillance is overcome. This suggests that novel immunotherapies that would boost spontaneous antitumor immunity at premalignant states could prevent pancreatic cancer development. FUNDING The present work was supported by German Cancer Aid grants (70,112,720 and 70,113,167) to S. R., and the Olympia Morata Programme of the Medical Faculty of Heidelberg University to S. R.
Collapse
Affiliation(s)
- Susanne Roth
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Katharina Zamzow
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias M Gaida
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Christine Tjaden
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulf Hinz
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Promita Bose
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph W Michalski
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany; Department of Surgery, Halle University Hospital, Halle (Saale), Germany
| | - Thilo Hackert
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
118
|
Botafogo V, Pérez-Andres M, Jara-Acevedo M, Bárcena P, Grigore G, Hernández-Delgado A, Damasceno D, Comans S, Blanco E, Romero A, Arriba-Méndez S, Gastaca-Abasolo I, Pedreira CE, van Gaans-van den Brink JAM, Corbiere V, Mascart F, van Els CACM, Barkoff AM, Mayado A, van Dongen JJM, Almeida J, Orfao A. Age Distribution of Multiple Functionally Relevant Subsets of CD4+ T Cells in Human Blood Using a Standardized and Validated 14-Color EuroFlow Immune Monitoring Tube. Front Immunol 2020; 11:166. [PMID: 32174910 PMCID: PMC7056740 DOI: 10.3389/fimmu.2020.00166] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
CD4+ T cells comprise multiple functionally distinct cell populations that play a key role in immunity. Despite blood monitoring of CD4+ T-cell subsets is of potential clinical utility, no standardized and validated approaches have been proposed so far. The aim of this study was to design and validate a single 14-color antibody combination for sensitive and reproducible flow cytometry monitoring of CD4+ T-cell populations in human blood to establish normal age-related reference values and evaluate the presence of potentially altered profiles in three distinct disease models-monoclonal B-cell lymphocytosis (MBL), systemic mastocytosis (SM), and common variable immunodeficiency (CVID). Overall, 145 blood samples from healthy donors were used to design and validate a 14-color antibody combination based on extensive reagent testing in multiple cycles of design-testing-evaluation-redesign, combined with in vitro functional studies, gene expression profiling, and multicentric evaluation of manual vs. automated gating. Fifteen cord blood and 98 blood samples from healthy donors (aged 0-89 years) were used to establish reference values, and another 25 blood samples were evaluated for detecting potentially altered CD4 T-cell subset profiles in MBL (n = 8), SM (n = 7), and CVID (n = 10). The 14-color tube can identify ≥89 different CD4+ T-cell populations in blood, as validated with high multicenter reproducibility, particularly when software-guided automated (vs. manual expert-based) gating was used. Furthermore, age-related reference values were established, which reflect different kinetics for distinct subsets: progressive increase of naïve T cells, T-helper (Th)1, Th17, follicular helper T (TFH) cells, and regulatory T cells (Tregs) from birth until 2 years, followed by a decrease of naïve T cells, Th2, and Tregs in older children and a subsequent increase in multiple Th-cell subsets toward late adulthood. Altered and unique CD4+ T-cell subset profiles were detected in two of the three disease models evaluated (SM and CVID). In summary, the EuroFlow immune monitoring TCD4 tube allows fast, automated, and reproducible identification of ≥89 subsets of CD4+ blood T cells, with different kinetics throughout life. These results set the basis for in-depth T-cell monitoring in different disease and therapeutic conditions.
Collapse
Affiliation(s)
- Vitor Botafogo
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martín Pérez-Andres
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jara-Acevedo
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Sequencing Service, NUCLEUS, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Paloma Bárcena
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alejandro Hernández-Delgado
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Cytognos SL, Salamanca, Spain
| | - Daniela Damasceno
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Suzanne Comans
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Elena Blanco
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Romero
- Miguel Armijo Primary Health Care Centre, Sanidad de Castilla y León (SACYL), Salamanca, Spain
| | | | - Irene Gastaca-Abasolo
- Gynecology and Obstetrics Service, University Hospital of Salamanca, Salamanca, Spain
| | - Carlos Eduardo Pedreira
- Systems and Computing Department (PESC), COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Véronique Corbiere
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles (ULB), Brussels, Belgium
- Immunobiology Clinic, Hôpital Erasme, Brussels, Belgium
| | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Alex-Mikael Barkoff
- Institute of Biomedicine, Department of Microbiology, Virology and Immunology, University of Turku (UTU), Turku, Finland
| | - Andrea Mayado
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacques J. M. van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Julia Almeida
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
119
|
Pecht T, Aschenbrenner AC, Ulas T, Succurro A. Modeling population heterogeneity from microbial communities to immune response in cells. Cell Mol Life Sci 2020; 77:415-432. [PMID: 31768606 PMCID: PMC7010691 DOI: 10.1007/s00018-019-03378-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Abstract
Heterogeneity is universally observed in all natural systems and across multiple scales. Understanding population heterogeneity is an intriguing and attractive topic of research in different disciplines, including microbiology and immunology. Microbes and mammalian immune cells present obviously rather different system-specific biological features. Nevertheless, as typically occurs in science, similar methods can be used to study both types of cells. This is particularly true for mathematical modeling, in which key features of a system are translated into algorithms to challenge our mechanistic understanding of the underlying biology. In this review, we first present a broad overview of the experimental developments that allowed observing heterogeneity at the single cell level. We then highlight how this "data revolution" requires the parallel advancement of algorithms and computing infrastructure for data processing and analysis, and finally present representative examples of computational models of population heterogeneity, from microbial communities to immune response in cells.
Collapse
Affiliation(s)
- Tal Pecht
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Anna C Aschenbrenner
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525, Nijmegen, The Netherlands
| | - Thomas Ulas
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Antonella Succurro
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
- West German Genome Center (WGGC), University of Bonn, Bonn, Germany.
| |
Collapse
|
120
|
Affiliation(s)
- Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.,Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.,Department for Precision Instrument, Tsinghua University, Beijing, China
| |
Collapse
|
121
|
Fuseini H, Cephus JY, Wu P, Davis JB, Contreras DC, Gandhi VD, Rathmell JC, Newcomb DC. ERα Signaling Increased IL-17A Production in Th17 Cells by Upregulating IL-23R Expression, Mitochondrial Respiration, and Proliferation. Front Immunol 2019; 10:2740. [PMID: 31849948 PMCID: PMC6892971 DOI: 10.3389/fimmu.2019.02740] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Women have increased prevalence of Th17-mediated autoimmune diseases, including lupus and multiple sclerosis, and severe asthma. While estradiol and progesterone increased IL-17A production in Th17 cells by inhibiting Let7f miRNA expression and increasing IL-23 receptor (IL-23R) expression, it remained unclear how estrogen signaling through the canonical nuclear receptors, estrogen receptor α (ERα) and/or ERβ, regulated this pathway. We hypothesized that estrogen signaling through ERα increased IL-23R expression and IL-17A production from Th17 cells. To test this hypothesis, naïve T cells from WT female, WT male, Esr1−/− and Esr2−/− female mice were differentiated into Th17 cells. IL-17A production and IL-23R expression were significantly increased in Th17 cells from WT female mice compared to Th17 cells from WT male mice. Deletion of ERα (Esr1−/−), but not ERβ (Esr2−/−), significantly decreased IL-17A production and IL-23R expression in Th17 cells by limiting IL-23R expression in a Let-7f dependent manner. ERα deficiency also decreased Th17 cell proliferation as well as decreased T cell metabolism as measured by ATP-linked oxygen consumption rate and proton leakage. Further, we found that Cox20 expression, a protein involved in mitochondrial respiration through assembly of cytochrome c oxidase in the electron transport chain, was increased in Th17 cells from WT female mice compared to Th17 cells from WT male and Esr1−/− female mice. Inhibition of Cox20 decreased IL-17 production in Th17 cells from WT female mice. Combined these studies showed that ERα signaling increased IL-17A production in Th17 cells by upregulating IL-23R expression and promoting mitochondrial respiration and proliferation.
Collapse
Affiliation(s)
- Hubaida Fuseini
- Department Pathology, Microbiology and Immunology, Vanderbilt University, Medical Center North, Nashville, TN, United States
| | - Jacqueline-Yvonne Cephus
- Department of Medicine, Vanderbilt University Medical Center, Medical Center North, Nashville, TN, United States
| | - Pingsheng Wu
- Department of Medicine, Vanderbilt University Medical Center, Medical Center North, Nashville, TN, United States
| | - J Brooke Davis
- Department of Medicine, Vanderbilt University Medical Center, Medical Center North, Nashville, TN, United States
| | - Diana C Contreras
- Department Pathology, Microbiology and Immunology, Vanderbilt University, Medical Center North, Nashville, TN, United States
| | - Vivek D Gandhi
- Department of Medicine, Vanderbilt University Medical Center, Medical Center North, Nashville, TN, United States
| | - Jeffrey C Rathmell
- Department Pathology, Microbiology and Immunology, Vanderbilt University, Medical Center North, Nashville, TN, United States
| | - Dawn C Newcomb
- Department Pathology, Microbiology and Immunology, Vanderbilt University, Medical Center North, Nashville, TN, United States.,Department of Medicine, Vanderbilt University Medical Center, Medical Center North, Nashville, TN, United States
| |
Collapse
|
122
|
TCR sequencing paired with massively parallel 3' RNA-seq reveals clonotypic T cell signatures. Nat Immunol 2019; 20:1692-1699. [PMID: 31745340 DOI: 10.1038/s41590-019-0544-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/21/2019] [Indexed: 01/14/2023]
Abstract
High-throughput 3' single-cell RNA-sequencing (scRNA-seq) allows cost-effective, detailed characterization of individual immune cells from tissues. Current techniques, however, are limited in their ability to elucidate essential immune cell features, including variable sequences of T cell antigen receptors (TCRs) that confer antigen specificity. Here, we present a strategy that enables simultaneous analysis of TCR sequences and corresponding full transcriptomes from 3'-barcoded scRNA-seq samples. This approach is compatible with common 3' scRNA-seq methods, and adaptable to processed samples post hoc. We applied the technique to identify transcriptional signatures associated with T cells sharing common TCRs from immunized mice and from patients with food allergy. We observed preferential phenotypes among subsets of expanded clonotypes, including type 2 helper CD4+ T cell (TH2) states associated with food allergy. These results demonstrate the utility of our method when studying diseases in which clonotype-driven responses are critical to understanding the underlying biology.
Collapse
|
123
|
Laumet G, Ma J, Robison AJ, Kumari S, Heijnen CJ, Kavelaars A. T Cells as an Emerging Target for Chronic Pain Therapy. Front Mol Neurosci 2019; 12:216. [PMID: 31572125 PMCID: PMC6749081 DOI: 10.3389/fnmol.2019.00216] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
The immune system is critically involved in the development and maintenance of chronic pain. However, T cells, one of the main regulators of the immune response, have only recently become a focus of investigations on chronic pain pathophysiology. Emerging clinical data suggest that patients with chronic pain have a different phenotypic profile of circulating T cells compared to controls. At the preclinical level, findings on the function of T cells are mixed and differ between nerve injury, chemotherapy, and inflammatory models of persistent pain. Depending on the type of injury, the subset of T cells and the sex of the animal, T cells may contribute to the onset and/or the resolution of pain, underlining T cells as a major player in the transition from acute to chronic pain. Specific T cell subsets release mediators such as cytokines and endogenous opioid peptides that can promote, suppress, or even resolve pain. Inhibiting the pain-promoting functions of T cells and/or enhancing the beneficial effects of pro-resolution T cells may offer new disease-modifying strategies for the treatment of chronic pain, a critical need in view of the current opioid crisis.
Collapse
Affiliation(s)
- Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States.,Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jiacheng Ma
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Susmita Kumari
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|