101
|
Marutani T, Hattori T, Tsutsumi K, Koike Y, Harada A, Noguchi K, Kiso Y, Mukai H. Mitochondrial protein-derived cryptides: Are endogenous N-formylated peptides including mitocryptide-2 components of mitochondrial damage-associated molecular patterns? Biopolymers 2017; 106:580-7. [PMID: 26600263 DOI: 10.1002/bip.22788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 11/08/2022]
Abstract
Recently, much attention has been paid to "nonclassical" bioactive peptides, which are fragmented peptides simultaneously produced during maturation and degradation of various functional proteins. We identified many fragmented peptides derived from various mitochondrial proteins including mitocryptide-1 and mitocryptide-2 that efficiently activate neutrophils. These endogenous, functionally active, fragmented peptides are referred to as "cryptides." Among them, mitocryptide-2 is an N-formylated cryptide cleaved from mitochondrial cytochrome b that is encoded in mitochondrial DNA (mtDNA). It is known that 13 proteins encoded in mtDNA are translated in mitochondria as N-formylated forms, suggesting the existence of endogenous N-formylated peptides other than mitocryptide-2. Here, we investigated the effects of N-formylated peptides presumably cleaved from mtDNA-encoded proteins other than cytochrome b on the functions of neutrophilic cells to elucidate possible regulation by endogenous N-formylated cryptides. Four N-formylated cryptides derived from cytochrome c oxidase subunit I and NADH dehydrogenase subunits 4, 5, and 6 among 12 peptides from mtDNA-encoded proteins efficiently induced not only migration but also β-hexosaminidase release, which is an indicator of neutrophilic phagocytosis, in HL-60 cells differentiated into neutrophilic cells. These activities were comparable to or higher than those induced by mitocryptide-2. Although endogenous N-formylated peptides that are contained in mitochondrial damage-associated molecular patterns (DAMPs) have yet to be molecularly identified, they have been implicated in innate immunity. Thus, N-formylated cryptides including mitocryptide-2 are first-line candidates for the contents of mitochondrial DAMPs to promote innate immune responses. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 580-587, 2016.
Collapse
Affiliation(s)
- Takayuki Marutani
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Tatsuya Hattori
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Koki Tsutsumi
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Yusuke Koike
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Akihiko Harada
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Kosuke Noguchi
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Yoshiaki Kiso
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Hidehito Mukai
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| |
Collapse
|
102
|
Liao CC, Day YJ, Lee HC, Liou JT, Chou AH, Liu FC. ERK Signaling Pathway Plays a Key Role in Baicalin Protection Against Acetaminophen-Induced Liver Injury. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:105-121. [DOI: 10.1142/s0192415x17500082] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acetaminophen (APAP) overdose causes hepatocytes necrosis and acute liver failure. Baicalin (BA), a major flavonoid of Scutellariae radix, has potent hepatoprotective properties in traditional medicine. In the present study, we investigated the protective effects of BA on a APAP-induced liver injury in a mouse model. The mice received an intraperitoneal hepatotoxic dose of APAP (300[Formula: see text]mg/kg) and after 30[Formula: see text]min, were treated with BA at concentrations of 0, 15, 30, or 60[Formula: see text]mg/kg. After 16[Formula: see text]h of treatment, the mice were sacrificed for further analysis. APAP administration significantly elevated the serum alanine transferase (ALT) enzyme levels and hepatic myeloperoxidase (MPO) activity when compared with control animals. Baicalin treatment significantly attenuated the elevation of liver ALT levels, as well as hepatic MPO activity in a dose- dependent manner (15–60[Formula: see text]mg/kg) in APAP-treated mice. The strongest beneficial effects of BA were seen at a dose of 30[Formula: see text]mg/kg. BA treatment at 30[Formula: see text]mg/kg after APAP overdose reduced elevated hepatic cytokine (TNF-[Formula: see text] and IL-6) levels, and macrophage recruitment around the area of hepatotoxicity in immunohistochemical staining. Significantly, BA treatment can also decrease hepatic phosphorylated extracellular signal-regulated kinase (ERK) expression, which is induced by APAP overdose. Our data suggests that baicalin treatment can effectively attenuate APAP-induced liver injury by down-regulating the ERK signaling pathway and its downstream effectors of inflammatory responses. These results support that baicalin is a potential hepatoprotective agent.
Collapse
Affiliation(s)
- Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Ji Day
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jiin-Tarng Liou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
103
|
da Rocha BA, Ritter AMV, Ames FQ, Gonçalves OH, Leimann FV, Bracht L, Natali MRM, Cuman RKN, Bersani-Amado CA. Acetaminophen-induced hepatotoxicity: Preventive effect of trans anethole. Biomed Pharmacother 2017; 86:213-220. [DOI: 10.1016/j.biopha.2016.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 01/13/2023] Open
|
104
|
Woolbright BL, Jaeschke H. Mechanisms of Acetaminophen-Induced Liver Injury. CELLULAR INJURY IN LIVER DISEASES 2017:55-76. [DOI: 10.1007/978-3-319-53774-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
105
|
Xu R, Bao C, Huang H, Lin F, Yuan Y, Wang S, Jin L, Yang T, Shi M, Zhang Z, Wang FS. Low expression of CXCR1/2 on neutrophils predicts poor survival in patients with hepatitis B virus-related acute-on-chronic liver failure. Sci Rep 2016; 6:38714. [PMID: 27974825 PMCID: PMC5156931 DOI: 10.1038/srep38714] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) and proinflammatory cytokines have been implicated in the pathogenesis of acute-on-chronic liver failure (ACLF). But the utility of CXC chemokine receptor expression on PMNs as a biomarker for prediction of disease severity is still uncertain. In this study, we investigated the dynamic expression of CXCR1 and CXCR2 on neutrophils, and found that patients with hepatitis B virus-related ACLF displayed low expression of CXCR1 and CXCR2 on peripheral neutrophils compared with healthy subjects and patients with chronic hepatitis B. This expression pattern was correlated with disease severity. Additionally, increased production of IL-8 in peripheral blood was significantly associated with reduced CXCR1 and CXCR2 expression, as shown by the decreased CXCR1 and CXCR2 expression on neutrophils after treating neutrophils with plasma from ACLF patients. This effect could be overcomed through IL-8 blockage with an anti-IL-8 antibody. We also found that IL-8 production and neutrophil infiltration were coordinately increased in the liver tissue of HBV-ACLF patients, and this increase was associated with liver inflammation. Overall, increased production of IL-8 associated with neutrophils infiltration into the liver and decreased CXCR1/2 expression on peripheral neutrophils. CXCR1 and CXCR2 expression levels could be served as early markers to predict the severity of ACLF.
Collapse
Affiliation(s)
- Ruonan Xu
- Treatment and Research Centre for Infection Disease, Beijing 302 Hospital, Beijing 100039, China
| | - Chunmei Bao
- The Institute of Clinical Examination Centre, Beijing 302 Hospital, Beijing 100039, China
| | - Huihuang Huang
- Treatment and Research Centre for Infection Disease, Beijing 302 Hospital, Beijing 100039, China
| | - Fang Lin
- The Institute of Intensive Care Unit, Beijing 302 Hospital, Beijing 100039, China
| | - Yue Yuan
- Treatment and Research Centre for Infection Disease, Beijing 302 Hospital, Beijing 100039, China
| | - Siyu Wang
- Treatment and Research Centre for Infection Disease, Beijing 302 Hospital, Beijing 100039, China
| | - Lei Jin
- Treatment and Research Centre for Infection Disease, Beijing 302 Hospital, Beijing 100039, China
| | - Tao Yang
- Treatment and Research Centre for Infection Disease, Beijing 302 Hospital, Beijing 100039, China
| | - Ming Shi
- Treatment and Research Centre for Infection Disease, Beijing 302 Hospital, Beijing 100039, China
| | - Zheng Zhang
- Treatment and Research Centre for Infection Disease, Beijing 302 Hospital, Beijing 100039, China
| | - Fu-Sheng Wang
- Treatment and Research Centre for Infection Disease, Beijing 302 Hospital, Beijing 100039, China
| |
Collapse
|
106
|
Kučera O, Endlicher R, Rychtrmoc D, Lotková H, Sobotka O, Červinková Z. Acetaminophen toxicity in rat and mouse hepatocytes in vitro. Drug Chem Toxicol 2016; 40:448-456. [PMID: 27960556 DOI: 10.1080/01480545.2016.1255953] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT Acetaminophen (APAP) hepatotoxicity is often studied in primary cultures of hepatocytes of various species, but there are only few works comparing interspecies differences in susceptibility of hepatocytes to APAP in vitro. OBJECTIVES The aim of our work was to compare hepatotoxicity of APAP in rat and mouse hepatocytes in primary cultures. MATERIALS AND METHODS Hepatocytes isolated from male Wistar rats and C57Bl/6J mice were exposed to APAP for up to 24 h. We determined lactate dehydrogenase (LDH) activity in culture medium, activity of cellular dehydrogenases (WST-1) and activity of caspases 3 in cell lysate as markers of cell damage/death. We assessed content of intracellular reduced glutathione, production of reactive oxygen species (ROS) and malondialdehyde (MDA). Respiration of digitonin-permeabilized hepatocytes was measured by high resolution respirometry and mitochondrial membrane potential (MMP) was visualized (JC-1). RESULTS APAP from concentrations of 2.5 and 0.75 mmol/L induced a decrease in viability of rat (p < 0.001) and mouse (p < 0.001) hepatocytes (WST-1), respectively. In contrast to rat hepatocytes, there was no activation of caspase-3 in mouse hepatocytes after APAP treatment. Earlier damage to plasma membrane and faster depletion of reduced glutathione were detected in mouse hepatocytes. Mouse hepatocytes showed increased glutamate + malate-driven respiration in state 4 and higher susceptibility of the outer mitochondrial membrane (OMM) to APAP-induced injury. CONCLUSION APAP displayed dose-dependent toxicity in hepatocytes of both species. Mouse hepatocytes in primary culture however had approximately three-fold higher susceptibility to the toxic effect of APAP when compared to rat hepatocytes.
Collapse
Affiliation(s)
| | - René Endlicher
- b Department of Anatomy , Charles University in Prague, Faculty of Medicine in Hradec Králové , Hradec Králové , Czech Republic
| | | | | | | | | |
Collapse
|
107
|
Alanazi A, Algfeley SG, Al-Hosaini KA, Korashy HM, Imam F, Nagi MN. Therapeutic potential of carfilzomib, an irreversible proteasome inhibitor, against acetaminophen-induced hepatotoxicity in mice. J Biochem Mol Toxicol 2016; 31. [DOI: 10.1002/jbt.21877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/02/2016] [Accepted: 10/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Abdulrazaq Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy; King Saud University; Riyadh 11451 Kingdom of Saudi Arabia
| | - Saleh G. Algfeley
- Department of Pharmacology and Toxicology, College of Pharmacy; King Saud University; Riyadh 11451 Kingdom of Saudi Arabia
| | - Khaled A. Al-Hosaini
- Department of Pharmacology and Toxicology, College of Pharmacy; King Saud University; Riyadh 11451 Kingdom of Saudi Arabia
| | - Hesham M. Korashy
- Department of Pharmacology and Toxicology, College of Pharmacy; King Saud University; Riyadh 11451 Kingdom of Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy; King Saud University; Riyadh 11451 Kingdom of Saudi Arabia
| | - Mahmoud N. Nagi
- Department of Pharmacology and Toxicology, College of Pharmacy; King Saud University; Riyadh 11451 Kingdom of Saudi Arabia
| |
Collapse
|
108
|
Tropisetron Protects Against Acetaminophen-Induced Liver Injury via Suppressing Hepatic Oxidative Stress and Modulating the Activation of JNK/ERK MAPK Pathways. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1952947. [PMID: 27891510 PMCID: PMC5116490 DOI: 10.1155/2016/1952947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/09/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022]
Abstract
Objectives. To investigate the protective effects of tropisetron on acetaminophen- (APAP-) induced liver injury in a mice model. Methods. C57BL/6 male mice were given tropisetron (0.3 to 10 mg/kg) 30 minutes before a hepatotoxic dose of acetaminophen (300 mg/kg) intraperitoneally. Twenty hours after APAP intoxication, sera alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, hepatic myeloperoxidase (MPO), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) activities, and liver histopathological changes were examined. The MAP kinases were also detected by western blotting. Results. Our results showed that tropisetron pretreatment significantly attenuated the acute elevations of the liver enzyme ALT level, hepatic MPO activity, and hepatocytes necrosis in a dose-dependent manner (0.3-10 mg/kg) in APAP-induced hepatotoxicity mice. Tropisetron (1 and 3 mg/kg) suppressed APAP-induced hepatic lipid peroxidation expression and alleviated GSH and SOD depletion. Administration of tropisetron also attenuated the phosphorylation of c-Jun-NH2-terminal protein kinase (JNK) and extracellular signal-regulated kinase (ERK) caused by APAP. Conclusion. Our data demonstrated that tropisetron's hepatoprotective effect was in part correlated with the antioxidant, which were mediated via JNK and ERK pathways on acetaminophen-induced liver injury in mice.
Collapse
|
109
|
Chauhan A, Adams DH, Watson SP, Lalor PF. Platelets: No longer bystanders in liver disease. Hepatology 2016; 64:1774-1784. [PMID: 26934463 PMCID: PMC5082495 DOI: 10.1002/hep.28526] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Growing lines of evidence recognize that platelets play a central role in liver homeostasis and pathobiology. Platelets have important roles at every stage during the continuum of liver injury and healing. These cells contribute to the initiation of liver inflammation by promoting leukocyte recruitment through sinusoidal endothelium. They can activate effector cells, thus amplifying liver damage, and by modifying the hepatic cellular and cytokine milieu drive both hepatoprotective and hepatotoxic processes. CONCLUSION In this review we summarize how platelets drive such pleiotropic actions and attempt to reconcile the paradox of platelets being both deleterious and beneficial to liver function; with increasingly novel methods of manipulating platelet function at our disposal, we highlight avenues for future therapeutic intervention in liver disease. (Hepatology 2016;64:1774-1784).
Collapse
Affiliation(s)
- Abhishek Chauhan
- Centre for Liver Research, and NIHR Birmingham Liver Biomedical Research Unit, Institute of Biomedical Research, Birmingham, UK.
| | - David H. Adams
- Centre for Liver Research, and NIHR Birmingham Liver Biomedical Research UnitInstitute of Biomedical ResearchBirminghamUK
| | - Steve P. Watson
- Institute for Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Patricia F. Lalor
- Centre for Liver Research, and NIHR Birmingham Liver Biomedical Research UnitInstitute of Biomedical ResearchBirminghamUK
| |
Collapse
|
110
|
Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol 2016; 10:148-156. [PMID: 27744120 PMCID: PMC5065645 DOI: 10.1016/j.redox.2016.10.001] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023] Open
Abstract
Acetaminophen (APAP) hepatotoxicity is characterized by an extensive oxidative stress. However, its source, pathophysiological role and possible therapeutic potential if targeted, have been controversially described. Earlier studies argued for cytochrome P450-generated reactive oxygen species (ROS) during APAP metabolism, which resulted in massive lipid peroxidation and subsequent liver injury. However, subsequent studies convincingly challenged this assumption and the current paradigm suggests that mitochondria are the main source of ROS, which impair mitochondrial function and are responsible for cell signaling resulting in cell death. Although immune cells can be a source of ROS in other models, no reliable evidence exists to support a role for immune cell-derived ROS in APAP hepatotoxicity. Recent studies suggest that mitochondrial targeted antioxidants can be viable therapeutic agents against hepatotoxicity induced by APAP overdose, and re-purposing existing drugs to target oxidative stress and other concurrent signaling events can be a promising strategy to increase its potential application in patients with APAP overdose. Oxidative stress plays a critical role in acetaminophen hepatotoxicity. Mitochondria are the main source of ROS and RNS that are responsible for the toxicity. Cytochrome P450 and inflammatory cells are probably not relevant sources of ROS for the toxicity. Mitochondrial oxidative stress is a promising therapeutic target against APAP overdose.
Collapse
|
111
|
Suda J, Dara L, Yang L, Aghajan M, Song Y, Kaplowitz N, Liu ZX. Knockdown of RIPK1 Markedly Exacerbates Murine Immune-Mediated Liver Injury through Massive Apoptosis of Hepatocytes, Independent of Necroptosis and Inhibition of NF-κB. THE JOURNAL OF IMMUNOLOGY 2016; 197:3120-3129. [PMID: 27605011 DOI: 10.4049/jimmunol.1600690] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022]
Abstract
Receptor-interacting protein kinase (RIPK)1 has an essential role in the signaling pathways triggered by death receptors through activation of NF-κB and regulation of caspase-dependent apoptosis and RIPK3/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis. We examined the effect of RIPK1 antisense knockdown on immune-mediated liver injury in C57BL/6 mice caused by α-galactosylceramide (αGalCer), a specific activator for invariant NKT cells. We found that knockdown of RIPK1 markedly exacerbated αGalCer-mediated liver injury and induced lethality. This was associated with increased hepatic inflammation and massive apoptotic death of hepatocytes, as indicated by TUNEL staining and caspase-3 activation. Pretreatment with zVAD.fmk, a pan-caspase inhibitor, or neutralizing Abs against TNF, almost completely protected against the exacerbated liver injury and lethality. Primary hepatocytes isolated from RIPK1-knockdown mice were sensitized to TNF-induced cell death that was completely inhibited by adding zVAD.fmk. The exacerbated liver injury was not due to impaired hepatic NF-κB activation in terms of IκBα phosphorylation and degradation in in vivo and in vitro studies. Lack of RIPK1 kinase activity by pretreatment with necrostatin-1, a RIPK1 kinase inhibitor, or in the RIPK1 kinase-dead knock-in (RIPK1D138N) mice did not exacerbate αGalCer-mediated liver injury. Furthermore, RIPK3-knockout and MLKL-knockout mice behaved similarly as wild-type control mice in response to αGalCer, with or without knockdown of RIPK1, excluding a switch to RIPK3/MLKL-mediated necroptosis. Our findings reveal a critical kinase-independent platform role for RIPK1 in protecting against TNF/caspase-dependent apoptosis of hepatocytes in immune-mediated liver injury.
Collapse
Affiliation(s)
- Jo Suda
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Lily Dara
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Luoluo Yang
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033.,Department of Gastroenterology, Bethune First Hospital of Jilin University, Changchuan 130021, China
| | | | - Yong Song
- YSL Bioprocess Development Co., Pomona, CA 91767
| | - Neil Kaplowitz
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Zhang-Xu Liu
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
| |
Collapse
|
112
|
BLT1 signalling protects the liver against acetaminophen hepatotoxicity by preventing excessive accumulation of hepatic neutrophils. Sci Rep 2016; 6:29650. [PMID: 27404729 PMCID: PMC4939602 DOI: 10.1038/srep29650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
Leukotriene B4 (LTB4) is a potent chemoattractant for neutrophils. Signalling of LTB4 receptor type 1 (BLT1) has pro-inflammatory functions through neutrophil recruitment. In this study, we investigated whether BLT1 signalling plays a role in acetaminophen (APAP)-induced liver injury by affecting inflammatory responses including the accumulation of hepatic neutrophils. BLT1-knockout (BLT1−/−) mice and their wild-type (WT) counterparts were subjected to a single APAP overdose (300 mg/kg), and various parameters compared within 24 h after treatment. Compared with WT mice, BLT1−/− mice exhibited exacerbation of APAP-induced liver injury as evidenced by enhancement of alanine aminotransferase level, necrotic area, hepatic neutrophil accumulation, and expression of cytokines and chemokines. WT mice co-treated with APAP and ONO-0457, a specific antagonist for BLT1, displayed amplification of the injury, and similar results to those observed in BLT1−/− mice. Hepatic neutrophils in BLT1−/− mice during APAP hepatotoxicity showed increases in the production of reactive oxygen species and matrix metalloproteinase-9. Administration of isolated BLT1-deficient neutrophils into WT mice aggravated the liver injury elicited by APAP. These results demonstrate that BLT1 signalling dampens the progression of APAP hepatotoxicity through inhibiting an excessive accumulation of activated neutrophils. The development of a specific agonist for BLT1 could be useful for the prevention of APAP hepatotoxicity.
Collapse
|
113
|
Lodder J, Denaës T, Chobert MN, Wan J, El-Benna J, Pawlotsky JM, Lotersztajn S, Teixeira-Clerc F. Macrophage autophagy protects against liver fibrosis in mice. Autophagy 2016; 11:1280-92. [PMID: 26061908 DOI: 10.1080/15548627.2015.1058473] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5(fl/fl) LysM-Cre mice, referred to as atg5(-/-)) and their wild-type (Atg5(fl/fl), referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5(-/-) mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5(-/-) mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5(-/-) mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5(-/-) mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5(-/-) macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5(-/-) mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis.
Collapse
Affiliation(s)
- Jasper Lodder
- a INSERM U955; Institut Mondor de Recherche Biomédicale ; Créteil ; France
| | | | | | | | | | | | | | | |
Collapse
|
114
|
A Novel Resolvin-Based Strategy for Limiting Acetaminophen Hepatotoxicity. Clin Transl Gastroenterol 2016; 7:e153. [PMID: 26986653 PMCID: PMC4822092 DOI: 10.1038/ctg.2016.13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
Objectives: Acetaminophen (APAP)-induced hepatotoxicity is a major cause of morbidity and mortality. The current pharmacologic treatment for APAP hepatotoxicity, N-acetyl cysteine (NAC), targets the initial metabolite-driven injury but does not directly affect the host inflammatory response. Because of this, NAC is less effective if given at later stages in the disease course. Resolvins, a novel group of lipid mediators shown to attenuate host inflammation, may be a therapeutic intervention for APAP hepatotoxicity. Methods: The temporal patterns of liver injury and neutrophil activation were investigated in a murine model of APAP hepatotoxicity. In addition, the effect of neutrophil depletion and resolvin administration on the severity of liver injury induced by APAP was studied. In vitro studies to investigate the mechanism of resolvin effect on hepatocyte injury and neutrophil adhesion were performed. Results: We demonstrate that hepatic neutrophil activation occurs secondary to the initial liver injury induced directly by APAP. We also show that neutrophil depletion attenuates APAP-induced liver injury, and administration of resolvins hours after APAP challenge not only attenuates liver injury, but also extends the therapeutic window eightfold compared to NAC. Mechanistic in vitro analysis highlights resolvins' ability to inhibit neutrophil attachment to endothelial cells in the presence of the reactive metabolite of APAP. Conclusions: This study highlights the ability of resolvins to protect against APAP-induced liver injury and extend the therapeutic window compared to NAC. Although the mechanism for resolvin-mediated hepatoprotection is likely multifactorial, inhibition of neutrophil infiltration and activation appears to play an important role.
Collapse
|
115
|
The Response of Macrophages and Neutrophils to Hypoxia in the Context of Cancer and Other Inflammatory Diseases. Mediators Inflamm 2016; 2016:2053646. [PMID: 27034586 PMCID: PMC4789443 DOI: 10.1155/2016/2053646] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
Lack of oxygen (hypoxia) is a hallmark of a multitude of acute and chronic diseases and can be either beneficial or detrimental for organ restitution and recovery. In the context of inflammation, hypoxia is particularly important and can significantly influence the course of inflammatory diseases. Macrophages and neutrophils, the chief cellular components of innate immunity, display distinct properties when exposed to hypoxic conditions. Virtually every aspect of macrophage and neutrophil function is affected by hypoxia, amongst others, morphology, migration, chemotaxis, adherence to endothelial cells, bacterial killing, differentiation/polarization, and protumorigenic activity. Prominent arenas of macrophage and neutrophil function, for example, acute/chronic inflammation and the microenvironment of solid tumors, are characterized by low oxygen levels, demonstrating the paramount importance of the hypoxic response for proper function of these cells. Members of the hypoxia-inducible transcription factor (HIF) family emerged as pivotal molecular regulators of macrophages and neutrophils. In this review, we will summarize the molecular responses of macrophages and neutrophils to hypoxia in the context of cancer and other chronic inflammatory diseases and discuss the potential avenues for therapeutic intervention that arise from this knowledge.
Collapse
|
116
|
Ghanem CI, Pérez MJ, Manautou JE, Mottino AD. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity. Pharmacol Res 2016; 109:119-31. [PMID: 26921661 DOI: 10.1016/j.phrs.2016.02.020] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/19/2016] [Accepted: 02/21/2016] [Indexed: 01/13/2023]
Abstract
Acetaminophen (APAP) is a well-known analgesic and antipyretic drug. It is considered to be safe when administered within its therapeutic range, but in cases of acute intoxication, hepatotoxicity can occur. APAP overdose is the leading cause of acute liver failure in the northern hemisphere. Historically, studies on APAP toxicity have been focused on liver, with alterations in brain function attributed to secondary effects of acute liver failure. However, in the last decade the pharmacological mechanism of APAP as a cannabinoid system modulator has been documented and some articles have reported "in situ" toxicity by APAP in brain tissue at high doses. Paradoxically, low doses of APAP have been reported to produce the opposite, neuroprotective effects. In this paper we present a comprehensive, up-to-date overview of hepatic toxicity as well as a thorough review of both toxic and beneficial effects of APAP in brain.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina; Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - María J Pérez
- Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires, Argentina
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Aldo D Mottino
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| |
Collapse
|
117
|
Huang YJ, Chen P, Lee CY, Yang SY, Lin MT, Lee HS, Wu YM. Protection against acetaminophen-induced acute liver failure by omentum adipose tissue derived stem cells through the mediation of Nrf2 and cytochrome P450 expression. J Biomed Sci 2016; 23:5. [PMID: 26787241 PMCID: PMC4717531 DOI: 10.1186/s12929-016-0231-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/12/2016] [Indexed: 01/30/2023] Open
Abstract
Background Acetaminophen (APAP) overdose causes acute liver failure (ALF) in animals and humans via the rapid depletion of intracellular glutathione (GSH) and the generation of excess reactive oxygen species (ROS) that damage hepatocytes. Stem cell therapy is a potential treatment strategy for ALF. Methods We isolated mesenchymal stem cells (MSCs) from mice omentum adipose tissue-derived stem cells (ASCs) and transplanted them into a mouse model of APAP-induced ALF to explore their therapeutic potential. In addition, we performed in vitro co-culture studies with omentum-derived ASCs and primary isolated hepatocytes to demonstrate the hepatoprotective effect of omentum-derived ASCs on hepatocytes that were subjected to APAP-induced damage. Result ASC transplantation significantly improved the survival rate of mice with ALF and attenuated the severity of APAP-induced liver damage by suppressing cytochrome P450 activity to reduce the accumulation of toxic nitrotyrosine and the upregulation of NF-E2-related factor 2 (Nrf2) expression, resulting in an increase in the subsequent antioxidant activity. These effects protected the hepatocytes from APAP-induced damage through the suppression of downstream MAPK signal activation and inflammatory cytokine production. Conclusions our results demonstrate that omentum-derived ASCs are an alternative source of ASCs that regulate the antioxidant response and may represent a beneficial therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Yu-Jen Huang
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan. .,Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Poda Chen
- Department of Surgery, National Taiwan University Hospital Yun-Lin Branch, Yunlin, Taiwan.
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sin-Yu Yang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Medicine Education & Bioethics Graduate Institute of Medical Education, Bioethics National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Hsuan-Shu Lee
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Surgery, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
118
|
Chang B, Xu MJ, Zhou Z, Cai Y, Li M, Wang W, Feng D, Bertola A, Wang H, Kunos G, Gao B. Short- or long-term high-fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: an important role for CXCL1. Hepatology 2015; 62:1070-85. [PMID: 26033752 PMCID: PMC4589443 DOI: 10.1002/hep.27921] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Obesity and alcohol consumption often coexist and work synergistically to promote steatohepatitis; however, the underlying mechanisms remain obscure. Here, we demonstrate that feeding mice a high-fat diet (HFD) for as little as 3 days markedly exacerbated acute ethanol binge-induced liver neutrophil infiltration and injury. Feeding mice with an HFD for 3 months plus a single binge of ethanol induced much more severe steatohepatitis. Moreover, 3-day or 3-month HFD-plus-ethanol binge (3d-HFD+ethanol or 3m-HFD+ethanol) treatment markedly up-regulated the hepatic expression of several chemokines, including chemokine (C-X-C motif) ligand 1 (Cxcl1), which showed the highest fold (approximately 20-fold and 35-fold, respectively) induction. Serum CXCL1 protein levels were also markedly elevated after the HFD+ethanol treatment. Blockade of CXCL1 with a CXCL1 neutralizing antibody or genetic deletion of the Cxcl1 gene reduced the HFD+ethanol-induced hepatic neutrophil infiltration and injury, whereas overexpression of Cxcl1 exacerbated steatohepatitis in HFD-fed mice. Furthermore, expression of Cxcl1 messenger RNA was up-regulated in hepatocytes, hepatic stellate cells, and endothelial cells isolated from HFD+ethanol-fed mice compared to mice that were only given the HFD, with the highest fold induction observed in hepatocytes. In vitro stimulation of hepatocytes with palmitic acid up-regulated the expression of Cxcl1 messenger RNA, and this up-regulation was attenuated after treatment with an inhibitor of extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, or nuclear factor κB. In addition, hepatic or serum levels of free fatty acids were higher in HFD+ethanol-fed mice than in the control groups. CONCLUSION An HFD combined with acute ethanol consumption synergistically induces acute liver inflammation and injury through the elevation of hepatic or serum free fatty acids and subsequent up-regulation of hepatic CXCL1 expression and promotion of hepatic neutrophil infiltration.
Collapse
Affiliation(s)
- Binxia Chang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Diagnosis and Treatment Center for Non-Infectious Liver Diseases, Institute of Alcoholic Liver Disease, Beijing 302 Hospital, Beijing
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Li
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adeline Bertola
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
119
|
Karthivashan G, Arulselvan P, Tan SW, Fakurazi S. The molecular mechanism underlying the hepatoprotective potential of Moringa oleifera leaves extract against acetaminophen induced hepatotoxicity in mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
120
|
Woolbright BL, Jaeschke H. Xenobiotic and Endobiotic Mediated Interactions Between the Cytochrome P450 System and the Inflammatory Response in the Liver. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:131-61. [PMID: 26233906 DOI: 10.1016/bs.apha.2015.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The liver is a unique organ in the body as it has significant roles in both metabolism and innate immune clearance. Hepatocytes in the liver carry a nearly complete complement of drug metabolizing enzymes, including numerous cytochrome P450s. While a majority of these enzymes effectively detoxify xenobiotics, or metabolize endobiotics, a subportion of these reactions result in accumulation of metabolites that can cause either direct liver injury or indirect liver injury through activation of inflammation. The liver also contains multiple populations of innate immune cells including the resident macrophages (Kupffer cells), a relatively large number of natural killer cells, and blood-derived neutrophils. While these cells are primarily responsible for clearance of pathogens, activation of these immune cells can result in significant tissue injury during periods of inflammation. When activated chronically, these inflammatory bouts can lead to fibrosis, cirrhosis, cancer, or death. This chapter will focus on interactions between how the liver processes xenobiotic and endobiotic compounds through the cytochrome P450 system, and how these processes can result in a response from the innate immune cells of the liver. A number of different clinically relevant diseases, as well as experimental models, are currently available to study mechanisms related to the interplay of innate immunity and cytochrome P450-mediated metabolism. A major focus of the chapter will be to evaluate currently understood mechanisms in the context of these diseases, as a way of outlining mechanisms that dictate the interactions between the P450 system and innate immunity.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
121
|
Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury. Cell Death Dis 2015; 6:e1759. [PMID: 25950489 PMCID: PMC4669705 DOI: 10.1038/cddis.2015.126] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 03/28/2015] [Accepted: 04/02/2015] [Indexed: 02/08/2023]
Abstract
Necroptosis is a recently described Caspase 8-independent method of cell death that denotes organized cellular necrosis. The roles of RIP1 and RIP3 in mediating hepatocyte death from acute liver injury are incompletely defined. Effects of necroptosis blockade were studied by separately targeting RIP1 and RIP3 in diverse murine models of acute liver injury. Blockade of necroptosis had disparate effects on disease outcome depending on the precise etiology of liver injury and component of the necrosome targeted. In ConA-induced autoimmune hepatitis, RIP3 deletion was protective, whereas RIP1 inhibition exacerbated disease, accelerated animal death, and was associated with increased hepatocyte apoptosis. Conversely, in acetaminophen-mediated liver injury, blockade of either RIP1 or RIP3 was protective and was associated with lower NLRP3 inflammasome activation. Our work highlights the fact that diverse modes of acute liver injury have differing requirements for RIP1 and RIP3; moreover, within a single injury model, RIP1 and RIP3 blockade can have diametrically opposite effects on tissue damage, suggesting that interference with distinct components of the necrosome must be considered separately.
Collapse
|
122
|
Karimi K, Keßler T, Thiele K, Ramisch K, Erhardt A, Huebener P, Barikbin R, Arck P, Tiegs G. Prenatal acetaminophen induces liver toxicity in dams, reduces fetal liver stem cells, and increases airway inflammation in adult offspring. J Hepatol 2015; 62:1085-91. [PMID: 25529619 DOI: 10.1016/j.jhep.2014.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 11/17/2014] [Accepted: 12/09/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS During pregnancy, acetaminophen is one of the very few medications recommended by physicians to treat fever or pain. Recent insights from epidemiological studies suggest an association between prenatal acetaminophen medication and an increased risk for development of asthma in children later in life. The underlying pathogenesis of such association is still unknown. METHODS We aimed to develop a mouse model to provide insights into the effect of prenatal acetaminophen on maternal, fetal and adult offspring's health. The toxic effect of acetaminophen was studied in mice on 1) maternal liver; mirrored by biomarkers of liver injury, centrilobular necrosis, and infiltration of granulocytes; 2) fetal liver; reflected by the frequency of hematopoietic stem cells, and 3) postnatal health; evaluated by the severity of allergic airway inflammation among offspring. RESULTS We observed an increased susceptibility towards acetaminophen-induced liver damage in pregnant mice compared to virgins. Moreover, hematopoietic stem cell frequency in fetal liver declined in response to acetaminophen. Furthermore, a greater severity of airway inflammation was observed in offspring of dams upon prenatal acetaminophen treatment, identified lung infiltration by leukocytes and eosinophil infiltration into the airways. CONCLUSION Our newly developed mouse model on prenatal use of acetaminophen reflects findings from epidemiological studies in humans. The availability of this model will allow improvement in our understanding of how acetaminophen-related hepatotoxicity is operational in pregnant individuals and how an increased risk for allergic diseases in response to prenatal acetaminophen is mediated. Such insights, once available, may change the recommendations for prenatal acetaminophen use.
Collapse
Affiliation(s)
- Khalil Karimi
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Timo Keßler
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristin Thiele
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katherina Ramisch
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Erhardt
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Huebener
- I. Medical Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roja Barikbin
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Arck
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
123
|
Yang K, Woodhead JL, Shoda LK, Yang Y, Watkins PB, Brouwer KL, Howell BA, Siler SQ. Mechanistic Modeling of Drug‐Induced Liver Injury (DILI). METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2015:173-198. [DOI: 10.1002/9783527673643.ch09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
124
|
Chang WJ, Song LJ, Yi T, Shen KT, Wang HS, Gao XD, Li M, Xu JM, Niu WX, Qin XY. Early activated hepatic stellate cell-derived molecules reverse acute hepatic injury. World J Gastroenterol 2015; 21:4184-4194. [PMID: 25892868 PMCID: PMC4394079 DOI: 10.3748/wjg.v21.i14.4184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/16/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To test whether hepatic stellate cells (HSCs) at different activation stages play different roles in acetaminophen (APAP)-induced acute liver injury (ALI).
METHODS: HSCs were isolated from mouse liver and cultured in vitro. Morphological changes of initiation HSCs [HSCs (5d)] and perpetuation HSCs [HSCs (p3)] were observed by immunofluorescence and transmission electron microscopy. The protective effects of HSC-derived molecules, cell lysates and HSC-conditioned medium (HSC-CM) were tested in vivo by survival and histopathological analyses. Liver injury was determined by measuring aminotransferase levels in the serum and by histologic examination of tissue sections under a light microscope. Additionally, to determine the molecular mediators of the observed protective effects of initiation HSCs, we examined HSC-CM using a high-density protein array.
RESULTS: HSCs (5d) and HSCs (p3) had different morphological and phenotypic traits. HSCs (5d) presented a star-shaped appearance with expressing α-SMA at non-uniform levels between cells. However, HSCs (p3) evolved into myofibroblast-like cells without lipid droplets and expressed a uniform and higher level of α-SMA. HSC-CM (5d), but not HSC-CM (p3), provided a significant survival benefit and showed a dramatic reduction of hepatocellular necrosis and panlobular leukocyte infiltrates in mice exposed to APAP. However, this protective effect was abrogated at higher cell masses, indicating a therapeutic window of effectiveness. Furthermore, the protein array screen revealed that HSC-CM (5d) was composed of many chemokines and growth factors that correlated with inflammatory inhibition and therapeutic activity. When compared with HSC-CM (p3), higher levels of monocyte chemoattractant protein-1, macrophage inflammatory protein-1γ, hepatocyte growth factor, interleukin-10, and matrix metalloproteinase-2, but lower levels of stem cell factor and Fas-Ligand were observed in HSC-CM (5d).
CONCLUSION: These data indicated that initiation HSCs and perpetuation HSCs were different in morphology and protein expression, and provided the first experimental evidence of the potential medical value of initiation HSC-derived molecules in the treatment of ALI.
Collapse
|
125
|
Hohmann MSN, Cardoso RDR, Fattori V, Arakawa NS, Tomaz JC, Lopes NP, Casagrande R, Verri WA. Hypericum perforatum Reduces Paracetamol-Induced Hepatotoxicity and Lethality in Mice by Modulating Inflammation and Oxidative Stress. Phytother Res 2015; 29:1097-101. [PMID: 25851311 DOI: 10.1002/ptr.5350] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/12/2022]
Abstract
Hypericum perforatum is a medicinal plant with anti-inflammatory and antioxidant properties, which is commercially available for therapeutic use in Brazil. Herein the effect of H. perforatum extract on paracetamol (acetaminophen)-induced hepatotoxicity, lethality, inflammation, and oxidative stress in male swiss mice were investigated. HPLC analysis demonstrated the presence of rutin, quercetin, hypericin, pseudohypericin, and hyperforin in H. perforatum extract. Paracetamol (0.15-3.0 g/kg, p.o.) induced dose-dependent mortality. The sub-maximal lethal dose of paracetamol (1.5 g/kg, p.o.) was chosen for the experiments in the study. H. perforatum (30-300 mg/kg, i.p.) dose-dependently reduced paracetamol-induced lethality. Paracetamol-induced increase in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations, and hepatic myeloperoxidase activity, IL-1β, TNF-α, and IFN-γ concentrations as well as decreased reduced glutathione (GSH) concentrations and capacity to reduce 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate radical cation; ABTS˙(+) ) were inhibited by H. perforatum (300 mg/kg, i.p.) treatment. Therefore, H. perforatum protects mice against paracetamol-induced lethality and liver damage. This effect seems to be related to the reduction of paracetamol-induced cytokine production, neutrophil recruitment, and oxidative stress.
Collapse
Affiliation(s)
- Miriam S N Hohmann
- Department of Pathology, Biological Science Centre, State University of Londrina, Londrina, PR, Brazil
| | - Renato D R Cardoso
- Department of Pathology, Biological Science Centre, State University of Londrina, Londrina, PR, Brazil
| | - Victor Fattori
- Department of Pathology, Biological Science Centre, State University of Londrina, Londrina, PR, Brazil
| | - Nilton S Arakawa
- Department of Pharmaceutical Sciences, Health Sciences Centre, State University of Londrina, Londrina, PR, Brazil
| | - José C Tomaz
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Departamento de Química e Física, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do café, s/n, Campus universitário, Monte Alegre, 14040-903, Ribeirão Preto, SP, Brazil
| | - Norberto P Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Departamento de Química e Física, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do café, s/n, Campus universitário, Monte Alegre, 14040-903, Ribeirão Preto, SP, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Health Sciences Centre, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Science Centre, State University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
126
|
Wang X, Sun R, Chen Y, Lian ZX, Wei H, Tian Z. Regulatory T cells ameliorate acetaminophen-induced immune-mediated liver injury. Int Immunopharmacol 2015; 25:293-301. [PMID: 25687198 DOI: 10.1016/j.intimp.2015.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/01/2015] [Accepted: 02/04/2015] [Indexed: 12/23/2022]
Abstract
The contribution of innate immune cells to acetaminophen (APAP)-induced liver injury has been extensively investigated. However, the roles of T cell populations among adaptive immune cells in APAP-induced liver injury remain to be elucidated. Herein, we found that distinct CD4(+) T cell subsets but not CD8(+) T cells modulated APAP-induced liver injury in mice. After APAP challenge, more CD62L(low)CD44(hi)CD4(+) T cells appeared in the liver, accompanied by increased IFN-γ. The removal of CD4(+) T cells by either antibody depletion or genetic deficiency markedly compromised pro-inflammatory cytokine levels and ameliorated liver injury. Meanwhile, we also found that the frequency and absolute number of Treg cells also increased. Treg cell depletion increased hepatic CD62L(low)CD44(hi)CD4(+) T cells, augmented pro-inflammatory cytokines, and exacerbated liver injury, while adoptive transfer of Treg cells ameliorated APAP-induced liver injury. Furthermore, the recruitment of Treg cells into the liver through specific expression of CXCL10 in the liver could ameliorate APAP-induced liver injury. Our investigation suggests that Th1 and Treg subsets are involved in regulating APAP-induced liver injury. Thus, modulating the Th1/Treg balance may be an effective strategy to prevent and/or treat APAP-induced liver injury.
Collapse
Affiliation(s)
- Xuefu Wang
- Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Rui Sun
- Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Yongyan Chen
- Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Zhe-Xiong Lian
- Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Haiming Wei
- Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Zhigang Tian
- Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
127
|
Krenkel O, Mossanen JC, Tacke F. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surg Nutr 2015; 3:331-43. [PMID: 25568858 DOI: 10.3978/j.issn.2304-3881.2014.11.01] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/18/2014] [Indexed: 12/23/2022]
Abstract
An overdose of acetaminophen (N-acetyl-p-aminophenol, APAP), also termed paracetamol, can cause severe liver damage, ultimately leading to acute liver failure (ALF) with the need of liver transplantation. APAP is rapidly taken up from the intestine and metabolized in hepatocytes. A small fraction of the metabolized APAP forms cytotoxic mitochondrial protein adducts, leading to hepatocyte necrosis. The course of disease is not only critically influenced by dose of APAP and the initial hepatocyte damage, but also by the inflammatory response following acetaminophen-induced liver injury (AILI). As revealed by mouse models of AILI and corresponding translational studies in ALF patients, necrotic hepatocytes release danger-associated-molecular patterns (DAMPs), which are recognized by resident hepatic macrophages, Kupffer cell (KC), and neutrophils, leading to the activation of these cells. Activated hepatic macrophages release various proinflammatory cytokines, such as TNF-α or IL-1β, as well as chemokines (e.g., CCL2) thereby further enhancing inflammation and increasing the influx of immune cells, like bone-marrow derived monocytes and neutrophils. Monocytes are mainly recruited via their receptor CCR2 and aggravate inflammation. Infiltrating monocytes, however, can mature into monocyte-derived macrophages (MoMF), which are, in cooperation with neutrophils, also involved in the resolution of inflammation. Besides macrophages and neutrophils, distinct lymphocyte populations, especially γδ T cells, are also linked to the inflammatory response following an APAP overdose. Natural killer (NK), natural killer T (NKT) and T cells possibly further perpetuate inflammation in AILI. Understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression is essential to identify novel therapeutic targets for human disease.
Collapse
Affiliation(s)
- Oliver Krenkel
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Jana C Mossanen
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| |
Collapse
|
128
|
Marques PE, Oliveira AG, Pereira RV, David BA, Gomides LF, Saraiva AM, Pires DA, Novaes JT, Patricio DO, Cisalpino D, Menezes-Garcia Z, Leevy WM, Chapman SE, Mahecha G, Marques RE, Guabiraba R, Martins VP, Souza DG, Mansur DS, Teixeira MM, Leite MF, Menezes GB. Hepatic DNA deposition drives drug-induced liver injury and inflammation in mice. Hepatology 2015; 61:348-60. [PMID: 24824608 DOI: 10.1002/hep.27216] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/08/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED Drug-induced liver injury (DILI) is an important cause of acute liver failure, with limited therapeutic options. During DILI, oncotic necrosis with concomitant release and recognition of intracellular content amplifies liver inflammation and injury. Among these molecules, self-DNA has been widely shown to trigger inflammatory and autoimmune diseases; however, whether DNA released from damaged hepatocytes accumulates into necrotic liver and the impact of its recognition by the immune system remains elusive. Here we show that treatment with two different hepatotoxic compounds (acetaminophen and thioacetamide) caused DNA release into the hepatocyte cytoplasm, which occurred in parallel with cell death in vitro. Administration of these compounds in vivo caused massive DNA deposition within liver necrotic areas, together with an intravascular DNA coating. Using confocal intravital microscopy, we revealed that liver injury due to acetaminophen overdose led to a directional migration of neutrophils to DNA-rich areas, where they exhibit an active patrolling behavior. DNA removal by intravenous DNASE1 injection or ablation of Toll-like receptor 9 (TLR9)-mediated sensing significantly reduced systemic inflammation, liver neutrophil recruitment, and hepatotoxicity. Analysis of liver leukocytes by flow cytometry revealed that emigrated neutrophils up-regulated TLR9 expression during acetaminophen-mediated necrosis, and these cells sensed and reacted to extracellular DNA by activating the TLR9/NF-κB pathway. Likewise, adoptive transfer of wild-type neutrophils to TLR9(-/-) mice reversed the hepatoprotective phenotype otherwise observed in TLR9 absence. CONCLUSION Hepatic DNA accumulation is a novel feature of DILI pathogenesis. Blockage of DNA recognition by the innate immune system may constitute a promising therapeutic venue.
Collapse
Affiliation(s)
- Pedro Elias Marques
- Laboratório de Imunobiofotônica, Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage. PLoS One 2014; 9:e112717. [PMID: 25401795 PMCID: PMC4234460 DOI: 10.1371/journal.pone.0112717] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/14/2014] [Indexed: 12/20/2022] Open
Abstract
Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.
Collapse
|
130
|
van Swelm RPL, Kramers C, Masereeuw R, Russel FGM. Application of urine proteomics for biomarker discovery in drug-induced liver injury. Crit Rev Toxicol 2014; 44:823-41. [PMID: 25264586 DOI: 10.3109/10408444.2014.931341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
131
|
Yokoi T. [New prospectives and understanding in drug-induced liver injury considering drug metabolism and immune- and inflammation-related factors]. Nihon Yakurigaku Zasshi 2014; 144:22-27. [PMID: 25007808 DOI: 10.1254/fpj.144.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
132
|
Wang X, Jiang Z, Xing M, Fu J, Su Y, Sun L, Zhang L. Interleukin-17 mediates triptolide-induced liver injury in mice. Food Chem Toxicol 2014; 71:33-41. [PMID: 24949944 DOI: 10.1016/j.fct.2014.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 01/30/2023]
Abstract
Triptolide (TP)-induced liver injury can be attributed to the Th17/Treg imbalance with the enhancement of the expansion of Th17 cells and suppression of the production of Tregs, especially the significant increase of interleukin (IL)-17 secreted by helper T (Th) 17 cells. To further investigate the involvement of IL-17-mediated immune response in the TP-induced hepatotoxicity, we examined the plasma transaminase, histopathological changes, hepatic frequencies of Th17 cells, hepatic expression of transcriptional factors and cytokines genes and plasma IL-17 levels after administration of TP (600 μg/kg) by oral gavage to female C57BL/6 mice. Mice treated with TP displayed acute liver injury with significantly increased hepatic frequencies of Th17 cells, mRNA expression of retinoid-related orphan receptor (ROR)-γt and plasma IL-17 level as well as the plasma ALT and AST. Neutralization study using anti-IL-17 antibody ameliorated TP-induced liver injury. In contrast, when challenged by coadministration of recombinant IL-17, hepatotoxicity was exacerbated in the triptolide-administered mice. In summary, this report was demonstrated for the first time that IL-17-mediated immune response is involved in the pathogenesis of TP-induced liver injury in mice, which may shed light on the mechanisms of TP-induced liver injury.
Collapse
Affiliation(s)
- Xinzhi Wang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Zhenzhou Jiang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Mengtao Xing
- Department of Pathology, University of Illinois at Chicago, 909 S. Wolcott St., Chicago, IL 60612, United States
| | - Jing Fu
- Jiangsu Center for Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yuwen Su
- Jiangsu Center for Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; School of Pharmacy, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, PR China
| | - Lixin Sun
- Jiangsu Center for Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Luyong Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Jiangsu Provincial Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
133
|
Moles A, Murphy L, Wilson CL, Chakraborty JB, Fox C, Park EJ, Mann J, Oakley F, Howarth R, Brain J, Masson S, Karin M, Seki E, Mann DA. A TLR2/S100A9/CXCL-2 signaling network is necessary for neutrophil recruitment in acute and chronic liver injury in the mouse. J Hepatol 2014; 60:782-91. [PMID: 24333183 PMCID: PMC3960359 DOI: 10.1016/j.jhep.2013.12.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/14/2013] [Accepted: 12/02/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Neutrophils are important immune effectors required for sterile and non-sterile inflammatory responses. However, neutrophils are associated with pathology in drug-induced liver injury, acute alcoholic liver disease, and ischemia-reperfusion injury. An understanding of the complex mechanisms that control neutrophil recruitment to the injured liver is desirable for developing strategies aimed at limiting neutrophil-mediated cellular damage. METHODS Wt, tlr2(-/-), tlr4(-/-), and s100a9(-/-) mice were administered CCl4 either acutely (8, 24, 48, or 72 h) or chronically (8 weeks) and livers investigated by histological (IHC for neutrophils, fibrogenesis, proliferation, and chemotactic proteins) or molecular approaches (qRT-PCR for neutrophil chemoattractant chemokines and cytokines as well as pro-fibrogenic genes). RESULTS Mice lacking TLR2 or S100A9 failed to recruit neutrophils to the injured liver and had a defective hepatic induction of the neutrophil chemokine CXCL-2. Hierarchy between TLR2 and S100A9 proved to be complex. While induction of S100A9 was dependent on TLR2 in isolated neutrophils, there was a more complicated two-way signalling cross-talk between TLR2 and S100A9 in whole liver. However, wound-healing and regenerative responses of the liver were unaffected in these genetic backgrounds as well as in wild type mice, in which neutrophils were depleted by infusion of Ly-6G antibody. CONCLUSIONS We have identified TLR2 and S100A8/S100A9 as key regulators of hepatic CXCL-2 expression and neutrophil recruitment. This novel TLR2-S100A9-CXCL-2 pathway may be of use in development of new strategies for selectively manipulating neutrophils in liver disease without impairing normal wound healing and regenerative responses.
Collapse
Affiliation(s)
- Anna Moles
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Lindsay Murphy
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Caroline L. Wilson
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Christopher Fox
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Eek Joong Park
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Jelena Mann
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Fiona Oakley
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Rachel Howarth
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - John Brain
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Steven Masson
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Michael Karin
- Department of Pharmacology and Pathology Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0723, USA
| | - Ekihiro Seki
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Derek A. Mann
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK,Corresponding author. Address: Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
134
|
Pawar RD, Williams T, Khera R, Eid A, Aljitawi OS, Dusing RW. Inflammatory response following neutrophil recovery postchemotherapy in acute myeloid leukemia cases without evidence of infection: role of homing of neutrophils. J Blood Med 2014; 5:37-41. [PMID: 24648782 PMCID: PMC3956695 DOI: 10.2147/jbm.s53616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neutropenic sepsis is a common clinical entity occurring in postchemotherapy patients. Infection may not be the cause of fever in such patients after neutrophil-count recovery. Herein, we present two patients who developed fever during the neutropenic phase of induction chemotherapy and were treated with broad-spectrum antibiotics until they were no longer febrile and had recovered their neutrophil count. Being off antibiotics, they redeveloped fever within 48–72 hours. These fevers seemed to be secondary to postinfectious inflammatory response and not infection, supported by the fact that adequate antibiotic treatment was given and the collected fluid contained neutrophils but the cultures were negative. We hypothesize an explanation for this phenomenon based on the “homing of neutrophils” to bone marrow, which involves chemoattraction of CXC chemokine receptor (CXCR)-4 expressed on neutrophils towards the chemokine stromal cell-derived factor (SDF)-1 (CXCL12) expressed constitutively by bone marrow. Literature has shown that elevation of SDF-1 levels at injured/inflamed sites might create a similar gradient. This gradient results in the migration of neutrophils to the sites of previous injury/inflammation, leading to the formation of sterile abscesses. Based on our cases, we also conclude that antibiotics do not prevent the formation or treat such sterile “abscesses”; however, the drainage of these “abscesses” and treatment with anti-inflammatory agents are useful in such cases.
Collapse
Affiliation(s)
- Rahul D Pawar
- Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Travis Williams
- Hematology/Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Rahul Khera
- Hematology/Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Albert Eid
- Infectious Diseases, University of Kansas Medical Center, Kansas City, KS, USA
| | - Omar S Aljitawi
- Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA ; Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Reginald W Dusing
- Radiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
135
|
Xu R, Huang H, Zhang Z, Wang FS. The role of neutrophils in the development of liver diseases. Cell Mol Immunol 2014. [PMID: 24633014 DOI: 10.1038/cmi.204.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver disease encompasses a wide variety of liver conditions, including liver failure, liver cirrhosis and a spectrum of acute and chronic hepatitis, such as alcoholic, fatty, drug, viral and chronic hepatitis. Liver injury is a primary causative factor in liver disease; generally, these factors include direct liver damage and immune-mediated liver injury. Neutrophils (also known as neutrophilic granulocytes or polymorphonuclear leukocytes (PMNs)) are the most abundant circulating white blood cell type in humans, and PMNs are a major innate immune cell subset. Inappropriate activation and homing of neutrophils to the microvasculature contributes to the pathological manifestations of many types of liver disease. This review summarizes novel concepts of neutrophil-mediated liver injury that are based on current clinical and animal model studies.
Collapse
Affiliation(s)
- Ruonan Xu
- The Institute of Translational Hepatology, Research Center for Biological Therapy, Beijing 302 Hospital, Beijing, China
| | - Huihuang Huang
- The Institute of Intensive Care Unit, Beijing 302 Hospital, Beijing, China
| | - Zheng Zhang
- The Institute of Translational Hepatology, Research Center for Biological Therapy, Beijing 302 Hospital, Beijing, China
| | - Fu-Sheng Wang
- The Institute of Translational Hepatology, Research Center for Biological Therapy, Beijing 302 Hospital, Beijing, China
| |
Collapse
|
136
|
Xu R, Huang H, Zhang Z, Wang FS. The role of neutrophils in the development of liver diseases. Cell Mol Immunol 2014; 11:224-31. [PMID: 24633014 DOI: 10.1038/cmi.2014.2] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
Liver disease encompasses a wide variety of liver conditions, including liver failure, liver cirrhosis and a spectrum of acute and chronic hepatitis, such as alcoholic, fatty, drug, viral and chronic hepatitis. Liver injury is a primary causative factor in liver disease; generally, these factors include direct liver damage and immune-mediated liver injury. Neutrophils (also known as neutrophilic granulocytes or polymorphonuclear leukocytes (PMNs)) are the most abundant circulating white blood cell type in humans, and PMNs are a major innate immune cell subset. Inappropriate activation and homing of neutrophils to the microvasculature contributes to the pathological manifestations of many types of liver disease. This review summarizes novel concepts of neutrophil-mediated liver injury that are based on current clinical and animal model studies.
Collapse
Affiliation(s)
- Ruonan Xu
- The Institute of Translational Hepatology, Research Center for Biological Therapy, Beijing 302 Hospital, Beijing, China
| | - Huihuang Huang
- The Institute of Intensive Care Unit, Beijing 302 Hospital, Beijing, China
| | - Zheng Zhang
- The Institute of Translational Hepatology, Research Center for Biological Therapy, Beijing 302 Hospital, Beijing, China
| | - Fu-Sheng Wang
- The Institute of Translational Hepatology, Research Center for Biological Therapy, Beijing 302 Hospital, Beijing, China
| |
Collapse
|
137
|
Williams CD, Bajt ML, Sharpe MR, McGill MR, Farhood A, Jaeschke H. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol Appl Pharmacol 2014; 275:122-33. [PMID: 24440789 DOI: 10.1016/j.taap.2014.01.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 12/17/2022]
Abstract
Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: >800 U/L) had serial blood draws during the injury and recovery phases for the determination of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91(phox)⁻/⁻ mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury.
Collapse
Affiliation(s)
- C David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mary Lynn Bajt
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthew R Sharpe
- Department of Internal Medicine, University of Kansas Hospital, Kansas City, KS, USA
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, TX 78756, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
138
|
Ingawale DK, Mandlik SK, Naik SR. Models of hepatotoxicity and the underlying cellular, biochemical and immunological mechanism(s): a critical discussion. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:118-133. [PMID: 24322620 DOI: 10.1016/j.etap.2013.08.015] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 06/03/2023]
Abstract
Liver is a primary organ involved in biotransformation of food and drugs. Hepatic diseases are a major worldwide problem. Hepatic disorders are mainly caused by toxic chemicals (alcohol), xenobiotics (carbon tetrachloride, chlorinated hydrocarbons and gases CO₂ and O₂) anticancer (azathioprine, doxorubicin, cisplatin), immunosuppressant (cyclosporine), analgesic anti-inflammatory (paracetamol, thioacetamide), anti-tubercular (isoniazid, rifampicin) drugs, biologicals (Bacillus-Calmette-Guerin vaccine), radiations (gamma radiations), heavy metals (cadmium, arsenic), mycotoxin (aflatoxin), galactosamine, lipopolysaccharides, etc. Various risk factors for hepatic injury include concomitant hepatic diseases, age, gender, alcoholism, nutrition and genetic polymorphisms of cytochrome P450 enzymes have also been emphasized. The present review enumerates various in vivo animal models and in vitro methods of hepatic injury using diverse toxicants, their probable metabolic pathways, and numerous biochemical changes viz. serum biomarkers enzymes, liver function, oxidative stress associated events like free radicals formation, lipid peroxidation, enzyme antioxidants and participation of cytokines (tumour necrosis factor-α, transforming growth factor-β, tumour necrosis factor-related apoptosis inducing ligand), and other biomolecules (Fas and C-jun N-terminal kinase) are also discussed. The underlying cellular, molecular, immunological, and biochemical mechanism(s) of action responsible for liver damage (toxicity) are also been discussed. This review should be immensely useful for researchers especially for phytochemists, pharmacologists and toxicologists working on hepatotoxicity, hepatotoxic chemicals and drugs, hepatoprotective agents and drug research organizations involved especially in phytopharmaceuticals and other natural products.
Collapse
Affiliation(s)
- Deepa K Ingawale
- Sinhgad Technical Education Society's, Sinhgad Institute of Pharmaceutical Sciences, S. No. 309/310, Off Mumbai-Pune Expressway, Kusgaon (Bk.), Lonavala, Pune 410 401, Maharashtra, India
| | - Satish K Mandlik
- Sinhgad College of Pharmacy, S. No. 44/1, Vadgaon (Bk.), Off Sinhgad Road, Pune 411 041, Maharashtra, India
| | - Suresh R Naik
- Sinhgad Technical Education Society's, Sinhgad Institute of Pharmaceutical Sciences, S. No. 309/310, Off Mumbai-Pune Expressway, Kusgaon (Bk.), Lonavala, Pune 410 401, Maharashtra, India.
| |
Collapse
|
139
|
Hohmann MSN, Cardoso RDR, Pinho-Ribeiro FA, Crespigio J, Cunha TM, Alves-Filho JC, da Silva RV, Pinge-Filho P, Ferreira SH, Cunha FQ, Casagrande R, Verri WA. 5-lipoxygenase deficiency reduces acetaminophen-induced hepatotoxicity and lethality. BIOMED RESEARCH INTERNATIONAL 2013; 2013:627046. [PMID: 24288682 PMCID: PMC3832964 DOI: 10.1155/2013/627046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 01/02/2023]
Abstract
5-Lipoxygenase (5-LO) converts arachidonic acid into leukotrienes (LTs) and is involved in inflammation. At present, the participation of 5-LO in acetaminophen (APAP)-induced hepatotoxicity and liver damage has not been addressed. 5-LO deficient (5-LO⁻/⁻) mice and background wild type mice were challenged with APAP (0.3-6 g/kg) or saline. The lethality, liver damage, neutrophil and macrophage recruitment, LTB₄, cytokine production, and oxidative stress were assessed. APAP induced a dose-dependent mortality, and the dose of 3 g/kg was selected for next experiments. APAP induced LTB4 production in the liver, the primary target organ in APAP toxicity. Histopathological analysis revealed that 5-LO⁻/⁻ mice presented reduced APAP-induced liver necrosis and inflammation compared with WT mice. APAP-induced lethality, increase of plasma levels of aspartate aminotransferase and alanine aminotransferase, liver cytokine (IL-1β, TNF-α , IFN- γ, and IL-10), superoxide anion, and thiobarbituric acid reactive substances production, myeloperoxidase and N-acetyl-β-D-glucosaminidase activity, Nrf2 and gp91(phox) mRNA expression, and decrease of reduced glutathione and antioxidant capacity measured by 2,2'-azinobis(3-ethylbenzothiazoline 6-sulfonate) assay were prevented in 5-LO⁻/⁻ mice compared to WT mice. Therefore, 5-LO deficiency resulted in reduced mortality due to reduced liver inflammatory and oxidative damage, suggesting 5-LO is a promising target to reduce APAP-induced lethality and liver inflammatory/oxidative damage.
Collapse
Affiliation(s)
- Miriam S. N. Hohmann
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| | - Renato D. R. Cardoso
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| | - Felipe A. Pinho-Ribeiro
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| | - Jefferson Crespigio
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - José C. Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Rosiane V. da Silva
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| | - Phileno Pinge-Filho
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| | - Sergio H. Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Health Sciences Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380, Cx. Postal 10011, 86051-990 Londrina, PR, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| |
Collapse
|
140
|
Pires DA, Marques PE, Pereira RV, David BA, Gomides LF, Dias ACF, Nunes-Silva A, Pinho V, Cara DC, Vieira LQ, Teixeira MM, Menezes GB. Interleukin-4 deficiency protects mice from acetaminophen-induced liver injury and inflammation by prevention of glutathione depletion. Inflamm Res 2013; 63:61-9. [PMID: 24100592 DOI: 10.1007/s00011-013-0671-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/28/2013] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Interleukin-4 (IL-4) is a multifunctional cytokine involved in many diseases such as autoimmune hepatitis and idiosyncratic drug reactions. However, its role in acetaminophen (APAP)-induced liver injury remains unclear. Our objective was to evaluate the contribution of IL-4 to the pathogenesis of APAP-induced liver injury. METHODS Balb/C (WT) and IL-4 knockout (IL-4(-/-)) mice were orally overdosed with APAP. After 24 h, survival percentage, biochemical and morphological markers of liver injury, and tissue inflammation were assessed. RESULTS IL-4(-/-) mice were protected from APAP toxicity. Intravital confocal microscopy, tissue histology and serum ALT levels showed significantly less liver injury and inflammation than in the WT group, which may explain the increased survival rate of IL-4(-/-) mice. In addition, IL-4(-/-) mice had decreased production of tumor necrosis factor α, CXCL1 and interleukin-1β in the liver, but not in a remote site such as the lungs. Hepatic macrophage activation was markedly reduced in IL-4-deficient mice. In addition, glutathione depletion-a primary cause of APAP-mediated injury-was significantly attenuated in IL-4(-/-) mice. CONCLUSIONS Taken together, our data demonstrate that IL-4(-/-) mice are protected from APAP-induced liver injury due to reduced depletion of glutathione, which prevented liver damage and tissue inflammation.
Collapse
Affiliation(s)
- Daniele Araújo Pires
- Laboratório de Imunobiofotônica, Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Av. Antonio Carlos, Pampulha, Belo Horizonte, MG, 6627, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Wang H, Feng D, Park O, Yin S, Gao B. Invariant NKT cell activation induces neutrophil accumulation and hepatitis: opposite regulation by IL-4 and IFN-γ. Hepatology 2013; 58:1474-85. [PMID: 23686838 PMCID: PMC3758807 DOI: 10.1002/hep.26471] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/11/2013] [Indexed: 01/12/2023]
Abstract
UNLABELLED Alpha-Galactosylceramide (α-Galcer), a specific agonist for invariant natural killer T (iNKT) cells, is being evaluated in clinical trials for the treatment of viral hepatitis and liver cancer. However, the results from α-Galcer treatment are mixed, partially because of the variety of cytokines produced by activated iNKT cells that have an unknown synergistic effect on the progression of liver disease. It is well documented that injection of α-Galcer induces mild hepatitis with a rapid elevation in the levels of interleukin (IL)-4 and a delayed elevation in the levels of interferon-gamma (IFN-γ), and both of these cytokines are thought to mediate many functions of iNKT cells. Surprisingly, genetic deletion of both IL-4 and IFN-γ aggravated, rather than abolished, α-Galcer-induced iNKT hepatitis. Moreover, genetic ablation of IL-4, the IL-4 receptor, or its downstream signaling molecule signal transducer and activator of transcription (STAT)6 ameliorated α-Galcer-induced neutrophil infiltration, liver injury, and hepatitis. In contrast, genetic deletion of IFN-γ, the IFN-γ receptor, or its downstream signaling molecule STAT1 enhanced liver neutrophil accumulation, thereby exacerbating liver injury and hepatitis. Moreover, depletion of neutrophils eradicated α-Galcer-induced liver injury in wild-type, STAT1 knockout, and IFN-γ knockout mice. CONCLUSION Our results propose a model in which activated iNKT cells rapidly release IL-4, which promotes neutrophil survival and hepatitis but also sequentially produce IFN-γ, which acts in a negative feedback loop to ameliorate iNKT hepatitis by inducing neutrophil apoptosis. Thus, modification of iNKT production of IL-4 and IFN-γ may have the potential to improve the efficacy of α-Galcer in the treatment of liver disease.
Collapse
Affiliation(s)
- Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | | | | | | | | |
Collapse
|
142
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 960] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
143
|
Interleukin-23 (IL-23) deficiency disrupts Th17 and Th1-related defenses against Streptococcus pneumoniae infection. Cytokine 2013; 64:375-81. [PMID: 23752068 DOI: 10.1016/j.cyto.2013.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/11/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022]
Abstract
Resolution of acute of infection caused by capsular Streptococcus pneumoniae infection in the absence of effective antibiotic therapy requires tight regulation of immune and inflammatory responses. To provide new mechanistic insight of the requirements needed for innate host defenses against acute S. pneumoniae infection, we examined how IL-23 deficiency mediated acute pulmonary resistance. We found that IL-23 deficient mice were more susceptible to bacterial colonization in the lungs corresponding with greater bacterial dissemination. The lack of IL-23 was found to decrease IL-6 and IL-12p70 cytokine levels in bronchiolar lavage within the initial day after infection. Pulmonary leukocytes isolated from infected IL-23 deficient mice demonstrated a dramatic decrease in IL-17A and IFN-γ in response to heat-killed organisms. These findings corresponded with significant abrogation of neutrophilic infiltrate in the lungs compared to IL-23 competent mice. Whereas previous studies have shown opposing influences of IL-12/IL-23 regulation, our findings suggest a concordant dependency of IL-23 expression on Th1 and Th17-related responses.
Collapse
|
144
|
Toll like receptor 3 plays a critical role in the progression and severity of acetaminophen-induced hepatotoxicity. PLoS One 2013; 8:e65899. [PMID: 23762449 PMCID: PMC3676358 DOI: 10.1371/journal.pone.0065899] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/30/2013] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptor (TLR) activation has been implicated in acetaminophen (APAP)-induced hepatotoxicity. Herein, we hypothesize that TLR3 activation significantly contributed to APAP-induced liver injury. In fasted wildtype (WT) mice, APAP caused significant cellular necrosis, edema, and inflammation in the liver, and the de novo expression and activation of TLR3 was found to be necessary for APAP-induced liver failure. Specifically, liver tissues from similarly fasted TLR3-deficient (tlr3(-/-) ) mice exhibited significantly less histological and biochemical evidence of injury after APAP challenge. Similar protective effects were observed in WT mice in which TLR3 was targeted through immunoneutralization at 3 h post-APAP challenge. Among three important death ligands (i.e. TNFα, TRAIL, and FASL) known to promote hepatocyte death after APAP challenge, TNFα was the only ligand that was significantly reduced in APAP-challenged tlr3(-/-) mice compared with APAP-challenged WT controls. In vivo studies demonstrated that TLR3 activation contributed to TNFα production in the liver presumably via F4/80(+) and CD11c(+) immune cells. In vitro studies indicated that there was cooperation between TNFα and TLR3 in the activation of JNK signaling in isolated and cultured liver epithelial cells (i.e. nMuLi). Moreover, TLR3 activation enhanced the expression of phosphorylated JNK in APAP injured livers. Thus, the current study demonstrates that TLR3 activation contributes to APAP-induced hepatotoxicity.
Collapse
|
145
|
Guabiraba R, Besnard AG, Marques RE, Maillet I, Fagundes CT, Conceição TM, Rust NM, Charreau S, Paris I, Lecron JC, Renauld JC, Quesniaux V, Da Poian AT, Arruda LB, Souza DG, Ryffel B, Teixeira MM. IL-22 modulates IL-17A production and controls inflammation and tissue damage in experimental dengue infection. Eur J Immunol 2013; 43:1529-44. [PMID: 23505056 DOI: 10.1002/eji.201243229] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/06/2013] [Accepted: 03/07/2013] [Indexed: 01/21/2023]
Abstract
Dengue virus (DENV), a mosquito-borne flavivirus, is a public health problem in many tropical countries. IL-22 and IL-17A are key cytokines in several infectious and inflammatory diseases. We have assessed the contribution of IL-22 and IL-17A in the pathogenesis of experimental dengue infection using a mouse-adapted DENV serotype 2 strain (P23085) that causes a disease that resembles severe dengue in humans. We show that IL-22 and IL-17A are produced upon DENV-2 infection in immune-competent mice. Infected IL-22(-/-) mice had increased lethality, neutrophil accumulation and pro-inflammatory cytokines in tissues, notably IL-17A. Viral load was increased in spleen and liver of infected IL-22(-/-) mice. There was also more severe liver injury, as seen by increased transaminases levels and tissue histopathology. γδ T cells and NK cells are sources of IL-17A and IL-22, respectively, in liver and spleen. We also show that DENV-infected HepG2 cells treated with rhIL-22 had reduced cell death and decreased IL-6 production. IL-17RA(-/-) mice were protected upon infection and IL-17A-neutralizing-Ab-treatment partially reversed the phenotype observed in IL-22(-/-) -infected mice. We suggest that disrupting the balance between IL-22 and IL-17A levels may represent an important strategy to reduce inflammation and tissue injury associated with severe dengue infection.
Collapse
Affiliation(s)
- Rodrigo Guabiraba
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Proctor WR, Chakraborty M, Chea LS, Morrison JC, Berkson JD, Semple K, Bourdi M, Pohl LR. Eosinophils mediate the pathogenesis of halothane-induced liver injury in mice. Hepatology 2013; 57:2026-36. [PMID: 23238640 PMCID: PMC3610837 DOI: 10.1002/hep.26196] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/04/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Drug-induced liver injury (DILI) is a major health issue, as it remains difficult to predict which new drugs will cause injury and who will be susceptible to this disease. This is due in part to the lack of animal models and knowledge of susceptibility factors that predispose individuals to DILI. In this regard, liver eosinophilia has often been associated with DILI, although its role remains unclear. We decided to investigate this problem in a murine model of halothane-induced liver injury (HILI). When female Balb/cJ mice were administered halothane, eosinophils were detected by flow cytometry in the liver within 12 hours and increased thereafter proportionally to liver damage. Chemokines, eotaxin-1 (CCL11) and eotaxin-2 (CCL24), which are known to attract eosinophils, increased in response to halothane treatment. The severity of HILI was decreased significantly when the study was repeated in wildtype mice made deficient in eosinophils with a depleting antibody and in eosinophil lineage-ablated ΔdblGata(-/-) mice. Moreover, depletion of neutrophils by pretreating animals with Gr-1 antibody prior to halothane administration failed to reduce the severity of HILI at antibody concentrations that did not affect hepatic eosinophils. Immunohistochemical staining for the granule protein, major basic protein, revealed that eosinophils accumulated exclusively around areas of hepatocellular necrosis. CONCLUSION Our findings indicate that eosinophils have a pathologic role in HILI in mice and suggest that they may contribute similarly in many clinical cases of DILI.
Collapse
Affiliation(s)
- William R Proctor
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Williams CD, McGill MR, Farhood A, Jaeschke H. Fas receptor-deficient lpr mice are protected against acetaminophen hepatotoxicity due to higher glutathione synthesis and enhanced detoxification of oxidant stress. Food Chem Toxicol 2013; 58:228-35. [PMID: 23628456 DOI: 10.1016/j.fct.2013.04.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 02/05/2023]
Abstract
UNLABELLED Acetaminophen (APAP) overdose is a classical model of hepatocellular necrosis; however, the involvement of the Fas receptor in the pathophysiology remains controversial. Fas receptor-deficient (lpr) and C57BL/6 mice were treated with APAP to compare the mechanisms of hepatotoxicity. Lpr mice were partially protected against APAP hepatotoxicity as indicated by reduced plasma ALT and GDH levels and liver necrosis. Hepatic Cyp2e1 protein, adduct formation and hepatic glutathione (GSH) depletion were similar, demonstrating equivalent reactive metabolite generation. There was no difference in cytokine formation or hepatic neutrophil recruitment. Interestingly, hepatic GSH recovered faster in lpr mice than in wild type animals resulting in enhanced detoxification of reactive oxygen species. Driving the increased GSH levels, mRNA induction and protein expression of glutamate-cysteine ligase (gclc) were higher in lpr mice. Inducible nitric oxide synthase (iNOS) mRNA and protein levels at 6h were significantly lower in lpr mice, which correlated with reduced nitrotyrosine staining. Heat shock protein 70 (Hsp70) mRNA levels were substantially higher in lpr mice after APAP. CONCLUSION Our data suggest that the faster recovery of hepatic GSH levels during oxidant stress and peroxynitrite formation, reduced iNOS expression and enhanced induction of Hsp70 attenuated the susceptibility to APAP-induced cell death in lpr mice.
Collapse
Affiliation(s)
- C David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
148
|
Sanz-Garcia C, Ferrer-Mayorga G, González-Rodríguez Á, Valverde AM, Martín-Duce A, Velasco-Martín JP, Regadera J, Fernández M, Alemany S. Sterile inflammation in acetaminophen-induced liver injury is mediated by Cot/tpl2. J Biol Chem 2013; 288:15342-51. [PMID: 23572518 DOI: 10.1074/jbc.m112.439547] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cot/tpl2 (MAP3K8) activates MKK1/2-Erk1/2 following stimulation of the Toll-like/IL-1 receptor superfamily. Here, we investigated the role of Cot/tpl2 in sterile inflammation and drug-induced liver toxicity. Cot/tpl2 KO mice exhibited reduced hepatic injury after acetaminophen challenge, as evidenced by decreased serum levels of both alanine and aspartate aminotransferases, decreased hepatic necrosis, and increased survival relative to Wt mice. Serum levels of both alanine and aspartate aminotransferases were also lower after intraperitoneal injection of acetaminophen in mice expressing an inactive form of Cot/tpl2 compared with Wt mice, suggesting that Cot/tpl2 activity contributes to acetaminophen-induced liver injury. Furthermore, Cot/tpl2 deficiency reduced neutrophil and macrophage infiltration in the liver of mice treated with acetaminophen, as well as their hepatic and systemic levels of IL-1α. Intraperitoneal injection of damage-associated molecular patterns from necrotic hepatocytes also impaired the recruitment of leukocytes and decreased the levels of several cytokines in the peritoneal cavity in Cot/tpl2 KO mice compared with Wt counterparts. Moreover, similar activation profiles of intracellular pathways were observed in Wt macrophages stimulated with Wt or Cot/tpl2 KO damage-associated molecular patterns. However, upon stimulation with damage-associated molecular patterns, the activation of Erk1/2 and JNK was deficient in Cot/tpl2 KO macrophages compared with their Wt counterparts; an effect accompanied by weaker release of several cytokines, including IL-1α, an important component in the development of sterile inflammation. Taken together, these findings indicate that Cot/tpl2 contributes to acetaminophen-induced liver injury, providing some insight into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Carlos Sanz-Garcia
- Instituto Investigaciones Biomédicas Alberto Sols, CISC-UAM, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Oliveira AG, Marques PE, Amaral SS, Quintão JLD, Cogliati B, Dagli MLZ, Rogiers V, Vanhaecke T, Vinken M, Menezes GB. Purinergic signalling during sterile liver injury. Liver Int 2013; 33:353-61. [PMID: 23402607 DOI: 10.1111/liv.12109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/28/2012] [Indexed: 12/23/2022]
Abstract
The liver plays a vital role in the organism, and thousands of patients suffer and even die from hepatic complications every year. Viral hepatitis is one of the most important causes of liver-related pathological processes. However, sterile liver diseases, such as drug-induced liver injury, cirrhosis and fibrosis, are still a worldwide concern and contribute significantly to liver transplantation statistics. During hepatocyte death, several genuine intracellular contents are released to the interstitium, where they will trigger inflammatory responses that may boost organ injury. Intracellular purines are key molecules to several metabolic pathways and regulate cell bioenergetics. However, seminal studies in early 70s revealed that purines may also participate in cell-to-cell communication, and more recent data have unequivocally demonstrated that the purinergic signalling plays a key role in the recognition of cell functionality by neighbouring cells and also by the immune system. This new body of knowledge has pointed out that several promising therapeutic opportunities may rely on the modulation of purine release and sensing during diseases. Here, we review the most recent data on the physiological roles of purinergic signalling and how its imbalance may contribute to injury progression during sterile liver injury.
Collapse
Affiliation(s)
- André G Oliveira
- Immunobiophotonics Lab, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Amaral SS, Oliveira AG, Marques PE, Quintão JLD, Pires DA, Resende RR, Sousa BR, Melgaço JG, Pinto MA, Russo RC, Gomes AKC, Andrade LM, Zanin RF, Pereira RVS, Bonorino C, Soriani FM, Lima CX, Cara DC, Teixeira MM, Leite MF, Menezes GB. Altered responsiveness to extracellular ATP enhances acetaminophen hepatotoxicity. Cell Commun Signal 2013; 11:10. [PMID: 23384127 PMCID: PMC3608937 DOI: 10.1186/1478-811x-11-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/26/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Adenosine triphosphate (ATP) is secreted from hepatocytes under physiological conditions and plays an important role in liver biology through the activation of P2 receptors. Conversely, higher extracellular ATP concentrations, as observed during necrosis, trigger inflammatory responses that contribute to the progression of liver injury. Impaired calcium (Ca2+) homeostasis is a hallmark of acetaminophen (APAP)-induced hepatotoxicity, and since ATP induces mobilization of the intracellular Ca2+ stocks, we evaluated if the release of ATP during APAP-induced necrosis could directly contribute to hepatocyte death. RESULTS APAP overdose resulted in liver necrosis, massive neutrophil infiltration and large non-perfused areas, as well as remote lung inflammation. In the liver, these effects were significantly abrogated after ATP metabolism by apyrase or P2X receptors blockage, but none of the treatments prevented remote lung inflammation, suggesting a confined local contribution of purinergic signaling into liver environment. In vitro, APAP administration to primary mouse hepatocytes and also HepG2 cells caused cell death in a dose-dependent manner. Interestingly, exposure of HepG2 cells to APAP elicited significant release of ATP to the supernatant in levels that were high enough to promote direct cytotoxicity to healthy primary hepatocytes or HepG2 cells. In agreement to our in vivo results, apyrase treatment or blockage of P2 receptors reduced APAP cytotoxicity. Likewise, ATP exposure caused significant higher intracellular Ca2+ signal in APAP-treated primary hepatocytes, which was reproduced in HepG2 cells. Quantitative real time PCR showed that APAP-challenged HepG2 cells expressed higher levels of several purinergic receptors, which may explain the hypersensitivity to extracellular ATP. This phenotype was confirmed in humans analyzing liver biopsies from patients diagnosed with acute hepatic failure. CONCLUSION We suggest that under pathological conditions, ATP may act not only an immune system activator, but also as a paracrine direct cytotoxic DAMP through the dysregulation of Ca2+ homeostasis.
Collapse
Affiliation(s)
- Sylvia S Amaral
- Laboratório de Imunobiofotônica, Departamento de Morfologia, UFMG, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|