101
|
Barrier-Independent, Fitness-Associated Differences in Sofosbuvir Efficacy against Hepatitis C Virus. Antimicrob Agents Chemother 2016; 60:3786-93. [PMID: 27067341 DOI: 10.1128/aac.00581-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/05/2016] [Indexed: 12/24/2022] Open
Abstract
Sofosbuvir displays a high phenotypic barrier to resistance, and it is a component of several combination therapies for hepatitis C virus (HCV) infections. HCV fitness can be a determinant of decreased sensitivity to direct-acting antiviral agents such as telaprevir or daclatasvir, but fitness-dependent decreased drug sensitivity has not been established for drugs with a high phenotypic barrier to resistance. Low- and high-fitness HCV populations and biological clones derived from them were used to infect Huh-7.5 hepatoma cells. Sofosbuvir efficacy was analyzed by measuring virus progeny production during several passages and by selection of possible sofosbuvir resistance mutations determined by sequencing the NS5B-coding region of the resulting populations. Sofosbuvir exhibited reduced efficacy against high-fitness HCV populations, without the acquisition of sofosbuvir-specific resistance mutations. A reduced sofosbuvir efficacy, similar to that observed with the parental populations, was seen for high-fitness individual biological clones. In independently derived high-fitness HCV populations or clones passaged in the presence of sofosbuvir, M289L was selected as the only substitution in the viral polymerase NS5B. In no case was the sofosbuvir-specific resistance substitution S282T observed. High HCV fitness can lead to decreased sensitivity to sofosbuvir, without the acquisition of specific sofosbuvir resistance mutations. Thus, fitness-dependent drug sensitivity can operate with HCV inhibitors that display a high barrier to resistance. This mechanism may underlie treatment failures not associated with selection of sofosbuvir-specific resistance mutations, linked to in vivo fitness of pretreatment viral populations.
Collapse
|
102
|
Geno2pheno[HCV] - A Web-based Interpretation System to Support Hepatitis C Treatment Decisions in the Era of Direct-Acting Antiviral Agents. PLoS One 2016; 11:e0155869. [PMID: 27196673 PMCID: PMC4873220 DOI: 10.1371/journal.pone.0155869] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022] Open
Abstract
The face of hepatitis C virus (HCV) therapy is changing dramatically. Direct-acting antiviral agents (DAAs) specifically targeting HCV proteins have been developed and entered clinical practice in 2011. However, despite high sustained viral response (SVR) rates of more than 90%, a fraction of patients do not eliminate the virus and in these cases treatment failure has been associated with the selection of drug resistance mutations (RAMs). RAMs may be prevalent prior to the start of treatment, or can be selected under therapy, and furthermore they can persist after cessation of treatment. Additionally, certain DAAs have been approved only for distinct HCV genotypes and may even have subtype specificity. Thus, sequence analysis before start of therapy is instrumental for managing DAA-based treatment strategies. We have created the interpretation system geno2pheno[HCV] (g2p[HCV]) to analyse HCV sequence data with respect to viral subtype and to predict drug resistance. Extensive reviewing and weighting of literature related to HCV drug resistance was performed to create a comprehensive list of drug resistance rules for inhibitors of the HCV protease in non-structural protein 3 (NS3-protease: Boceprevir, Paritaprevir, Simeprevir, Asunaprevir, Grazoprevir and Telaprevir), the NS5A replicase factor (Daclatasvir, Ledipasvir, Elbasvir and Ombitasvir), and the NS5B RNA-dependent RNA polymerase (Dasabuvir and Sofosbuvir). Upon submission of up to eight sequences, g2p[HCV] aligns the input sequences, identifies the genomic region(s), predicts the HCV geno- and subtypes, and generates for each DAA a drug resistance prediction report. g2p[HCV] offers easy-to-use and fast subtype and resistance analysis of HCV sequences, is continuously updated and freely accessible under http://hcv.geno2pheno.org/index.php. The system was partially validated with respect to the NS3-protease inhibitors Boceprevir, Telaprevir and Simeprevir by using data generated with recombinant, phenotypic cell culture assays obtained from patients’ virus variants.
Collapse
|
103
|
Benítez-Gutiérrez L, Barreiro P, Labarga P, de Mendoza C, Fernandez-Montero JV, Arias A, Peña JM, Soriano V. Prevention and management of treatment failure to new oral hepatitis C drugs. Expert Opin Pharmacother 2016; 17:1215-23. [PMID: 27149603 DOI: 10.1080/14656566.2016.1182156] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Chronic hepatitis C virus (HCV) infection has become a curable disease. Sustained virologic response rates above 90% have been achieved with recommended direct-acting antiviral (DAA) combinations in most registration trials. However, outcomes in real-world patients are lower. In patients experiencing DAA failure, resistance-associated variants (RAVs) are almost universally selected. At this time it is unclear when and how to re-treat hepatitis C in patients with prior DAA failure. AREAS COVERED The rate of DAA failure and predictors of lack of treatment response using distinct DAA combinations are analyzed. We discuss the management of HCV treatment failure and the impact of RAVs on re-treatment strategies. EXPERT OPINION Failure to DAA combinations occurs more often in chronic hepatitis C patients with baseline predictors of poor response, such as those with RAVs, genotypes 3 or 1a, advanced liver cirrhosis, elevated serum HCV-RNA and perhaps HIV coinfection. Impaired antiviral efficacy is more frequent when multiple factors are present. On-treatment predictors of DAA failure are poor drug adherence and development of side effects. Extending the length of therapy, adding ribavirin and/or using DAA from other drug families may allow successful re-treatment of most prior DAA failures.
Collapse
Affiliation(s)
- Laura Benítez-Gutiérrez
- a Department of Internal Medicine , Puerta de Hierro Research Institute & University Hospital , Majadahonda , Spain
| | - Pablo Barreiro
- b Infectious Diseases Unit , La Paz University Hospital , Madrid , Spain
| | - Pablo Labarga
- c Department of Internal Medicine , La Milagrosa Clinic , Madrid , Spain
| | - Carmen de Mendoza
- a Department of Internal Medicine , Puerta de Hierro Research Institute & University Hospital , Majadahonda , Spain
| | - José V Fernandez-Montero
- d Department of Infectious Diseases , University Hospital Crosshouse , Kilmarnock , Scotland , United Kingdom
| | - Ana Arias
- a Department of Internal Medicine , Puerta de Hierro Research Institute & University Hospital , Majadahonda , Spain
| | - José M Peña
- b Infectious Diseases Unit , La Paz University Hospital , Madrid , Spain
| | - Vicente Soriano
- b Infectious Diseases Unit , La Paz University Hospital , Madrid , Spain
| |
Collapse
|
104
|
Kwo PY, Badshah MB. Treatment of HCV in Patients who Failed First-Generation PI Therapy: a Review of Current Literature. Curr Gastroenterol Rep 2016; 17:462. [PMID: 26342813 DOI: 10.1007/s11894-015-0462-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The addition of the first direct-acting antiviral agents, the NS3 protease inhibitors boceprevir or telaprevir, to peg interferon and ribavirin was a major advance in the treatment of genotype 1 hepatitis C individuals with sustained virological response (SVR) rates of 63-75 %. Those who did not achieve SVR had high rates of resistance-associated variants against NS3 protease domain. Retreatment options for those who have failed first-generation protease inhibitors generally are guided by retreatment with direct-acting antiviral agents from other classes. Phase 2 and phase 3 data have demonstrated that retreatment with 12-24 weeks of a NS5B inhibitor (sofosbuvir) in combination with a NS5a inhibitor (daclatasvir or ledipasvir) with or without ribavirin can achieve SVR at high rates comparable to treatment-naive individuals.
Collapse
Affiliation(s)
- Paul Y Kwo
- Department of Medicine, Division of Gastroenterology/Hepatology, Indiana University School of Medicine, 975 W. Walnut, IB 327, Indianapolis, IN, 46202-5121, USA,
| | | |
Collapse
|
105
|
Resistance to direct-acting antiviral agents: clinical utility and significance. Curr Opin HIV AIDS 2016; 10:381-9. [PMID: 26248125 DOI: 10.1097/coh.0000000000000177] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW This article examines the dynamics and factors underlying hepatitis C virus (HCV) resistance, along with their impact on daily clinical management of HCV-infected patients. RECENT FINDINGS Across available treatment-regimens, GT-3 is the most difficult-to-cure genotype, but also genotype-1a may show lower success-rates compared with genotype-1b. Natural resistance to NS3, NS5A and NS5B inhibitors may contribute to treatment failures. The Q80K NS3-protease mutation affects sensibility to simeprevir + peg-interferon/ribavirin combinations. It reaches up to 48% prevalence in genotype-1a in some studies (but it is lower in other). Resistant variants (particularly in NS5A) developed at failure can persist, in a substantial proportion of patients, even 3 years after treatment-discontinuation, potentially affecting readministration of the same direct-acting antiviral agent (DAA)-class. This will become an issue for those patients failing all-oral regimens with multiple-resistant viruses. SUMMARY Recent data support the importance of an accurate genotype and genotype-1 subtype (1a/1b) assignment prior therapy. Resistance testing at baseline has no clear indication so far in clinical practice for all-DAA regimens selection, while it remains a valuable option at the retreatment of patients who failed DAA-containing regimens, provided that data are generated to inform treatment decisions based on the results of resistance testing. In this context, long-term RAVs persistence after failure should be taken into account.
Collapse
|
106
|
Wang Y, Rao HY, Xie XW, Wei L. Direct-acting Antiviral Agents Resistance-associated Polymorphisms in Chinese Treatment-naïve Patients Infected with Genotype 1b Hepatitis C Virus. Chin Med J (Engl) 2016; 128:2625-31. [PMID: 26415801 PMCID: PMC4736847 DOI: 10.4103/0366-6999.166038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: It has been reported that several baseline polymorphisms of direct-acting antivirals (DAAs) agents resistance-associated variants (RAVs) would affect the treatment outcomes of patients chronically infected with hepatitis C virus (CHC). The aim of this study is to investigate the prevalence of DAAs RAVs in treatment-naïve GT1b CHC patients. Methods: Direct sequencing and ultra-deep sequencing of the HCV NS3, NS5A, and NS5B gene were performed in baseline serum samples of treatment-naïve patients infected with genotype 1b hepatitis C virus (HCVs). Results: One hundred and sixty CHC patients were studied. Complete sequence information was obtained for 145 patients (NS3), 148 patients (NS5A), and 137 patients (NS5B). Treatment-failure associated variants of DAAs were detected: 56.6% (82/145) of the patients presented S122G for simeprevir (NS3 protease inhibitor); 10.1% (14/148) of the patients presented Y93H for daclatasvir and ledipasvir (NS5A protein inhibitors); 94.2% (129/137) of the patients presented C316N for sofosbuvir (NS5B polymerase inhibitor). Nearly, all of the DAAs RAVs detected by ultra-deep sequencing could be detected by direct sequencing. Conclusions: The majority of genotype 1b CHC patients in China present a virus population carrying HCV DAAs RAVs. Pretreatment sequencing of HCV genome might need to be performed when patients infected with GT1b HCV receiving DAAs-containing regimens in China. Population sequencing would be quite quantified for the work.
Collapse
Affiliation(s)
| | | | | | - Lai Wei
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory for Hepatitis C and Immunotherapy for Liver Disease, Beijing 100044, China
| |
Collapse
|
107
|
Coppola N, Minichini C, Starace M, Sagnelli C, Sagnelli E. Clinical impact of the hepatitis C virus mutations in the era of directly acting antivirals. J Med Virol 2016; 88:1659-71. [DOI: 10.1002/jmv.24527] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Nicola Coppola
- Department of Mental Health and Public Medicine; Section of Infectious Diseases; Second University of Naples; Naples Italy
| | - Carmine Minichini
- Department of Mental Health and Public Medicine; Section of Infectious Diseases; Second University of Naples; Naples Italy
| | - Mario Starace
- Department of Mental Health and Public Medicine; Section of Infectious Diseases; Second University of Naples; Naples Italy
| | - Caterina Sagnelli
- Department of Clinical and Experimental Medicine and Surgery; Second University of Naples; Naples Italy
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine; Section of Infectious Diseases; Second University of Naples; Naples Italy
| |
Collapse
|
108
|
Khachatoorian R, Riahi R, Ganapathy E, Shao H, Wheatley NM, Sundberg C, Jung CL, Ruchala P, Dasgupta A, Arumugaswami V, Gestwicki JE, French SW. Allosteric heat shock protein 70 inhibitors block hepatitis C virus assembly. Int J Antimicrob Agents 2016; 47:289-96. [PMID: 27013001 DOI: 10.1016/j.ijantimicag.2016.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 12/12/2022]
Abstract
The human molecular chaperones heat shock protein 70 (Hsp70) and heat shock cognate protein 70 (Hsc70) bind to the hepatitis C viral nonstructural protein 5A (NS5A) and regulate its activity. Specifically, Hsp70 is involved in NS5A-augmented internal ribosomal entry site (IRES)-mediated translation of the viral genome, whilst Hsc70 appears to be primarily important for intracellular infectious virion assembly. To better understand the importance of these two chaperones in the viral life cycle, infected human cells were treated with allosteric Hsp70/Hsc70 inhibitors (AHIs). Treatment with AHIs significantly reduced the production of intracellular virus at concentrations that were non-toxic to human hepatoma Huh7.5 cells. The supernatant of treated cultures was then used to infect naïve cells, revealing that AHIs also lowered levels of secreted virus. In contrast to their effects on virion assembly, AHIs did not impact the stability of NS5A or viral protein translation in IRES assays. These results suggest that Hsc70 plays a particularly important and sensitive role in virion assembly. Indeed, it was found that combination of AHIs with a peptide-based viral translation inhibitor exhibited additive antiviral activity. Together these results suggest that the host Hsc70 is a new antiviral target and that its inhibitors utilise a new mechanism of action.
Collapse
Affiliation(s)
- Ronik Khachatoorian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Rana Riahi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ekambaram Ganapathy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Hao Shao
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Nicole M Wheatley
- Doe Institute for Genomics and Proteomics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christopher Sundberg
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Chun-Ling Jung
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Asim Dasgupta
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA; UCLA AIDS Institute, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Vaithilingaraja Arumugaswami
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Surgery, The Board of Governors Regenerative Medicine Institute at Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA; UCLA AIDS Institute, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
109
|
CD36 is a co-receptor for hepatitis C virus E1 protein attachment. Sci Rep 2016; 6:21808. [PMID: 26898231 PMCID: PMC4761891 DOI: 10.1038/srep21808] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 01/08/2016] [Indexed: 02/06/2023] Open
Abstract
The cluster of differentiation 36 (CD36) is a membrane protein related to lipid metabolism. We show that HCV infection in vitro increased CD36 expression in either surface or soluble form. HCV attachment was facilitated through a direct interaction between CD36 and HCV E1 protein, causing enhanced entry and replication. The HCV co-receptor effect of CD36 was independent of that of SR-BI. CD36 monoclonal antibodies neutralized the effect of CD36 and reduced HCV replication. CD36 inhibitor sulfo-N-succinimidyl oleate (SSO), which directly bound CD36 but not SR-BI, significantly interrupted HCV entry, and therefore inhibited HCV replication. SSO’s antiviral effect was seen only in HCV but not in other viruses. SSO in combination with known anti-HCV drugs showed additional inhibition against HCV. SSO was considerably safe in mice. Conclusively, CD36 interacts with HCV E1 and might be a co-receptor specific for HCV entry; thus, CD36 could be a potential drug target against HCV.
Collapse
|
110
|
Sarrazin C. The importance of resistance to direct antiviral drugs in HCV infection in clinical practice. J Hepatol 2016; 64:486-504. [PMID: 26409317 DOI: 10.1016/j.jhep.2015.09.011] [Citation(s) in RCA: 348] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 02/08/2023]
Abstract
Treatment of chronic hepatitis C virus (HCV) infection with direct-acting antiviral agents (DAA) is associated with high rates of sustained virologic response. Remaining factors associated with treatment failure include advanced stages of liver fibrosis, response to previous antiviral therapy and viral factors such as baseline viral load and suboptimal interaction of the DAA with the target based on viral variants. Heterogeneity within NS3, NS5A, and NS5B areas interacting with DAAs exist between HCV geno- and subtypes as well as HCV isolates of the same geno- and subtype and amino acid polymorphisms associated with suboptimal efficacy of DAAs are termed resistance-associated variants (RAVs). RAVs may be associated with virologic treatment failure. However, virologic treatment failure typically occurs only if other negative predictive host or viral factors are present at the same time, susceptibility to additional antiviral agents is reduced or duration of treatment is suboptimal. In this review geno- and phenotypic resistance testing as well as clinical data on the importance of RAVs for conventional triple therapies with sofosbuvir, simeprevir, and daclatasvir and available interferon-free DAA combinations are discussed.
Collapse
Affiliation(s)
- Christoph Sarrazin
- J. W. Goethe-University Hospital, Medizinische Klinik 1, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
111
|
Trémeaux P, Caporossi A, Ramière C, Santoni E, Tarbouriech N, Thélu MA, Fusillier K, Geneletti L, François O, Leroy V, Burmeister WP, André P, Morand P, Larrat S. Amplification and pyrosequencing of near-full-length hepatitis C virus for typing and monitoring antiviral resistant strains. Clin Microbiol Infect 2016; 22:460.e1-460.e10. [PMID: 26827671 DOI: 10.1016/j.cmi.2016.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/04/2016] [Accepted: 01/17/2016] [Indexed: 12/16/2022]
Abstract
Directly acting antiviral drugs have contributed considerable progress to hepatitis C virus (HCV) treatment, but they show variable activity depending on virus genotypes and subtypes. Therefore, accurate genotyping including recombinant form detection is still of major importance, as is the detection of resistance-associated mutations in case of therapeutic failure. To meet these goals, an approach to amplify the HCV near-complete genome with a single long-range PCR and sequence it with Roche GS Junior was developed. After optimization, the overall amplification success rate was 73% for usual genotypes (i.e. HCV 1a, 1b, 3a and 4a, 16/22) and 45% for recombinant forms RF_2k/1b (5/11). After pyrosequencing and subsequent de novo assembly, a near-full-length genomic consensus sequence was obtained for 19 of 21 samples. The genotype and subtype were confirmed by phylogenetic analysis for every sample, including the suspected recombinant forms. Resistance-associated mutations were detected in seven of 13 samples at baseline, in the NS3 (n = 3) or NS5A (n = 4) region. Of these samples, the treatment of one patient included daclatasvir, and that patient experienced a relapse. Virus sequences from pre- and posttreatment samples of four patients who experienced relapse after sofosbuvir-based therapy were compared: the selected variants seem too far from the NS5B catalytic site to be held responsible. Although tested on a limited set of samples and with technical improvements still necessary, this assay has proven to be successful for both genotyping and resistance-associated variant detection on several HCV types.
Collapse
Affiliation(s)
- P Trémeaux
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France; UVHCI, Grenoble, France; Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| | - A Caporossi
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France; Centre d'investigation clinique, Santé publique, UJF-CNRS, Grenoble, France; Laboratoire TIMC-IMAG, UMR 5525, Université de Grenoble Alpes, Grenoble, France
| | - C Ramière
- Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - E Santoni
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France
| | - N Tarbouriech
- UVHCI, Grenoble, France; Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| | - M-A Thélu
- Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - K Fusillier
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France
| | - L Geneletti
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France
| | - O François
- Laboratoire TIMC-IMAG, UMR 5525, Université de Grenoble Alpes, Grenoble, France
| | - V Leroy
- Service d'Hépato-Gastroentérologie, CHU de Grenoble, Grenoble, France
| | - W P Burmeister
- UVHCI, Grenoble, France; Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| | - P André
- Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - P Morand
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France; UVHCI, Grenoble, France; Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| | - S Larrat
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France; UVHCI, Grenoble, France; Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France.
| |
Collapse
|
112
|
Nguyen LT, Hall N, Sheerin D, Carr M, De Gascun CF. Naturally occurring HCV NS5A/B inhibitor resistance-associated mutations to direct-acting antivirals. Antivir Ther 2016; 21:447-53. [PMID: 26789637 DOI: 10.3851/imp3025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Direct-acting antivirals (DAAs) have significantly improved the treatment response in HCV chronic infection with higher potency and better tolerance. We established the prevalence of naturally occurring NS5A and NS5B inhibitor resistance-associated mutations (RAMs) in HCV genotype (GT)-1 chronically infected individuals in Ireland. METHODS In a multicentre cohort study, employing sequencing-based analysis, the presence of RAMs was determined in the HCV NS5A (n=119) and the NS5B (n=60). RESULTS Naturally occurring RAMs in NS5A (M28V, R30Q, L31I, P58S, E62D and Y93H) were identified in 14.3% (17/119) of cases. Notably, the major RAM Y93H was found in 15.2% (7/46) of GT-1b versus none (0/73) in GT-1a (P=0.0009). The frequency of Y93H present in IFNL3 rs12979860 CC major homozygotes (30%, 3/10) was higher than in the non-CC group (11.1%, 4/36). GT-1b-infected individuals harbouring Y93H had significantly higher viral loads than those without this mutation (P=0.006). Additionally, two novel insertions in GT-1a and GT-1b were identified in the NS5A interferon sensitivity-determining region. In NS5B, only minor pre-existing RAMs (L159F, C316N and I434M) were detected in 10% (6/60) of samples. The proportion of individuals harbouring multiple RAMs in different DAA target regions was low. CONCLUSIONS RAMs to novel DAAs were infrequent in the DAA-naive population in the present study. The NS5A Y93H substitution was the only significant RAM identified. Given the low frequency of multiple RAMs in NS3, NS5A and NS5B regions and the unclear impact of pre-existing Y93H on the response in combination therapies, the role of pre-treatment RAM analysis in treatment-naive individuals requires further investigation.
Collapse
Affiliation(s)
- Linh Thuy Nguyen
- Ireland Vietnam Blood-Borne Virus Initiative, Dublin, Ireland and Hanoi, Vietnam.
| | | | | | | | | | | |
Collapse
|
113
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
114
|
Lai CL, Wong VWS, Yuen MF, Yang JC, Knox SJ, Mo H, Han LL, Brainard DM, Chan HLY. Sofosbuvir plus ribavirin for the treatment of patients with chronic genotype 1 or 6 hepatitis C virus infection in Hong Kong. Aliment Pharmacol Ther 2016; 43:96-101. [PMID: 26503414 DOI: 10.1111/apt.13429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND In Hong Kong, most patients with hepatitis C virus (HCV) have either genotype 6a or 1b infection. AIM To evaluate the efficacy and safety of sofosbuvir with ribavirin in treatment-naïve patients in Hong Kong with HCV genotype 1 or 6. METHODS In an open-label study, patients were randomised to sofosbuvir 400 mg once daily plus ribavirin 1000-1200 divided twice daily for 12 (n = 10), 16 (n = 11) or 24 (n = 10) weeks. The primary endpoint was the percentage of patients with HCV RNA < LLOQ (lower limit of quantification, 25 IU/mL) 12 weeks after cessation of therapy (SVR12). RESULTS All 31 patients (20 HCV genotype 1 and 11 genotype 6) had HCV RNA < LLOQ by Week 4 of treatment and at their last on-treatment visit. SVR12 rates were high in all treatment groups: 100% (10/10) for 12 weeks, 100% (11/11) for 16 weeks and 90% (9/10) for 24 weeks of therapy. The only patient who did not reach SVR12 had genotype 1 HCV and relapsed at post-treatment Week 4. Sofosbuvir with ribavirin was generally well tolerated. The most common adverse events were malaise (13%) and upper respiratory tract infection (13%), followed by anaemia (10%). No patients experienced serious adverse events. One patient discontinued treatment at Week 16 because of an adverse event. The event, upper respiratory tract infection, was not considered treatment related by the investigator. This subject achieved SVR12. CONCLUSIONS The all-oral regimen sofosbuvir plus ribavirin is effective in treatment-naïve patients in Hong Kong with genotype 1 or 6 HCV. TRIAL REGISTRATION NUMBER NCT02021643.
Collapse
Affiliation(s)
- C L Lai
- Queen Mary Hospital, Hong Kong, China
| | - V W-S Wong
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - M F Yuen
- Queen Mary Hospital, Hong Kong, China
| | - J C Yang
- Gilead Sciences Inc., Foster City, CA, USA
| | - S J Knox
- Gilead Sciences Inc., Foster City, CA, USA
| | - H Mo
- Gilead Sciences Inc., Foster City, CA, USA
| | - L L Han
- Gilead Sciences Inc., Foster City, CA, USA
| | | | - H L Y Chan
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
115
|
A Pan-HIV Strategy for Complete Genome Sequencing. J Clin Microbiol 2015; 54:868-82. [PMID: 26699702 DOI: 10.1128/jcm.02479-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/16/2015] [Indexed: 01/23/2023] Open
Abstract
Molecular surveillance is essential to monitor HIV diversity and track emerging strains. We have developed a universal library preparation method (HIV-SMART [i.e.,switchingmechanismat 5' end ofRNAtranscript]) for next-generation sequencing that harnesses the specificity of HIV-directed priming to enable full genome characterization of all HIV-1 groups (M, N, O, and P) and HIV-2. Broad application of the HIV-SMART approach was demonstrated using a panel of diverse cell-cultured virus isolates. HIV-1 non-subtype B-infected clinical specimens from Cameroon were then used to optimize the protocol to sequence directly from plasma. When multiplexing 8 or more libraries per MiSeq run, full genome coverage at a median ∼2,000× depth was routinely obtained for either sample type. The method reproducibly generated the same consensus sequence, consistently identified viral sequence heterogeneity present in specimens, and at viral loads of ≤4.5 log copies/ml yielded sufficient coverage to permit strain classification. HIV-SMART provides an unparalleled opportunity to identify diverse HIV strains in patient specimens and to determine phylogenetic classification based on the entire viral genome. Easily adapted to sequence any RNA virus, this technology illustrates the utility of next-generation sequencing (NGS) for viral characterization and surveillance.
Collapse
|
116
|
Ahmed A, Felmlee DJ. Mechanisms of Hepatitis C Viral Resistance to Direct Acting Antivirals. Viruses 2015; 7:6716-29. [PMID: 26694454 PMCID: PMC4690891 DOI: 10.3390/v7122968] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 12/28/2022] Open
Abstract
There has been a remarkable transformation in the treatment of chronic hepatitis C in recent years with the development of direct acting antiviral agents targeting virus encoded proteins important for viral replication including NS3/4A, NS5A and NS5B. These agents have shown high sustained viral response (SVR) rates of more than 90% in phase 2 and phase 3 clinical trials; however, this is slightly lower in real-life cohorts. Hepatitis C virus resistant variants are seen in most patients who do not achieve SVR due to selection and outgrowth of resistant hepatitis C virus variants within a given host. These resistance associated mutations depend on the class of direct-acting antiviral drugs used and also vary between hepatitis C virus genotypes and subtypes. The understanding of these mutations has a clear clinical implication in terms of choice and combination of drugs used. In this review, we describe mechanism of action of currently available drugs and summarize clinically relevant resistance data.
Collapse
Affiliation(s)
- Asma Ahmed
- Plymouth University, Peninsula School of Medicine and Dentistry, Plymouth PL6 8BU, UK.
| | - Daniel J Felmlee
- Plymouth University, Peninsula School of Medicine and Dentistry, Plymouth PL6 8BU, UK.
| |
Collapse
|
117
|
Fourati S, Pawlotsky JM. Virologic Tools for HCV Drug Resistance Testing. Viruses 2015; 7:6346-59. [PMID: 26690198 PMCID: PMC4690865 DOI: 10.3390/v7122941] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Recent advances in molecular biology have led to the development of new antiviral drugs that target specific steps of the Hepatitis C Virus (HCV) lifecycle. These drugs, collectively termed direct-acting antivirals (DAAs), include non-structural (NS) HCV protein inhibitors, NS3/4A protease inhibitors, NS5B RNA-dependent RNA polymerase inhibitors (nucleotide analogues and non-nucleoside inhibitors), and NS5A inhibitors. Due to the high genetic variability of HCV, the outcome of DAA-based therapies may be altered by the selection of amino-acid substitutions located within the targeted proteins, which affect viral susceptibility to the administered compounds. At the drug developmental stage, preclinical and clinical characterization of HCV resistance to new drugs in development is mandatory. In the clinical setting, accurate diagnostic tools have become available to monitor drug resistance in patients who receive treatment with DAAs. In this review, we describe tools available to investigate drug resistance in preclinical studies, clinical trials and clinical practice.
Collapse
Affiliation(s)
- Slim Fourati
- National Reference Center for Viral Hepatitis B, C, and D; Department of Virology, Hôpital Henri Mondor, Université Paris-Est and INSERM U955, Créteil 94010, France.
| | - Jean-Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C, and D; Department of Virology, Hôpital Henri Mondor, Université Paris-Est and INSERM U955, Créteil 94010, France.
| |
Collapse
|
118
|
Buti M, Riveiro-Barciela M, Esteban R. Management of direct-acting antiviral agent failures. J Hepatol 2015; 63:1511-22. [PMID: 26299621 DOI: 10.1016/j.jhep.2015.08.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/12/2022]
Abstract
Failure to respond to the approved combinations of multiple direct-acting antiviral agents is relatively low in hepatitis C virus treatment registration studies, with rates of 1% to 7%, depending on the patients' baseline characteristics. In real life, failure is slightly higher, likely because of lower compliance. Treatment failures are usually related to relapse and less often to on-treatment viral breakthrough. Hepatitis C drug-resistant variants are detected in most patients who do not achieve viral eradication. The risk of developing these variants depends on host- and virus-related factors, the properties of the drugs used, and the treatment strategies applied. Patients who carry resistance-associated variants may not obtain benefits from treatment and are at risk of disease progression and transmission of the variants. Whether hepatitis C resistance-associated variants persist depends on their type: NS3-4A variants often disappear gradually after therapy is stopped, whereas NS5A variants tend to persist for more than 2 years. The best way to prevent emergence of resistant variants is to eliminate the virus at the first treatment using highly potent antivirals with genetic barriers to resistance. In patients failing first-generation protease inhibitors, combination therapies with sofosbuvir and NS5 inhibitors have proven effective. Some salvage regimens can be shortened to 12 weeks by addition of ribavirin. The optimal treatment for patients who fail an NS5A inhibitor and those with multidrug-resistant variants remains to be defined, and research efforts should continue to focus on treatment for these patients.
Collapse
Affiliation(s)
- Maria Buti
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Mar Riveiro-Barciela
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Esteban
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
119
|
Svarovskaia ES, Gane E, Dvory-Sobol H, Martin R, Doehle B, Hedskog C, Jacobson IM, Nelson DR, Lawitz E, Brainard DM, McHutchison JG, Miller MD, Mo H. L159F and V321A Sofosbuvir-Associated Hepatitis C Virus NS5B Substitutions. J Infect Dis 2015; 213:1240-7. [PMID: 26603202 DOI: 10.1093/infdis/jiv564] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/09/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Sofosbuvir (SOF) exhibits a high barrier to resistance, with no S282T NS5B substitution or phenotypic resistance detected in phase 3 registration studies. METHODS Here, emergence of the NS5B variants L159F and V321A and possible association with resistance was evaluated in 8 studies of SOF (NEUTRINO, FISSION, POSITRON, FUSION, VALENCE, PHOTON-1, PHOTON-2, and P7977-2025) and 5 studies of combination ledipasvir (LDV) and SOF (LDV/SOF; LONESTAR, ELECTRON [LDV/SOF arms], ION1, ION2, and ION3), using deep sequencing. RESULTS Deep sequencing detected L159F in 15% (53 of 353) and V321A in 5% (17 of 353) of patients with virologic failure in the SOF studies. Intensification of SOF treatment with LDV reduced the emergence of L159F or V321A to 2% (1 of 50 each) at virologic failure. L159F and V321A did not influence the outcome of retreatment with SOF, ribavirin, and pegylated interferon. At baseline, L159F was detected only in genotype 1-infected patients (1%) and was only associated with increased virologic failure in patients treated for short durations with SOF and ribavirin. CONCLUSIONS Deep-sequencing analysis confirmed that NS5B variants L159F and V321A emerged in a subset of patients treated with SOF at virologic failure. These variants had no impact on retreatment outcome with SOF, ribavirin, and pegylated interferon. Baseline L159F in genotype 1 did not affect the treatment outcome with LDV/SOF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eric Lawitz
- Texas Liver Institute, University of Texas Health Science Center, San Antonio
| | | | | | | | - Hongmei Mo
- Gilead Sciences, Foster City, California
| |
Collapse
|
120
|
Hartman J, Bichoupan K, Patel N, Chekuri S, Harty A, Dieterich D, Perumalswami P, Branch AD. Re-re-treatment of hepatitis C virus: Eight patients who relapsed twice after direct-acting-antiviral drugs. World J Gastroenterol 2015; 21:12430-12438. [PMID: 26604650 PMCID: PMC4649126 DOI: 10.3748/wjg.v21.i43.12430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/02/2015] [Accepted: 07/08/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine risk factors associated with hepatitis C virus (HCV) treatment failure after direct acting antivirals in patients with complex treatment histories.
METHODS: All HCV mono-infected patients who received treatment at our institution were queried. Analysis was restricted to patients who previously failed treatment with boceprevir (BOC) or telaprevir (TVR) and started simeprevir (SMV) and sofosbuvir (SOF) ± ribavirin (RBV) between December 2013 and June 2014. Patients with human immunodeficiency virus (HIV)/HCV co-infection or patients who received a liver transplant in the past were excluded. Viral loads were recorded while on treatment and after treatment. Data collection continued until December, 31st 2014 when data analysis was initiated. Patients missing virologic outcomes data were not included in the analysis. Analysis of 35 patients who had virologic outcome data available resulted in eight patients who were viral load negative at the end of treatment with SMF/SOF but later relapsed. Data related to patient demographics, HCV infection, and treatment history was collected in order to identify risk factors shared among patients who failed treatment with SMF/SOF.
RESULTS: Eight patients who were treated with the first generation HCV protease inhibitors BOC or TVR in combination with pegylated-interferon (PEG) and RBV who failed this triple therapy were subsequently re-treated with an off-label all-oral regimen of SMV and SOF for 12 wk, with RBV in seven cases. Treatment was initiated before the Food and Drug Administration approved a 24-wk SMV/SOF regimen for patients with liver cirrhosis. All eight patients had an end of treatment response, but later relapsed. Eight (100%) patients were male. Mean age was 56 (range, 49-64). Eight (100%) patients had previously failed PEG/RBV dual therapy at least once in addition to prior failure with triple therapy. Total number of times treated ranged from 3-6 (mean 3.8). Eight (100%) patients were male had liver cirrhosis as determined by Fibroscan or MRI. Seven (87.5%) patients had genotype 1a HCV. Seven (87.5%) patients had over 1 million IU/mL HCV RNA at the time of re-treatment.
CONCLUSION: This study identifies factors associated with SMV/SOF treatment failure and provides evidence that twleve weeks of SMV/SOF/RBV is insufficient in cirrhotics with high-titer genotype 1a HCV.
Collapse
|
121
|
Costantino A, Spada E, Equestre M, Bruni R, Tritarelli E, Coppola N, Sagnelli C, Sagnelli E, Ciccaglione AR. Naturally occurring mutations associated with resistance to HCV NS5B polymerase and NS3 protease inhibitors in treatment-naïve patients with chronic hepatitis C. Virol J 2015; 12:186. [PMID: 26577836 PMCID: PMC4650141 DOI: 10.1186/s12985-015-0414-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/30/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The detection of baseline resistance mutations to new direct-acting antivirals (DAAs) in HCV chronically infected treatment-naïve patients could be important for their management and outcome prevision. In this study, we investigated the presence of mutations, which have been previously reported to be associated with resistance to DAAs in HCV polymerase (NS5B) and HCV protease (NS3) regions, in sera of treatment-naïve patients. FINDINGS HCV RNA from 152 naïve patients (84 % Italian and 16 % immigrants from various countries) infected with different HCV genotypes (21,1a; 21, 1b; 2, 2a; 60, 2c; 22, 3a; 25, 4d and 1, 4k) was evaluated for sequence analysis. Amplification and sequencing of fragments in the NS5B (nt 8256-8640) and NS3 (nt 3420-3960) regions of HCV genome were carried out for 152 and 28 patients, respectively. The polymorphism C316N/H in NS5B region, associated with resistance to sofosbuvir, was detected in 9 of the 21 (43 %) analysed sequences from genotype 1b-infected patients. Naturally occurring mutations V36L, and M175L in the NS3 protease region were observed in 100 % of patients infected with subtype 2c and 4. CONCLUSION A relevant proportion of treatment naïve genotype 1b infected patients evaluated in this study harboured N316 polymorphism and might poorly respond to sofosbuvir treatment. As sofosbuvir has been approved for treatment of HCV chronic infection in USA and Europe including Italy, pre-treatment testing for N316 polymorphism on genotype 1b naïve patients should be considered for this drug.
Collapse
Affiliation(s)
- Angela Costantino
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Viral Hepatitis Unit, Istituto Superiore di Sanità, Viale Regina Elena, 299-00161, Rome, Italy.
| | - Enea Spada
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Viral Hepatitis Unit, Istituto Superiore di Sanità, Viale Regina Elena, 299-00161, Rome, Italy.
| | - Michele Equestre
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | - Roberto Bruni
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Viral Hepatitis Unit, Istituto Superiore di Sanità, Viale Regina Elena, 299-00161, Rome, Italy.
| | - Elena Tritarelli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Viral Hepatitis Unit, Istituto Superiore di Sanità, Viale Regina Elena, 299-00161, Rome, Italy.
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious diseases, Second University of Naples, Naples, Italy.
| | - Caterina Sagnelli
- Department of Experimental Medicine and Surgery F. Magrassi and A. Lanzara, Second University of Naples, Naples, Italy.
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious diseases, Second University of Naples, Naples, Italy.
| | - Anna Rita Ciccaglione
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Viral Hepatitis Unit, Istituto Superiore di Sanità, Viale Regina Elena, 299-00161, Rome, Italy.
| |
Collapse
|
122
|
Gentile I, Maraolo AE, Buonomo AR, Zappulo E, Borgia G. The discovery of sofosbuvir: a revolution for therapy of chronic hepatitis C. Expert Opin Drug Discov 2015; 10:1363-77. [PMID: 26563720 DOI: 10.1517/17460441.2015.1094051] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Hepatitis C virus (HCV) infection is a worldwide health problem, whose management has been revolutionized after the availability of sofosbuvir, a direct-acting antiviral (DAAs). Sofosbuvir is a HCV NS5B polymerase inhibitor. Antiviral regimens including sofosbuvir are associated with success rates >90%, even in the case of "difficult-to-treat" patients such as subjects with liver cirrhosis as well as prior null response to IFN and ribavirin. AREAS COVERED This drug discovery case history focuses on the pre-clinical and clinical development of sofosbuvir. The authors analyze all of the main steps leading to the global approval of sofosbuvir. The paper also highlights the encouraging data from the subsequent trials wherein sofosbuvir was tested in combination with other DAAs (IFN- and often ribavirin-free regimens) and from first real life studies. EXPERT OPINION Sofosbuvir is a very powerful weapon in the new armamentarium against HCV. Thanks to its valuable features including its pangenotypic activity, once-daily oral administration, its excellent tolerability, and safety profile, it represents the backbone of several effective regimens, in combination with IFN or with other DAAs (IFN-free therapies). Regimens including sofosbuvir have quickly become the touchstone for all the novel anti-HCV treatments.
Collapse
Affiliation(s)
- Ivan Gentile
- a Department of Clinical Medicine and Surgery, University of Naples "Federico II" , Naples, Italy +39 08 17 46 31 78 ; +39 08 17 46 31 90 ;
| | - Alberto Enrico Maraolo
- a Department of Clinical Medicine and Surgery, University of Naples "Federico II" , Naples, Italy +39 08 17 46 31 78 ; +39 08 17 46 31 90 ;
| | - Antonio Riccardo Buonomo
- a Department of Clinical Medicine and Surgery, University of Naples "Federico II" , Naples, Italy +39 08 17 46 31 78 ; +39 08 17 46 31 90 ;
| | - Emanuela Zappulo
- a Department of Clinical Medicine and Surgery, University of Naples "Federico II" , Naples, Italy +39 08 17 46 31 78 ; +39 08 17 46 31 90 ;
| | - Guglielmo Borgia
- a Department of Clinical Medicine and Surgery, University of Naples "Federico II" , Naples, Italy +39 08 17 46 31 78 ; +39 08 17 46 31 90 ;
| |
Collapse
|
123
|
Perales C, Quer J, Gregori J, Esteban JI, Domingo E. Resistance of Hepatitis C Virus to Inhibitors: Complexity and Clinical Implications. Viruses 2015; 7:5746-66. [PMID: 26561827 PMCID: PMC4664975 DOI: 10.3390/v7112902] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
Selection of inhibitor-resistant viral mutants is universal for viruses that display quasi-species dynamics, and hepatitis C virus (HCV) is no exception. Here we review recent results on drug resistance in HCV, with emphasis on resistance to the newly-developed, directly-acting antiviral agents, as they are increasingly employed in the clinic. We put the experimental observations in the context of quasi-species dynamics, in particular what the genetic and phenotypic barriers to resistance mean in terms of exploration of sequence space while HCV replicates in the liver of infected patients or in cell culture. Strategies to diminish the probability of viral breakthrough during treatment are briefly outlined.
Collapse
Affiliation(s)
- Celia Perales
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
| | - Josep Quer
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
- Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Josep Gregori
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
- Roche Diagnostics SL, 08174 Sant Cugat del Vallès, Spain.
| | - Juan Ignacio Esteban
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
- Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Esteban Domingo
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
| |
Collapse
|
124
|
Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection. Viruses 2015; 7:5659-85. [PMID: 26540069 PMCID: PMC4664971 DOI: 10.3390/v7112898] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC) which are leading indications of liver transplantation (LT). To date, there is no vaccine to prevent HCV infection and LT is invariably followed by infection of the liver graft. Within the past years, direct-acting antivirals (DAAs) have had a major impact on the management of chronic hepatitis C, which has become a curable disease in the majority of DAA-treated patients. In contrast to DAAs that target viral proteins, host-targeting agents (HTAs) interfere with cellular factors involved in the viral life cycle. By acting through a complementary mechanism of action and by exhibiting a generally higher barrier to resistance, HTAs offer a prospective option to prevent and treat viral resistance. Indeed, given their complementary mechanism of action, HTAs and DAAs can act in a synergistic manner to reduce viral loads. This review summarizes the different classes of HTAs against HCV infection that are in preclinical or clinical development and highlights their potential to prevent HCV infection, e.g., following LT, and to tailor combination treatments to cure chronic HCV infection.
Collapse
|
125
|
Costilla V, Mathur N, Gutierrez JA. Mechanisms of Virologic Failure with Direct-Acting Antivirals in Hepatitis C and Strategies for Retreatment. Clin Liver Dis 2015; 19:641-56, vi. [PMID: 26466653 DOI: 10.1016/j.cld.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The current standard of care for hepatitis C therapy is the combination of direct-acting antiviral (DAA) agents. These orally administered medications target the viral proteins and halt the hepatitis C virus lifecycle. Despite high cure rates with these novel drugs, virologic failure with DAAs are of mounting concern as real-world sustained virologic response 12 rates seem lower than expected. The mechanisms of virologic failure to DAAs are likely multifactorial, including baseline resistance variants, the efficacy of the agents used, and host factors. Salvage therapy for DAA virologic failures is an area of emerging research.
Collapse
Affiliation(s)
- Vanessa Costilla
- Department of Hepatology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Neha Mathur
- Department of Hepatology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Julio A Gutierrez
- Department of Hepatology, The Texas Liver Institute, University of Texas Health Science Center at San Antonio, 607 Camden, San Antonio, TX 78215, USA.
| |
Collapse
|
126
|
Gane EJ, Hyland RH, An D, Svarovskaia E, Pang PS, Brainard D, Stedman CA. Efficacy of ledipasvir and sofosbuvir, with or without ribavirin, for 12 weeks in patients with HCV genotype 3 or 6 infection. Gastroenterology 2015; 149:1454-1461.e1. [PMID: 26261007 DOI: 10.1053/j.gastro.2015.07.063] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS We performed a phase 2 clinical trial to evaluate the efficacy and safety of ledipasvir and sofosbuvir, with or without ribavirin, in patients infected with hepatitis C virus (HCV) genotype 3 or 6. METHODS We performed an open-label study of 126 patients with HCV genotype 3 or 6 infections at 2 centers in New Zealand from April 2013 through October 2014. Subjects were assigned 1 of 4 groups that received 12 weeks of treatment. Previously untreated patients with HCV genotype 3 were randomly assigned to groups given fixed-dose combination tablet of ledipasvir and sofosbuvir (n = 25) or ledipasvir and sofosbuvir along with ribavirin (n = 26). Treatment-experienced patients with HCV genotype 3 (n = 50) received ledipasvir and sofosbuvir and ribavirin. Treatment-naïve or treatment-experienced patients with HCV genotype 6 (n = 25) received ledipasvir and sofosbuvir. The primary end point was the percentage of patients with HCV RNA ≤15 IU/mL 12 weeks after stopping therapy (sustained virologic response at 12 weeks [SVR12]). RESULTS Among treatment-naïve genotype 3 patients, 16 of 25 (64%) receiving ledipasvir and sofosbuvir alone achieved SVR12 compared with all 26 patients (100%) receiving ledipasvir and sofosbuvir and ribavirin. Among treatment-experienced patients with HCV genotype 3, forty-one of fifty achieved an SVR12 (82%). Among patients with HCV genotype 6, the rate of SVR12 was 96% (24 of 25 patients). The most common adverse events were headache, upper respiratory infection, and fatigue. One patient with HCV genotype 3 discontinued ledipasvir and sofosbuvir because of an adverse event (diverticular perforation), which was not considered treatment related. CONCLUSIONS In an uncontrolled, open-label trial, high rates of SVR12 were achieved by patients with HCV genotype 3 infection who received 12 weeks of ledipasvir and sofosbuvir plus ribavirin, and by patients with HCV genotype 6 infection who received 12 weeks of sofosbuvir and ledipasvir without ribavirin. Current guidelines do not recommend the use of ledipasvir and sofosbuvir, with or without ribavirin, in patients with HCV genotype 3 infection. ClinicalTrials.gov Number: NCT01826981.
Collapse
Affiliation(s)
- Edward J Gane
- Auckland Clinical Studies Ltd., Auckland, New Zealand.
| | | | - Di An
- Gilead Sciences, Inc., Foster City, California
| | | | | | | | | |
Collapse
|
127
|
Donaldson EF, Deming DJ, O'Rear JJ, Naeger LK. Regulatory evaluation of antiviral drug resistance in the era of next-generation sequencing. Biomark Med 2015; 9:1047-51. [DOI: 10.2217/bmm.15.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Eric F Donaldson
- FDA/OMPT/CDER/OND/OAP/Division of Antiviral Products, Food & Drug Administration, Division of Antiviral Products, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Damon J Deming
- FDA/OMPT/CDER/OND/OAP/Division of Antiviral Products, Food & Drug Administration, Division of Antiviral Products, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Julian J O'Rear
- FDA/OMPT/CDER/OND/OAP/Division of Antiviral Products, Food & Drug Administration, Division of Antiviral Products, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Lisa K Naeger
- FDA/OMPT/CDER/OND/OAP/Division of Antiviral Products, Food & Drug Administration, Division of Antiviral Products, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
128
|
Chacko KR, Gaglio PJ. Meet the Classes of Directly Acting Antiviral Agents: Strengths and Weaknesses. Clin Liver Dis 2015; 19:605-17, v. [PMID: 26466650 DOI: 10.1016/j.cld.2015.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article discusses direct-acting antiviral agents that target hepatitis C virus replication, their mechanism of action, strengths, and weaknesses. In addition, varying strategies using combinations of these agents are discussed.
Collapse
Affiliation(s)
- Kristina R Chacko
- Division of Hepatology, Department of Medicine, Montefiore Einstein Liver Center, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210 Street Rosenthal 2 Red Zone, Bronx, NY 10467, USA
| | - Paul J Gaglio
- Division of Hepatology, Department of Medicine, Montefiore Einstein Liver Center, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210 Street Rosenthal 2 Red Zone, Bronx, NY 10467, USA.
| |
Collapse
|
129
|
Inhibitors of the Hepatitis C Virus Polymerase; Mode of Action and Resistance. Viruses 2015; 7:5206-24. [PMID: 26426038 PMCID: PMC4632376 DOI: 10.3390/v7102868] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022] Open
Abstract
The hepatitis C virus (HCV) is a pandemic human pathogen posing a substantial health and economic burden in both developing and developed countries. Controlling the spread of HCV through behavioural prevention strategies has met with limited success and vaccine development remains slow. The development of antiviral therapeutic agents has also been challenging, primarily due to the lack of efficient cell culture and animal models for all HCV genotypes, as well as the large genetic diversity between HCV strains. On the other hand, the use of interferon-α-based treatments in combination with the guanosine analogue, ribavirin, achieved limited success, and widespread use of these therapies has been hampered by prevalent side effects. For more than a decade, the HCV RNA-dependent RNA polymerase (RdRp) has been targeted for antiviral development. Direct acting antivirals (DAA) have been identified which bind to one of at least six RdRp inhibitor-binding sites, and are now becoming a mainstay of highly effective and well tolerated antiviral treatment for HCV infection. Here we review the different classes of RdRp inhibitors and their mode of action against HCV. Furthermore, the mechanism of antiviral resistance to each class is described, including naturally occurring resistance-associated variants (RAVs) in different viral strains and genotypes. Finally, we review the impact of these RAVs on treatment outcomes with the newly developed regimens.
Collapse
|
130
|
Cuypers L, Li G, Libin P, Piampongsant S, Vandamme AM, Theys K. Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1-6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance. Viruses 2015; 7:5018-39. [PMID: 26389941 PMCID: PMC4584301 DOI: 10.3390/v7092857] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/22/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022] Open
Abstract
Treatment with pan-genotypic direct-acting antivirals, targeting different viral proteins, is the best option for clearing hepatitis C virus (HCV) infection in chronically infected patients. However, the diversity of the HCV genome is a major obstacle for the development of antiviral drugs, vaccines, and genotyping assays. In this large-scale analysis, genome-wide diversity and selective pressure was mapped, focusing on positions important for treatment, drug resistance, and resistance testing. A dataset of 1415 full-genome sequences, including genotypes 1-6 from the Los Alamos database, was analyzed. In 44% of all full-genome positions, the consensus amino acid was different for at least one genotype. Focusing on positions sharing the same consensus amino acid in all genotypes revealed that only 15% was defined as pan-genotypic highly conserved (≥99% amino acid identity) and an additional 24% as pan-genotypic conserved (≥95%). Despite its large genetic diversity, across all genotypes, codon positions were rarely identified to be positively selected (0.23%-0.46%) and predominantly found to be under negative selective pressure, suggesting mainly neutral evolution. For NS3, NS5A, and NS5B, respectively, 40% (6/15), 33% (3/9), and 14% (2/14) of the resistance-related positions harbored as consensus the amino acid variant related to resistance, potentially impeding treatment. For example, the NS3 variant 80K, conferring resistance to simeprevir used for treatment of HCV1 infected patients, was present in 39.3% of the HCV1a strains and 0.25% of HCV1b strains. Both NS5A variants 28M and 30S, known to be associated with resistance to the pan-genotypic drug daclatasvir, were found in a significant proportion of HCV4 strains (10.7%). NS5B variant 556G, known to confer resistance to non-nucleoside inhibitor dasabuvir, was observed in 8.4% of the HCV1b strains. Given the large HCV genetic diversity, sequencing efforts for resistance testing purposes may need to be genotype-specific or geographically tailored.
Collapse
Affiliation(s)
- Lize Cuypers
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
| | - Guangdi Li
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
- Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Pieter Libin
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| | - Supinya Piampongsant
- Department of Electrical Engineering ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, University of Leuven, Kasteelpark Arenberg 10, Heverlee 3001, Belgium.
| | - Anne-Mieke Vandamme
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
- Center for Global Health and Tropical Medicine, Microbiology Unit, Institute for Hygiene and Tropical Medicine, University Nova of Lisboa, Rua da Junqueira 100, Lisbon 1349-008, Portugal.
| | - Kristof Theys
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, Leuven 3000, Belgium.
| |
Collapse
|
131
|
Dietz J, Susser S, Berkowski C, Perner D, Zeuzem S, Sarrazin C. Consideration of Viral Resistance for Optimization of Direct Antiviral Therapy of Hepatitis C Virus Genotype 1-Infected Patients. PLoS One 2015; 10:e0134395. [PMID: 26317755 PMCID: PMC4552686 DOI: 10.1371/journal.pone.0134395] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Different highly effective interferon-free treatment options for chronic hepatitis C virus (HCV) infection are currently available. Pre-existence of resistance associated variants (RAVs) to direct antiviral agents (DAAs) reduces sustained virologic response (SVR) rates by 3-53% in hepatitis C virus (HCV) genotype 1 infected patients depending on different predictors and the DAA regimen used. Frequencies of single and combined resistance to NS3, NS5A and NS5B inhibitors and consequences for the applicability of different treatment regimens are unknown. Parallel population based sequencing of HCV NS3, NS5A and NS5B genes in 312 treatment-naïve Caucasian HCV genotype 1 infected patients showed the presence of major resistant variants in 20.5% (NS3), 11.9% (NS5A), and 22.1% (NS5B) with important differences for HCV subtypes. In NS3, Q80K was observed in 34.7% and 2.1% of subtype 1a and 1b patients, respectively while other RAVs to second generation protease inhibitors were detected rarely (1.4%). Within NS5A RAVs were observed in 7.1% of subtype 1a and 17.6% in subtype 1b infected patients. RAVs to non-nucleoside NS5B inhibitors were observed in 3.5% and 44.4% of subtype 1a and 1b patients, respectively. Considering all three DAA targets all subtype 1a and 98.6% of subtype 1b infected patients were wildtype for at least one interferon free DAA regimen currently available. In conclusion, baseline resistance testing allows the selection of at least one RAVs-free treatment option for nearly all patients enabling a potentially cost- and efficacy-optimized treatment of chronic hepatitis C.
Collapse
Affiliation(s)
- Julia Dietz
- Medical Department 1, Goethe University Hospital, Frankfurt, Germany
| | - Simone Susser
- Medical Department 1, Goethe University Hospital, Frankfurt, Germany
| | | | - Dany Perner
- Medical Department 1, Goethe University Hospital, Frankfurt, Germany
| | - Stefan Zeuzem
- Medical Department 1, Goethe University Hospital, Frankfurt, Germany
| | | |
Collapse
|
132
|
Abstract
BACKGROUND Treatment of hepatitis C is changing dramatically. Various new direct-acting antivirals (DAA) against HCV have recently been approved or will become available during the next months. OBJECTIVES To summarize the efficacy of DAAs and to describe optimal treatment regimens for chronic hepatitis C. METHODS Review of selected phase 2 and 3 trials investigating anti-HCV drugs and recent HCV guidelines. RESULTS New HCV therapies are interferon-free and lead to sustained HCV clearance in >90% of cases. DAAs include HCV protease inhibitors, NS5A inhibitors as well as nucleotide and non-nucleoside HCV polymerase inhibitors. Depending on the stage of liver disease, HCV genotype and viral load, treatment duration is 8-24 weeks. Ribavirin is not needed anymore in every case. Resistance against HCV drugs is not a major factor determining treatment response, but resistance testing is recommended in case of treatment failures before re-treatment is considered. CONCLUSIONS Chronic hepatitis C is a curable disease. It remains to be determined to what extent HCV clearance will alter liver function and the risk for hepatocellular carcinoma in patients with liver cirrhosis.
Collapse
Affiliation(s)
- H Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623, Hannover, Deutschland,
| |
Collapse
|
133
|
Solbach P, Wedemeyer H. The New Era of Interferon-Free Treatment of Chronic Hepatitis C. VISZERALMEDIZIN 2015; 31:290-6. [PMID: 26557839 PMCID: PMC4608630 DOI: 10.1159/000433594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Within the development and approval of several new direct-acting antivirals (DAA) against hepatitis C virus (HCV), a new era of hepatitis C therapy has begun. Even more treatment options are likely to become available during the next 1-2 years. METHODS A summary of the current phase II and III trials investigating DAA and a review of the recent HCV guidelines was conducted. RESULTS With the development of new potent DAA and the approval of different DAA combinations, cure rates of HCV infection of >90% are achievable for almost all HCV genotypes and stages of liver disease. Currently available DAA target different steps in the HCV replication cycle, in particular the NS3/4A protease, the NS5B polymerase, and the NS5A replication complex. Treatment duration varies between 8 and 24 weeks depending on the stage of fibrosis, prior treatment, HCV viral load, and HCV genotype. Ribavirin is required only for some treatment regimens and may be particularly beneficial in patients with cirrhosis. DAA resistance influences treatment outcome only marginally; thus, drug resistance testing is not routinely recommended before treatment. In the case of treatment failure, however, resistance testing should be performed before re-treatment with other DAA is initiated. CONCLUSION With the new, almost side effect-free DAA treatment options chronic HCV infection became a curable disease. The clinical benefit of DAA combination therapies in patients with advanced cirrhosis and the effects on incidence rates of hepatocellular carcinoma remain to be determined.
Collapse
Affiliation(s)
- Philipp Solbach
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany
| | | |
Collapse
|
134
|
Li HC, Lo SY. Hepatitis C virus: Virology, diagnosis and treatment. World J Hepatol 2015; 7:1377-1389. [PMID: 26052383 PMCID: PMC4450201 DOI: 10.4254/wjh.v7.i10.1377] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/22/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
More than twenty years of study has provided a better understanding of hepatitis C virus (HCV) life cycle, including the general properties of viral RNA and proteins. This effort facilitates the development of sensitive diagnostic tools and effective antiviral treatments. At present, serologic screening test is recommended to perform on individuals in the high risk groups and nucleic acid tests are recommended to confirm the active HCV infections. Quantization and genotyping of HCV RNAs are important to determine the optimal duration of anti-viral therapy and predict the likelihood of response. In the early 2000s, pegylated interferon plus ribavirin became the standard anti-HCV treatment. However, this therapy is not ideal. To 2014, boceprevir, telaprevir, simeprevir, sofosbuvir and Harvoni are approved by Food and Drug Administration for the treat of HCV infections. It is likely that the new all-oral, interferon-free, pan-genotyping anti-HCV therapy will be available within the next few years. Majority of HCV infections will be cured by these anti-viral treatments. However, not all patients are expected to be cured due to viral resistance and the high cost of antiviral treatments. Thus, an efficient prophylactic vaccine will be the next challenge in the fight against HCV infection.
Collapse
|
135
|
Primer ID Validates Template Sampling Depth and Greatly Reduces the Error Rate of Next-Generation Sequencing of HIV-1 Genomic RNA Populations. J Virol 2015; 89:8540-55. [PMID: 26041299 DOI: 10.1128/jvi.00522-15] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/30/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set.
Collapse
|
136
|
Abstract
Interferon-free regimes are now the treatment of choice for patients with chronic hepatitis C; previously patients who were 'difficult-to-treat' using interferon-containing treatments can now safely be treated with such therapies. More than 90% of patients infected with HCV genotype 1 or 4, compensated cirrhosis, or who have had liver transplantation, can be cured with the use of sofosbuvir combined with simeprevir, daclatasvir or ledipasvir, or by the combination of paritaprevir with ritonavir, ombitasvir and with or without dasabuvir. Addition of ribavirin seems to shorten treatment duration. However, the safety of these drugs is not fully explored in patients with decompensated cirrhosis (that is, those with Child-Pugh class C disease), and protease inhibitors should not be used in this group. The optimal use of interferon-free regimes in patients with renal failure or after kidney transplantation is currently being studied. However, new and improved drugs are needed to treat patients infected with HCV genotype 3. Unfortunately, the broad application of new HCV treatments is limited by their high costs. In this Review, I discuss the treatment of patients with hepatitis C with compensated and decompensated cirrhosis, before and after orthotopic liver transplantation and in patients with impaired kidney function.
Collapse
Affiliation(s)
- Peter Ferenci
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
137
|
Barth H. Hepatitis C virus: Is it time to say goodbye yet? Perspectives and challenges for the next decade. World J Hepatol 2015; 7:725-737. [PMID: 25914773 PMCID: PMC4404378 DOI: 10.4254/wjh.v7.i5.725] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
The majority of individuals exposed to hepatitis C virus (HCV) establish a persistent infection, which is a leading cause of chronic liver disease, cirrhosis and hepatocellular carcinoma. Major progress has been made during the past twenty-five years in understanding the HCV life cycle and immune responses against HCV infection. Increasing evidence indicates that host genetic factors can significantly influence the outcome of HCV infection and the response to interferon alpha-based antiviral therapy. The arrival of highly effective and convenient treatment regimens for patients chronically infected with HCV has improved prospects for the eradication of HCV worldwide. Clinical trials are evaluating the best anti-viral drug combination, treatment doses and duration. The new treatments are better-tolerated and have shown success rates of more than 95%. However, the recent breakthrough in HCV treatment raises new questions and challenges, including the identification of HCV-infected patients and to link them to appropriate health care, the high pricing of HCV drugs, the emergence of drug resistance or naturally occurring polymorphism in HCV sequences which can compromise HCV treatment response. Finally, we still do not have a vaccine against HCV. In this concise review, we will highlight the progress made in understanding HCV infection and therapy. We will focus on the most significant unsolved problems and the key future challenges in the management of HCV infection.
Collapse
|
138
|
Abstract
The majority of new and existing cases of HCV infection in high-income countries occur among people who inject drugs (PWID). Ongoing high-risk behaviours can lead to HCV re-exposure, resulting in mixed HCV infection and reinfection. Assays used to screen for mixed infection vary widely in sensitivity, particularly with respect to their capacity for detecting minor variants (<20% of the viral population). The prevalence of mixed infection among PWID ranges from 14% to 39% when sensitive assays are used. Mixed infection compromises HCV treatment outcomes with interferon-based regimens. HCV reinfection can also occur after successful interferon-based treatment among PWID, but the rate of reinfection is low (0-5 cases per 100 person-years). A revolution in HCV therapeutic development has occurred in the past few years, with the advent of interferon-free, but still genotype-specific regiments based on direct acting antiviral agents. However, little is known about whether mixed infection and reinfection has an effect on HCV treatment outcomes in the setting of new direct-acting antiviral agents. This Review characterizes the epidemiology and natural history of mixed infection and reinfection among PWID, methodologies for detection, the potential implications for HCV treatment and considerations for the design of future studies.
Collapse
|
139
|
Ho CKY, Welkers MRA, Thomas XV, Sullivan JC, Kieffer TL, Reesink HW, Rebers SPH, de Jong MD, Schinkel J, Molenkamp R. A comparison of 454 sequencing and clonal sequencing for the characterization of hepatitis C virus NS3 variants. J Virol Methods 2015; 219:28-37. [PMID: 25818622 DOI: 10.1016/j.jviromet.2015.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/09/2023]
Abstract
We compared 454 amplicon sequencing with clonal sequencing for the characterization of intra-host hepatitis C virus (HCV) NS3 variants. Clonal and 454 sequences were obtained from 12 patients enrolled in a clinical phase I study for telaprevir, an NS3-4a protease inhibitor. Thirty-nine datasets were used to compare the consensus sequence, average pairwise distance, normalized Shannon entropy, phylogenetic tree topology and the number and frequency of variants derived from both sequencing techniques. In general, a good concordance was observed between both techniques for the majority of datasets. Discordant results were observed for 5 out of 39 clonal and 454 datasets, which could be attributed to primer-related selective amplification used for clonal sequencing. Both 454 and clonal datasets consisted of a few major variants and a large number of low-frequency variants. Telaprevir resistance-associated variants were observed in low frequencies and were detected more often by 454. We conclude that performance of 454 and clonal sequencing is comparable for the characterization of intra-host virus populations. Not surprisingly, 454 is superior for the detection of low frequency resistance-associated variants. However, despite the greater coverage, 454 failed to detect some low frequency variants detected by clonal sequencing.
Collapse
Affiliation(s)
- Cynthia K Y Ho
- Department of Medical Microbiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands.
| | - Matthijs R A Welkers
- Department of Medical Microbiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands.
| | - Xiomara V Thomas
- Department of Medical Microbiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands.
| | - James C Sullivan
- Department of Infectious Diseases, Vertex Pharmaceuticals Incorporated, Cambridge, MA 02139, USA.
| | - Tara L Kieffer
- Department of Infectious Diseases, Vertex Pharmaceuticals Incorporated, Cambridge, MA 02139, USA.
| | - Henk W Reesink
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam 1104 AZ, The Netherlands.
| | - Sjoerd P H Rebers
- Department of Medical Microbiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands.
| | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands.
| | - Janke Schinkel
- Department of Medical Microbiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands.
| | - Richard Molenkamp
- Department of Medical Microbiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
140
|
Ogishi M, Yotsuyanagi H, Tsutsumi T, Gatanaga H, Ode H, Sugiura W, Moriya K, Oka S, Kimura S, Koike K. Deconvoluting the composition of low-frequency hepatitis C viral quasispecies: comparison of genotypes and NS3 resistance-associated variants between HCV/HIV coinfected hemophiliacs and HCV monoinfected patients in Japan. PLoS One 2015; 10:e0119145. [PMID: 25748426 PMCID: PMC4351984 DOI: 10.1371/journal.pone.0119145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/09/2015] [Indexed: 12/16/2022] Open
Abstract
Pre-existing low-frequency resistance-associated variants (RAVs) may jeopardize successful sustained virological responses (SVR) to HCV treatment with direct-acting antivirals (DAAs). However, the potential impact of low-frequency (∼0.1%) mutations, concatenated mutations (haplotypes), and their association with genotypes (Gts) on the treatment outcome has not yet been elucidated, most probably owing to the difficulty in detecting pre-existing minor haplotypes with sufficient length and accuracy. Herein, we characterize a methodological framework based on Illumina MiSeq next-generation sequencing (NGS) coupled with bioinformatics of quasispecies reconstruction (QSR) to realize highly accurate variant calling and genotype-haplotype detection. The core-to-NS3 protease coding sequences in 10 HCV monoinfected patients, 5 of whom had a history of blood transfusion, and 11 HCV/HIV coinfected patients with hemophilia, were studied. Simulation experiments showed that, for minor variants constituting more than 1%, our framework achieved a positive predictive value (PPV) of 100% and sensitivities of 91.7–100% for genotyping and 80.6% for RAV screening. Genotyping analysis indicated the prevalence of dominant Gt1a infection in coinfected patients (6/11 vs 0/10, p = 0.01). For clinical samples, minor genotype overlapping infection was prevalent in HCV/HIV coinfected hemophiliacs (10/11) and patients who experienced whole-blood transfusion (4/5) but none in patients without exposure to blood (0/5). As for RAV screening, the Q80K/R and S122K/R variants were particularly prevalent among minor RAVs observed, detected in 12/21 and 6/21 cases, respectively. Q80K was detected only in coinfected patients, whereas Q80R was predominantly detected in monoinfected patients (1/11 vs 7/10, p < 0.01). Multivariate interdependence analysis revealed the previously unrecognized prevalence of Gt1b-Q80K, in HCV/HIV coinfected hemophiliacs [Odds ratio = 13.4 (3.48–51.9), p < 0.01]. Our study revealed the distinct characteristics of viral quasispecies between the subgroups specified above and the feasibility of NGS and QSR-based genetic deconvolution of pre-existing minor Gts, RAVs, and their interrelationships.
Collapse
Affiliation(s)
- Masato Ogishi
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
- * E-mail:
| | - Takeya Tsutsumi
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Hirotaka Ode
- Department of Infectious Diseases and Immunology, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Wataru Sugiura
- Department of Infectious Diseases and Immunology, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Kyoji Moriya
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Satoshi Kimura
- Director, Tokyo Teishin Hospital, Tokyo, Japan; President, Tokyo Health Care University, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
141
|
Osna NA, Ganesan M, Kharbanda KK. Hepatitis C, innate immunity and alcohol: friends or foes? Biomolecules 2015; 5:76-94. [PMID: 25664450 PMCID: PMC4384112 DOI: 10.3390/biom5010076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/19/2015] [Accepted: 01/24/2015] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling-a crucial point for activation of anti-viral genes to protect cells from virus-and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.
Collapse
Affiliation(s)
- Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| |
Collapse
|
142
|
Ji H, Kozak RA, Biondi MJ, Pilon R, Vallee D, Liang BB, La D, Kim J, Van Domselaar G, Leonard L, Sandstrom P, Brooks J. Next generation sequencing of the hepatitis C virus NS5B gene reveals potential novel S282 drug resistance mutations. Virology 2015; 477:1-9. [PMID: 25600207 DOI: 10.1016/j.virol.2014.12.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/11/2014] [Accepted: 12/23/2014] [Indexed: 01/06/2023]
Abstract
Identifying HCV drug resistance mutations (DRMs) is increasingly important as new direct acting antiviral therapies (DAA) become available. Tagged pooled pyrosequencing (TPP) was originally developed as cost-effective approach for detecting low abundance HIV DRMs. Using 127 HCV-positive samples from a Canadian injection drug user cohort, we demonstrated the suitability and efficiency of TPP for evaluating DRMs in HCV NS5B gene. At a mutation identification threshold of 1%, no nucleoside inhibitor DRMs were detected among these DAA naïve subjects. Clinical NS5B resistance to non-nucleoside inhibitors and interferon/ribavirin was predicted to be low within this cohort. S282T mutation, the primary mutation selected by sofosbuvir in vitro, was not identified while S282G/C/R variants were detected in 9 subjects. Further characterization on these new S282 variants using in silico molecular modeling implied their potential association with resistance. Combining TPP with in silico analysis detects NS5B polymorphisms that may explain differences in treatment outcomes.
Collapse
Affiliation(s)
- Hezhao Ji
- National HIV & Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - Robert A Kozak
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Mia J Biondi
- Arthur Labatt Family School of Nursing, Western University, London, Canada
| | - Richard Pilon
- National HIV & Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - Dominic Vallee
- National HIV & Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - Ben Binhua Liang
- Bioinformatics Core, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - David La
- Bioinformatics Core, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - John Kim
- National HIV & Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - Gary Van Domselaar
- Bioinformatics Core, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - Lynne Leonard
- Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Canada
| | - Paul Sandstrom
- National HIV & Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - James Brooks
- National HIV & Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada.
| |
Collapse
|