101
|
DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric Cancer 2015; 18:43-54. [PMID: 24481854 DOI: 10.1007/s10120-014-0340-8] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/30/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNAs act as tumor suppressors or oncogenes. The pathological roles of miRNAs in gastric tumorigenesis are largely unknown. Although miR-10b was identified as an miRNA deregulator expressed in gastric cancer (GC), there also exists some debate on whether miR-10b is acting as tumor suppressor or oncogene in GC. METHODS Quantitative RT-PCR was employed to investigate the level of miR-10b in GC tissues and matched adjacent normal tissues (n = 100). In vitro cell proliferation, apoptosis assays, cell migration, and invasion assays were performed to elucidate the biological effects of miR-10b. Because silencing of miRNA by promoter CpG island methylation may be an important mechanism in tumorigenesis, GC cells were treated with 5-aza-2'-deoxycytidine and trichostatin A, and expression changes of miR-10b were subsequently examined by quantitative RT-PCR. Furthermore, the methylation status of the CpG island upstream of miR-10b was analyzed by methylation-specific PCR in GC tissues (n = 29). RESULTS We showed here that miR-10b was significantly downregulated in GC cell lines and tissues as demonstrated by quantitative real-time PCR. Overexpression of miR-10b in MGC-803 and HGC-27 dramatically suppressed cell proliferation, migration, invasion, and induced apoptosis. Moreover, we demonstrated that T-cell lymphoma invasion and metastasis (Tiam1) was a target of miR-10b. Furthermore, 5-aza-2'-deoxycytidine and trichostain A increased miR-10b expression, and the methylation level was high in the CpG islands upstream of miR-10b gene. CONCLUSIONS Taken together, these findings suggest that miR-10b may function as a novel tumor suppressor and is partially silenced by DNA hypermethylation in GC.
Collapse
|
102
|
Liang J, Liu X, Xue H, Qiu B, Wei B, Sun K. MicroRNA-103a inhibits gastric cancer cell proliferation, migration and invasion by targeting c-Myb. Cell Prolif 2014; 48:78-85. [PMID: 25530421 DOI: 10.1111/cpr.12159] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/23/2014] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES There have been no previous reports concerning functions of miR-103a in gastric cancer (GC) cells. Thus the aim of the study was to investigate its expression and role in development of this tumour. MATERIALS AND METHODS Real-time RT-PCR was performed to detect expression of miR-103a in GC cell lines and clinical cancer specimens. To further understand its role, we restored expression of miR-103a in MGC-803 cell line by transfection with miR-103a mimics or inhibitors. Effects of miR-103a on cell proliferation, migration and invasion on targets were also determined. RESULTS miR-103a was down-regulated in both GC cell lines and clinical cancer specimens. Meanwhile, its level was closely associated with pM or pTNM stage of GC. Overexpression of miR-103a markedly suppressed proliferation, migration, and invasion of GC cells, while its inhibition significantly accelerated cell proliferation, migration and invasion. Moreover, c-Myb was identified to be a functional downstream target of miR-103a, ectopic expression of which partially reversed suppression of cell proliferation and invasion. CONCLUSIONS Thus our observations suggest that miR-103a functioned as a tumour suppressor by targeting c-Myb. These findings indicate that miR-103a might play a significant role in pathogenesis of GC.
Collapse
Affiliation(s)
- Jinlong Liang
- Department of General Surgery, Heilongjiang Province Hospital, Harbin, Heilongjiang, 150000, China
| | | | | | | | | | | |
Collapse
|
103
|
Advances in the molecular functions of syndecan-1 (SDC1/CD138) in the pathogenesis of malignancies. Crit Rev Oncol Hematol 2014; 94:1-17. [PMID: 25563413 DOI: 10.1016/j.critrevonc.2014.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/28/2014] [Accepted: 12/10/2014] [Indexed: 01/08/2023] Open
Abstract
Syndecan-1 (SDC1, synd, CD138) is the most widely studied member of four structurally related cell surface heparan sulfate proteoglycans (HSPG). Although SDC1 has been implicated in a wide range of biological functions, its altered expression often produces malignant phenotypes, which arise from increased cell proliferation and cell growth, cell survival, cell invasion and metastasis, and angiogenesis. Recent studies revealed much about the underlying molecular roles of SDC1 in these processes. The changes in SDC1 expression also have a direct impact on the clinical course of cancers, as evident by its prognostic significance. Accumulating evidence suggest that SDC1 is involved in stimulation of cancer stem cells (CSC) or tumor initiating cells (TIC) and this may affect disease relapse, and resistance to therapy. This review discusses the progress on the pro-tumorigenic role(s) of SDC1 and how these roles may impact the clinical aspect of the disease. Also discussed, are the current strategies for targeting SDC1 or its related signaling.
Collapse
|
104
|
Ibrahim SA, Hassan H, Götte M. MicroRNA regulation of proteoglycan function in cancer. FEBS J 2014; 281:5009-22. [DOI: 10.1111/febs.13026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/08/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Sherif A. Ibrahim
- Department of Zoology; Faculty of Science; Cairo University; Giza Egypt
| | - Hebatallah Hassan
- Department of Zoology; Faculty of Science; Cairo University; Giza Egypt
| | - Martin Götte
- Department of Gynecology and Obstetrics; Münster University Hospital; Germany
| |
Collapse
|
105
|
Xiao G, Tang Z, Yuan X, Yuan J, Zhao J, Zhang Z, He Z, Liu J. The expression of Wnt-1 inducible signaling pathway protein-2 in astrocytoma: Correlation between pathological grade and clinical outcome. Oncol Lett 2014; 9:235-240. [PMID: 25435966 PMCID: PMC4246620 DOI: 10.3892/ol.2014.2663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 10/15/2014] [Indexed: 01/16/2023] Open
Abstract
Wnt-1 inducible signaling pathway protein-2 (WISP-2) is a member of the CCN family, which is critical for the control of cell morphology, motion, adhesion and other processes involved in tumorigenesis. The expression pattern and clinical significance of WISP-2 in astrocytomas remains unclear. In this study, reverse transcription-polymerase chain reaction was performed to systematically investigate the expression of WISP-2 in 47 astrocytoma tissues of different pathological grades and 10 normal brain tissues. The mRNA expression levels of WISP-2 in the astrocytoma tissues were observed to be significantly higher than those in the normal brain tissues. Furthermore, the upregulation of WISP-2 was found to be associated with astrocytomas of higher pathological grades. Subsequently, 154 astrocytoma and 15 normal brain tissues were analyzed using immunohistochemistry and similar results were obtained. Univariate and multivariate survival analyses were used to determine the correlations between WISP-2 expression and overall survival (OS) and progression-free survival (PFS). The results indicated that the expression of WISP-2 was found to negatively correlate with patient PFS and OS. These results demonstrated that the WISP-2 protein is involved in the pathogenesis and progression of human astrocytomas and may serve as a malignant biomarker of this disease.
Collapse
Affiliation(s)
- Gelei Xiao
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xianrui Yuan
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Jian Yuan
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Jie Zhao
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Zhiping Zhang
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Zhengwen He
- Department of Neurosurgery, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingping Liu
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
106
|
Syndecan-2 regulation of morphology in breast carcinoma cells is dependent on RhoGTPases. Biochim Biophys Acta Gen Subj 2014; 1840:2482-90. [DOI: 10.1016/j.bbagen.2014.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 01/21/2023]
|
107
|
The motile breast cancer phenotype roles of proteoglycans/glycosaminoglycans. BIOMED RESEARCH INTERNATIONAL 2014; 2014:124321. [PMID: 25140302 PMCID: PMC4129668 DOI: 10.1155/2014/124321] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/02/2014] [Indexed: 12/13/2022]
Abstract
The consecutive stages of cancer growth and dissemination are obligatorily perpetrated through specific interactions of the tumor cells with their microenvironment. Importantly, cell-associated and tumor microenvironment glycosaminoglycans (GAGs)/proteoglycan (PG) content and distribution are markedly altered during tumor pathogenesis and progression. GAGs and PGs perform multiple functions in specific stages of the metastatic cascade due to their defined structure and ability to interact with both ligands and receptors regulating cancer pathogenesis. Thus, GAGs/PGs may modulate downstream signaling of key cellular mediators including insulin growth factor receptor (IGFR), epidermal growth factor receptor (EGFR), estrogen receptors (ERs), or Wnt members. In the present review we will focus on breast cancer motility in correlation with their GAG/PG content and critically discuss mechanisms involved. Furthermore, new approaches involving GAGs/PGs as potential prognostic/diagnostic markers or as therapeutic agents for cancer-related pathologies are being proposed.
Collapse
|
108
|
Min W, Wang B, Li J, Han J, Zhao Y, Su W, Dai Z, Wang X, Ma Q. The expression and significance of five types of miRNAs in breast cancer. Med Sci Monit Basic Res 2014; 20:97-104. [PMID: 25047098 PMCID: PMC4117676 DOI: 10.12659/msmbr.891246] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background This study aimed to investigate the expression and significance of 5 types of miRNAs in breast cancer to provide a theoretical and practical foundation for using these miRNAs in the diagnosis and treatment of breast cancer, thereby improving medical services. Material/Methods Stem-loop real-time RT-PCR was used to detect the expression levels of miR-145, miR-21, miR-10b, miR-125a, and miR-206 in 35 cases of breast cancer and adjacent normal breast tissues, and to analyze the relationship of miRNAs expression with clinicopathological features of breast cancer. The expression levels of estrogen receptor (ER) and progesterone receptor (PR) were examined by immunohistochemistry. Fluorescence in situ hybridization was used for the detection of HER-2 and TOP 2A. Results The expression levels of miR-145, miR-125a, and miR-206 in breast cancer were lower than those in adjacent normal tissues. MiR-145 was negatively correlated with tumor size, lymph node metastasis, ER, HER-2, and TOP 2A (P<0.05), regardless of age, menstruation, and PR. MiR-125a was correlated with negative node status, negative HER-2 status (P<0.05), whereas tumor size, age, menstruation, ER, and PR were independent factors. MiR-206 expression was correlated with negative ER status, negative PR status, and negative HER-2 status (P<0.05), regardless of age, menstruation, lymph node metastasis, and TOP 2A. MiR-21 and miR-10b expression in breast cancer tissues was significantly higher than that in adjacent tissues (P<0.05). MiR-21 in post-menstrual patients with lymph node metastasis was highly expressed (P<0.05), and had no correlations with tumor size, ER, PR, and TOP 2A expression. MiR-10b expression was positively correlated with breast cancer tumor size, lymph node metastasis, and TOP 2A status (P<0.05), but had no correlations with age, menstruation, ER, PR, and HER-2. Conclusions MiR-145, miR-21, miR-10b, miR-125a, and miR-206 may play important roles in breast cancer development and invasion.
Collapse
Affiliation(s)
- Weili Min
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Baofeng Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Jie Li
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Jia Han
- Health Science Center, Xi'an Jiaotong University School of Medicine, Xi'an, China (mainland)
| | - Yang Zhao
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Wenjun Su
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Zhijun Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Xijing Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Qingyong Ma
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| |
Collapse
|
109
|
Min W, Wang B, Li J, Han J, Zhao Y, Su W, Dai Z, Wang X, Ma Q. The expression and significance of five types of miRNAs in breast cancer. Med Sci Monit Basic Res 2014. [PMID: 25047098 DOI: 10.12659/m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND This study aimed to investigate the expression and significance of 5 types of miRNAs in breast cancer to provide a theoretical and practical foundation for using these miRNAs in the diagnosis and treatment of breast cancer, thereby improving medical services. MATERIAL/METHODS Stem-loop real-time RT-PCR was used to detect the expression levels of miR-145, miR-21, miR-10b, miR-125a, and miR-206 in 35 cases of breast cancer and adjacent normal breast tissues, and to analyze the relationship of miRNAs expression with clinicopathological features of breast cancer. The expression levels of estrogen receptor (ER) and progesterone receptor (PR) were examined by immunohistochemistry. Fluorescence in situ hybridization was used for the detection of HER-2 and TOP 2A. RESULTS The expression levels of miR-145, miR-125a, and miR-206 in breast cancer were lower than those in adjacent normal tissues. MiR-145 was negatively correlated with tumor size, lymph node metastasis, ER, HER-2, and TOP 2A (P<0.05), regardless of age, menstruation, and PR. MiR-125a was correlated with negative node status, negative HER-2 status (P<0.05), whereas tumor size, age, menstruation, ER, and PR were independent factors. MiR-206 expression was correlated with negative ER status, negative PR status, and negative HER-2 status (P<0.05), regardless of age, menstruation, lymph node metastasis, and TOP 2A. MiR-21 and miR-10b expression in breast cancer tissues was significantly higher than that in adjacent tissues (P<0.05). MiR-21 in post-menstrual patients with lymph node metastasis was highly expressed (P<0.05), and had no correlations with tumor size, ER, PR, and TOP 2A expression. MiR-10b expression was positively correlated with breast cancer tumor size, lymph node metastasis, and TOP 2A status (P<0.05), but had no correlations with age, menstruation, ER, PR, and HER-2. CONCLUSIONS MiR-145, miR-21, miR-10b, miR-125a, and miR-206 may play important roles in breast cancer development and invasion.
Collapse
Affiliation(s)
- Weili Min
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Baofeng Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Jie Li
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Jia Han
- Health Science Center, Xi'an Jiaotong University School of Medicine, Xi'an, China (mainland)
| | - Yang Zhao
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Wenjun Su
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Zhijun Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Xijing Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Qingyong Ma
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| |
Collapse
|
110
|
Sawyer E, Roylance R, Petridis C, Brook MN, Nowinski S, Papouli E, Fletcher O, Pinder S, Hanby A, Kohut K, Gorman P, Caneppele M, Peto J, dos Santos Silva I, Johnson N, Swann R, Dwek M, Perkins KA, Gillett C, Houlston R, Ross G, De Ieso P, Southey MC, Hopper JL, Provenzano E, Apicella C, Wesseling J, Cornelissen S, Keeman R, Fasching PA, Jud SM, Ekici AB, Beckmann MW, Kerin MJ, Marme F, Schneeweiss A, Sohn C, Burwinkel B, Guénel P, Truong T, Laurent-Puig P, Kerbrat P, Bojesen SE, Nordestgaard BG, Nielsen SF, Flyger H, Milne RL, Perez JIA, Menéndez P, Benitez J, Brenner H, Dieffenbach AK, Arndt V, Stegmaier C, Meindl A, Lichtner P, Schmutzler RK, Lochmann M, Brauch H, Fischer HP, Ko YD, Nevanlinna H, Muranen TA, Aittomäki K, Blomqvist C, Bogdanova NV, Dörk T, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Chenevix-Trench G, Lambrechts D, Weltens C, Van Limbergen E, Hatse S, Chang-Claude J, Rudolph A, Seibold P, Flesch-Janys D, Radice P, Peterlongo P, Bonanni B, Volorio S, Giles GG, Severi G, Baglietto L, Mclean CA, Haiman CA, Henderson BE, Schumacher F, Le Marchand L, Simard J, Goldberg MS, Labrèche F, Dumont M, Kristensen V, Winqvist R, Pylkäs K, Jukkola-Vuorinen A, Kauppila S, Andrulis IL, Knight JA, Glendon G, Mulligan AM, Devillee P, Tollenaar RAEM, Seynaeve CM, Kriege M, Figueroa J, Chanock SJ, Sherman ME, Hooning MJ, Hollestelle A, van den Ouweland AMW, van Deurzen CHM, Li J, Czene K, Humphreys K, Cox A, Cross SS, Reed MWR, Shah M, Jakubowska A, Lubinski J, Jaworska-Bieniek K, Durda K, Swerdlow A, Ashworth A, Orr N, Schoemaker M, Couch FJ, Hallberg E, González-Neira A, Pita G, Alonso MR, Tessier DC, Vincent D, Bacot F, Bolla MK, Wang Q, Dennis J, Michailidou K, Dunning AM, Hall P, Easton D, Pharoah P, Schmidt MK, Tomlinson I, Garcia-Closas M. Genetic predisposition to in situ and invasive lobular carcinoma of the breast. PLoS Genet 2014; 10:e1004285. [PMID: 24743323 PMCID: PMC3990493 DOI: 10.1371/journal.pgen.1004285] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/17/2014] [Indexed: 01/09/2023] Open
Abstract
Invasive lobular breast cancer (ILC) accounts for 10-15% of all invasive breast carcinomas. It is generally ER positive (ER+) and often associated with lobular carcinoma in situ (LCIS). Genome-wide association studies have identified more than 70 common polymorphisms that predispose to breast cancer, but these studies included predominantly ductal (IDC) carcinomas. To identify novel common polymorphisms that predispose to ILC and LCIS, we pooled data from 6,023 cases (5,622 ILC, 401 pure LCIS) and 34,271 controls from 36 studies genotyped using the iCOGS chip. Six novel SNPs most strongly associated with ILC/LCIS in the pooled analysis were genotyped in a further 516 lobular cases (482 ILC, 36 LCIS) and 1,467 controls. These analyses identified a lobular-specific SNP at 7q34 (rs11977670, OR (95%CI) for ILC = 1.13 (1.09-1.18), P = 6.0 × 10(-10); P-het for ILC vs IDC ER+ tumors = 1.8 × 10(-4)). Of the 75 known breast cancer polymorphisms that were genotyped, 56 were associated with ILC and 15 with LCIS at P<0.05. Two SNPs showed significantly stronger associations for ILC than LCIS (rs2981579/10q26/FGFR2, P-het = 0.04 and rs889312/5q11/MAP3K1, P-het = 0.03); and two showed stronger associations for LCIS than ILC (rs6678914/1q32/LGR6, P-het = 0.001 and rs1752911/6q14, P-het = 0.04). In addition, seven of the 75 known loci showed significant differences between ER+ tumors with IDC and ILC histology, three of these showing stronger associations for ILC (rs11249433/1p11, rs2981579/10q26/FGFR2 and rs10995190/10q21/ZNF365) and four associated only with IDC (5p12/rs10941679; rs2588809/14q24/RAD51L1, rs6472903/8q21 and rs1550623/2q31/CDCA7). In conclusion, we have identified one novel lobular breast cancer specific predisposition polymorphism at 7q34, and shown for the first time that common breast cancer polymorphisms predispose to LCIS. We have shown that many of the ER+ breast cancer predisposition loci also predispose to ILC, although there is some heterogeneity between ER+ lobular and ER+ IDC tumors. These data provide evidence for overlapping, but distinct etiological pathways within ER+ breast cancer between morphological subtypes.
Collapse
Affiliation(s)
- Elinor Sawyer
- Research Oncology, Division of Cancer Studies, Kings College London, Guy's Hospital, London, United Kingdom
| | - Rebecca Roylance
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Christos Petridis
- Research Oncology, Division of Cancer Studies, Kings College London, Guy's Hospital, London, United Kingdom
| | - Mark N. Brook
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, United Kingdom
| | - Salpie Nowinski
- Research Oncology, Division of Cancer Studies, Kings College London, Guy's Hospital, London, United Kingdom
| | - Efterpi Papouli
- Biomedical Research Centre, King's College London, Guy's Hospital, London, United Kingdom
| | - Olivia Fletcher
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Sarah Pinder
- Research Oncology, Division of Cancer Studies, Kings College London, Guy's Hospital, London, United Kingdom
| | - Andrew Hanby
- Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, United Kingdom
| | - Kelly Kohut
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Patricia Gorman
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Michele Caneppele
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Julian Peto
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Nichola Johnson
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Ruth Swann
- Department of Molecular and Applied Biosciences, University of Westminster, London, United Kingdom
| | - Miriam Dwek
- Department of Molecular and Applied Biosciences, University of Westminster, London, United Kingdom
| | - Katherine-Anne Perkins
- Department of Molecular and Applied Biosciences, University of Westminster, London, United Kingdom
| | - Cheryl Gillett
- Research Oncology, Division of Cancer Studies, Kings College London, Guy's Hospital, London, United Kingdom
| | - Richard Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, United Kingdom
| | - Gillian Ross
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Paolo De Ieso
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Melissa C. Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - John L. Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia
| | - Elena Provenzano
- NIHR Cambridge Biomedical Research Centre, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Carmel Apicella
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia
| | - Jelle Wesseling
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Sten Cornelissen
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Renske Keeman
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Peter A. Fasching
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sebastian M. Jud
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Michael J. Kerin
- Surgery, Clinical Science Institute, National University of Ireland, Galway, Ireland
| | - Federick Marme
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Andreas Schneeweiss
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Christof Sohn
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pascal Guénel
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France
- University Paris-Sud, UMRS 1018, Villejuif, France
| | - Therese Truong
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France
- University Paris-Sud, UMRS 1018, Villejuif, France
| | | | - Pierre Kerbrat
- Centre Eugène Marquis, Department of Medical Oncology, Rennes, France
| | - Stig E. Bojesen
- Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Børge G. Nordestgaard
- Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Sune F. Nielsen
- Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Roger L. Milne
- Genetic & Molecular Epidemiology Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre [CNIO], Madrid, Spain
| | | | | | - Javier Benitez
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre [CNIO], Madrid, Spain
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aida Karina Dieffenbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
| | - Peter Lichtner
- Institute of Human Genetics, Technische Universität, Munich, Germany
| | - Rita K. Schmutzler
- Centre for Familial Breast and Ovarian Cancer and Centre for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Magdalena Lochmann
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Hans-Peter Fischer
- Institute of Pathology, Medical Faculty of the University of Bonn, Bonn, Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
| | - The GENICA Network
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Institute for Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Taru A. Muranen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Central Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Joensuu, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Vesa Kataja
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Joensuu, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Joensuu, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Jaana M. Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Joensuu, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | | | | | - Diether Lambrechts
- Vesalius Research Center (VRC), VIB, Leuven, Belgium
- Department of Oncology, University of Leuven, Leuven, Belgium
| | | | | | - Sigrid Hatse
- University Hospital Gashuisberg, Leuven, Belgium
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Flesch-Janys
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori (INT), Milan, Italy
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia (IEO), Milan, Italy
| | - Sara Volorio
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare and Cogentech Cancer Genetic Test Laboratory, Milan, Italy
| | - Graham G. Giles
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia
| | - Gianluca Severi
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia
| | - Laura Baglietto
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia
| | - Catriona A. Mclean
- Department of Pathology, The Alfred Hospital, Prahran, Victoria, Australia
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Fredrick Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loic Le Marchand
- Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Jacques Simard
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec, Canada
| | - Mark S. Goldberg
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Clinical Epidemiology, McGill University Health Centre, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - France Labrèche
- Département de médecine sociale et préventive, Département de santé environnementale et santé au travail, Université de Montréal, Montreal, Quebec, Canada
| | - Martine Dumont
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec, Canada
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
- Faculty of Medicine (Faculty Division Ahus), UiO, Oslo, Norway
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, NordLab/Oulu University Hospital, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, NordLab/Oulu University Hospital, Oulu, Finland
| | | | - Saila Kauppila
- Department of Oncology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Irene L. Andrulis
- Ontario Cancer Genetics Network, Fred A. Litwin Center for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julia A. Knight
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Gord Glendon
- Ontario Cancer Genetics Network, Fred A. Litwin Center for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anna Marie Mulligan
- Laboratory Medicine Program, University Health Network, Toronto, Ontario; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Peter Devillee
- Department of Human Genetics & Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob A. E. M. Tollenaar
- Department of Surgical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline M. Seynaeve
- Family Cancer Clinic, Department of Medical Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
| | - Mieke Kriege
- Family Cancer Clinic, Department of Medical Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
| | - Jonine Figueroa
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Stephen J. Chanock
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mark E. Sherman
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maartje J. Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | | | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore
| | - Kamila Czene
- Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Keith Humphreys
- Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Angela Cox
- CRUK/YCR Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Simon S. Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Malcolm W. R. Reed
- CRUK/YCR Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Jaworska-Bieniek
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Katarzyna Durda
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology and Division of Breast Cancer Research, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
| | - Nicholas Orr
- Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
| | - Minouk Schoemaker
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, United Kingdom
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Emily Hallberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anna González-Neira
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre [CNIO], Madrid, Spain
| | - Guillermo Pita
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre [CNIO], Madrid, Spain
| | - M. Rosario Alonso
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre [CNIO], Madrid, Spain
| | - Daniel C. Tessier
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
| | - Daniel Vincent
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
| | - Francois Bacot
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Per Hall
- Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Doug Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Marjanka K. Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Montserrat Garcia-Closas
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, United Kingdom
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
111
|
MicroRNAs in the Regulation of MMPs and Metastasis. Cancers (Basel) 2014; 6:625-45. [PMID: 24670365 PMCID: PMC4074795 DOI: 10.3390/cancers6020625] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/21/2014] [Accepted: 03/04/2014] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs are integral molecules in the regulation of numerous physiological cellular processes including cellular differentiation, proliferation, metabolism and apoptosis. Their function transcends normal physiology and extends into several pathological entities including cancer. The matrix metalloproteinases play pivotal roles, not only in tissue remodeling, but also in several physiological and pathological processes, including those supporting cancer progression. Additionally, the contribution of active MMPs in metastatic spread and the establishment of secondary metastasis, via the targeting of several substrates, are also well established. This review focuses on the important miRNAs that have been found to impact cancer progression and metastasis through direct and indirect interactions with the matrix metalloproteinases.
Collapse
|
112
|
Martin HC, Wani S, Steptoe AL, Krishnan K, Nones K, Nourbakhsh E, Vlassov A, Grimmond SM, Cloonan N. Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs. Genome Biol 2014; 15:R51. [PMID: 24629056 PMCID: PMC4053950 DOI: 10.1186/gb-2014-15-3-r51] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/19/2014] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs (miRNAs) bind to mRNAs and target them for translational inhibition or transcriptional degradation. It is thought that most miRNA-mRNA interactions involve the seed region at the 5′ end of the miRNA. The importance of seed sites is supported by experimental evidence, although there is growing interest in interactions mediated by the central region of the miRNA, termed centered sites. To investigate the prevalence of these interactions, we apply a biotin pull-down method to determine the direct targets of ten human miRNAs, including four isomiRs that share centered sites, but not seeds, with their canonical partner miRNAs. Results We confirm that miRNAs and their isomiRs can interact with hundreds of mRNAs, and that imperfect centered sites are common mediators of miRNA-mRNA interactions. We experimentally demonstrate that these sites can repress mRNA activity, typically through translational repression, and are enriched in regions of the transcriptome bound by AGO. Finally, we show that the identification of imperfect centered sites is unlikely to be an artifact of our protocol caused by the biotinylation of the miRNA. However, the fact that there was a slight bias against seed sites in our protocol may have inflated the apparent prevalence of centered site-mediated interactions. Conclusions Our results suggest that centered site-mediated interactions are much more frequent than previously thought. This may explain the evolutionary conservation of the central region of miRNAs, and has significant implications for decoding miRNA-regulated genetic networks, and for predicting the functional effect of variants that do not alter protein sequence.
Collapse
|
113
|
Yeganeh B, Wiechec E, Ande SR, Sharma P, Moghadam AR, Post M, Freed DH, Hashemi M, Shojaei S, Zeki AA, Ghavami S. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol Ther 2014; 143:87-110. [PMID: 24582968 DOI: 10.1016/j.pharmthera.2014.02.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 12/21/2022]
Abstract
The cholesterol biosynthesis pathway, also known as the mevalonate (MVA) pathway, is an essential cellular pathway that is involved in diverse cell functions. The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) is the rate-limiting step in cholesterol biosynthesis and catalyzes the conversion of HMG-CoA to MVA. Given its role in cholesterol and isoprenoid biosynthesis, the regulation of HMGCR has been intensely investigated. Because all cells require a steady supply of MVA, both the sterol (i.e. cholesterol) and non-sterol (i.e. isoprenoid) products of MVA metabolism exert coordinated feedback regulation on HMGCR through different mechanisms. The proper functioning of HMGCR as the proximal enzyme in the MVA pathway is essential under both normal physiologic conditions and in many diseases given its role in cell cycle pathways and cell proliferation, cholesterol biosynthesis and metabolism, cell cytoskeletal dynamics and stability, cell membrane structure and fluidity, mitochondrial function, proliferation, and cell fate. The blockbuster statin drugs ('statins') directly bind to and inhibit HMGCR, and their use for the past thirty years has revolutionized the treatment of hypercholesterolemia and cardiovascular diseases, in particular coronary heart disease. Initially thought to exert their effects through cholesterol reduction, recent evidence indicates that statins also have pleiotropic immunomodulatory properties independent of cholesterol lowering. In this review we will focus on the therapeutic applications and mechanisms involved in the MVA cascade including Rho GTPase and Rho kinase (ROCK) signaling, statin inhibition of HMGCR, geranylgeranyltransferase (GGTase) inhibition, and farnesyltransferase (FTase) inhibition in cardiovascular disease, pulmonary diseases (e.g. asthma and chronic obstructive pulmonary disease (COPD)), and cancer.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Hospital for Sick Children Research Institute, Department of Physiology & Experimental Medicine, University of Toronto, Toronto, Canada
| | - Emilia Wiechec
- Dept. Clinical & Experimental Medicine, Division of Cell Biology & Integrative Regenerative Med. Center (IGEN), Linköping University, Sweden
| | - Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pawan Sharma
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, 4C46 HRIC, 3280 Hospital Drive NW, Calgary, Alberta, Canada
| | - Adel Rezaei Moghadam
- Scientific Association of Veterinary Medicine, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Martin Post
- Hospital for Sick Children Research Institute, Department of Physiology & Experimental Medicine, University of Toronto, Toronto, Canada
| | - Darren H Freed
- Department of Physiology, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shahla Shojaei
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir A Zeki
- U.C. Davis, School of Medicine, U.C. Davis Medical Center, Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology & Medicine, Davis, CA, USA.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, St. Boniface Research Centre, Manitoba Institute of Child Health, Biology of Breathing Theme, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
114
|
Xiao H, Li H, Yu G, Xiao W, Hu J, Tang K, Zeng J, He W, Zeng G, Ye Z, Xu H. MicroRNA-10b promotes migration and invasion through KLF4 and HOXD10 in human bladder cancer. Oncol Rep 2014; 31:1832-8. [PMID: 24573354 DOI: 10.3892/or.2014.3048] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/11/2014] [Indexed: 11/06/2022] Open
Abstract
The present study was performed to investigate the effect of microRNA-10b (miR-10b) on cell migration and invasion in human bladder cancer (BC). Real-time PCR was performed to detect the expression of miR-10b in BC cell lines. miR-10b mimics, the negative control for mimics, miR-10b inhibitor and the negative control for inhibitor were transfected into BC cell lines and the effects of miR-10b on the migration and invasion of cells were investigated through Transwell assay. Meanwhile, protein levels of KLF4, HOXD10, E-cadherin and MMP14 were measured. Luciferase assays were also performed to validate KLF4 and HOXD10 as miR-10b targets. In vivo metastasis assay was performed to validate if miR-10b can promote BC cell line metastasis in vivo. miR-10b is significantly upregulated in BC cell lines and metastatic tissues. Increased miR-10b expression significantly enhanced BC cell migration and invasion, while decreased miR-10b expression reduced cell migration and invasion. In vivo metastasis assay demonstrated that overexpression of miR-10b markedly promoted BC metastasis. Moreover, KLF4 and HOXD10 were identified as direct targets of miR-10b in BC cells. Silencing of KLF4 or HOXD10 recapitulated the pro-metastatic function. Furthermore, we found that E-cadherin and MMP14 may be the downstream factors of KLF4 and HOXD10 in the suppression of BC metastasis by miR-10b. These data suggest that miR-10b may function as oncogenes in BC cells. Targeting these novel strategies, inhibition of miR-10b/KLF4/E-cadherin axis and miR-10b/HOXD10/MMP14 axis may be helpful as a therapeutic approach to block BC cell metastasis.
Collapse
Affiliation(s)
- Haibing Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Wei Xiao
- Translational Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Junhui Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jin Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Wei He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
115
|
Ibrahim SA, Hassan H, Götte M. MicroRNA-dependent targeting of the extracellular matrix as a mechanism of regulating cell behavior. Biochim Biophys Acta Gen Subj 2014; 1840:2609-20. [PMID: 24462576 DOI: 10.1016/j.bbagen.2014.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND MicroRNAs are small noncoding RNAs which regulate gene expression at the posttranscriptional level by inducing mRNA degradation or translational repression. MicroRNA-dependent modulation of the extracellular matrix and its cellular receptors has emerged as a novel mechanism of regulating numerous matrix-dependent processes, including cell proliferation and apoptosis, cell adhesion and migration, cell differentiation and stem cell properties. SCOPE OF REVIEW In this review, we will present different mechanisms by which microRNAs and extracellular matrix constituents mutually regulate their expression, and we will demonstrate how these expression changes affect cell behavior. We will also highlight the importance of dysregulated matrix-related microRNA expression for the pathogenesis of inflammatory and malignant disease, and discuss the potential for diagnostic and therapeutic applications. MAJOR CONCLUSIONS MicroRNAs and matrix-dependent signal transduction processes form novel regulatory circuits, which profoundly affect cell behavior. As misexpression of microRNAs targeting extracellular matrix constituents is observed in a variety of diseases, a pharmacological intervention with these processes has therapeutic potential, as successfully demonstrated in vitro and in advanced animal models. However, a deeper mechanistic understanding is required to address potential side effects prior to clinical applications in humans. GENERAL SIGNIFICANCE A full understanding of the role and function of microRNA-dependent regulation of the extracellular matrix may lead to new targeted therapies and new diagnostics for malignant and inflammatory diseases in humans. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany.
| |
Collapse
|
116
|
Ibrahim SA, Hassan H, Vilardo L, Kumar SK, Kumar AV, Kelsch R, Schneider C, Kiesel L, Eich HT, Zucchi I, Reinbold R, Greve B, Götte M. Syndecan-1 (CD138) modulates triple-negative breast cancer stem cell properties via regulation of LRP-6 and IL-6-mediated STAT3 signaling. PLoS One 2013; 8:e85737. [PMID: 24392029 PMCID: PMC3877388 DOI: 10.1371/journal.pone.0085737] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/02/2013] [Indexed: 12/17/2022] Open
Abstract
Syndecan-1 (CD138), a heparan sulfate proteoglycan, acts as a coreceptor for growth factors and chemokines and is a molecular marker associated with epithelial-mesenchymal transition during development and carcinogenesis. Resistance of Syndecan-1-deficient mice to experimentally-induced tumorigenesis has been linked to altered Wnt-responsive precursor cell pools, suggesting a potential role of Syndecan-1 in breast cancer cell stem function. However, the precise molecular mechanism is still elusive. Here, we decipher the functional impact of Syndecan-1 knockdown using RNA interference on the breast cancer stem cell phenotype of human triple-negative MDA-MB-231 and hormone receptor-positive MCF-7 cells in vitro employing an analytical flow cytometric approach. Successful Syndecan-1 siRNA knockdown was confirmed by flow cytometry. Side population measurement by Hoechst dye exclusion and Aldehyde dehydrogenase-1 activity revealed that Syndecan-1 knockdown in MDA-MB-231 cells significantly reduced putative cancer stem cell pools by 60% and 27%, respectively, compared to controls. In MCF-7 cells, Syndecan-1 depletion reduced the side population by 40% and Aldehyde dehydrogenase-1 by 50%, repectively. In MDA-MB-231 cells, the CD44(+)CD24(-/low) phenotype decreased significantly by 6% upon siRNA-mediated Syndecan-1 depletion. Intriguingly, IL-6, its receptor sIL-6R, and the chemokine CCL20, implicated in regulating stemness-associated pathways, were downregulated by >40% in Syndecan-1-silenced MDA-MB-231 cells, which showed a dysregulated response to IL-6-induced shifts in E-cadherin and vimentin expression. Furthermore, activation of STAT-3 and NFkB transcription factors and expression of a coreceptor for Wnt signaling, LRP-6, were reduced by >45% in Syndecan-1-depleted cells compared to controls. At the functional level, Syndecan-1 siRNA reduced the formation of spheres and cysts in MCF-7 cells grown in suspension culture. Our study demonstrates the viability of flow cytometric approaches in analyzing cancer stem cell function. As Syndecan-1 modulates the cancer stem cell phenotype via regulation of the Wnt and IL-6/STAT3 signaling pathways, it emerges as a promising novel target for therapeutic approaches.
Collapse
Affiliation(s)
- Sherif A Ibrahim
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany ; Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Hebatallah Hassan
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany ; Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Sampath Katakam Kumar
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Archana Vijaya Kumar
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Reinhard Kelsch
- Institute of Transfusion Medicine and Transplantation Immunology, University Hospital Münster, Münster, Germany
| | - Cornelia Schneider
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Hans Theodor Eich
- Department of Radiotherapy - Radiooncology, University Hospital Münster, Münster, Germany
| | | | | | - Burkhard Greve
- Department of Radiotherapy - Radiooncology, University Hospital Münster, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| |
Collapse
|
117
|
Yu X, Li Z, Shen J, Wu WKK, Liang J, Weng X, Qiu G. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLoS One 2013; 8:e83080. [PMID: 24376640 PMCID: PMC3869743 DOI: 10.1371/journal.pone.0083080] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/06/2013] [Indexed: 12/21/2022] Open
Abstract
Aberrant proliferation of nucleus pulposus cell is implicated in the pathogenesis of intervertebral disc degeneration. Recent findings revealed that microRNAs, a class of small noncoding RNAs, could regulate cell proliferation in many pathological conditions. Here, we showed that miR-10b was dramatically upregulated in degenerative nucleus pulposus tissues when compared with nucleus pulposus tissues isolated from patients with idiopathic scoliosis. Moreover, miR-10b levels were associated with disc degeneration grade and downregulation of HOXD10. In cultured nucleus pulposus cells, miR-10b overexpression stimulated cell proliferation with concomitant translational inhibition of HOXD10 whereas restored expression of HOXD10 reversed the mitogenic effect of miR-10b. MiR-10b-mediated downregulation of HOXD10 led to increased RhoC expression and Akt phosphorylation. Either knockdown of RhoC or inhibition of Akt abolished the effect of miR-10b on nucleus pulposus cell proliferation. Taken together, aberrant miR-10b upregulation in intervertebral disc degeneration could contribute to abnormal nucleus pulposus cell proliferation through derepressing the RhoC-Akt pathway by targeting HOXD10. Our study also underscores the potential of miR-10b and the RhoC-Akt pathway as novel therapeutic targets in intervertebral disc degeneration.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road, Xicheng District, Beijing, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- * E-mail:
| | - William K. K. Wu
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences & Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Jinqian Liang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Xisheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| |
Collapse
|
118
|
Luo XG, Zhang CL, Zhao WW, Liu ZP, Liu L, Mu A, Guo S, Wang N, Zhou H, Zhang TC. Histone methyltransferase SMYD3 promotes MRTF-A-mediated transactivation of MYL9 and migration of MCF-7 breast cancer cells. Cancer Lett 2013; 344:129-137. [PMID: 24189459 DOI: 10.1016/j.canlet.2013.10.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/20/2013] [Accepted: 10/24/2013] [Indexed: 01/06/2023]
Abstract
Myocardin-related transcription factor-A (MRTF-A) is a Rho signal-responsive transcriptional coactivator of serum response factor (SRF). Recent studies indicated that MRTF-A might be an important regulator of mammary gland and be involved in cancer metastasis. However, the roles of histone modification in the MRTF-A-dependent signal pathway and tumor migration are still not very clear. Here, we report that histone methylation is required for the MRTF-A-mediated upregulation of myosin regulatory light chain 9 (MYL9), an important cytoskeletal component which is implicated in cell migration. Furthermore, we demonstrate that SET and MYND domain containing protein 3 (SMYD3), a hitone methyltransferase (HMT) associated with carcinogenesis, might be the one which is responsible for the histone methylation occurred in the MRTF-A-mediated- transactivation of MYL9 and migration of breast cancer cells. Overexpression of SMYD3 promotes MRTF-A-mediated upregulation of MYL9 and migration of MCF-7 breast cancer cells, while contrary results were observed when the endogenous MRTF-A and SMYD3 were suppressed with specific siRNAs. In addition, the mutation analysis suggested that this cooperative transactivation is mainly mediated via the proximal binding element of MRTF-A in the promoter of MYL9, and the HMT activity of SMYD3 is required as well. Our findings reveal a new mechanism by which MRTF-A and SMYD3 functions in transcriptional regulation and cell migration, and provide a better understanding for metastasis of breast cancer.
Collapse
Affiliation(s)
- Xue-Gang Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China.
| | - Chun-Ling Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Wen-Wen Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Zhi-Peng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Lei Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Ai Mu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Shu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Hao Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China; School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
119
|
microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-β actions. Oncogene 2013; 33:4664-74. [PMID: 24096486 PMCID: PMC3979498 DOI: 10.1038/onc.2013.405] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/23/2013] [Accepted: 08/09/2013] [Indexed: 12/11/2022]
Abstract
Increased microRNA-10b (miR-10b) expression in the cancer cells in pancreatic ductal adenocarcinoma (PDAC) is a marker of disease aggressiveness. In the present study, we determined that plasma miR-10b levels are significantly increased in PDAC patients by comparison with normal controls. By gene profiling, we identified potential targets downregulated by miR-10b, including Tat-interacting protein 30 (TIP30). Immunoblotting and luciferase reporter assays confirmed that TIP30 was a direct miR-10b target. Downregulation of TIP30 by miR-10b or siRNA-mediated silencing of TIP30 enhanced epidermal growth factor (EGF)-dependent invasion. The actions of miR-10b were abrogated by expressing a modified TIP30 cDNA resistant to miR-10b. EGF-induced EGF receptor (EGFR) tyrosine phosphorylation and extracellular signal-regulated kinase phosphorylation were enhanced by miR-10b, and these effects were mimicked by TIP30 silencing. The actions of EGF in the presence of miR-10b were blocked by EGFR kinase inhibition with erlotinib and by dual inhibition of PI3K (phosphatidylinositol 3'-kinase) and MEK. Moreover, miR-10b, EGF and transforming growth factor-beta (TGF-β) combined to markedly increase cell invasion, and this effect was blocked by the combination of erlotinib and SB505124, a type I TGF-β receptor inhibitor. miR-10b also enhanced the stimulatory effects of EGF and TGF-β on cell migration and epithelial-mesenchymal transition (EMT) and decreased the expression of RAP2A, EPHB2, KLF4 and NF1. Moreover, miR-10b overexpression accelerated pancreatic cancer cell (PCC) proliferation and tumor growth in an orthotopic model. Thus, plasma miR-10b levels may serve as a diagnostic marker in PDAC, whereas intra-tumoral miR-10b promotes PCC proliferation and invasion by suppressing TIP30, which enhances EGFR signaling, facilitates EGF-TGF-β cross-talk and enhances the expression of EMT-promoting genes, whereas decreasing the expression of several metastasis-suppressing genes. Therefore, therapeutic targeting of miR-10b in PDAC may interrupt growth-promoting deleterious EGF-TGF-β interactions and antagonize the metastatic process at various levels.
Collapse
|
120
|
Regulation of breast cancer and bone metastasis by microRNAs. DISEASE MARKERS 2013; 35:369-87. [PMID: 24191129 PMCID: PMC3809754 DOI: 10.1155/2013/451248] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/17/2013] [Accepted: 08/27/2013] [Indexed: 01/05/2023]
Abstract
Breast cancer progression including bone metastasis is a complex process involving numerous changes in gene expression and function. MicroRNAs (miRNAs) are small endogenous noncoding RNAs that regulate gene expression by targeting protein-coding mRNAs posttranscriptionally, often affecting a number of gene targets simultaneously. Alteration in expression of miRNAs is common in human breast cancer, possessing with either oncogenic or tumor suppressive activity. The expression and the functional role of several miRNAs (miR-206, miR-31, miR-27a/b, miR-21, miR-92a, miR-205, miR-125a/b, miR-10b, miR-155, miR-146a/b, miR-335, miR-204, miR-211, miR-7, miR-22, miR-126, and miR-17) in breast cancer has been identified. In this review we summarize the experimentally validated targets of up- and downregulated miRNAs and their regulation in breast cancer and bone metastasis for diagnostic and therapeutic purposes.
Collapse
|
121
|
Skandalis SS, Afratis N, Smirlaki G, Nikitovic D, Theocharis AD, Tzanakakis GN, Karamanos NK. Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans. Matrix Biol 2013; 35:182-93. [PMID: 24063949 DOI: 10.1016/j.matbio.2013.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 02/07/2023]
Abstract
In hormone-dependent breast cancer, estrogen receptors are the principal signaling molecules that regulate several cell functions either by the genomic pathway acting directly as transcription factors in the nucleus or by the non-genomic pathway interacting with other receptors and their adjacent pathways like EGFR/IGFR. It is well established in literature that EGFR and IGFR signaling pathways promote cell proliferation and differentiation. Moreover, recent data indicate the cross-talk between ERs and EGFR/IGFR signaling pathways causing a transformation of cell functions as well as deregulation on normal expression pattern of matrix molecules. Specifically, proteoglycans, a major category of extracellular matrix (ECM) and cell surface macromolecules, are modified during malignancy and cause alterations in cancer cell signaling, affecting eventually functional cell properties such as proliferation, adhesion and migration. The on-going strategies to block only one of the above signaling effectors result cancer cells to overcome such inactivation using alternative signaling pathways. In this article, we therefore review the underlying mechanisms in respect to the role of ERs and the involvement of cross-talk between ERs, IGFR and EGFR in breast cancer cell properties and expression of extracellular secreted and cell bound proteoglycans involved in cancer progression. Understanding such signaling pathways may help to establish new potential pharmacological targets in terms of using ECM molecules to design novel anticancer therapies.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Nikolaos Afratis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Gianna Smirlaki
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dragana Nikitovic
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Achilleas D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - George N Tzanakakis
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
122
|
Surgucheva I, Gunewardena S, Rao HS, Surguchov A. Cell-specific post-transcriptional regulation of γ-synuclein gene by micro-RNAs. PLoS One 2013; 8:e73786. [PMID: 24040069 PMCID: PMC3770685 DOI: 10.1371/journal.pone.0073786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/28/2013] [Indexed: 11/18/2022] Open
Abstract
γ-Synuclein is a member of the synucleins family of small proteins, which consists of three members:α, β- and γ-synuclein. γ-Synuclein is abnormally expressed in a high percentage of advanced and metastatic tumors, but not in normal or benign tissues. Furthermore, γ-synuclein expression is strongly correlated with disease progression, and can stimulate proliferation, induce invasion and metastasis of cancer cells. γ-Synuclein transcription is regulated basically through the binding of AP-1 to specific sequences in intron 1. Here we show that γ-synuclein expression may be also regulated by micro RNAs (miRs) on post-transcriptional level. According to prediction by several methods, the 3′-untranslated region (UTR) of γ-synuclein gene contains targets for miRs. Insertion of γ-synuclein 3′-UTR downstream of the reporter luciferase (LUC) gene causes a 51% reduction of LUC activity after transfection into SKBR3 and Y79 cells, confirming the presence of efficient targets for miRs in this fragment. Expression of miR-4437 and miR-4674 for which putative targets in 3′-UTR were predicted caused a 61.2% and 60.1% reduction of endogenous γ-synuclein expression confirming their role in gene expression regulation. On the other hand, in cells overexpressing γ-synuclein no significant effect of miRs on γ-synuclein expression was found suggesting that miRs exert their regulatory effect only at low or moderate, but not at high level of γ-synuclein expression. Elevated level of γ-synuclein differentially changes the level of several miRs expression, upregulating the level of some miRs and downregulating the level of others. Three miRs upregulated as a result of γ-synuclein overexpression, i.e., miR-885-3p, miR-138 and miR-497 have putative targets in 3′-UTR of the γ-synuclein gene. Some of miRs differentially regulated by γ-synuclein may modulate signaling pathways and cancer related gene expression. This study demonstrates that miRs might provide cell-specific regulation of γ-synuclein expression and set the stage to further evaluate their role in pathophysiological processes.
Collapse
Affiliation(s)
- Irina Surgucheva
- Retinal Biology Research Laboratory, Veterans Administration Medical Center, Kansas City, Missouri, United States of America
- Department of Neurology, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - H. Shanker Rao
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - Andrei Surguchov
- Retinal Biology Research Laboratory, Veterans Administration Medical Center, Kansas City, Missouri, United States of America
- Department of Neurology, Kansas University Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
123
|
Pizzini S, Bisognin A, Mandruzzato S, Biasiolo M, Facciolli A, Perilli L, Rossi E, Esposito G, Rugge M, Pilati P, Mocellin S, Nitti D, Bortoluzzi S, Zanovello P. Impact of microRNAs on regulatory networks and pathways in human colorectal carcinogenesis and development of metastasis. BMC Genomics 2013; 14:589. [PMID: 23987127 PMCID: PMC3766699 DOI: 10.1186/1471-2164-14-589] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/19/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Qualitative alterations or abnormal expression of microRNAs (miRNAs) in colon cancer have mainly been demonstrated in primary tumors. Poorly overlapping sets of oncomiRs, tumor suppressor miRNAs and metastamiRs have been linked with distinct stages in the progression of colorectal cancer. To identify changes in both miRNA and gene expression levels among normal colon mucosa, primary tumor and liver metastasis samples, and to classify miRNAs into functional networks, in this work miRNA and gene expression profiles in 158 samples from 46 patients were analysed. RESULTS Most changes in miRNA and gene expression levels had already manifested in the primary tumors while these levels were almost stably maintained in the subsequent primary tumor-to-metastasis transition. In addition, comparing normal tissue, tumor and metastasis, we did not observe general impairment or any rise in miRNA biogenesis. While only few mRNAs were found to be differentially expressed between primary colorectal carcinoma and liver metastases, miRNA expression profiles can classify primary tumors and metastases well, including differential expression of miR-10b, miR-210 and miR-708. Of 82 miRNAs that were modulated during tumor progression, 22 were involved in EMT. qRT-PCR confirmed the down-regulation of miR-150 and miR-10b in both primary tumor and metastasis compared to normal mucosa and of miR-146a in metastases compared to primary tumor. The upregulation of miR-201 in metastasis compared both with normal and primary tumour was also confirmed. A preliminary survival analysis considering differentially expressed miRNAs suggested a possible link between miR-10b expression in metastasis and patient survival. By integrating miRNA and target gene expression data, we identified a combination of interconnected miRNAs, which are organized into sub-networks, including several regulatory relationships with differentially expressed genes. Key regulatory interactions were validated experimentally. Specific mixed circuits involving miRNAs and transcription factors were identified and deserve further investigation. The suppressor activity of miR-182 on ENTPD5 gene was identified for the first time and confirmed in an independent set of samples. CONCLUSIONS Using a large dataset of CRC miRNA and gene expression profiles, we describe the interplay of miRNA groups in regulating gene expression, which in turn affects modulated pathways that are important for tumor development.
Collapse
Affiliation(s)
- Silvia Pizzini
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Irradiation-induced angiogenesis is associated with an MMP-9-miR-494-syndecan-1 regulatory loop in medulloblastoma cells. Oncogene 2013; 33:1922-33. [DOI: 10.1038/onc.2013.151] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 02/07/2023]
|
125
|
Balanis N, Wendt MK, Schiemann BJ, Wang Z, Schiemann WP, Carlin CR. Epithelial to mesenchymal transition promotes breast cancer progression via a fibronectin-dependent STAT3 signaling pathway. J Biol Chem 2013; 288:17954-67. [PMID: 23653350 DOI: 10.1074/jbc.m113.475277] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We previously established that overexpression of the EGF receptor (EGFR) is sufficient to induce tumor formation by otherwise nontransformed mammary epithelial cells, and that the initiation of epithelial-mesenchymal transition (EMT) is capable of increasing the invasion and metastasis of these cells. Using this breast cancer (BC) model, we find that in addition to EGF, adhesion to fibronectin (FN) activates signal transducer and activator of transcription 3 (STAT3) through EGFR-dependent and -independent mechanisms. Importantly, EMT facilitated a signaling switch from SRC-dependent EGFR:STAT3 signaling in pre-EMT cells to EGFR-independent FN:JAK2:STAT3 signaling in their post-EMT counterparts, thereby sensitizing these cells to JAK2 inhibition. Accordingly, human metastatic BC cells that failed to activate STAT3 downstream of EGFR did display robust STAT3 activity upon adhesion to FN. Furthermore, FN enhanced outgrowth in three-dimensional organotypic cultures via a mechanism that is dependent upon β1 integrin, Janus kinase 2 (JAK2), and STAT3 but not EGFR. Collectively, our data demonstrate that matrix-initiated signaling is sufficient to drive STAT3 activation, a reaction that is facilitated by EMT during BC metastatic progression.
Collapse
Affiliation(s)
- Nikolas Balanis
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
126
|
Hassan H, Greve B, Pavao MSG, Kiesel L, Ibrahim SA, Götte M. Syndecan-1 modulates β-integrin-dependent and interleukin-6-dependent functions in breast cancer cell adhesion, migration, and resistance to irradiation. FEBS J 2013; 280:2216-27. [DOI: 10.1111/febs.12111] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/24/2012] [Accepted: 01/01/2013] [Indexed: 12/30/2022]
Affiliation(s)
| | - Burkhard Greve
- Department of Radiotherapy; University Hospital Münster; Germany
| | - Mauro S. G. Pavao
- Instituto de Bioquimica Medica; Universidade Federal do Rio de Janeiro; Brazil
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics; University Hospital Münster; Germany
| | | | - Martin Götte
- Department of Gynecology and Obstetrics; University Hospital Münster; Germany
| |
Collapse
|
127
|
Zheng L, Pu J, Qi T, Qi M, Li D, Xiang X, Huang K, Tong Q. miRNA-145 targets v-ets erythroblastosis virus E26 oncogene homolog 1 to suppress the invasion, metastasis, and angiogenesis of gastric cancer cells. Mol Cancer Res 2012; 11:182-93. [PMID: 23233482 DOI: 10.1158/1541-7786.mcr-12-0534] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent evidence shows that v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets1) is implicated in tumor development and progression. However, the clinical potentials and underlying mechanisms of Ets1 in gastric cancer progression and metastasis remain largely unknown. In this study, Ets1 immunostaining was identified in 56 of 84 (66.7%) gastric cancer tissues, which was correlated with tumor invasion and metastasis. In gastric cancer specimens and cell lines, miRNA-145 (miR-145) was downregulated and inversely correlated with Ets1 expression. Bioinformatics analysis and luciferase reporter assay revealed that miR-145 directly targeted the 3'-untranslated region (3'-UTR) of Ets1 mRNA. Overexpression or knockdown of miR-145 responsively altered both the mRNA and protein levels of Ets1 and its downstream genes, matrix metalloproteinase (MMP-1)-1 and -9, in gastric cancer cell lines SGC-7901 and MKN-45. Ectopic expression of miR-145 suppressed the invasion, metastasis, and angiogenesis of SGC-7901 and MKN-45 cells in vitro and in vivo. In addition, the effects of miR-145 on Ets1 expression, migration, invasion, and angiogenesis were rescued by restoration of Ets1 expression in these cells. Furthermore, anti-miR-145 inhibitor promoted the migration, invasion, and angiogenesis, whereas siRNA-mediated Ets1 knockdown phenocopied the effects of miR-145 overexpression in gastric cancer cells. These results show that miR-145 suppresses Ets1 expression via the binding site in the 3'-UTR, thus inhibiting the invasion, metastasis, and angiogenesis of gastric cancer cells.
Collapse
Affiliation(s)
- Liduan Zheng
- Department of Pathology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Schneider C, Kässens N, Greve B, Hassan H, Schüring AN, Starzinski-Powitz A, Kiesel L, Seidler DG, Götte M. Targeting of syndecan-1 by micro-ribonucleic acid miR-10b modulates invasiveness of endometriotic cells via dysregulation of the proteolytic milieu and interleukin-6 secretion. Fertil Steril 2012. [PMID: 23206733 DOI: 10.1016/j.fertnstert.2012.10.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To study the function of syndecan-1 (SDC1) and its potential regulator miR-10b in endometriosis. DESIGN Experimental laboratory study. SETTING University medical center. PATIENT(S) Not applicable. INTERVENTION(S) The human endometriotic cell line 12Z was transiently transfected with SDC1 small interfering RNA or miR-10b precursors and investigated for changes in cell behavior and gene expression. 12Z and primary eutopic endometrial stroma cells of two American Society for Reproductive Medicine class III endometriosis patients were transfected with miR-10b precursors to investigate posttranscriptional regulation of SDC1. MAIN OUTCOME MEASURE(S) Quantitative polymerase chain reaction, Western blotting, flow cytometry, 3' untranslated region luciferase assays, and zymography were used to measure miR-10b-dependent targeting of SDC1 and SDC1-dependent expression changes of proteases and interleukin-6. Altered cell behavior was monitored by Matrigel invasion assays, cell viability assays, and mitogen-activated protein kinase activation blots. RESULT(S) Knockdown of SDC1 inhibited Matrigel invasiveness by >60% but did not affect cell viability. Interleukin-6 secretion, matrix metalloproteinase-9 expression, and matrix metalloproteinase-2 activity were reduced, whereas plasminogen activator inhibitor-1 protein expression was up-regulated. miR-10b overexpression significantly down-regulated SDC1, reduced Matrigel invasiveness by 20% and cell viability by 14%, and decreased mitogen-activated protein kinase activation in response to hepatocyte growth factor. CONCLUSION(S) Syndecan-1, a target of miR-10b, inhibits epithelial endometriotic cell invasiveness through down-regulation of metalloproteinase activity and interleukin-6.
Collapse
Affiliation(s)
- Cornelia Schneider
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Li Q, Shi R, Wang Y, Niu X. TAGLN suppresses proliferation and invasion, and induces apoptosis of colorectal carcinoma cells. Tumour Biol 2012; 34:505-13. [PMID: 23138394 DOI: 10.1007/s13277-012-0575-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/24/2012] [Indexed: 12/14/2022] Open
Abstract
In order to find the correlation between transgelin gene (TAGLN) and colorectal carcinoma occurrence, we investigated the expression of TAGLN in colorectal carcinoma tissue samples and colorectal carcinoma LoVo cells. Meanwhile, the effects of TAGLN on the characteristics of LoVo cells were also examined. The expressions of TAGLN in colorectal carcinoma tissues, adjacent normal tissues, and LoVo cells were detected by the Western blot method. The recombinant plasmid pcDNA3.1-TAGLN was established and transfected into LoVo cells with the help of Lipofectamine™ 2000. At the same time, the TAGLN siRNA was transfected into LoVo cells in another group. Forty-eight hours later, the expressions of TAGLN in all groups were assayed by Western blot, and the cell viability was analyzed by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. The cell cycle and cell apoptosis were examined by flow cytometry, and the cell invasive ability was analyzed by Transwell invasion experiment. The effect of TALGN on the expression of matrix metalloproteinase 9 (MMP9) was detected by Western blot. Western blot analysis showed that the expressions of TALGN in colorectal carcinoma tissues and LoVo cells were significantly decreased compared with colorectal carcinoma adjacent normal tissues (p < 0.01). In the overexpression or RNAi experiments, the plasmid pcDNA3.1-TAGLN significantly enhanced TALGN expression (p < 0.01), and TAGLN siRNA significantly decreased TAGLN expression (p < 0.01) in LoVo cells 48 h after transfection. In addition, MTT assay indicated that the cell viability of LoVo cells in the pcDNA3.1-TAGLN transfection group was significantly lower than that in the untransfected control group (p < 0.05). Furthermore, the overexpression of TAGLN significantly lowered the cell proliferation index (p < 0.05) and improved cell apoptosis (p < 0.01) in LoVo cells. In Transwell invasive experiments, the cell number, which had migrated through the chamber membrane, significantly decreased in the pcDNA3.1-TAGLN transfection group (p < 0.05) and significantly increased in the TAGLN knockdown group (p < 0.05) compared to the untransfected control group. At the same time, the expression of MMP9 was notably inhibited in the pcDNA3.1-TAGLN transfection group (p < 0.01). The expressions of TAGLN were inhibited in colorectal carcinoma tissues and colorectal carcinoma LoVo cells. The study also demonstrated that TAGLN could attenuate the proliferation and invasive ability of LoVo cells and enhance LoVo cell apoptosis. Furthermore, the expression of MMP9 was also inhibited by TAGLN. All these results could bring us a new perspective for biological therapy in colorectal carcinoma.
Collapse
Affiliation(s)
- Qinmin Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, People's Republic of China
| | | | | | | |
Collapse
|
130
|
Szatmári T, Mundt F, Heidari-Hamedani G, Zong F, Ferolla E, Alexeyenko A, Hjerpe A, Dobra K. Novel genes and pathways modulated by syndecan-1: implications for the proliferation and cell-cycle regulation of malignant mesothelioma cells. PLoS One 2012; 7:e48091. [PMID: 23144729 PMCID: PMC3483307 DOI: 10.1371/journal.pone.0048091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/19/2012] [Indexed: 11/19/2022] Open
Abstract
Malignant pleural mesothelioma is a highly malignant tumor, originating from mesothelial cells of the serous cavities. In mesothelioma the expression of syndecan-1 correlates to epithelioid morphology and inhibition of growth and migration. Our previous data suggest a complex role of syndecan-1 in mesothelioma cell proliferation although the exact underlying molecular mechanisms are not completely elucidated. The aim of this study is therefore to disclose critical genes and pathways affected by syndecan-1 in mesothelioma; in order to better understand its importance for tumor cell growth and proliferation. We modulated the expression of syndecan-1 in a human mesothelioma cell line via both overexpression and silencing, and followed the transcriptomic responses with microarray analysis. To project the transcriptome analysis on the full-dimensional picture of cellular regulation, we applied pathway analysis using Ingenuity Pathway Analysis (IPA) and a novel method of network enrichment analysis (NEA) which elucidated signaling relations between differentially expressed genes and pathways acting via various molecular mechanisms. Syndecan-1 overexpression had profound effects on genes involved in regulation of cell growth, cell cycle progression, adhesion, migration and extracellular matrix organization. In particular, expression of several growth factors, interleukins, and enzymes of importance for heparan sulfate sulfation pattern, extracellular matrix proteins and proteoglycans were significantly altered. Syndecan-1 silencing had less powerful effect on the transcriptome compared to overexpression, which can be explained by the already low initial syndecan-1 level of these cells. Nevertheless, 14 genes showed response to both up- and downregulation of syndecan-1. The "cytokine - cytokine-receptor interaction", the TGF-β, EGF, VEGF and ERK/MAPK pathways were enriched in both experimental settings. Most strikingly, nearly all analyzed pathways related to cell cycle were enriched after syndecan-1 silencing and depleted after syndecan-1 overexpression. Syndecan-1 regulates proliferation in a highly complex way, although the exact contribution of the altered pathways necessitates further functional studies.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Novel genes and pathways modulated by syndecan-1: implications for the proliferation and cell-cycle regulation of malignant mesothelioma cells. PLoS One 2012. [PMID: 23144729 DOI: 10.1371/journal.pone.0048091pone-d-12-14424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malignant pleural mesothelioma is a highly malignant tumor, originating from mesothelial cells of the serous cavities. In mesothelioma the expression of syndecan-1 correlates to epithelioid morphology and inhibition of growth and migration. Our previous data suggest a complex role of syndecan-1 in mesothelioma cell proliferation although the exact underlying molecular mechanisms are not completely elucidated. The aim of this study is therefore to disclose critical genes and pathways affected by syndecan-1 in mesothelioma; in order to better understand its importance for tumor cell growth and proliferation. We modulated the expression of syndecan-1 in a human mesothelioma cell line via both overexpression and silencing, and followed the transcriptomic responses with microarray analysis. To project the transcriptome analysis on the full-dimensional picture of cellular regulation, we applied pathway analysis using Ingenuity Pathway Analysis (IPA) and a novel method of network enrichment analysis (NEA) which elucidated signaling relations between differentially expressed genes and pathways acting via various molecular mechanisms. Syndecan-1 overexpression had profound effects on genes involved in regulation of cell growth, cell cycle progression, adhesion, migration and extracellular matrix organization. In particular, expression of several growth factors, interleukins, and enzymes of importance for heparan sulfate sulfation pattern, extracellular matrix proteins and proteoglycans were significantly altered. Syndecan-1 silencing had less powerful effect on the transcriptome compared to overexpression, which can be explained by the already low initial syndecan-1 level of these cells. Nevertheless, 14 genes showed response to both up- and downregulation of syndecan-1. The "cytokine - cytokine-receptor interaction", the TGF-β, EGF, VEGF and ERK/MAPK pathways were enriched in both experimental settings. Most strikingly, nearly all analyzed pathways related to cell cycle were enriched after syndecan-1 silencing and depleted after syndecan-1 overexpression. Syndecan-1 regulates proliferation in a highly complex way, although the exact contribution of the altered pathways necessitates further functional studies.
Collapse
|