101
|
Jiao F, Fan H, Yang G, Zhang F, He P. Directly investigating the interaction between aptamers and thrombin by atomic force microscopy. J Mol Recognit 2014; 26:672-8. [PMID: 24277612 DOI: 10.1002/jmr.2312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/21/2013] [Accepted: 08/21/2013] [Indexed: 11/06/2022]
Abstract
Aptamers are single-stranded nucleic acid molecules that can be used for protein recognition, detection, and inhibition. Over the past decades, two thrombin-binding aptamers (15apt and 27apt) were reported by systemic evolution of ligands by exponential enrichment technique. Though many studies have been reported about the interactions between the aptamers and thrombin by atomic force microscopy, the thrombins in those studies were all immobilized by chemical agents. Recently, we developed a new method using atomic force microscopy to directly investigate the specific interactions between thrombin and its two aptamers without immobilizing the thrombin. Furthermore, the unbinding dynamics and dissociation energy landscapes of aptamer/thrombin were discussed. The results indicate that the underlying interaction mechanisms of thrombin with its two aptamers will be similar despite that the structures of 15apt and 27apt are different in buffer solution.
Collapse
Affiliation(s)
- Fang Jiao
- Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | | | | | | | | |
Collapse
|
102
|
Dobó J, Schroeder V, Jenny L, Cervenak L, Závodszky P, Gál P. Multiple roles of complement MASP-1 at the interface of innate immune response and coagulation. Mol Immunol 2014; 61:69-78. [PMID: 24935208 DOI: 10.1016/j.molimm.2014.05.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 11/24/2022]
Abstract
MASP-1 is a versatile serine protease that cleaves a number of substrates in human blood. In recent years it became evident that besides playing a crucial role in complement activation MASP-1 also triggers other cascade systems and even cells to mount a more powerful innate immune response. In this review we summarize the latest discoveries about the diverse functions of this multi-faceted protease. Recent studies revealed that among MBL-associated serine proteases, MASP-1 is the one responsible for triggering the lectin pathway via its ability to rapidly autoactivate then cleave MASP-2, and possibly MASP-3. The crystal structure of MASP-1 explains its more relaxed substrate specificity compared to the related complement enzymes. Due to the relaxed specificity, MASP-1 interacts with the coagulation cascade and the kinin generating system, and it can also activate endothelial cells eliciting pro-inflammatory signaling.
Collapse
Affiliation(s)
- József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1113 Budapest, Hungary
| | - Verena Schroeder
- Department of Clinical Research, University of Bern, and University Clinic of Haematology, University Hospital, Bern, Switzerland
| | - Lorenz Jenny
- Department of Clinical Research, University of Bern, and University Clinic of Haematology, University Hospital, Bern, Switzerland
| | - László Cervenak
- 3rd Department of Internal Medicine, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Péter Závodszky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1113 Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1113 Budapest, Hungary.
| |
Collapse
|
103
|
Khrenova MG, Nemukhin AV, Savitsky AP. Computational characterization of ketone-ketal transformations at the active site of matrix metalloproteinases. J Phys Chem B 2014; 118:4345-50. [PMID: 24684684 DOI: 10.1021/jp501674b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We modeled the first steps of hydrolysis reactions of a natural oligopeptide substrate of matrix metalloproteinase MMP-2 as well as of a substrate analogue. In the latter, the scissile amide group is substituted by a ketomethylene group which can be transformed to the ketal group upon binding of this compound to the enzyme active site. According to our quantum mechanical-molecular mechanical (QM/MM) calculations, the reaction of the ketone-ketal transformation proceeds with a low energy barrier (3.4 kcal/mol) and a high equilibrium constant (10(4)). The reaction product with the ketal group formed directly at the active site of the enzyme works as an inhibitor that chelates the zinc ion. On the other hand, the oligopeptide mimetic retains molecular groups responsible for binding of this compound to the enzyme active site. This example illustrates a strategy to design MMP inhibitors in situ by using data on binding specificity of substrates to a particular type of MMP and details of the reaction mechanism.
Collapse
Affiliation(s)
- Maria G Khrenova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences , Leninsky prospect, 33, Moscow 119071, Russian Federation
| | | | | |
Collapse
|
104
|
Development of an aptamer-based impedimetric bioassay using microfluidic system and magnetic separation for protein detection. Biosens Bioelectron 2014; 59:106-11. [PMID: 24709326 DOI: 10.1016/j.bios.2014.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 12/20/2022]
Abstract
An aptamer-based impedimetric bioassay using the microfluidic system and magnetic separation was developed for the sensitive and rapid detection of protein. The microfluidic impedance device was fabricated through integrating the gold interdigitated array microelectrode into a flow cell made of polydimethylsiloxane (PDMS). Aptamer modified magnetic beads were used to capture and separate the target protein, and concentrated into a suitable volume. Then the complexes were injected into the microfluidic flow cell for impedance measurement. To demonstrate the high performance of this novel detection system, thrombin was employed as the target protein. The results showed that the impedance signals at the frequency of 90 kHz have a good linearity with the concentrations of thrombin in a range from 0.1 nM to 10nM and the detection limit is 0.01 nM. Compared with the reported impedimetric aptasensors for thrombin detection, this method possesses several advantages, such as the increasing sensitivity, improving reproducibility, reducing sample volume and assay time. All these demonstrate the proposed detection system is an alternative way to enable sensitive, rapid and specific detection of protein.
Collapse
|
105
|
|
106
|
Loget G, Corn RM. Silica nanowire arrays for diffraction-based bioaffinity sensing. Chemistry 2014; 20:10802-10. [PMID: 24590560 DOI: 10.1002/chem.201304800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Indexed: 11/07/2022]
Abstract
Arrays of electrodeposited silica nanowires (SiO2 NWs) have been fabricated over large areas (cm(2)) on fluoropolymer thin films attached to glass substrates by a combination of photolithography and electrochemically triggered sol-gel nanoscale deposition. Optical and scanning electron microscopy (SEM) measurements revealed that the SiO2 NW arrays had an average spacing of ten micrometers and an average width of 700 nm with a significant grain structure that was a result of the sol-gel deposition process. The optical diffraction properties at 633 nm of the SiO2 NW arrays were characterized when placed in contact with solutions by using a prism-coupled total internal reflection geometry; quantification of changes in these diffraction properties was applied in various sensing applications. Bulk refractive index sensing by using the SiO2 NW grating was demonstrated with a sensitivity of 1.30×10(-5) RIU. Toposelectively chemically modified SiO2 NW arrays were used for diffraction biosensing measurements of surface binding events, such as the electrostatic adsorption of gold nanoparticles and the bioaffinity adsorption of streptavidin onto a biotin monolayer. Finally, the application of the SiO2 NW arrays for practical medical-diagnostic applications was demonstrated by monitoring the diffraction of SiO2 NW arrays functionalized with a single-stranded (ss)DNA aptamer to detect human α-thrombin from solutions at sub-pathologic nanomolar concentrations.
Collapse
Affiliation(s)
- Gabriel Loget
- Department of Chemistry, University of California Irvine, Irvine, CA 92697 (USA).
| | | |
Collapse
|
107
|
Freitas SC, Maia S, Figueiredo AC, Gomes P, Pereira PJ, Barbosa MA, Martins MCL. Selective albumin-binding surfaces modified with a thrombin-inhibiting peptide. Acta Biomater 2014; 10:1227-37. [PMID: 24316365 DOI: 10.1016/j.actbio.2013.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/13/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Blood-contacting medical devices have been associated with severe clinical complications, such as thrombus formation, triggered by the activation of the coagulation cascade due to the adsorption of certain plasma proteins on the surface of biomaterials. Hence, the coating of such surfaces with antithrombotic agents has been used to increase biomaterial haemocompatibility. Biomaterial-induced clotting may also be decreased by albumin adsorption from blood plasma in a selective and reversible way, since this protein is not involved in the coagulation cascade. In this context, this paper reports that the immobilization of the thrombin inhibitor D-Phe-Pro-D-Arg-D-Thr-CONH2 (fPrt) onto nanostructured surfaces induces selective and reversible adsorption of albumin, delaying the clotting time when compared to peptide-free surfaces. fPrt, synthesized with two glycine residues attached to the N-terminus (GGfPrt), was covalently immobilized onto self-assembled monolayers (SAMs) having different ratios of carboxylate-hexa(ethylene glycol)- and tri(ethylene glycol)-terminated thiols (EG6-COOH/EG3) that were specifically designed to control GGfPrt orientation, exposure and density at the molecular level. In solution, GGfPrt was able to inactivate the enzymatic activity of thrombin and to delay plasma clotting time in a concentration-dependent way. After surface immobilization, and independently of its concentration, GGfPrt lost its selectivity to thrombin and its capacity to inhibit thrombin enzymatic activity against the chromogenic substrate n-p-tosyl-Gly-Pro-Arg-p-nitroanilide. Nevertheless, surfaces with low concentrations of GGfPrt could delay the capacity of adsorbed thrombin to cleave fibrinogen. In contrast, GGfPrt immobilized in high concentrations was found to induce the procoagulant activity of the adsorbed thrombin. However, all surfaces containing GGfPrt have a plasma clotting time similar to the negative control (empty polystyrene wells), showing resistance to coagulation, which is explained by its capacity to adsorb albumin in a selective and reversible way. This work opens new perspectives to the improvement of the haemocompatibility of blood-contacting medical devices.
Collapse
|
108
|
Pol-Fachin L, Verli H. Structural glycobiology of heparin dynamics on the exosite 2 of coagulation cascade proteases: Implications for glycosaminoglycans antithrombotic activity. Glycobiology 2013; 24:97-105. [PMID: 24201825 DOI: 10.1093/glycob/cwt095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
fIIa and fXa are two of the main targets of antithrombin, a serine proteases inhibitor that plays a major role in the regulation of blood clotting. The formation of ternary complexes between such molecules and glycosaminoglycans, as heparin, is the main path for inhibiting those enzymes, which may occur through two distinct mechanisms of action. While these serine proteases present distinct susceptibilities to these paths, in which fIIa demands an interaction with heparin, neither the molecular basis of this differential inhibition nor the role of fIIa glycosylation on this process is fully understood. Thus, the present work evaluated through molecular dynamics simulations the effects of glycosylation on fIIa and the consequences of heparin binding to both proteases function and dynamics. Based on the obtained data, fIIa N-linked glycan promoted an increase in the active site pocket size by stabilizing regions that encircle it, while heparin binding was observed to reverse such an effect. Additionally, heparin orientation observed on the surface of fIIa, but not fXa, allows a linear long-chain heparin binding to antithrombin in ternary complexes. Finally, the enzymes catalytic triad organization was disrupted due to a strong glycosaminoglycan binding to the proteases exosite 2. Such data support an atomic-level explanation for the higher inhibition constant of the antithrombin-heparin complex over fIIa than fXa, as well as for the different susceptibilities of those enzymes for antithrombin mechanisms of action.
Collapse
Affiliation(s)
- Laercio Pol-Fachin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves 9500, CP 15005, Porto Alegre 91500-970, RS, Brazil
| | | |
Collapse
|
109
|
Mehta AY, Jin Y, Desai UR. An update on recent patents on thrombin inhibitors (2010 – 2013). Expert Opin Ther Pat 2013; 24:47-67. [DOI: 10.1517/13543776.2014.845169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
110
|
Albert J, Lepinay S, Caucheteur C, DeRosa MC. High resolution grating-assisted surface plasmon resonance fiber optic aptasensor. Methods 2013; 63:239-54. [DOI: 10.1016/j.ymeth.2013.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/07/2013] [Accepted: 07/02/2013] [Indexed: 01/05/2023] Open
|
111
|
Vadivel K, Agah S, Messer AS, Cascio D, Bajaj MS, Krishnaswamy S, Esmon CT, Padmanabhan K, Bajaj SP. Structural and functional studies of γ-carboxyglutamic acid domains of factor VIIa and activated Protein C: role of magnesium at physiological calcium. J Mol Biol 2013; 425:1961-1981. [PMID: 23454357 PMCID: PMC4017951 DOI: 10.1016/j.jmb.2013.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/10/2013] [Accepted: 02/14/2013] [Indexed: 11/28/2022]
Abstract
Crystal structures of factor (F) VIIa/soluble tissue factor (TF), obtained under high Mg(2+) (50mM Mg(2+)/5mM Ca(2+)), have three of seven Ca(2+) sites in the γ-carboxyglutamic acid (Gla) domain replaced by Mg(2+) at positions 1, 4, and 7. We now report structures under low Mg(2+) (2.5mM Mg(2+)/5mM Ca(2+)) as well as under high Ca(2+) (5mM Mg(2+)/45 mM Ca(2+)). Under low Mg(2+), four Ca(2+) and three Mg(2+) occupy the same positions as in high-Mg(2+) structures. Conversely, under low Mg(2+), reexamination of the structure of Gla domain of activated Protein C (APC) complexed with soluble endothelial Protein C receptor (sEPCR) has position 4 occupied by Ca(2+) and positions 1 and 7 by Mg(2+). Nonetheless, in direct binding experiments, Mg(2+) replaced three Ca(2+) sites in the unliganded Protein C or APC. Further, the high-Ca(2+) condition was necessary to replace Mg4 in the FVIIa/soluble TF structure. In biological studies, Mg(2+) enhanced phospholipid binding to FVIIa and APC at physiological Ca(2+). Additionally, Mg(2+) potentiated phospholipid-dependent activations of FIX and FX by FVIIa/TF and inactivation of activated factor V by APC. Since APC and FVIIa bind to sEPCR involving similar interactions, we conclude that under the low-Mg(2+) condition, sEPCR binding to APC-Gla (or FVIIa-Gla) replaces Mg4 by Ca4 with an attendant conformational change in the Gla domain ω-loop. Moreover, since phospholipid and sEPCR bind to FVIIa or APC via the ω-loop, we predict that phospholipid binding also induces the functional Ca4 conformation in this loop. Cumulatively, the data illustrate that Mg(2+) and Ca(2+) act in concert to promote coagulation and anticoagulation.
Collapse
Affiliation(s)
- Kanagasabai Vadivel
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA
| | - Sayeh Agah
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA
| | - Amanda S Messer
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Madhu S Bajaj
- Division of Pulmonology and Critical Care, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sriram Krishnaswamy
- Department of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Charles T Esmon
- Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, OK 73104, USA
| | - Kaillathe Padmanabhan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - S Paul Bajaj
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
112
|
Abstract
Thrombin is the central protease in the blood coagulation network. It has multiple substrates and cofactors, and it appears that four serpins are responsible for inhibiting the thrombin produced in haemostasis and thrombosis. Structural studies conducted over the last 10 years have resolved how thrombin recognises these serpins with the aid of cofactors. Although antithrombin (AT), protein C inhibitor (PCI), heparin cofactor II (HCII) and protease nexin-1 (PN1) all share a common fold and mechanism of protease inhibition, they have evolved radically different mechanisms for cofactor-assisted thrombin recognition. This is likely to be due to the varied environments in which thrombin is found. In this review, I discuss the unusual structural features of thrombin that are involved in substrate and cofactor recognition, the serpin mechanism of protease inhibition and the fate of thrombin in the complex, and how the four thrombin-specific serpins exploit the special features of thrombin to accelerate complex formation.
Collapse
Affiliation(s)
- J A Huntington
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
| |
Collapse
|
113
|
Fuglestad B, Gasper PM, McCammon JA, Markwick PRL, Komives EA. Correlated motions and residual frustration in thrombin. J Phys Chem B 2013; 117:12857-63. [PMID: 23621631 PMCID: PMC3808083 DOI: 10.1021/jp402107u] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thrombin is the central protease in the cascade of blood coagulation proteases. The structure of thrombin consists of a double β-barrel core surrounded by connecting loops and helices. Compared to chymotrypsin, thrombin has more extended loops that are thought to have arisen from insertions in the serine protease that evolved to impart greater specificity. Previous experiments showed thermodynamic coupling between ligand binding at the active site and distal exosites. We present a combined approach of molecular dynamics (MD), accelerated molecular dynamics (AMD), and analysis of the residual local frustration of apo-thrombin and active-site-bound (PPACK-thrombin). Community analysis of the MD ensembles identified changes upon active site occupation in groups of residues linked through correlated motions and physical contacts. AMD simulations, calibrated on measured residual dipolar couplings, reveal that upon active site ligation, correlated loop motions are quenched, but new ones connecting the active site with distal sites where allosteric regulators bind emerge. Residual local frustration analysis reveals a striking correlation between frustrated contacts and regions undergoing slow time scale dynamics. The results elucidate a motional network that probably evolved through retention of frustrated contacts to provide facile conversion between ensembles of states.
Collapse
Affiliation(s)
- Brian Fuglestad
- Department of Chemistry and Biochemistry and ⊥Department of Pharmacology, University of California, San Diego , La Jolla, California, United States
| | | | | | | | | |
Collapse
|
114
|
Ding Q, Shen Y, Yang L, Wang X, Rezaie AR. The missense Thr211Pro mutation in the factor X activation peptide of a bleeding patient causes molecular defect in the clotting cascade. Thromb Haemost 2013; 110:53-61. [PMID: 23677006 DOI: 10.1160/th13-03-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/21/2013] [Indexed: 11/05/2022]
Abstract
Factor X (FX) is a vitamin K-dependent coagulation zymogen, which upon activation to factor Xa assembles into the prothrombinase complex to activate prothrombin to thrombin. FX can be activated by either factor VIIa-tissue factor or factor IXa-factor VIIIa in extrinsic and intrinsic pathways, respectively. In this study, we identified a bleeding patient with moderate FX deficiency who exhibits a clotting defect only in the intrinsic pathway. Exome sequencing revealed that the patient carries a novel homozygous missense mutation that results in substitution of Thr211 with Pro in the activation peptide of FX. Thr211 is the site of an O-linked glycosylation in the activation peptide of FX. We postulated that the lack of this post-translational modification specifically impacts the activation of FX by intrinsic Xase, thereby impairing thrombin generation in the subject. To test this hypothesis, we expressed both wild-type FX and FX containing this mutation in mammalian cells and following the purification of the zymogens to homogeneity characterized their properties in both purified and plasma-based assay systems. Analysis of the results suggests that Thr211 to Pro substitution renders the FX mutant a poor substrate for both physiological activators, however, at physiological concentration of the substrate, the clotting defect manifest itself only in the intrinsic pathway, thus explaining the bleeding phenotype for the patient carrying this mutation.
Collapse
Affiliation(s)
- Qiulan Ding
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
115
|
Vu TT, Stafford AR, Leslie BA, Kim PY, Fredenburgh JC, Weitz JI. Batroxobin binds fibrin with higher affinity and promotes clot expansion to a greater extent than thrombin. J Biol Chem 2013; 288:16862-16871. [PMID: 23612970 DOI: 10.1074/jbc.m113.464750] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Batroxobin is a thrombin-like serine protease from the venom of Bothrops atrox moojeni that clots fibrinogen. In contrast to thrombin, which releases fibrinopeptide A and B from the NH2-terminal domains of the Aα- and Bβ-chains of fibrinogen, respectively, batroxobin only releases fibrinopeptide A. Because the mechanism responsible for these differences is unknown, we compared the interactions of batroxobin and thrombin with the predominant γA/γA isoform of fibrin(ogen) and the γA/γ' variant with an extended γ-chain. Thrombin binds to the γ'-chain and forms a higher affinity interaction with γA/γ'-fibrin(ogen) than γA/γA-fibrin(ogen). In contrast, batroxobin binds both fibrin(ogen) isoforms with similar high affinity (Kd values of about 0.5 μM) even though it does not interact with the γ'-chain. The batroxobin-binding sites on fibrin(ogen) only partially overlap with those of thrombin because thrombin attenuates, but does not abrogate, the interaction of γA/γA-fibrinogen with batroxobin. Furthermore, although both thrombin and batroxobin bind to the central E-region of fibrinogen with a Kd value of 2-5 μM, the α(17-51) and Bβ(1-42) regions bind thrombin but not batroxobin. Once bound to fibrin, the capacity of batroxobin to promote fibrin accretion is 18-fold greater than that of thrombin, a finding that may explain the microvascular thrombosis that complicates envenomation by B. atrox moojeni. Therefore, batroxobin binds fibrin(ogen) in a manner distinct from thrombin, which may contribute to its higher affinity interaction, selective fibrinopeptide A release, and prothrombotic properties.
Collapse
Affiliation(s)
- Trang T Vu
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario L8L 2X2, Canada; Departments of Medical Sciences, Hamilton, Ontario L8L 2X2, Canada
| | - Alan R Stafford
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario L8L 2X2, Canada; Medicine, Hamilton, Ontario L8L 2X2, Canada
| | - Beverly A Leslie
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario L8L 2X2, Canada; Medicine, Hamilton, Ontario L8L 2X2, Canada
| | - Paul Y Kim
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario L8L 2X2, Canada; Medicine, Hamilton, Ontario L8L 2X2, Canada
| | - James C Fredenburgh
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario L8L 2X2, Canada; Medicine, Hamilton, Ontario L8L 2X2, Canada
| | - Jeffrey I Weitz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario L8L 2X2, Canada; Departments of Medical Sciences, Hamilton, Ontario L8L 2X2, Canada; Medicine, Hamilton, Ontario L8L 2X2, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8L 2X2, Canada.
| |
Collapse
|
116
|
Yang L, Rezaie AR. Residues of the 39-loop restrict the plasma inhibitor specificity of factor IXa. J Biol Chem 2013; 288:12692-8. [PMID: 23530052 DOI: 10.1074/jbc.m113.459347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two plasma inhibitors, protein Z-dependent protease inhibitor (ZPI) and tissue factor pathway inhibitor (TFPI), effectively inhibit the activity of activated factor X (FXa); however, neither inhibitor exhibits any reactivity with the homologous protease activated factor IX (FIXa). In this study, we investigated the molecular basis for the lack of reactivity of FIXa with these plasma inhibitors and discovered that unique structural features within residues of the 39-loop are responsible for restricting the inhibitor specificity of FIXa. This loop in FXa is highly acidic and contains three Glu residues at positions 36, 37, and 39. On the other hand, the loop is shorter by one residue in FIXa (residue 37 is missing), and it contains a Lys and an Asp at positions 36 and 39, respectively. We discovered that replacing residues of the 39-loop (residues 31-41) of FIXa with corresponding residues of FXa renders the FIXa chimera susceptible to inactivation by both ZPI and TFPI. Thus, the inactivation rate of the FIXa chimera by ZPI in the presence of protein Z (PZ), negatively charged membrane vesicles, and calcium ions approached the same diffusion-limited rate (>10(7) m(-1) s(-1)) that has been observed for the PZ-dependent inhibition of FXa by ZPI. Interestingly, sequence alignments indicated that, similar to FXa, residue 36 is a Glu in both mouse and bovine FIXa and that both proteases are also susceptible to inhibition by the PZ-ZPI complex. These results suggest that structural features within residues of the 39-loop contribute to the resistance of FIXa to inhibition by plasma inhibitors ZPI and TFPI.
Collapse
Affiliation(s)
- Likui Yang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
117
|
Borisevich N, Loznikova S, Sukhodola A, Halets I, Bryszewska M, Shcharbin D. Acidosis, magnesium and acetylsalicylic acid: effects on thrombin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 104:158-164. [PMID: 23266689 DOI: 10.1016/j.saa.2012.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 06/01/2023]
Abstract
Thrombin, an enzyme from the hydrolase family, is the main component of the blood coagulation system. In ischemic stroke it acts as a serine protease that converts soluble fibrinogen into insoluble strands of fibrin forming blood clots in the brain. It has been found to phosphoresce at room temperature in the millisecond and microsecond ranges. The phosphorescence of thrombin was studied under physiological conditions, in acidosis (decrease of pH from 8.0 to 5.0) and on the addition of salts (magnesium sulfate and sodium chloride) and of acetylsalicylic acid, and its connection with thrombin function is discussed. Acidosis significantly increased the internal dynamics of thrombin. We propose that lactate-acidosis plays a protective role in stroke, preventing the formation of clots. The addition of NaCl and MgSO(4) in different concentrations increased the internal dynamics of thrombin. Also, the addition of MgSO(4) decreased thrombin-induced platelet aggregation. However, magnesium sulfate and acetylsalicylic acid in the therapeutic concentrations used for treatment of ischemic stroke had no effect on thrombin internal dynamics. The data obtained will help to elucidate the conformational stability of thrombin under conditions modulating lactate-acidosis and in the presence of magnesium sulfate.
Collapse
Affiliation(s)
- Nikolaj Borisevich
- BI Stepanov Institute of Physics of NASB, Skoriny str. 68, 220072 Minsk, Belarus
| | | | | | | | | | | |
Collapse
|
118
|
Ding Q, Yang L, Hassanian SM, Rezaie AR. Expression and functional characterisation of natural R147W and K150del variants of protein C in the Chinese population. Thromb Haemost 2013; 109:614-24. [PMID: 23389250 DOI: 10.1160/th12-10-0760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/06/2013] [Indexed: 01/19/2023]
Abstract
Protein C is a vitamin K-dependent serine protease zymogen in plasma which upon activation to activated protein C (APC) by thrombin down-regulates the clotting cascade by limited proteolysis of the procoagulant cofactors Va and VIIIa. In addition to its anticoagulant activity, APC also exhibits potent cytoprotective and anti-inflammatory activities. While the anticoagulant activity of APC is enhanced by the cofactor function of protein S on membrane phospholipids, the cytoprotective intracellular signalling activity of APC requires complex formation with endothelial protein C receptor (EPCR) expressed on the vascular endothelium. Two natural variants of APC [Arg-147 to Trp substitution (R147W) and Lys-150 deletion (K150del)] have been identified in the Chinese population as hotspot mutants occurring with high frequencies of 27.8% and 13.9%, respectively, among 36 protein C-deficient subjects. The affected individuals exhibit variable thrombotic tendencies. To understand the underlying cause of the thrombotic phenotype in these patients, we expressed these two protein C variants in mammalian cells and characterised their anticoagulant and anti-inflammatory properties using established in vitro and cellular assays. Our results suggest that both R147W and K150del variants have normal amidolytic and proteolytic activities in the absence of cofactors. However, the R147W mutant exhibits ~3 times lower affinity for binding to EPCR and the K150del variant has ~2-3-fold impaired anticoagulant activity in the presence of protein S. These results provide some insight into the possible pathogenic mechanism of protein C deficiency in Chinese patients carrying these mutations.
Collapse
Affiliation(s)
- Qiulan Ding
- Alireza R. Rezaie, PhD, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
119
|
Fernández PV, Quintana I, Cerezo AS, Caramelo JJ, Pol-Fachin L, Verli H, Estevez JM, Ciancia M. Anticoagulant activity of a unique sulfated pyranosic (1->3)-β-L-arabinan through direct interaction with thrombin. J Biol Chem 2013; 288:223-33. [PMID: 23161548 PMCID: PMC3537017 DOI: 10.1074/jbc.m112.386441] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/19/2012] [Indexed: 11/06/2022] Open
Abstract
A highly sulfated 3-linked β-arabinan (Ab1) with arabinose in the pyranose form was obtained from green seaweed Codium vermilara (Bryopsidales). It comprised major amounts of units sulfated on C-2 and C-4 and constitutes the first polysaccharide of this type isolated in the pure form and fully characterized. Ab1 showed anticoagulant activity by global coagulation tests. Less sulfated arabinans obtained from the same seaweed have less or no activity. Ab1 exerts its activity through direct and indirect (antithrombin- and heparin cofactor II-mediated) inhibition of thrombin. Direct thrombin inhibition was studied in detail. By native PAGE, it was possible to detect formation of a complex between Ab1 and human thrombin (HT). Ab1 binding to HT was measured by fluorescence spectroscopy. CD spectra of the Ab1 complex suggested that ligand binding induced a small conformational change on HT. Ab1-thrombin interactions were studied by molecular dynamic simulations using the persulfated octasaccharide as model compound. Most carbohydrate-protein contacts would occur by interaction of sulfate groups with basic amino acid residues on the surface of the enzyme, more than 60% of them being performed by the exosite 2-composing residues. In these interactions, the sulfate groups on C-2 were shown to interact more intensely with the thrombin structure. In contrast, the disulfated oligosaccharide does not promote major conformational modifications at the catalytic site when complexed to exosite 1. These results show that this novel pyranosic sulfated arabinan Ab1 exerts its anticoagulant activity by a mechanism different from those found previously for other sulfated polysaccharides and glycosaminoglycans.
Collapse
Affiliation(s)
- Paula V. Fernández
- From the Cátedra de Química de Biomoléculas, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, 1417 Buenos Aires, Argentina
| | - Irene Quintana
- the Laboratorio de Hemostasia y Trombosis, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Alberto S. Cerezo
- the Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Julio J. Caramelo
- the Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Laercio Pol-Fachin
- the Programa de Pos-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - Hugo Verli
- the Programa de Pos-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
- the Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90610–000 Porto Alegre, Rio Grande do Sul, Brasil, and
| | - José M. Estevez
- the Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Marina Ciancia
- From the Cátedra de Química de Biomoléculas, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, 1417 Buenos Aires, Argentina
- the Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
120
|
Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities. Proc Natl Acad Sci U S A 2012. [PMID: 23197839 DOI: 10.1073/pnas.1218414109] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The serine protease α-thrombin is a dual-action protein that mediates the blood-clotting cascade. Thrombin alone is a procoagulant, cleaving fibrinogen to make the fibrin clot, but the thrombin-thrombomodulin (TM) complex initiates the anticoagulant pathway by cleaving protein C. A TM fragment consisting of only the fifth and sixth EGF-like domains (TM56) is sufficient to bind thrombin, but the presence of the fourth EGF-like domain (TM456) is critical to induce the anticoagulant activity of thrombin. Crystallography of the thrombin-TM456 complex revealed no significant structural changes in thrombin, suggesting that TM4 may only provide a scaffold for optimal alignment of protein C for its cleavage by thrombin. However, a variety of experimental data have suggested that the presence of TM4 may affect the dynamic properties of the active site loops. In the present work, we have used both conventional and accelerated molecular dynamics simulation to study the structural dynamic properties of thrombin, thrombin:TM56, and thrombin:TM456 across a broad range of time scales. Two distinct yet interrelated allosteric pathways are identified that mediate both the pro- and anticoagulant activities of thrombin. One allosteric pathway, which is present in both thrombin:TM56 and thrombin:TM456, directly links the TM5 domain to the thrombin active site. The other allosteric pathway, which is only present on slow time scales in the presence of the TM4 domain, involves an extended network of correlated motions linking the TM4 and TM5 domains and the active site loops of thrombin.
Collapse
|
121
|
Active site mapping of trypsin, thrombin and matriptase-2 by sulfamoyl benzamidines. Bioorg Med Chem 2012; 20:6489-505. [DOI: 10.1016/j.bmc.2012.08.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/16/2012] [Indexed: 12/16/2022]
|
122
|
Qureshi SH, Yang L, Rezaie AR. Contribution of the NH2-terminal EGF-domain of factor IXa to the specificity of intrinsic tenase. Thromb Haemost 2012; 108:1154-64. [PMID: 23014580 DOI: 10.1160/th12-06-0436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/03/2012] [Indexed: 11/05/2022]
Abstract
Factor IXa (FIXa) is a vitamin K-dependent coagulation serine protease which binds to factor VIIIa (FVIIIa) on negatively charged phospholipid vesicles (PCPS) to catalyse the activation of factor X (FX) to factor Xa (FXa) in the intrinsic pathway. Fluorescence resonance energy transfer (FRET) studies have indicated that the Gla-domain-dependent interaction of FIXa and FX with PCPS in the presence of FVIIIa positions the active-site of the protease at an appropriate height above the membrane surface to optimise the catalytic reaction. In this study, we investigated the contribution of the NH2-terminal EGF-domain (EGF1) of FIXa to the recognition specificity of intrinsic tenase by constructing an EGF1 deletion mutant of FIXa (FIXa-desEGF1) and characterising the properties of the mutant in kinetic, direct binding and FRET assays. The results of direct binding and kinetic studies demonstrated that the binding affinity of the mutant for interaction with FVIIIa on PCPS has been impaired greater than 10-fold and the catalytic efficiency of the mutant protease-FVIIIa-PCPS complex in the activation of FX has been decreased ~100-fold. By contrast, the mutant protease exhibited a normal activity toward FX in the absence of the protein cofactor. FRET measurements revealed that the distance of the active-site of the mutant FIXa relative to PCPS vesicles has been decreased 10 Å from 75 ± 2 Å for FIXa to 65 ± 2 Å for FIXa-desEGF1 independent of FVIIIa. These results suggest that the NH2-terminal EGF-domain of FIXa provides a binding-site for FVIIIa and plays an essential spacer function in the intrinsic tenase complex.
Collapse
Affiliation(s)
- Shabir H Qureshi
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | |
Collapse
|
123
|
Affiliation(s)
- Michiel Coppens
- From the Population Health Research Institute, Hamilton, Ontario, Canada (M.C., J.W.E., J.H.); the Department of Medicine, McMaster University, Hamilton, Ontario, Canada (M.C., J.W.E., J.I.W., J.H.); Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada (J.W.E., J.I.W.); AstraZeneca R&D Mölndal, Mölndal, Sweden (D.G.); and the Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (M.C.)
| | - John W. Eikelboom
- From the Population Health Research Institute, Hamilton, Ontario, Canada (M.C., J.W.E., J.H.); the Department of Medicine, McMaster University, Hamilton, Ontario, Canada (M.C., J.W.E., J.I.W., J.H.); Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada (J.W.E., J.I.W.); AstraZeneca R&D Mölndal, Mölndal, Sweden (D.G.); and the Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (M.C.)
| | - David Gustafsson
- From the Population Health Research Institute, Hamilton, Ontario, Canada (M.C., J.W.E., J.H.); the Department of Medicine, McMaster University, Hamilton, Ontario, Canada (M.C., J.W.E., J.I.W., J.H.); Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada (J.W.E., J.I.W.); AstraZeneca R&D Mölndal, Mölndal, Sweden (D.G.); and the Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (M.C.)
| | - Jeffrey I. Weitz
- From the Population Health Research Institute, Hamilton, Ontario, Canada (M.C., J.W.E., J.H.); the Department of Medicine, McMaster University, Hamilton, Ontario, Canada (M.C., J.W.E., J.I.W., J.H.); Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada (J.W.E., J.I.W.); AstraZeneca R&D Mölndal, Mölndal, Sweden (D.G.); and the Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (M.C.)
| | - Jack Hirsh
- From the Population Health Research Institute, Hamilton, Ontario, Canada (M.C., J.W.E., J.H.); the Department of Medicine, McMaster University, Hamilton, Ontario, Canada (M.C., J.W.E., J.I.W., J.H.); Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada (J.W.E., J.I.W.); AstraZeneca R&D Mölndal, Mölndal, Sweden (D.G.); and the Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (M.C.)
| |
Collapse
|
124
|
Duong-Thi MD, Bergström M, Fex T, Isaksson R, Ohlson S. High-Throughput Fragment Screening by Affinity LC-MS. ACTA ACUST UNITED AC 2012; 18:160-71. [DOI: 10.1177/1087057112459271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fragment screening, an emerging approach for hit finding in drug discovery, has recently been proven effective by its first approved drug, vemurafenib, for cancer treatment. Techniques such as nuclear magnetic resonance, surface plasmon resonance, and isothemal titration calorimetry, with their own pros and cons, have been employed for screening fragment libraries. As an alternative approach, screening based on high-performance liquid chromatography separation has been developed. In this work, we present weak affinity LC/MS as a method to screen fragments under high-throughput conditions. Affinity-based capillary columns with immobilized thrombin were used to screen a collection of 590 compounds from a fragment library. The collection was divided into 11 mixtures (each containing 35 to 65 fragments) and screened by MS detection. The primary screening was performed in <4 h (corresponding to >3500 fragments per day). Thirty hits were defined, which subsequently entered a secondary screening using an active site-blocked thrombin column for confirmation of specificity. One hit showed selective binding to thrombin with an estimated dissociation constant ( KD) in the 0.1 mM range. This study shows that affinity LC/MS is characterized by high throughput, ease of operation, and low consumption of target and fragments, and therefore it promises to be a valuable method for fragment screening.
Collapse
Affiliation(s)
| | | | - Tomas Fex
- Astra&Zeneca R&D Mölndal, Mölndal, Sweden
| | | | | |
Collapse
|
125
|
Bradford HN, Krishnaswamy S. Meizothrombin is an unexpectedly zymogen-like variant of thrombin. J Biol Chem 2012; 287:30414-25. [PMID: 22815477 DOI: 10.1074/jbc.m112.394809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Thrombin is produced by the ordered action of prothrombinase on two cleavage sites in prothrombin. Meizothrombin, a proteinase precursor of thrombin, is a singly cleaved species that accumulates abundantly as an intermediate. We now show that covalent linkage of the N-terminal propiece with the proteinase domain in meizothrombin imbues it with exceptionally zymogen-like character. Meizothrombin exists in a slowly reversible equilibrium between two equally populated states, differing by as much as 140-fold in their affinity for active site-directed ligands. The distribution between the two forms, designated zymogen-like and proteinase-like, is affected by Na(+), thrombomodulin binding, or active site ligation. In rapid kinetic measurements with prothrombinase, we also show that the zymogen-like form is produced following the initial cleavage reaction and slowly equilibrates with the proteinase-like form in a previously unanticipated rate-limiting step before it can be further cleaved to thrombin. The reversible equilibration of meizothrombin between zymogen- and proteinase-like states provides new insights into its ability to selectively exhibit the anticoagulant function of thrombin and the mechanistic basis for its accumulation during prothrombin activation. Our findings also provide unexpected insights into the regulation of proteinase function and how the formation of meizothrombin may yield a long lived intermediate with an important regulatory role in coagulation.
Collapse
Affiliation(s)
- Harlan N Bradford
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
126
|
Rana S, Yang L, Hassanian SM, Rezaie AR. Determinants of the specificity of protease-activated receptors 1 and 2 signaling by factor Xa and thrombin. J Cell Biochem 2012; 113:977-84. [PMID: 22034092 DOI: 10.1002/jcb.23427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Factor Xa (FXa) elicits intracellular signaling responses through the activation of protease-activated receptor 2 (PAR2) and possibly also through PAR1 in endothelial cells. In this study, we investigated FXa signaling in endothelial cells when the protease was either in free form or assembled into the prothrombinase complex. Furthermore, we prepared several wild-type and mutant PAR1 and PAR2 cleavage-reporter constructs in which their exodomains were fused to cDNA encoding for a soluble alkaline phosphatase (ALP). In the mutants, P2 residues were exchanged between PAR1 and PAR2 cleavage-reporter constructs and the hirudin-like binding site (HLBS) of PAR1 was inserted into the homologous site of PAR2. In non-transfected cells, FXa elicited a protective response which could be blocked by a specific anti-PAR2 but not by an anti-PAR1 antibody. A similar protective activity was observed for FXa in the prothrombinase complex. Further studies revealed that neither the Gla- nor EGF1-domain of FXa is required for its signaling activity, however, the N-terminus Arg-86 and Lys-87 of the EGF2-domain were essential. In the cleavage-reporter transfected cells, FXa cleaved the PAR2 construct effectively, however, replacing its P2-Gly with P2-Pro of PAR1 impaired its cleavage by FXa but improved it by thrombin. A PAR2 construct containing both P2-Pro and HLBS of PAR1 was poorly cleaved by FXa, but effectively by thrombin. A PAR1 construct containing P2 and P3 residues of PAR2 was poorly cleaved by thrombin but effectively by FXa. These results provide new insight into mechanisms through which coagulation proteases specifically interact with their target PAR receptors.
Collapse
Affiliation(s)
- Soumendra Rana
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
127
|
Biela A, Sielaff F, Terwesten F, Heine A, Steinmetzer T, Klebe G. Ligand Binding Stepwise Disrupts Water Network in Thrombin: Enthalpic and Entropic Changes Reveal Classical Hydrophobic Effect. J Med Chem 2012; 55:6094-110. [DOI: 10.1021/jm300337q] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adam Biela
- Department
of Pharmaceutical Chemistry, Philipps University
Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Frank Sielaff
- Department
of Pharmaceutical Chemistry, Philipps University
Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Felix Terwesten
- Department
of Pharmaceutical Chemistry, Philipps University
Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Andreas Heine
- Department
of Pharmaceutical Chemistry, Philipps University
Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Torsten Steinmetzer
- Department
of Pharmaceutical Chemistry, Philipps University
Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gerhard Klebe
- Department
of Pharmaceutical Chemistry, Philipps University
Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
128
|
Yang L, Ding Q, Huang X, Olson ST, Rezaie AR. Characterization of the heparin-binding site of the protein z-dependent protease inhibitor. Biochemistry 2012; 51:4078-85. [PMID: 22540147 DOI: 10.1021/bi300353c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-molecular weight heparins promote the protein Z-dependent protease inhibitor (ZPI) inhibition of factors Xa (FXa) and XIa (FXIa) by a template mechanism. To map the heparin-binding site of ZPI, the role of basic residues of the D-helix (residues Lys-113, Lys-116, and Lys-125) in the interaction with heparin was evaluated by either substituting these residues with Ala (ZPI-3A) or replacing the D-helix with the corresponding loop of the non-heparin-binding serpin α(1)-proteinase inhibitor (ZPI-D-helix(α1-PI)). Furthermore, both the C-helix (contains two basic residues, Lys-104 and Arg-105) and the D-helix of ZPI were substituted with the corresponding loops of α(1)-proteinase inhibitor (ZPI-CD-helix(α1-PI)). All mutants exhibited near normal reactivity with FXa and FXIa in the absence of cofactors and in the presence of protein Z and membrane cofactors. By contrast, the mutants interacted with heparin with a lower affinity and the ~48-fold heparin-mediated enhancement in the rate of FXa inhibition by ZPI was reduced to ~30-fold for ZPI-3A, ~15-fold for ZPI-D-helix(α1-PI), and ~8-fold for ZPI-CD-helix(α1-PI). Consistent with a template mechanism for heparin cofactor action, ZPI-CD-helix(α1-PI) inhibition of a FXa mutant containing a mutation in the heparin-binding site (FXa-R240A) was minimally affected by heparin. A significant decrease (~2-5-fold) in the heparin template effect was also observed for the inhibition of FXIa by ZPI mutants. Interestingly, ZPI derivatives exhibited a markedly elevated stoichiometry of inhibition with FXIa in the absence of heparin. These results suggest that basic residues of both helices C and D of ZPI interact with heparin to modulate the inhibitory function of the serpin.
Collapse
Affiliation(s)
- Likui Yang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
129
|
The role of structural information in the discovery of direct thrombin and factor Xa inhibitors. Trends Pharmacol Sci 2012; 33:279-88. [PMID: 22503439 DOI: 10.1016/j.tips.2012.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 11/21/2022]
Abstract
The quest for novel medications to treat thromboembolic disorders such as venous thrombosis, pulmonary embolism and stroke received a boost when the 3D structures of two major players in the blood coagulation cascade were determined in 1989 and 1993. Structure-guided design of inhibitors of thrombin (factor IIa, fIIa) and factor Xa (fXa) eventually led to the discovery of potent, selective, efficacious, orally active and safe compounds that proved successful in clinical studies. In 2008, the direct thrombin inhibitor dabigatran etexilate developed by Boehringer Ingelheim became the first novel antithrombotic molecular entity to enter the market in 50 years. Additional compounds targeting factor Xa were subsequently granted marketing authorization or are in late-stage clinical studies. In this review, I use selected case studies to describe the discovery of novel fIIa and fXa inhibitors, with a particular emphasis on the pre-eminent role that structural information played in this process.
Collapse
|
130
|
Clemente JC, Nulton E, Nelen M, Todd MJ, Maguire D, Schalk-Hihi C, Kuo LC, Zhang SP, Flores CM, Kranz JK. Screening and characterization of human monoglyceride lipase active site inhibitors using orthogonal binding and functional assays. ACTA ACUST UNITED AC 2012; 17:629-40. [PMID: 22496098 DOI: 10.1177/1087057112441012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endocannabinoids such as 2-arachidonylglycerol (2-AG) are ligands for cannabinoid receptors that contribute to the transmission and modulation of pain signals. The antinociceptive effect of exogenous 2-AG suggests that inhibition of monoglyceride lipase (MGLL), the enzyme responsible for degrading 2-AG and arresting signaling, may be a target for pain modulation. Here we describe the characterization of MGLL ligands following a high-throughput screening campaign. Ligands were discovered using ThermoFluor, a label-free affinity-based screening tool that measures ligand binding via modulation of protein thermal stability. A kinetic fluorescent assay using the substrate 4-methylcoumarin butyrate was used to counterscreen confirmed HTS positives. A comparison of results from binding and inhibition assays allowed elucidation of compound mechanism of action. We demonstrate the limit of each technology and the benefits of using orthogonal assay techniques in profiling compounds.
Collapse
Affiliation(s)
- José C Clemente
- GlaxoSmithKline, Oncology Research & Development, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Liporetro-D-peptides - A novel class of highly selective thrombin inhibitors. Thromb Res 2012; 129:e97-105. [DOI: 10.1016/j.thromres.2011.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 09/19/2011] [Accepted: 10/11/2011] [Indexed: 11/23/2022]
|
132
|
Figueiredo AC, Clement CC, Zakia S, Gingold J, Philipp M, Pereira PJB. Rational design and characterization of D-Phe-Pro-D-Arg-derived direct thrombin inhibitors. PLoS One 2012; 7:e34354. [PMID: 22457833 PMCID: PMC3311629 DOI: 10.1371/journal.pone.0034354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 02/28/2012] [Indexed: 11/30/2022] Open
Abstract
The tremendous social and economic impact of thrombotic disorders, together with the considerable risks associated to the currently available therapies, prompt for the development of more efficient and safer anticoagulants. Novel peptide-based thrombin inhibitors were identified using in silico structure-based design and further validated in vitro. The best candidate compounds contained both l- and d-amino acids, with the general sequence d-Phe(P3)-Pro(P2)-d-Arg(P1)-P1′-CONH2. The P1′ position was scanned with l- and d-isomers of natural or unnatural amino acids, covering the major chemical classes. The most potent non-covalent and proteolysis-resistant inhibitors contain small hydrophobic or polar amino acids (Gly, Ala, Ser, Cys, Thr) at the P1′ position. The lead tetrapeptide, d-Phe-Pro-d-Arg-d-Thr-CONH2, competitively inhibits α-thrombin's cleavage of the S2238 chromogenic substrate with a Ki of 0.92 µM. In order to understand the molecular details of their inhibitory action, the three-dimensional structure of three peptides (with P1′ l-isoleucine (fPrI), l-cysteine (fPrC) or d-threonine (fPrt)) in complex with human α-thrombin were determined by X-ray crystallography. All the inhibitors bind in a substrate-like orientation to the active site of the enzyme. The contacts established between the d-Arg residue in position P1 and thrombin are similar to those observed for the l-isomer in other substrates and inhibitors. However, fPrC and fPrt disrupt the active site His57-Ser195 hydrogen bond, while the combination of a P1 d-Arg and a bulkier P1′ residue in fPrI induce an unfavorable geometry for the nucleophilic attack of the scissile bond by the catalytic serine. The experimental models explain the observed relative potency of the inhibitors, as well as their stability to proteolysis. Moreover, the newly identified direct thrombin inhibitors provide a novel pharmacophore platform for developing antithrombotic agents by exploring the conformational constrains imposed by the d-stereochemistry of the residues at positions P1 and P1′.
Collapse
Affiliation(s)
- Ana C. Figueiredo
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Cristina C. Clement
- Department of Chemistry, Lehman College & Biochemistry Program, CUNY Graduate School, New York, New York, United States of America
- * E-mail: (CC); (MP); (PP)
| | - Sheuli Zakia
- Department of Chemistry, Lehman College & Biochemistry Program, CUNY Graduate School, New York, New York, United States of America
| | - Julian Gingold
- MD Program at Mount Sinai School of Medicine, New York, New York, United States of America
| | - Manfred Philipp
- Department of Chemistry, Lehman College & Biochemistry Program, CUNY Graduate School, New York, New York, United States of America
- * E-mail: (CC); (MP); (PP)
| | - Pedro J. B. Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- * E-mail: (CC); (MP); (PP)
| |
Collapse
|
133
|
Manithody C, Yang L, Rezaie AR. Identification of exosite residues of factor Xa involved in recognition of PAR-2 on endothelial cells. Biochemistry 2012; 51:2551-7. [PMID: 22409427 DOI: 10.1021/bi300200p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent results have indicated that factor Xa (FXa) cleaves protease-activated receptor 2 (PAR-2) to elicit protective intracellular signaling responses in endothelial cells. In this study, we investigated the molecular determinants of the specificity of FXa interaction with PAR-2 by monitoring the cleavage of PAR-2 by FXa in endothelial cells transiently transfected with a PAR-2 cleavage reporter construct in which the extracellular domain of the receptor was fused to cDNA encoding for alkaline phosphatase. Comparison of the cleavage efficiency of PAR-2 by a series of FXa mutants containing mutations in different surface loops indicated that the acidic residues of 39-loop (Glu-36, Glu-37, and Glu-39) and the basic residues of 60-loop (Lys-62 and Arg-63), 148-loop (Arg-143, Arg-150, and Arg-154), and 162-helix (Arg-165 and Lys-169) contribute to the specificity of receptor recognition by FXa on endothelial cells. This was evidenced by significantly reduced activity of mutants toward PAR-2 expressed on transfected cells. The extent of loss in the PAR-2 cleavage activity of FXa mutants correlated with the extent of loss in their PAR-2-dependent intracellular signaling activity. Further characterization of FXa mutants indicated that, with the exception of basic residues of 162-helix, which play a role in the recognition specificity of the prothrombinase complex, none of the surface loop residues under study makes a significant contribution to the activity of FXa in the prothrombinase complex. These results provide new insight into mechanisms through which FXa specifically interacts with its macromolecular substrates in the clotting and signaling pathways.
Collapse
Affiliation(s)
- Chandrashekhara Manithody
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | | | | |
Collapse
|
134
|
Biela A, Khayat M, Tan H, Kong J, Heine A, Hangauer D, Klebe G. Impact of ligand and protein desolvation on ligand binding to the S1 pocket of thrombin. J Mol Biol 2012; 418:350-66. [PMID: 22366545 DOI: 10.1016/j.jmb.2012.01.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/16/2012] [Accepted: 01/30/2012] [Indexed: 11/18/2022]
Abstract
In the present study, we investigate the impact of a tightly bound water molecule on ligand binding in the S1 pocket of thrombin. The S1 pocket contains a deeply buried deprotonated aspartate residue (Asp189) that is, due to its charged state, well hydrated in the uncomplexed state. We systematically studied the importance of this water molecule by evaluating a series of ligands that contains pyridine-type P1 side chains that could potentially alter the binding properties of this water molecule. All of the pyridine derivatives retain the original hydration state albeit sometimes with a slight perturbance. In order to prevent a direct H-bond formation with Asp189, and to create a permanent positive charge on the P1 side chain that is positioned adjacent to the Asp189 carboxylate anion, we methylated the pyridine nitrogen. This methylation resulted in displacement of water but was accompanied by a loss in binding affinity. Quantum chemical calculations of the ligand solvation free energy showed that the positively charged methylpyridinium derivatives suffer a large penalty of desolvation upon binding. Consequently, they have a substantially less favorable enthalpy of binding. In addition to the ligand desolvation penalty, the hydration shell around Asp189 has to be overcome, which is achieved in nearly all pyridinium derivatives. Only for the ortho derivative is a partial population of a water next to Asp189 found. Possibly, the gain of electrostatic interactions between the charged P1 side chain and Asp189 helps to compensate for the desolvation penalty. In all uncharged pyridine derivatives, the solvation shell remains next to Asp189, partly mediating interactions between ligand and protein. In the case of the para-pyridine derivative, a strongly disordered cluster of water sites is observed between ligand and Asp189.
Collapse
Affiliation(s)
- A Biela
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
135
|
van Berkel SS, van der Lee B, van Delft FL, Wagenvoord R, Hemker HC, Rutjes FPJT. Fluorogenic peptide-based substrates for monitoring thrombin activity. ChemMedChem 2012; 7:606-17. [PMID: 22294421 DOI: 10.1002/cmdc.201100560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/02/2012] [Indexed: 11/11/2022]
Abstract
The synthesis of a series of peptides containing C-terminal 7-amino-4-methylcoumarin (AMC) for use in the thrombin generation test (TGT) is described. The lead structure in this project was H-Gly-Gly-Arg-AMC, of which the water solubility and kinetic parameters (K(M) and k(cat)) are greatly improved over those of the substrate in current use in the TGT: Cbz-Gly-Gly-Arg-AMC. A series of N-terminally substituted Gly-Gly-Arg-AMC derivatives were synthesized, as well as implementation of structural changes at either the P(2) or P(3) position of the peptide backbone. Furthermore, two substrates were synthesized that have structural similarities to the chromogenic thrombin substrate SQ68 or that contain a 1,2,3-triazole moiety in the peptide chain, mimicking an amide bond. To determine the applicability of newly synthesized fluorogenic substrates for monitoring continuous thrombin generation, the K(M) and k(cat) values of the conversion of these fluorogenic substrates by thrombin (FIIa) and factor Xa (FXa) were quantified. An initial selection was made on basis of these data, and suitable substrates were further evaluated as substrates in the thrombin generation assay. Assessment of the acquired data showed that several substrates, including the SQ68 derivative Et-malonate-Gly-Arg-AMC and N-functionalized Gly-Gly-Arg-AMC derivatives, are suitable candidates for replacement of the substrate currently in use.
Collapse
Affiliation(s)
- Sander S van Berkel
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
136
|
Nam K, Eom K, Yang J, Park J, Lee G, Jang K, Lee H, Lee SW, Yoon DS, Lee CY, Kwon T. Aptamer-functionalized nano-pattern based on carbon nanotube for sensitive, selective protein detection. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33688j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
137
|
Thrombin in Ischemic Stroke Targeting. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
138
|
Wang JF, Hao P, Li YX, Dai JL, Li X. Exploration of conformational transition in the aryl-binding site of human FXa using molecular dynamics simulations. J Mol Model 2011; 18:2717-25. [PMID: 22116613 DOI: 10.1007/s00894-011-1295-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/24/2011] [Indexed: 11/25/2022]
Abstract
Human coagulation Factor X (FX), a member of the vitamin K-dependent serine protease family, is a crucial component of the human coagulation cascade. Activated FX (FXa) participates in forming the prothrombinase complex on activated platelets to convert prothrombin to thrombin in coagulation reactions. In the current study, 30-ns MD simulations were performed on both the open and closed states of human FXa. Root mean squares (RMS) fluctuations showed that structural fluctuations concentrated on the loop regions of FXa, and the presence of a ligand in the closed system resulted in larger fluctuations of the gating residues. The open system had a gating distance from 9.23 to 11.33 Å, i.e., significantly larger than that of the closed system (4.69-6.35 Å), which allows diversified substrates of variable size to enter. Although the solvent accessible surface areas (SASA) of FXa remained the same in both systems, the open system generally had a larger total SASA or hydrophobic SASA (or both) for residues surrounding the S4 pocket. Additionally, more hydrogen bonds were formed in the closed state than in the open state of FXa, which is believed to play a significant role in maintaining the closed confirmation of the aryl-binding site. Based on the results of MD simulations, we propose that an induced-fit mechanism governs the functioning of human coagulation FX, which helps provide a better understanding of the interactions between FXa and its substrate, and the mechanism of the conformational changes involved in human coagulation.
Collapse
Affiliation(s)
- Jing-Fang Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China.
| | | | | | | | | |
Collapse
|
139
|
WU EMILIAL, HAN KELI, ZHANG JOHNZH. COMPUTATIONAL STUDY FOR BINDING OF OSCILLARIN TO HUMAN α-THROMBIN. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633609004903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Quantum mechanical calculation and molecular dynamics simulation have been carried out to study binding of Oscillarin (OSC), an antithrombotic marine natural product to human α-thrombin. The binding interaction energies between the inhibitor and individual protein fragments are calculated using a combination of HF and DFT methods. Study shows that the strong binding of OSC to Asp189, Ser214, Trp215, Gly216, and Gly219 is the primary mechanism of drug binding to thrombin. The individual residue–ligand interaction energies provide detailed quantitative information about specific residue interaction with the ligand that should be extremely useful to our understanding of the molecular nature of protein–ligand binding.
Collapse
Affiliation(s)
- EMILIA L. WU
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - KELI HAN
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - JOHN Z. H. ZHANG
- State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
140
|
Ng NM, Pierce JD, Webb GI, Ratnikov BI, Wijeyewickrema LC, Duncan RC, Robertson AL, Bottomley SP, Boyd SE, Pike RN. Discovery of Amino Acid Motifs for Thrombin Cleavage and Validation Using a Model Substrate. Biochemistry 2011; 50:10499-507. [DOI: 10.1021/bi201333g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natasha M. Ng
- Department
of Biochemistry and
Molecular Biology, Monash University, Clayton,
Victoria 3800, Australia
| | - James D. Pierce
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037-1062,
United States
| | - Geoffrey I. Webb
- Clayton School
of Information
Technology, Monash University, Clayton,
Victoria 3800, Australia
| | - Boris I. Ratnikov
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037-1062,
United States
| | - Lakshmi C. Wijeyewickrema
- Department
of Biochemistry and
Molecular Biology, Monash University, Clayton,
Victoria 3800, Australia
| | - Renee C. Duncan
- Department
of Biochemistry and
Molecular Biology, Monash University, Clayton,
Victoria 3800, Australia
| | - Amy L. Robertson
- Department
of Biochemistry and
Molecular Biology, Monash University, Clayton,
Victoria 3800, Australia
| | - Stephen P. Bottomley
- Department
of Biochemistry and
Molecular Biology, Monash University, Clayton,
Victoria 3800, Australia
| | - Sarah E. Boyd
- School of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Robert N. Pike
- Department
of Biochemistry and
Molecular Biology, Monash University, Clayton,
Victoria 3800, Australia
| |
Collapse
|
141
|
Koh CY, Kumar S, Kazimirova M, Nuttall PA, Radhakrishnan UP, Kim S, Jagadeeswaran P, Imamura T, Mizuguchi J, Iwanaga S, Swaminathan K, Kini RM. Crystal structure of thrombin in complex with S-variegin: insights of a novel mechanism of inhibition and design of tunable thrombin inhibitors. PLoS One 2011; 6:e26367. [PMID: 22053189 PMCID: PMC3203879 DOI: 10.1371/journal.pone.0026367] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/25/2011] [Indexed: 11/19/2022] Open
Abstract
The inhibition of thrombin is one of the important treatments of pathological blood clot formation. Variegin, isolated from the tropical bont tick, is a novel molecule exhibiting a unique ‘two-modes’ inhibitory property on thrombin active site (competitive before cleavage, noncompetitive after cleavage). For the better understanding of its function, we have determined the crystal structure of the human α-thrombin:synthetic-variegin complex at 2.4 Å resolution. The structure reveals a new mechanism of thrombin inhibition by disrupting the charge relay system. Based on the structure, we have designed 17 variegin variants, differing in potency, kinetics and mechanism of inhibition. The most active variant is about 70 times more potent than the FDA-approved peptidic thrombin inhibitor, hirulog-1/bivalirudin. In vivo antithrombotic effects of the variegin variants correlate well with their in vitro affinities for thrombin. Our results encourage that variegin and the variants show strong potential for the development of tunable anticoagulants.
Collapse
Affiliation(s)
- Cho Yeow Koh
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sundramurthy Kumar
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Uvaraj P. Radhakrishnan
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Seongcheol Kim
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | | | - Jun Mizuguchi
- The Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan
| | - Sadaaki Iwanaga
- The Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan
| | - Kunchithapadam Swaminathan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (RMK); (KS)
| | - R. Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: (RMK); (KS)
| |
Collapse
|
142
|
A zymogen-like factor Xa variant corrects the coagulation defect in hemophilia. Nat Biotechnol 2011; 29:1028-33. [PMID: 22020385 PMCID: PMC4157830 DOI: 10.1038/nbt.1995] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/07/2011] [Indexed: 11/17/2022]
Abstract
Effective therapies are needed to control excessive bleeding in a range of clinical conditions. We describe a surprisingly useful approach to improve hemostasis in vivo using a variant of coagulation factor Xa (FXaI16L). This conformationally pliant derivative is partially inactive due to a defect in transitioning from zymogen to protease 1,2. Using mouse models of hemophilia, we show that FXaI16L has a prolonged half-life, relative to wild-type FXa and does not cause excessive activation of coagulation. Once clotting mechanisms are activated to produce its cofactor FVa, FXaI16L is driven to the protease state and restores hemostasis in hemophilic animals upon vascular injury. Moreover, using human or murine analogs, we show that FXaI16L is more efficacious than FVIIa which is used to treat bleeding in hemophilia inhibitor patients3. Because of its underlying mechanism of action, FXaI16L may provide an effective strategy to enhance blood clot formation and act as a rapid pan-hemostatic agent for the treatment of bleeding conditions.
Collapse
|
143
|
Abdel Aziz MH, Mosier PD, Desai UR. Identification of the site of binding of sulfated, low molecular weight lignins on thrombin. Biochem Biophys Res Commun 2011; 413:348-52. [PMID: 21893043 PMCID: PMC3183121 DOI: 10.1016/j.bbrc.2011.08.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
Sulfated, low molecular weight lignins (LMWLs), designed recently as macromolecular mimetics of the low molecular weight heparins (LMWHs), were found to exhibit a novel allosteric mechanism of inhibition of human thrombin, factor Xa and plasmin, which translates into potent human blood anticoagulation potential. To identify the site of binding of sulfated LMWLs, a panel of site-directed thrombin mutants was studied. Substitution of alanine for Arg(93) or Arg(175) induced a 7-8-fold decrease in inhibition potency, while Arg(165)Ala, Lys(169)Ala, Arg(173)Ala and Arg(233)Ala thrombin mutants displayed a 2-4-fold decrease. Other exosite 2 residues including those that play an important role in heparin binding, such as Arg(101), Lys(235), Lys(236) and Lys(240), did not induce any deficiency in sulfated LMWL activity. Thrombin mutants with multiple alanine substitution of basic residues showed a progressively greater defect in inhibition potency. Comparison of thrombin, factor Xa, factor IXa and factor VIIa primary sequences reiterated Arg(93) and Arg(175) as residues likely to be targeted by sulfated LMWLs. The identification of a novel site on thrombin with capability of allosteric modulation is expected to greatly assist the design of new regulators based on the sulfated LMWL scaffold.
Collapse
Affiliation(s)
- May H. Abdel Aziz
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298
| | - Philip D. Mosier
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298
| | - Umesh R. Desai
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
144
|
Silva VDA, Cargnelutti MT, Giesel GM, Palmieri LC, Monteiro RQ, Verli H, Lima LMTR. Structure and behavior of human α-thrombin upon ligand recognition: thermodynamic and molecular dynamics studies. PLoS One 2011; 6:e24735. [PMID: 21935446 PMCID: PMC3173475 DOI: 10.1371/journal.pone.0024735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/16/2011] [Indexed: 11/19/2022] Open
Abstract
Thrombin is a serine proteinase that plays a fundamental role in coagulation. In this study, we address the effects of ligand site recognition by alpha-thrombin on conformation and energetics in solution. Active site occupation induces large changes in secondary structure content in thrombin as shown by circular dichroism. Thrombin-D-Phe-Pro-Arg-chloromethyl ketone (PPACK) exhibits enhanced equilibrium and kinetic stability compared to free thrombin, whose difference is rooted in the unfolding step. Small-angle X-ray scattering (SAXS) measurements in solution reveal an overall similarity in the molecular envelope of thrombin and thrombin-PPACK, which differs from the crystal structure of thrombin. Molecular dynamics simulations performed with thrombin lead to different conformations than the one observed in the crystal structure. These data shed light on the diversity of thrombin conformers not previously observed in crystal structures with distinguished catalytic and conformational behaviors, which might have direct implications on novel strategies to design direct thrombin inhibitors.
Collapse
Affiliation(s)
- Vivian de Almeira Silva
- School of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Federal Institute of Rio de Janeiro for Science and Technology Education, Rio de Janeiro, Brazil
- Medical Biochemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria Thereza Cargnelutti
- School of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Medical Biochemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Guilherme M. Giesel
- School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo C. Palmieri
- School of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Medical Biochemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Hugo Verli
- School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
145
|
Nakayama D, Ben Ammar Y, Miyata T, Takeda S. Structural basis of coagulation factor V recognition for cleavage by RVV-V. FEBS Lett 2011; 585:3020-5. [DOI: 10.1016/j.febslet.2011.08.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/01/2011] [Accepted: 08/11/2011] [Indexed: 11/16/2022]
|
146
|
Shevchenko Y, Francis TJ, Blair DAD, Walsh R, DeRosa MC, Albert J. In situ biosensing with a surface plasmon resonance fiber grating aptasensor. Anal Chem 2011; 83:7027-34. [PMID: 21815621 DOI: 10.1021/ac201641n] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Surface plasmon resonance (SPR) biosensors prepared using optical fibers can be used as a cost-effective and relatively simple-to-implement alternative to well established biosensor platforms for monitoring biomolecular interactions in situ or possibly in vivo. The fiber biosensor presented in this study utilizes an in-fiber tilted Bragg grating to excite the SPR on the surface of the sensor over a large range of external medium refractive indices, with minimal cross-sensitivity to temperature and without compromising the structural integrity of the fiber. The label-free biorecognition scheme used demonstrates that the sensor relies on the functionalization of the gold-coated fiber with aptamers, synthetic DNA sequences that bind with high specificity to a given target. In addition to monitoring the functionalization of the fiber by the aptamers in real-time, the results also show how the fiber biosensor can detect the presence of the aptamer's target, in various concentrations of thrombin in buffer and serum solutions. The findings also show how the SPR biosensor can be used to evaluate the dissociation constant (K(d)), as the binding constant agrees with values already reported in the literature.
Collapse
|
147
|
Lin PH, Chen RH, Lee CH, Chang Y, Chen CS, Chen WY. Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetry. Colloids Surf B Biointerfaces 2011; 88:552-8. [PMID: 21885262 DOI: 10.1016/j.colsurfb.2011.07.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
Thrombin, a multifunctional serine protease, has both procoagulant and anticoagulant functions in human blood. Thrombin has two electropositive exosites. One is the fibrinogen-binding site and the other is the heparin-binding site. Over the past decade, two thrombin-binding aptamers (15-mer and 29-mer) were reported by SELEX technique. Recently, many studies examined the interactions between the 15-mer aptamer and thrombin extensively, but the data on the difference of these two aptamers binding to thrombin are still lacking and worth investigating for fundamental understanding. In the present study, we combined conformational data from circular dichroism (CD), kinetics and thermodynamics information from surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) to compare the binding mechanism between the two aptamers with thrombin. Special attentions were paid to the formation of G-quadruplex and the effects of ions on the aptamer conformation on the binding and the kinetics discrimination between specific and nonspecific interactions of the binding. The results indicated reasonably that the 15-mer aptamer bound to fibrinogen-binding site of thrombin using a G-quadruplex structure and was dominated by electrostatic interactions, while the 29-mer aptamer bound to heparin-binding site thrombin using a duplex structure and was driven mainly by hydrophobic effects.
Collapse
Affiliation(s)
- Po-Hsun Lin
- Institute of Systems Biology and Bioinformatics, National Central University, Jhong-Li, 320 Taiwan
| | | | | | | | | | | |
Collapse
|
148
|
Huntington JA. Thrombin plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:246-52. [PMID: 21782041 DOI: 10.1016/j.bbapap.2011.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 11/30/2022]
Abstract
Thrombin is the final protease generated in the blood coagulation cascade. It has multiple substrates and cofactors, and serves both pro- and anti-coagulant functions. How thrombin activity is directed throughout the evolution of a clot and the role of conformational change in determining thrombin specificity are issues that lie at the heart of the haemostatic balance. Over the last 20 years there have been a great number of studies supporting the idea that thrombin is an allosteric enzyme that can exist in two conformations differing in activity and specificity. However, recent work has shown that thrombin in its unliganded state is inherently flexible in regions that are important for activity. The effect of flexibility on activity is discussed in this review in context of the zymogen-to-protease conformational transition. Understanding thrombin function in terms of 'plasticity' provides a new conceptual framework for understanding regulation of enzyme activity in general. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- James A Huntington
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, UK.
| |
Collapse
|
149
|
Russo Krauss I, Merlino A, Giancola C, Randazzo A, Mazzarella L, Sica F. Thrombin-aptamer recognition: a revealed ambiguity. Nucleic Acids Res 2011; 39:7858-67. [PMID: 21715374 PMCID: PMC3177225 DOI: 10.1093/nar/gkr522] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Aptamers are structured oligonucleotides that recognize molecular targets and can function as direct protein inhibitors. The best-known example is the thrombin-binding aptamer, TBA, a single-stranded 15-mer DNA that inhibits the activity of thrombin, the key enzyme of coagulation cascade. TBA folds as a G-quadruplex structure, as proved by its NMR structure. The X-ray structure of the complex between TBA and human α-thrombin was solved at 2.9-Å resolution, but did not provide details of the aptamer conformation and the interactions with the protein molecule. TBA is rapidly processed by nucleases. To improve the properties of TBA, a number of modified analogs have been produced. In particular, a modified TBA containing a 5′-5′ polarity inversion site, mTBA, has higher stability and higher affinity toward thrombin with respect to TBA, although it has a lower inhibitory activity. We present the crystal structure of the thrombin–mTBA complex at 2.15-Å resolution; the resulting model eventually provides a clear picture of thrombin–aptamers interaction, and also highlights the structural bases of the different properties of TBA and mTBA. Our findings open the way for a rational design of modified aptamers with improved potency as anticoagulant drugs.
Collapse
|
150
|
Diculescu VC, Chiorcea-Paquim AM, Eritja R, Oliveira-Brett AM. Evaluation of the structure–activity relationship of thrombin with thrombin binding aptamers by voltammetry and atomic force microscopy. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2010.11.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|