101
|
Andrade SS, Gouvea IE, Silva MCC, Castro ED, de Paula CAA, Okamoto D, Oliveira L, Peres GB, Ottaiano T, Facina G, Nazário ACP, Campos AHJFM, Paredes-Gamero EJ, Juliano M, da Silva IDCG, Oliva MLV, Girão MJBC. Cathepsin K induces platelet dysfunction and affects cell signaling in breast cancer - molecularly distinct behavior of cathepsin K in breast cancer. BMC Cancer 2016; 16:173. [PMID: 26931461 PMCID: PMC4774035 DOI: 10.1186/s12885-016-2203-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/17/2016] [Indexed: 11/12/2022] Open
Abstract
Background Breast cancer comprises clinically and molecularly distinct tumor subgroups that differ in cell histology and biology and show divergent clinical phenotypes that impede phase III trials, such as those utilizing cathepsin K inhibitors. Here we correlate the epithelial-mesenchymal-like transition breast cancer cells and cathepsin K secretion with activation and aggregation of platelets. Cathepsin K is up-regulated in cancer cells that proteolyze extracellular matrix and contributes to invasiveness. Although proteolytically activated receptors (PARs) are activated by proteases, the direct interaction of cysteine cathepsins with PARs is poorly understood. In human platelets, PAR-1 and −4 are highly expressed, but PAR-3 shows low expression and unclear functions. Methods Platelet aggregation was monitored by measuring changes in turbidity. Platelets were immunoblotted with anti-phospho and total p38, Src-Tyr-416, FAK-Tyr-397, and TGFβ monoclonal antibody. Activation was measured in a flow cytometer and calcium mobilization in a confocal microscope. Mammary epithelial cells were prepared from the primary breast cancer samples of 15 women with Luminal-B subtype to produce primary cells. Results We demonstrate that platelets are aggregated by cathepsin K in a dose-dependent manner, but not by other cysteine cathepsins. PARs-3 and −4 were confirmed as the cathepsin K target by immunodetection and specific antagonists using a fibroblast cell line derived from PARs deficient mice. Moreover, through co-culture experiments, we show that platelets activated by cathepsin K mediated the up-regulation of SHH, PTHrP, OPN, and TGFβ in epithelial-mesenchymal-like cells from patients with Luminal B breast cancer. Conclusions Cathepsin K induces platelet dysfunction and affects signaling in breast cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2203-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheila Siqueira Andrade
- Departments of Gynecology of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil. .,Charitable Association of Blood Collection - COLSAN, São Paulo, SP, 04080-006, Brazil. .,Department of Gynecology, Cellular Gynecology Laboratory, Universidade Federal de São Paulo, Rua Napoleão de Barros, 608, CEP 04024-002, São Paulo, Brazil.
| | - Iuri Estrada Gouvea
- Biophysics of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | | | - Eloísa Dognani Castro
- Biochemistry of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Cláudia A A de Paula
- Biochemistry of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Debora Okamoto
- Biophysics of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Lilian Oliveira
- Biophysics of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Giovani Bravin Peres
- Biochemistry of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Tatiana Ottaiano
- Biochemistry of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Gil Facina
- Departments of Gynecology of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | | | - Antonio Hugo J F M Campos
- Department of Pathology, AC Camargo Hospital Biobank, A C Camargo Cancer Center - Antonio Prudente Foundation, São Paulo, SP, 01509-010, Brazil.
| | | | - Maria Juliano
- Biophysics of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Ismael D C G da Silva
- Departments of Gynecology of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Maria Luiza V Oliva
- Biochemistry of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Manoel J B C Girão
- Departments of Gynecology of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil. .,Charitable Association of Blood Collection - COLSAN, São Paulo, SP, 04080-006, Brazil.
| |
Collapse
|
102
|
Unanue ER, Turk V, Neefjes J. Variations in MHC Class II Antigen Processing and Presentation in Health and Disease. Annu Rev Immunol 2016; 34:265-97. [PMID: 26907214 DOI: 10.1146/annurev-immunol-041015-055420] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MHC class II (MHC-II) molecules are critical in the control of many immune responses. They are also involved in most autoimmune diseases and other pathologies. Here, we describe the biology of MHC-II and MHC-II variations that affect immune responses. We discuss the classic cell biology of MHC-II and various perturbations. Proteolysis is a major process in the biology of MHC-II, and we describe the various components forming and controlling this endosomal proteolytic machinery. This process ultimately determines the MHC-II-presented peptidome, including cryptic peptides, modified peptides, and other peptides that are relevant in autoimmune responses. MHC-II also variable in expression, glycosylation, and turnover. We illustrate that MHC-II is variable not only in amino acids (polymorphic) but also in its biology, with consequences for both health and disease.
Collapse
Affiliation(s)
- Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, SI-1000 Ljubljana, Slovenia;
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; .,Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
103
|
Brahma B, Patra MC, Mishra P, De BC, Kumar S, Maharana J, Vats A, Ahlawat S, Datta TK, De S. Computational studies on receptor-ligand interactions between novel buffalo (Bubalus bubalis) nucleotide-binding oligomerization domain-containing protein 2 (NOD2) variants and muramyl dipeptide (MDP). J Mol Graph Model 2016; 65:15-26. [PMID: 26897084 DOI: 10.1016/j.jmgm.2016.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/25/2016] [Accepted: 02/08/2016] [Indexed: 11/19/2022]
Abstract
Nucleotide binding and oligomerization domain 2 (NOD2), a member of intracellular NOD-like receptors (NLRs) family, recognizes the bacterial peptidoglycan, muramyl dipeptide (MDP) and initiates host immune response. The precise ligand recognition mechanism of NOD2 has remained elusive, although studies have suggested leucine rich repeat (LRR) region of NOD2 as the possible binding site of MDP. In this study, we identified multiple transcripts of NOD2 gene in buffalo (buNOD2) and at least five LRR variants (buNOD2-LRRW (wild type), buNOD2-LRRV1-V4) were found to be expressed in buffalo peripheral blood mononuclear cells. The newly identified buNOD2 transcripts were shorter in lengths as a result of exon-skipping and frame-shift mutations. Among the variants, buNOD2-LRRW, V1, and V3 were expressed more frequently in the animals studied. A comparative receptor-ligand interaction study through modeling of variants, docking, and molecular dynamics simulation revealed that the binding affinity of buNOD2-LRRW towards MDP was greater than that of the shorter variants. The absence of a LRR segment in the buNOD2 variants had probably affected their affinity toward MDP. Notwithstanding a high homology among the variants, the amino acid residues that interact with MDP were located on different LRR motifs. The binding free energy calculation revealed that the amino acids Arg850(LRR4) and Glu932(LRR7) of buNOD2-LRRW, Lys810(LRR3) of buNOD2-LRRV1, and Lys830(LRR3) of buNOD2-LRRV3 largely contributed towards MDP recognition. The knowledge of MDP recognition and binding modes on buNOD2 variants could be useful to understand the regulation of NOD-mediated immune response as well as to develop next generation anti-inflammatory compounds.
Collapse
Affiliation(s)
- Biswajit Brahma
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Mahesh Chandra Patra
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Purusottam Mishra
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Bidhan Chandra De
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Sushil Kumar
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Jitendra Maharana
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India
| | - Ashutosh Vats
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Sonika Ahlawat
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Sachinandan De
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India.
| |
Collapse
|
104
|
Mitrović A, Kljun J, Sosič I, Gobec S, Turel I, Kos J. Clioquinol–ruthenium complex impairs tumour cell invasion by inhibiting cathepsin B activity. Dalton Trans 2016; 45:16913-16921. [DOI: 10.1039/c6dt02369j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The clioquinol–ruthenium complex [Ru(η6-p-cymene)(Cq)Cl] inhibits cathepsin B and reduces tumour cell invasion at non-cytotoxic concentrations, revealing a specific anti-cancer mechanism not related to a general compound-induced cytotoxicity.
Collapse
Affiliation(s)
- Ana Mitrović
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | - Janko Kos
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
- Department of Biotechnology
| |
Collapse
|
105
|
Ferrara TFDS, Schneider VK, Kishi LT, Carmona AK, Alves MFM, Belasque-Júnior J, Rosa JC, Hunter WB, Henrique-Silva F, Soares-Costa A. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing. PLoS One 2015; 10:e0145132. [PMID: 26717484 PMCID: PMC4696824 DOI: 10.1371/journal.pone.0145132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/26/2015] [Indexed: 01/05/2023] Open
Abstract
Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.
Collapse
Affiliation(s)
- Taíse Fernanda da Silva Ferrara
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Vanessa Karine Schneider
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Luciano Takeshi Kishi
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | - Jose Belasque-Júnior
- Department of Phytopathology and Nematology, University of São Paulo, Piracicaba, São Paulo, SP, Brazil
| | - José César Rosa
- USDA, ARS, 2001 South Rock Road, Fort Pierce, Florida, United States of America
| | - Wayne Brian Hunter
- Protein Chemistry Center and Department of Molecular and Cellular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávio Henrique-Silva
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Andrea Soares-Costa
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
106
|
Ruan H, Hao S, Young P, Zhang H. Targeting Cathepsin B for Cancer Therapies. HORIZONS IN CANCER RESEARCH 2015; 56:23-40. [PMID: 26623174 PMCID: PMC4662557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cathepsin B is a member of the papain family of cysteine proteases normally present in the lysosome, but it can translocate and function to degrade components of the extracellular matrix. It exhibits carboxyopeptidase, peptidyldipepidase, and endopeptidase activity. Aberrant overexpression of cathepsin B has been reported in invasive and metastatic cancers, including breast cancer, melanoma and colorectal cancer. It has been shown that oncogenic activation, such as the signaling of the ErbB pathways, can lead to cathepsin B overexpression. The degradation of the extracellular matrix is a key factor for cathepsin B to contribute to development and metastasis of tumors. An example of substrates for cathepsin B is E-cadherin, which is involved in adherens junctions, and the downregulation of E-cadherin in cancer is directly linked to invasion and metastasis. Recent studies also point to a role for cathepsin B in macrophages in the tumor microenvironment. The structure of cathepsin B is crystallographically solved, and several highly selective and potent inhibitors for cathepsin B have been developed. Yet it remains to be a challenge to demonstrate the clinical utility or benefit of any cathepsin B inhibitor. As cathepsin B is required for a cellular process called lysosomal membrane permeabilization (LMP), inhibition of cathepsin B would protect cancer cells from cell death induced by chemotherapeutic agents. It is expected that combining cathepsin B inhibitors with other approaches, such as nanoparticles, to direct the inhibition to the extracellular space may lead to better clinical approaches to treat cancers and metastasis.
Collapse
Affiliation(s)
| | | | | | - Hongtao Zhang
- Corresponding author: Hongtao Zhang, Ph.D., 252 John Morgan Building, 3620 Hamilton Walk, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, Phone: 215-573-9256, Fax: 215-898-2401,
| |
Collapse
|
107
|
Risør MW, Thomsen LR, Sanggaard KW, Nielsen TA, Thøgersen IB, Lukassen MV, Rossen L, Garcia-Ferrer I, Guevara T, Scavenius C, Meinjohanns E, Gomis-Rüth FX, Enghild JJ. Enzymatic and Structural Characterization of the Major Endopeptidase in the Venus Flytrap Digestion Fluid. J Biol Chem 2015; 291:2271-87. [PMID: 26627834 DOI: 10.1074/jbc.m115.672550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Indexed: 11/06/2022] Open
Abstract
Carnivorous plants primarily use aspartic proteases during digestion of captured prey. In contrast, the major endopeptidases in the digestive fluid of the Venus flytrap (Dionaea muscipula) are cysteine proteases (dionain-1 to -4). Here, we present the crystal structure of mature dionain-1 in covalent complex with inhibitor E-64 at 1.5 Å resolution. The enzyme exhibits an overall protein fold reminiscent of other plant cysteine proteases. The inactive glycosylated pro-form undergoes autoprocessing and self-activation, optimally at the physiologically relevant pH value of 3.6, at which the protective effect of the pro-domain is lost. The mature enzyme was able to efficiently degrade a Drosophila fly protein extract at pH 4 showing high activity against the abundant Lys- and Arg-rich protein, myosin. The substrate specificity of dionain-1 was largely similar to that of papain with a preference for hydrophobic and aliphatic residues in subsite S2 and for positively charged residues in S1. A tentative structure of the pro-domain was obtained by homology modeling and suggested that a pro-peptide Lys residue intrudes into the S2 pocket, which is more spacious than in papain. This study provides the first analysis of a cysteine protease from the digestive fluid of a carnivorous plant and confirms the close relationship between carnivorous action and plant defense mechanisms.
Collapse
Affiliation(s)
- Michael W Risør
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark, the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark
| | - Line R Thomsen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark, the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark
| | - Kristian W Sanggaard
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark, the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark
| | - Tania A Nielsen
- the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark
| | - Ida B Thøgersen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Marie V Lukassen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Litten Rossen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Irene Garcia-Ferrer
- the Proteolysis Laboratory, Department of Structural Biology ("María de Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain, and
| | - Tibisay Guevara
- the Proteolysis Laboratory, Department of Structural Biology ("María de Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain, and
| | - Carsten Scavenius
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | | | - F Xavier Gomis-Rüth
- the Proteolysis Laboratory, Department of Structural Biology ("María de Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain, and
| | - Jan J Enghild
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark, the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark,
| |
Collapse
|
108
|
Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B 2015; 5:506-19. [PMID: 26713267 PMCID: PMC4675809 DOI: 10.1016/j.apsb.2015.08.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 01/17/2023] Open
Abstract
Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy.
Collapse
Key Words
- AD, Alzheimer׳s disease
- ALS, amyotrophic lateral sclerosis
- APP, amyloid precursor protein
- APP/PS1, Aβ overexpressing mice APP (K670N/M671L) and PS1 (M146L) mutants
- Ala, alanine
- Alzheimer׳s disease
- AppLon, London familial amyloid precursor protein mutation, APP (V717I)
- AppSwe, Swedish amyloid precursor protein mutation, APP (K670N/M671L)
- Arg, arginine
- Aβ, amyloid β
- Aβ1-42, amyloid β, 42 amino acid protein
- BACE-1, β-amyloid cleaving enzyme
- BBB, blood–brain barrier
- CANP, calcium-activated neutral protease
- CNS, central nervous system
- CREB, cyclic adenosine monophosphate response element binding protein
- CaMKII, Ca2+/calmodulin-dependent protein kinases II
- Calpain
- Cathepsin
- Cdk5/p35, activator of cyclin-dependent kinase 5
- Cysteine protease
- DTT, dithioerythritol
- EGFR, epidermal growth factor receptor
- ERK1/2, extracellular signal-regulated kinase 1/2
- Enzyme inhibitors
- GSH, glutathione
- Gln, glutamine
- Glu, glutamic acid
- Gly, glutamine
- Hsp70.1, heat shock protein 70.1
- Ile, isoleucine
- KO, knockout
- Leu, leucine
- Lys, lysine
- MAP-2, microtubule-associated protein 2
- MMP-9, matrix metalloproteinase 9
- Met, methionine
- NFT, neurofibrilliary tangles
- Neurodegeneration
- Nle, norleucine
- PD, Parkinson׳s disease
- PK, pharmacokinetic
- PKC, protein kinase C
- PTP1B, protein-tyrosine phosphatase 1B
- Phe, phenylalanine
- Pro, proline
- SP, senile plaques
- TBI, traumatic brain injury
- TNF, tumor necrosis factor
- Thr, threonine
- Tyr, tyrosine
- Val, valine
- WRX, Trp-Arg containing epoxysuccinate cysteine protease inhibitor
- WT, wildtype
- isoAsp, isoaspartate
- pGlu, pyroglutamate
- pyroGluAβ, pyroglutamate-amyloid β
Collapse
|
109
|
Siricoon S, Vichasri Grams S, Lertwongvisarn K, Abdullohfakeeyah M, Smooker PM, Grams R. Fasciola gigantica cathepsin B5 is an acidic endo- and exopeptidase of the immature and mature parasite. Biochimie 2015; 119:6-15. [PMID: 26453811 DOI: 10.1016/j.biochi.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Cysteine proteases of the liver fluke Fasciola have been described as essential molecules in the infection process of the mammalian host. Destinct cathepsin Bs, which are already expressed in the metacercarial stage and released by the newly excysted juvenile are major actors in this process. Following infection their expression is stopped and the proteins will not be detectable any longer after the first month of development. On the contrary, the novel cathepsin B5 of Fasciola gigantica (FgCB5) described in this work was also found expressed in later juvenile stages and the mature worm. Like all previously described Fasciola family members it was located in the cecal epithelium of the parasite. Western blot analysis of adult antigen preparations detected procathepsin B5 in crude worm extract and in small amounts in the ES product. In support of these data, the sera of infected rabbits and mice were reactive with recombinant FgCB5 in Western blot and ELISA. Biochemical analysis of yeast-expressed FgCB5 revealed that it has properties of a lysosomal hydrolase optimized for activity at acid pH and that it is able to efficiently digest a broad spectrum of host proteins. Unlike previously characterized Fasciola family members FgCB5 carries a histidine doublet in the occluding loop equivalent to residues His110 and His111 of human mature cathepsin B and consequently showed substantial carboxydipeptidyl activity which depends on these two residues.
Collapse
Affiliation(s)
- Sinee Siricoon
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | | | | | | | - Peter M Smooker
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Rudi Grams
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand.
| |
Collapse
|
110
|
Structure and function of legumain in health and disease. Biochimie 2015; 122:126-50. [PMID: 26403494 DOI: 10.1016/j.biochi.2015.09.022] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022]
Abstract
The last years have seen a steady increase in our understanding of legumain biology that is driven from two largely uncoupled research arenas, the mammalian and the plant legumain field. Research on legumain, which is also referred to as asparaginyl endopeptidase (AEP) or vacuolar processing enzyme (VPE), is slivered, however. Here we summarise recent important findings and put them into a common perspective. Legumain is usually associated with its cysteine endopeptidase activity in lysosomes where it contributes to antigen processing for class II MHC presentation. However, newly recognized functions disperse previously assumed boundaries with respect to their cellular compartmentalisation and enzymatic activities. Legumain is also found extracellularly and even translocates to the cytosol and the nucleus, with seemingly incompatible pH and redox potential. These different milieus translate into changes of legumain's molecular properties, including its (auto-)activation, conformational stability and enzymatic functions. Contrasting its endopeptidase activity, legumain can develop a carboxypeptidase activity which remains stable at neutral pH. Moreover, legumain features a peptide ligase activity, with intriguing mechanistic peculiarities in plant and human isoforms. In pathological settings, such as cancer or Alzheimer's disease, the proper association of legumain activities with the corresponding cellular compartments is breached. Legumain's increasingly recognized physiological and pathological roles also indicate future research opportunities in this vibrant field.
Collapse
|
111
|
Bhargava A, Cotton JA, Dixon BR, Gedamu L, Yates RM, Buret AG. Giardia duodenalis Surface Cysteine Proteases Induce Cleavage of the Intestinal Epithelial Cytoskeletal Protein Villin via Myosin Light Chain Kinase. PLoS One 2015; 10:e0136102. [PMID: 26334299 PMCID: PMC4559405 DOI: 10.1371/journal.pone.0136102] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/29/2015] [Indexed: 01/13/2023] Open
Abstract
Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates) trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate) trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1), suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK). Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.
Collapse
Affiliation(s)
- Amol Bhargava
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - James A. Cotton
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Brent R. Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Lashitew Gedamu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Robin M. Yates
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
112
|
Hook G, Jacobsen JS, Grabstein K, Kindy M, Hook V. Cathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate. Front Neurol 2015; 6:178. [PMID: 26388830 PMCID: PMC4557097 DOI: 10.3389/fneur.2015.00178] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022] Open
Abstract
There is currently no therapeutic drug treatment for traumatic brain injury (TBI) despite decades of experimental clinical trials. This may be because the mechanistic pathways for improving TBI outcomes have yet to be identified and exploited. As such, there remains a need to seek out new molecular targets and their drug candidates to find new treatments for TBI. This review presents supporting evidence for cathepsin B, a cysteine protease, as a potentially important drug target for TBI. Cathepsin B expression is greatly up-regulated in TBI animal models, as well as in trauma patients. Importantly, knockout of the cathepsin B gene in TBI mice results in substantial improvements of TBI-caused deficits in behavior, pathology, and biomarkers, as well as improvements in related injury models. During the process of TBI-induced injury, cathepsin B likely escapes the lysosome, its normal subcellular location, into the cytoplasm or extracellular matrix (ECM) where the unleashed proteolytic power causes destruction via necrotic, apoptotic, autophagic, and activated glia-induced cell death, together with ECM breakdown and inflammation. Significantly, chemical inhibitors of cathepsin B are effective for improving deficits in TBI and related injuries including ischemia, cerebral bleeding, cerebral aneurysm, edema, pain, infection, rheumatoid arthritis, epilepsy, Huntington's disease, multiple sclerosis, and Alzheimer's disease. The inhibitor E64d is unique among cathepsin B inhibitors in being the only compound to have demonstrated oral efficacy in a TBI model and prior safe use in man and as such it is an excellent tool compound for preclinical testing and clinical compound development. These data support the conclusion that drug development of cathepsin B inhibitors for TBI treatment should be accelerated.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, Inc. , San Diego, CA , USA
| | | | - Kenneth Grabstein
- Department of Chemical Engineering, University of Washington , Seattle, WA , USA
| | - Mark Kindy
- Department of Neurosciences, Medical University of South Carolina , Charleston, SC , USA ; Ralph H. Johnson Veterans Administration Medical Center , Charleston, SC , USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, CA , USA ; Department of Neurosciences, Department of Pharmacology, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
113
|
Saikhedkar N, Summanwar A, Joshi R, Giri A. Cathepsins of lepidopteran insects: Aspects and prospects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:51-59. [PMID: 26210259 DOI: 10.1016/j.ibmb.2015.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/20/2015] [Accepted: 07/06/2015] [Indexed: 05/21/2023]
Abstract
Molecular understanding of lepidopteran physiology has revealed that proteases consist of one of the central regulatory/reacting system for insect growth and survival. Among the various proteases, cathepsins are the most crucial cellular proteases, which play vital roles during insect development. In the present review, we have discussed various aspects of the lepidopteran insect cathepsins, emphasizing their roles in processes like development, growth, metamorphosis, apoptosis and immunity. Cathepsins are categorized into different types on the basis of their sequence diversification, leading to variation in structure and catalytic function. Cathepsins exhibit tissue and stage specific expression pattern which is fine-tuned by a delicate balance of expression, compartmentalization, zymogen activation, inhibition by protein inhibitors and degradation. The indispensability of cathepsins as cellular proteases in the above mentioned processes proposes them as novel targets for designing effective and specific insect controlling strategies.
Collapse
Affiliation(s)
- Nidhi Saikhedkar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, MS, India
| | - Aarohi Summanwar
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Rakesh Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, MS, India.
| | - Ashok Giri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, MS, India.
| |
Collapse
|
114
|
Independent amino acid residues in the S2 pocket of falcipain-3 determine its specificity for P2 residues in substrates. Mol Biochem Parasitol 2015; 202:11-22. [DOI: 10.1016/j.molbiopara.2015.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022]
|
115
|
Brix K, McInnes J, Al-Hashimi A, Rehders M, Tamhane T, Haugen MH. Proteolysis mediated by cysteine cathepsins and legumain-recent advances and cell biological challenges. PROTOPLASMA 2015; 252:755-774. [PMID: 25398648 DOI: 10.1007/s00709-014-0730-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
Proteases play essential roles in protein degradation, protein processing, and extracellular matrix remodeling in all cell types and tissues. They are also involved in protein turnover for maintenance of homeostasis and protein activation or inactivation for cell signaling. Proteases range in function and specificity, with some performing distinct substrate cleavages, while others accomplish proteolysis of a wide range of substrates. As such, different cell types use specialized molecular mechanisms to regulate the localization of proteases and their function within the compartments to which they are destined. Here, we focus on the cysteine family of cathepsin proteases and legumain, which act predominately within the endo-lysosomal pathway. In particular, recent knowledge on cysteine cathepsins and their primary regulator legumain is scrutinized in terms of their trafficking to endo-lysosomal compartments and other less recognized cellular locations. We further explore the mechanisms that regulate these processes and point to pathological cases which arise from detours taken by these proteases. Moreover, the emerging biological roles of specific forms and variants of cysteine cathepsins and legumain are discussed. These may be decisive, pathogenic, or even deadly when localizing to unusual cellular compartments in their enzymatically active form, because they may exert unexpected effects by alternative substrate cleavage. Hence, we propose future perspectives for addressing the actions of cysteine cathepsins and legumain as well as their specific forms and variants. The increasing knowledge in non-canonical aspects of cysteine cathepsin- and legumain-mediated proteolysis may prove valuable for developing new strategies to utilize these versatile proteases in therapeutic approaches.
Collapse
Affiliation(s)
- Klaudia Brix
- Research Area HEALTH, Research Center MOLIFE-Molecular Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany,
| | | | | | | | | | | |
Collapse
|
116
|
Zhou ZJ, Qiu R, Zhang J. Molecular characterization of the cathepsin B of turbot (Scophthalmus maximus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:473-483. [PMID: 25326658 DOI: 10.1007/s10695-014-9998-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
Cathepsin B is an enzymatic protein belonging to the peptidase C1 family. It is involved in diverse physiological and pathological functions that include immune response. In this study, we identified and characterized a cathepsin B homolog (SmCatB) from turbot (Scophthalmus maximus). SmCatB is composed of 330 amino acid residues and possesses typical domain architecture of cathepsin B, which contains a propeptide region and a cysteine protease domain, and the latter processes four conserved residues (Q101, C107, H277, and N297) in the active site. SmCatB shares 80.6-87.6% overall sequence identities with the cathepsin B of a number of teleost. SmCatB expression was detected in a wide range of tissues and upregulated by bacterial infection in a time-dependent manner. Recombinant SmCatB (rSmCatB-WT) purified from Escherichia coli exhibited apparent protease activity, which was optimal at 50 °C and pH 5.5. Compared to rSmCatB-WT, the mutant proteins rSmCatB-C107S, rSmCatB-H277A, and rSmCatB-N297A, which bear C107S, H277A, and N297A mutations, respectively, were significantly reduced in protease activity, with the highest reduction observed with rSmCatB-N297A. These results indicate that SmCatB is a bioactive protease that depends on the conserved structural features and that SmCatB is involved in pathogen-induced immune response.
Collapse
Affiliation(s)
- Ze-jun Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | | |
Collapse
|
117
|
Wang Y, Zhou Y, Gong H, Cao J, Zhang H, Li X, Zhou J. Functional characterization of a cystatin from the tick Rhipicephalus haemaphysaloides. Parasit Vectors 2015; 8:140. [PMID: 25889816 PMCID: PMC4352250 DOI: 10.1186/s13071-015-0725-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Ticks and tick-borne diseases affect animal and human health worldwide and cause significant economic losses in the animal industry. Functional molecular research is important to understand the biological characteristics of ticks at the molecular level. Enzymes and enzyme inhibitory molecules play very important roles in tick physiology, and the cystatins are tight-binding inhibitors of papain-like cysteine proteases. To this end, a novel cystatin, designated RHcyst-1, was isolated from the tick Rhipicephalus haemaphysaloides. Methods The full-length gene of RHcyst-1 was cloning by RACE. The recombinant protein of RHcyst-1 was expressed in a glutathione S-transferase (GST)-fused soluble form in Escherichia coli, and its inhibitory activity against cathepsin L, B, C, H, and S, as well as papain, was identified by fluorogenic substrate analysis. Expression analysis of RHcyst-1 at different tick stages was performed by quantitative reverse transcription - PCR (qRT-PCR). An RNAi experiment for RHcyst-1 was performed to determine its function for tick physiology. Results The full-length cDNA of RHcyst-1 is 471 bp, including an intact open reading frame encoding an expected protein of 98 amino acids, without a signal peptide, having a predicted molecular weight of ~11 kDa and an isoelectric point of 5.66. A sequence analysis showed that it has significant homology with the known type 1 cystatins. The results of proteinase inhibition assays showed that rRHcyst-1 can effectively inhibit the six cysteine proteases’ enzyme activities. An investigation of the RHcyst-1 genes’ expression profile showed that it was more richly transcribed in the embryo (egg) stage. A disruption of the RHcyst-1 gene showed a significant decrease in the rate of tick hatching. Conclusions Our results suggested that RHcyst-1 may be involved in the early embryonic development of ticks.
Collapse
Affiliation(s)
- Yujian Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China. .,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
118
|
Bradshaw WJ, Roberts AK, Shone CC, Acharya KR. Cwp84, a Clostridium difficile cysteine protease, exhibits conformational flexibility in the absence of its propeptide. Acta Crystallogr F Struct Biol Commun 2015; 71:295-303. [PMID: 25760704 PMCID: PMC4356305 DOI: 10.1107/s2053230x15001065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/18/2015] [Indexed: 01/05/2023] Open
Abstract
In recent decades, the global healthcare problems caused by Clostridium difficile have increased at an alarming rate. A greater understanding of this antibiotic-resistant bacterium, particularly with respect to how it interacts with the host, is required for the development of novel strategies for fighting C. difficile infections. The surface layer (S-layer) of C. difficile is likely to be of significant importance to host-pathogen interactions. The mature S-layer is formed by a proteinaceous array consisting of multiple copies of a high-molecular-weight and a low-molecular-weight S-layer protein. These components result from the cleavage of SlpA by Cwp84, a cysteine protease. The structure of a truncated Cwp84 active-site mutant has recently been reported and the key features have been identified, providing the first structural insights into the role of Cwp84 in the formation of the S-layer. Here, two structures of Cwp84 after propeptide cleavage are presented and the three conformational changes that are observed are discussed. These changes result in a reconfiguration of the active site and exposure of the hydrophobic pocket.
Collapse
Affiliation(s)
- William J. Bradshaw
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
- Public Health England, Porton Down, Salisbury SP4 0JG, England
| | | | | | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| |
Collapse
|
119
|
Wu QQ, Xu M, Yuan Y, Li FF, Yang Z, Liu Y, Zhou MQ, Bian ZY, Deng W, Gao L, Li H, Tang QZ. Cathepsin B deficiency attenuates cardiac remodeling in response to pressure overload via TNF-α/ASK1/JNK pathway. Am J Physiol Heart Circ Physiol 2015; 308:H1143-54. [PMID: 25713304 DOI: 10.1152/ajpheart.00601.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023]
Abstract
Cathepsin B (CTSB), a member of the lysosomal cathepsin family that is expressed in both murine and human hearts, was previously shown to participate in apoptosis, autophagy, and the progression of certain types of cancers. Recently, CTSB has been linked to myocardial infarction. Given that cathepsin L, another member of the lysosomal cathepsin family, ameliorates pathological cardiac hypertrophy, we hypothesized that CTSB plays a role in pressure overload-induced cardiac remodeling. Here we report that CTSB was upregulated in cardiomyocytes in response to hypertrophic stimuli both in vivo and in vitro. Moreover, knockout of CTSB attenuated pressure overload-induced cardiac hypertrophy, fibrosis, dysfunction, and apoptosis. Furthermore, the aortic banding-induced activation of TNF-α, apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinases (JNK), c-Jun, and release of cytochrome c was blunted by CTSB deficiency, which was further confirmed in in vitro studies induced by angiotensin II. In cardiomyocytes pretreatment with SP600125, a JNK inhibitor, suppressed the cardiomyocytes hypertrophy by inhibiting the ASK1/JNK pathway. Altogether, these data indicate that the CTSB protein functions as a necessary modulator of hypertrophic response by regulating TNF-α/ASK1/JNK signaling pathway involved in cardiac remodeling.
Collapse
Affiliation(s)
- Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Fang-Fang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Meng-Qiao Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Lu Gao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; and
| |
Collapse
|
120
|
Abstract
Plant protease inhibitors (PIs) are natural plant defense proteins that inhibit proteases of invading insect herbivores. However, their anti-insect efficacy is determined not only by their potency toward a vulnerable insect system but also by the response of the insect to such a challenge. Through the long history of coevolution with their host plants, insects have developed sophisticated mechanisms to circumvent antinutritional effects of dietary challenges. Their response takes the form of changes in gene expression and the protein repertoire in cells lining the alimentary tract, the first line of defense. Research in insect digestive proteases has revealed the crucial roles they play in insect adaptation to plant PIs and has brought about a new appreciation of how phytophagous insects employ this group of molecules in both protein digestion and counterdefense. This review provides researchers in related fields an up-to-date summary of recent advances.
Collapse
|
121
|
Kędzior M, Seredyński R, Godzik U, Tomczyk D, Gutowicz J, Terlecka E, Całkosiński I, Terlecki G. Inhibition of cathepsin B activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:733-737. [PMID: 25163566 DOI: 10.1007/s11356-014-3482-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent toxic isomer in the dioxin-like family. Due to its resistance to metabolic degradation, this ubiquitous environmental pollutant readily accumulates in multiple organs. Cathepsin B is a lysosomal cysteine protease playing an essential role in the intracellular protein turnover. Alterations in its expression, activity, and localization may facilitate the development of many pathologies, including cancer. TCDD, due to its extremely lipophilic nature, may diffuse through biological membranes and affect lysosomal enzymes, including cathepsins. Therefore, in this study we performed two enzymatic assays, spectrofluorimetry and gelatin zymography, in order to evaluate the effect of TCDD on purified bovine cathepsin B. We showed that the dioxin decreases the enzyme's activity in a dose-dependent manner. The reversibility of TCDD-induced inhibition of the protease was also examined, suggesting that TCDD does not bind covalently to the enzyme's active site, acting rather as a reversible inhibitor.
Collapse
Affiliation(s)
- Mateusz Kędzior
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Cysteine cathepsin activity regulation by glycosaminoglycans. BIOMED RESEARCH INTERNATIONAL 2014; 2014:309718. [PMID: 25587532 PMCID: PMC4283429 DOI: 10.1155/2014/309718] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/02/2014] [Indexed: 11/26/2022]
Abstract
Cysteine cathepsins are a group of enzymes normally found in the endolysosomes where they are primarily involved in intracellular protein turnover but also have a critical role in MHC II-mediated antigen processing and presentation. However, in a number of pathologies cysteine cathepsins were found to be heavily upregulated and secreted into extracellular milieu, where they were found to degrade a number of extracellular proteins. A major role in modulating cathepsin activities play glycosaminoglycans, which were found not only to facilitate their autocatalytic activation including at neutral pH, but also to critically modulate their activities such as in the case of the collagenolytic activity of cathepsin K. The interaction between cathepsins and glycosaminoglycans will be discussed in more detail.
Collapse
|
123
|
Xie W, Wu Q, Wang S, Jiao X, Guo L, Zhou X, Zhang Y. Transcriptome analysis of host-associated differentiation in Bemisia tabaci (Hemiptera: Aleyrodidae). Front Physiol 2014; 5:487. [PMID: 25540625 PMCID: PMC4261700 DOI: 10.3389/fphys.2014.00487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 11/26/2014] [Indexed: 11/17/2022] Open
Abstract
Host-associated differentiation is one of the driving forces behind the diversification of phytophagous insects. In this study, host induced transcriptomic differences were investigated in the sweetpotato whitefly Bemisia tabaci, an invasive agricultural pest worldwide. Comparative transcriptomic analyses using coding sequence (CDS), 5′ and 3′ untranslated regions (UTR) showed that sequence divergences between the original host plant, cabbage, and the derived hosts, including cotton, cucumber and tomato, were 0.11–0.14%, 0.19–0.26%, and 0.15–0.21%, respectively. In comparison to the derived hosts, 418 female and 303 male transcripts, respectively, were up-regulated in the original cabbage strain. Among them, 17 transcripts were consistently up-regulated in both female and male whiteflies originated from the cabbage host. Specifically, two ESTs annotated as Cathepsin B or Cathepsin B-like genes were significantly up-regulated in the original cabbage strain, representing a transcriptomic response to the dietary challenges imposed by the host shifting. Results from our transcriptome analysis, in conjunction with previous reports documenting the minor changes in their reproductive capacity, insecticide susceptibility, symbiotic composition and feeding behavior, suggest that the impact of host-associated differentiation in whiteflies is limited. Furthermore, it is unlikely the major factor contributing to their rapid range expansion/invasiveness.
Collapse
Affiliation(s)
- Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing, China
| | - Xiaoguo Jiao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing, China
| | - Litao Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing, China
| | - Xuguo Zhou
- Department of Entomology, S-225 Agricultural Science Center North, University of Kentucky Lexington, KY, USA
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
124
|
Perišić Nanut M, Sabotič J, Jewett A, Kos J. Cysteine cathepsins as regulators of the cytotoxicity of NK and T cells. Front Immunol 2014; 5:616. [PMID: 25520721 PMCID: PMC4251435 DOI: 10.3389/fimmu.2014.00616] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/18/2014] [Indexed: 11/13/2022] Open
Abstract
Cysteine cathepsins are lysosomal peptidases involved at different levels in the processes of the innate and adaptive immune responses. Some, such as cathepsins B, L, and H are expressed constitutively in most immune cells. In cells of innate immunity they play a role in cell adhesion and phagocytosis. Other cysteine cathepsins are expressed more specifically. Cathepsin X promotes dendritic cell maturation, adhesion of macrophages, and migration of T cells. Cathepsin S is implicated in major histocompatibility complex class II antigen presentation, whereas cathepsin C, expressed in cytotoxic T lymphocytes and natural killer (NK) cells, is involved in processing pro-granzymes into proteolytically active forms, which trigger cell death in their target cells. The activity of cysteine cathepsins is controlled by endogenous cystatins, cysteine protease inhibitors. Of these, cystatin F is the only cystatin that is localized in endosomal/lysosomal vesicles. After proteolytic removal of its N-terminal peptide, cystatin F becomes a potent inhibitor of cathepsin C with the potential to regulate pro-granzyme processing and cell cytotoxicity. This review is focused on the role of cysteine cathepsins and their inhibitors in the molecular mechanisms leading to the cytotoxic activity of T lymphocytes and NK cells in order to address new possibilities for regulation of their function in pathological processes.
Collapse
Affiliation(s)
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute , Ljubljana , Slovenia
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, University of California Los Angeles , Los Angeles, CA , USA
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute , Ljubljana , Slovenia ; Faculty of Pharmacy, University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
125
|
Edem PE, Czorny S, Valliant JF. Synthesis and Evaluation of Radioiodinated Acyloxymethyl Ketones as Activity-Based Probes for Cathepsin B. J Med Chem 2014; 57:9564-77. [PMID: 25360988 DOI: 10.1021/jm501357r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Patricia E. Edem
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Shannon Czorny
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - John F. Valliant
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
- Centre for Probe Development and Commercialization, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
126
|
Chen Z, Zhang P, Cheetham AG, Moon JH, Moxley JW, Lin YA, Cui H. Controlled release of free doxorubicin from peptide–drug conjugates by drug loading. J Control Release 2014; 191:123-30. [DOI: 10.1016/j.jconrel.2014.05.051] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/15/2014] [Accepted: 05/24/2014] [Indexed: 11/29/2022]
|
127
|
Ramalho SD, De Sousa LRF, Nebo L, Maganhi SH, Caracelli I, Zukerman-Schpector J, Lima MIS, Alves MFM, Da Silva MFDGF, Fernandes JB, Vieira PC. Triterpenoids as Novel Natural Inhibitors of Human Cathepsin L. Chem Biodivers 2014; 11:1354-63. [DOI: 10.1002/cbdv.201400065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Indexed: 12/22/2022]
|
128
|
Chen BY. VASP-E: specificity annotation with a volumetric analysis of electrostatic isopotentials. PLoS Comput Biol 2014; 10:e1003792. [PMID: 25166865 PMCID: PMC4148194 DOI: 10.1371/journal.pcbi.1003792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/17/2014] [Indexed: 12/01/2022] Open
Abstract
Algorithms for comparing protein structure are frequently used for function annotation. By searching for subtle similarities among very different proteins, these algorithms can identify remote homologs with similar biological functions. In contrast, few comparison algorithms focus on specificity annotation, where the identification of subtle differences among very similar proteins can assist in finding small structural variations that create differences in binding specificity. Few specificity annotation methods consider electrostatic fields, which play a critical role in molecular recognition. To fill this gap, this paper describes VASP-E (Volumetric Analysis of Surface Properties with Electrostatics), a novel volumetric comparison tool based on the electrostatic comparison of protein-ligand and protein-protein binding sites. VASP-E exploits the central observation that three dimensional solids can be used to fully represent and compare both electrostatic isopotentials and molecular surfaces. With this integrated representation, VASP-E is able to dissect the electrostatic environments of protein-ligand and protein-protein binding interfaces, identifying individual amino acids that have an electrostatic influence on binding specificity. VASP-E was used to examine a nonredundant subset of the serine and cysteine proteases as well as the barnase-barstar and Rap1a-raf complexes. Based on amino acids established by various experimental studies to have an electrostatic influence on binding specificity, VASP-E identified electrostatically influential amino acids with 100% precision and 83.3% recall. We also show that VASP-E can accurately classify closely related ligand binding cavities into groups with different binding preferences. These results suggest that VASP-E should prove a useful tool for the characterization of specific binding and the engineering of binding preferences in proteins. Proteins, the ubiquitous worker molecules of the cell, are a diverse class of molecules that perform very specific tasks. Understanding how proteins achieve specificity is a critical step towards understanding biological systems and a key prerequisite for rationally engineering new proteins. To examine electrostatic influences on specificity in proteins, this paper presents VASP-E, a software tool that generates solid representations of the electrostatic potential fields that surround proteins. VASP-E compares solids with constructive solid geometry, a class of techniques developed first for modeling complex machine parts. We observed that solid representations could quantify the degree of charge complementarity in protein-protein interactions and identify key residues that strengthen or weaken them. VASP-E correctly identified amino acids with established experimental influences on protein-protein binding specificity. We also observed that solid representations of electrostatic fields could identify electrostatic conservations and variations that relate to similarities and differences in binding specificity between proteins and small molecules.
Collapse
Affiliation(s)
- Brian Y. Chen
- Department of Computer Science and Engineering, P.C. Rossin College of Engineering and Applied Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
129
|
Oliveira LC, Okamoto DN, Oliveira JR, Kondo MY, Gouvea IE, Biteau N, Baltz T, Murakami MT, Juliano L, Juliano MA. Analysis of peptidase activities of a cathepsin B-like (TcoCBc1) from Trypanosoma congolense. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1260-7. [DOI: 10.1016/j.bbapap.2014.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
|
130
|
The current stage of cathepsin B inhibitors as potential anticancer agents. Future Med Chem 2014; 6:1355-71. [DOI: 10.4155/fmc.14.73] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cathepsin B is a lysosomal cysteine peptidase, with an important role in the development and progression of cancer. It is involved in the degradation of extracellular matrix proteins, a process promoting invasion and metastasis of tumor cells and tumor angiogenesis. Cathepsin B is unique among cathepsins in possessing both carboxypeptidase and endopeptidase activities. While the former is associated with its physiological role, the latter is involved in pathological degradation of the extracellular matrix. Its activities are regulated by different means, the most important being its endogenous inhibitors, the cystatins. In cancer this peptidase/inhibitor balance is altered, leading to harmful cathepsin B activity. The latter can be prevented by exogenous inhibitors. They differ in modes of inhibition, size, structure, binding affinity, selectivity, toxicity and bioavailability. In this article, we review the properties and function of endogenous and exogenous cathepsin B inhibitors and indicate their application as possible anticancer agents.
Collapse
|
131
|
Aggarwal N, Sloane BF. Cathepsin B: multiple roles in cancer. Proteomics Clin Appl 2014; 8:427-37. [PMID: 24677670 PMCID: PMC4205946 DOI: 10.1002/prca.201300105] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Proteases, including intracellular proteases, play roles at many different stages of malignant progression. Our focus here is cathepsin B, a lysosomal cysteine cathepsin. High levels of cathepsin B are found in a wide variety of human cancers, levels that often induce secretion and association of cathepsin B with the tumor cell membrane. In experimental models, such as transgenic models of murine pancreatic and mammary carcinomas, causal roles for cathepsin B have been demonstrated in initiation, growth/tumor cell proliferation, angiogenesis, invasion, and metastasis. Tumor growth in transgenic models is promoted by cathepsin B in tumor-associated cells, for example, tumor-associated macrophages, as well as in tumor cells. In transgenic models, the absence of cathepsin B has been associated with enhanced apoptosis, yet cathepsin B also has been shown to contribute to apoptosis. Cathepsin B is part of a proteolytic pathway identified in xenograft models of human glioma; targeting only cathepsin B in these tumors is less effective than targeting cathepsin B in combination with other proteases or protease receptors. Understanding the mechanisms responsible for increased expression of cathepsin B in tumors and association of cathepsin B with tumor cell membranes is needed to determine whether targeting cathepsin B could be of therapeutic benefit.
Collapse
Affiliation(s)
- Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, Detroit, Ml, USA
| | - Bonnie F. Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Ml, USA
| |
Collapse
|
132
|
Giardia duodenalis cathepsin B proteases degrade intestinal epithelial interleukin-8 and attenuate interleukin-8-induced neutrophil chemotaxis. Infect Immun 2014; 82:2772-87. [PMID: 24733096 DOI: 10.1128/iai.01771-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Giardia duodenalis (syn. G. intestinalis, G. lamblia) infections are a leading cause of waterborne diarrheal disease that can also result in the development of postinfectious functional gastrointestinal disorders via mechanisms that remain unclear. Parasite numbers exceed 10(6) trophozoites per centimeter of gut at the height of an infection. Yet the intestinal mucosa of G. duodenalis-infected individuals is devoid of signs of overt inflammation. G. duodenalis infections can also occur concurrently with infections with other proinflammatory gastrointestinal pathogens. Little is known of whether and how this parasite can attenuate host inflammatory responses induced by other proinflammatory stimuli, such as a gastrointestinal pathogen. Identifying hitherto-unrecognized parasitic immunomodulatory pathways, the present studies demonstrated that G. duodenalis trophozoites attenuate secretion of the potent neutrophil chemoattractant interleukin-8 (CXCL8); these effects were observed in human small intestinal mucosal tissues and from intestinal epithelial monolayers, activated through administration of proinflammatory interleukin-1β or Salmonella enterica serovar Typhimurium. This attenuation is caused by the secretion of G. duodenalis cathepsin B cysteine proteases that degrade CXCL8 posttranscriptionally. Furthermore, the degradation of CXCL8 via G. duodenalis cathepsin B cysteine proteases attenuates CXCL8-induced chemotaxis of human neutrophils. Taken together, these data demonstrate for the first time that G. duodenalis trophozoite cathepsins are capable of attenuating a component of their host's proinflammatory response induced by a separate proinflammatory stimulus.
Collapse
|
133
|
Fonović M, Turk B. Cysteine cathepsins and extracellular matrix degradation. Biochim Biophys Acta Gen Subj 2014; 1840:2560-70. [PMID: 24680817 DOI: 10.1016/j.bbagen.2014.03.017] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/16/2014] [Accepted: 03/22/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cysteine cathepsins are normally found in the lysosomes where they are involved in intracellular protein turnover. Their ability to degrade the components of the extracellular matrix in vitro was first reported more than 25years ago. However, cathepsins were for a long time not considered to be among the major players in ECM degradation in vivo. During the last decade it has, however, become evident that abundant secretion of cysteine cathepsins into extracellular milieu is accompanying numerous physiological and disease conditions, enabling the cathepsins to degrade extracellular proteins. SCOPE OF VIEW In this review we will focus on cysteine cathepsins and their extracellular functions linked with ECM degradation, including regulation of their activity, which is often enhanced by acidification of the extracellular microenvironment, such as found in the bone resorption lacunae or tumor microenvironment. We will further discuss the ECM substrates of cathepsins with a focus on collagen and elastin, including the importance of that for pathologies. Finally, we will overview the current status of cathepsin inhibitors in clinical development for treatment of ECM-linked diseases, in particular osteoporosis. MAJOR CONCLUSIONS Cysteine cathepsins are among the major proteases involved in ECM remodeling, and their role is not limited to degradation only. Deregulation of their activity is linked with numerous ECM-linked diseases and they are now validated targets in a number of them. Cathepsins S and K are the most attractive targets, especially cathepsin K as a major therapeutic target for osteoporosis with drugs targeting it in advanced clinical trials. GENERAL SIGNIFICANCE Due to their major role in ECM remodeling cysteine cathepsins have emerged as an important group of therapeutic targets for a number of ECM-related diseases, including, osteoporosis, cancer and cardiovascular diseases. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia.
| |
Collapse
|
134
|
Ribeiro JMC, Genta FA, Sorgine MHF, Logullo R, Mesquita RD, Paiva-Silva GO, Majerowicz D, Medeiros M, Koerich L, Terra WR, Ferreira C, Pimentel AC, Bisch PM, Leite DC, Diniz MMP, Junior JLDSGV, Da Silva ML, Araujo RN, Gandara ACP, Brosson S, Salmon D, Bousbata S, González-Caballero N, Silber AM, Alves-Bezerra M, Gondim KC, Silva-Neto MAC, Atella GC, Araujo H, Dias FA, Polycarpo C, Vionette-Amaral RJ, Fampa P, Melo ACA, Tanaka AS, Balczun C, Oliveira JHM, Gonçalves RLS, Lazoski C, Rivera-Pomar R, Diambra L, Schaub GA, Garcia ES, Azambuja P, Braz GRC, Oliveira PL. An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis 2014; 8:e2594. [PMID: 24416461 PMCID: PMC3886914 DOI: 10.1371/journal.pntd.0002594] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/04/2013] [Indexed: 12/14/2022] Open
Abstract
The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.
Collapse
Affiliation(s)
- José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fernando A. Genta
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos H. F. Sorgine
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Logullo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael D. Mesquita
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela O. Paiva-Silva
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Majerowicz
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Medeiros
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
| | - Leonardo Koerich
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Walter R. Terra
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Clélia Ferreira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - André C. Pimentel
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo M. Bisch
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel C. Leite
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle M. P. Diniz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Lídio da S. G. V. Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Technological Innovation, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Manuela L. Da Silva
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo N. Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Parasitologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Caroline P. Gandara
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sébastien Brosson
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | - Didier Salmon
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sabrina Bousbata
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Ariel Mariano Silber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Michele Alves-Bezerra
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Gondim
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mário Alberto C. Silva-Neto
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia C. Atella
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe A. Dias
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Polycarpo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel J. Vionette-Amaral
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Fampa
- Instituto de Biologia, DBA, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Ana Claudia A. Melo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aparecida S. Tanaka
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carsten Balczun
- Zoology/Parasitology Group, Ruhr-Universität, Bochum, Germany
| | - José Henrique M. Oliveira
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata L. S. Gonçalves
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiano Lazoski
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Rolando Rivera-Pomar
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Luis Diambra
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
| | | | - Elói S. Garcia
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória R. C. Braz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Oliveira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
135
|
Wei S, Huang Y, Huang X, Cai J, Yan Y, Guo C, Qin Q. Characterization of cathepsin B gene from orange-spotted grouper, Epinephelus coioides involved in SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2014; 36:194-205. [PMID: 24239598 DOI: 10.1016/j.fsi.2013.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
The lysosomal cysteine protease cathepsin B of papain family is a key regulator and signaling molecule that involves in various biological processes, such as the regulation of apoptosis and activation of virus. In the present study, cathepsin B gene (Ec-CB) was cloned and characterized from orange-spotted grouper, Epinephelus coioides. The full-length Ec-CB cDNA was composed of 1918 bp and encoded a polypeptide of 330 amino acids with higher identities to cathepsin B of teleosts and mammalians. Ec-CB possessed typical cathepsin B structural features including an N-terminal signal peptide, the propeptide region and the cysteine protease domain which were conserved in other cathepsin B sequences. Phylogenetic analysis revealed that Ec-CB was most closely related to Lutjanus argentimaculatus. RT-PCR analysis showed that Ec-CB transcript was expressed in all the examined tissues which abundant in spleen, kidney and gill. After challenged with Singapore grouper iridovirus (SGIV) stimulation, the mRNA expression of cathepsin B in E. coioides was up-regulated at 24 h post-infection. Subcellular localization analysis revealed that Ec-CB was distributed predominantly in the cytoplasm. When the fish cells (GS or FHM) were treated with the cathepsin B specific inhibitor CA-074Me, the occurrence of CPE induced by SGIV was delayed, and the viral gene transcription was significantly inhibited. Additionally, SGIV-induced typical apoptosis was also inhibited by CA-074Me in FHM cells. Taken together, our results demonstrated that the Ec-CB might play a functional role in SGIV infection.
Collapse
Affiliation(s)
- Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jia Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yang Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Chuanyu Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
136
|
Curcumin as inhibitor of mammalian Cathepsin B, Cathepsin H, acid phosphatase and alkaline phosphatase: a correlation with pharmacological activities. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0872-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
137
|
Li X, Meng X, Kong J, Luo K, Luan S, Cao B, Liu N, Pang J, Shi X. Molecular cloning and characterization of a cathepsin B gene from the Chinese shrimp Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1604-1612. [PMID: 24041842 DOI: 10.1016/j.fsi.2013.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/24/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
Cathepsin B is a unique member of the cathepsin superfamily, which acts as both an endopeptidase and peptidyl-dipeptidase. To obtain a better understanding of this enzyme, we cloned a cDNA encoding cathepsin B from the muscle of Fenneropenaeus chinensis (FcCB). FcCB contained a 996-bp open reading frame (ORF) encoding a protein of 331 amino acid residues with a putative signal peptide and a propeptide_C1 at the N-terminal, a glutamine oxyanion hole and active site cysteine, histidine and asparagine residues. A region from residue 79 to 327 conferred the peptidase activity of FcCB. Pair-wise and multiple sequence alignment with 17 other organisms, including ten different vertebrate species, five different invertebrate species and two different plant species, indicated that the signal peptide and the propeptide_C1 at the N-terminal of FcCB were less conserved than the mature protein, except when compared with Penaeus monodon, Litopenaeus vannamei and Marsupenaeus japonicas, all of which belong to the genus Penaeus. The expression of FcCB in the hepatopancreas was higher than that in the gill. The expression of FcCB in the gill was higher than that in the muscle. A challenge test was performed to reveal the responses of FcCB in different tissues to white spot syndrome virus (WSSV) infection, which causes serious economic losses in the shrimp farming industry. The FcCB gene expressions in the ectoderm, mesoderm and entoderm were not the same prior to WSSV infection, but at 6 h after WSSV challenge, the FcCB expression in the gill, hepatopancreas and muscle was up-regulated, suggesting that FcCB might be involved in the immune response to WSSV. Three single nucleotide polymorphisms (SNPs) were identified in the FcCB gene, involving C/T transitions, which are known as mutation hot spots. Notably, the three SNPs constituted a haplotype that can be used as an indicator of the haplotype block. The SNP genotypes of two groups of shrimps, respectively comprising 96 WSSV-resistant shrimps and 96 WSSV-susceptible shrimps, were obtained using a high-resolution melting (HRM) method. Associated factors, including observed heterozygosity (Ho), expected heterozygosity (He), minor allele frequency (MAF) and P-values for the deviation from Hardy-Weinberg equilibrium (HWE), were obtained. For the association analysis with WSSV resistance, the P-values were calculated using Pearson's chi-square test. In the two groups, the MAFs of all sites were greater than 0.05, and no site departed significantly (P < 0.05) from HWE. The genotype distribution of the C-984T mutation site between the two groups was not significantly different. These results lead to a better understanding of the molecular mechanisms of the host-virus interaction and provide useful information for solving the WSSV problem.
Collapse
Affiliation(s)
- Xupeng Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Key Laboratory for Sustainable Utilization of Marine Fisheries Resources of Chinese Department of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Dhanavade MJ, Jalkute CB, Barage SH, Sonawane KD. Homology modeling, molecular docking and MD simulation studies to investigate role of cysteine protease from Xanthomonas campestris in degradation of Aβ peptide. Comput Biol Med 2013; 43:2063-70. [PMID: 24290922 DOI: 10.1016/j.compbiomed.2013.09.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 12/23/2022]
Abstract
Cysteine protease is known to degrade amyloid beta peptide which is a causative agent of Alzheimer's disease. This cleavage mechanism has not been studied in detail at the atomic level. Hence, a three-dimensional structure of cysteine protease from Xanthomonas campestris was constructed by homology modeling using Geno3D, SWISS-MODEL, and MODELLER 9v7. All the predicted models were analyzed by PROCHECK and PROSA. Three-dimensional model of cysteine protease built by MODELLER 9v7 shows similarity with human cathepsin B crystal structure. This model was then used further for docking and simulation studies. The molecular docking study revealed that Cys17, His87, and Gln88 residues of cysteine protease form an active site pocket similar to human cathepsin B. Then the docked complex was refined by molecular dynamic simulation to confirm its stable behavior over the entire simulation period. The molecular docking and MD simulation studies showed that the sulfhydryl hydrogen atom of Cys17 of cysteine protease interacts with carboxylic oxygen of Lys16 of Aβ peptide indicating the cleavage site. Thus, the cysteine protease model from X. campestris having similarity with human cathepsin B crystal structure may be used as an alternate approach to cleave Aβ peptide a causative agent of Alzheimer's disease.
Collapse
Affiliation(s)
- Maruti J Dhanavade
- Department of Microbiology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India
| | | | | | | |
Collapse
|
139
|
Shankar R, Samykutty A, Riggin C, Kannan S, Wenzel U, Kolhatkar R. Cathepsin B degradable star-shaped peptidic macromolecules for delivery of 2-methoxyestradiol. Mol Pharm 2013; 10:3776-88. [PMID: 23971990 DOI: 10.1021/mp400261h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
2-Methoxyestradiol (2ME), a natural metabolite of estradiol, has antiproliferative and antiangiogenic activity. However, its clinical success is limited due to poor water solubility and poor pharmacokinetic parameters suggesting the need for a delivery vehicle. In this study we evaluated cathepsin B degradable star-shaped peptidic macromolecules (SPMs) that can potentially be used to create higher generation and high molecular weight peptidic polymer as delivery vehicle of 2ME. Two peptidic macromolecules having positively charged amine (ASPM) or negatively charged carboxyl surface groups (CSPM) were synthesized and evaluated for their degradation in the presence of cathepsin B and stability in the presence of neutral or acidic buffer and serum. Both ASPM and CSPM degraded rapidly in the presence of cathepsin B. Both were stable in neutral and acidic buffer whereas only CSPM exhibited substantial stability in the presence of serum. Both macromolecules were nontoxic toward breast cancer cells whereas 2ME-containing macromolecules exhibited antiproliferative activity in the micromolar range. Overall, results from the current study indicate that tetrapeptide GFLG can be used to create star-shaped macromolecules that are degraded in the presence of cathepsin B and have the potential to be developed as delivery vehicles of 2ME.
Collapse
Affiliation(s)
- Ravi Shankar
- Department of Biopharmaceutical Sciences, University of Illinois Chicago , Rockford, Illinois 61107, United States
| | | | | | | | | | | |
Collapse
|
140
|
An insight into the anticancer activities of Ru(II)-based metallocompounds using docking methods. Molecules 2013; 18:10829-56. [PMID: 24008244 PMCID: PMC6269807 DOI: 10.3390/molecules180910829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022] Open
Abstract
Unlike organic molecules, reports on docking of metal complexes are very few; mainly due to the inadequacy of force fields in docking packages to appropriately characterize the metal atoms that consequentially hinder the rational design of metal-based drug complexes. In this study we have made used Molegro and Autodock to predict the anticancer activities of selected Ru(II) complexes against twelve anticancer targets. We observed that introducing the quantum calculated atomic charges of the optimized geometries significantly improved the docking predictions of these anticancer metallocompounds. Despite several limitations in the docking of metal-based complexes, we obtained results that are highly correlated with the available experimental results. Most of our newly proposed metallocompounds are found theoretically to be better anticancer metallocompounds than all the experimentally proposed RAPTA complexes. An interesting features of a strong interactions of new modeled of metallocompounds against the two base edges of DNA strands suggest similar mechanisms of anticancer activities similar to that of cisplatin. There is possibility of covalent bonding between the metal center of the metallocompounds and the residues of the receptors DNA-1, DNA-2, HDAC7, HIS and RNR. However, the general results suggest the possibility of metals positioning the coordinated ligands in the right position for optimal receptor interactions and synergistic effects, rather than forming covalent bonds.
Collapse
|
141
|
Turk D. MAIN software for density averaging, model building, structure refinement and validation. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1342-57. [PMID: 23897458 PMCID: PMC3727325 DOI: 10.1107/s0907444913008408] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/26/2013] [Indexed: 11/11/2022]
Abstract
MAIN is software that has been designed to interactively perform the complex tasks of macromolecular crystal structure determination and validation. Using MAIN, it is possible to perform density modification, manual and semi-automated or automated model building and rebuilding, real- and reciprocal-space structure optimization and refinement, map calculations and various types of molecular structure validation. The prompt availability of various analytical tools and the immediate visualization of molecular and map objects allow a user to efficiently progress towards the completed refined structure. The extraordinary depth perception of molecular objects in three dimensions that is provided by MAIN is achieved by the clarity and contrast of colours and the smooth rotation of the displayed objects. MAIN allows simultaneous work on several molecular models and various crystal forms. The strength of MAIN lies in its manipulation of averaged density maps and molecular models when noncrystallographic symmetry (NCS) is present. Using MAIN, it is possible to optimize NCS parameters and envelopes and to refine the structure in single or multiple crystal forms.
Collapse
Affiliation(s)
- Dušan Turk
- Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
142
|
Qiu R, Liu X, Hu YH, Sun BG. Expression characterization and activity analysis of a cathepsin B from Pacific abalone Haliotis discus hannai. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1376-1382. [PMID: 23473863 DOI: 10.1016/j.fsi.2013.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/14/2013] [Accepted: 02/22/2013] [Indexed: 06/01/2023]
Abstract
Cathepsin B (EC 3.4.22.1) is a member of lysosomal cysteine protease and has a papain-like fold. In mammals, it is involved in protein degradation and other physiological processes including immune response. However, little is known about the function of cathepsin B in mollusks. In this study, we identified and analyzed a cathepsin B homolog (HdCatB) from Pacific abalone (Haliotis discus hannai), an economically important mollusk species cultured in East Asia. HdCatB is composed of 336 amino acid residues and its mature form is predicted to start at residue 86. HdCatB possesses typical domain architecture of cathepsin B and contains a propeptide region and a cysteine protease domain, the latter containing the four active site residues (Q108, C114, H282, and N302) that are conserved in many different organisms. HdCatB shares 40-60% overall sequence identities with the cathepsin Bofa number of vertebrates and invertebrates and is phylogenetically very close to mollusk cathepsin B. Quantitative real time RT-PCR analysis revealed that HdCatB expression occurred in multiple tissues and was upregulated by bacterial infection. Recombinant HdCatB purified from Escherichia coli exhibited apparent protease activity, which was optimal at 45 °C and pH 6.0. These results indicate that HdCatB is a bioactive protease that is likely to be implicated in the immune response of abalone during bacterial infection.
Collapse
Affiliation(s)
- Reng Qiu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | |
Collapse
|
143
|
Abstract
Many proteins contain free thiols that can be modified by the reversible formation of mixed disulfides with glutathione. Protein glutathionylation is of significance for defense against oxidative damage and in redox signaling. Here we outline the mechanisms and possible significance of protein glutathionylation.
Collapse
|
144
|
Redecke L, Nass K, DePonte DP, White TA, Rehders D, Barty A, Stellato F, Liang M, Barends TR, Boutet S, Williams GJ, Messerschmidt M, Seibert MM, Aquila A, Arnlund D, Bajt S, Barth T, Bogan MJ, Caleman C, Chao TC, Doak RB, Fleckenstein H, Frank M, Fromme R, Galli L, Grotjohann I, Hunter MS, Johansson LC, Kassemeyer S, Katona G, Kirian RA, Koopmann R, Kupitz C, Lomb L, Martin AV, Mogk S, Neutze R, Shoeman RL, Steinbrener J, Timneanu N, Wang D, Weierstall U, Zatsepin NA, Spence JCH, Fromme P, Schlichting I, Duszenko M, Betzel C, Chapman HN. Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science 2013; 339:227-230. [PMID: 23196907 PMCID: PMC3786669 DOI: 10.1126/science.1229663] [Citation(s) in RCA: 286] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the "diffraction-before-destruction" approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.
Collapse
Affiliation(s)
- Lars Redecke
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, at Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- German Centre for Infection Research, University of Lübeck, 23538 Lübeck, Germany
| | - Karol Nass
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Daniel P. DePonte
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Thomas A. White
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dirk Rehders
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, at Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Francesco Stellato
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Mengning Liang
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Thomas R.M. Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Sébastien Boutet
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Garth J. Williams
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Marc Messerschmidt
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - M. Marvin Seibert
- Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Andrew Aquila
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - David Arnlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Sasa Bajt
- Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Torsten Barth
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Michael J. Bogan
- Photon Ultrafast Laser Science and Engineering (PULSE) Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Carl Caleman
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Tzu-Chiao Chao
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - R. Bruce Doak
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Raimund Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Lorenzo Galli
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ingo Grotjohann
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Mark S. Hunter
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Linda C. Johansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Stephan Kassemeyer
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Richard A. Kirian
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Rudolf Koopmann
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Chris Kupitz
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Lukas Lomb
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrew V. Martin
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Stefan Mogk
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Robert L. Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jan Steinbrener
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Nicusor Timneanu
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-75124 Uppsala, Sweden
| | - Dingjie Wang
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Nadia A. Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - John C. H. Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Petra Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael Duszenko
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, at DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
145
|
Sosič I, Mirković B, Arenz K, Stefane B, Kos J, Gobec S. Development of new cathepsin B inhibitors: combining bioisosteric replacements and structure-based design to explore the structure-activity relationships of nitroxoline derivatives. J Med Chem 2013; 56:521-33. [PMID: 23252745 DOI: 10.1021/jm301544x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human cathepsin B has many house-keeping functions, such as protein turnover in lysosomes. However, dysregulation of its activity is associated with numerous diseases, including cancers. We present here the structure-based design and synthesis of new cathepsin B inhibitors using the cocrystal structure of 5-nitro-8-hydroxyquinoline in the cathepsin B active site. A focused library of over 50 compounds was prepared by modifying positions 5, 7, and 8 of the parent compound nitroxoline. The kinetic parameters and modes of inhibition were characterized, and the selectivities of the most promising inhibitors were determined. The best performing inhibitor 17 was effective in cell-based in vitro models of tumor invasion, where it significantly abrogated invasion of MCF-10A neoT cells. These data show that we have successfully explored the structure-activity relationships of nitroxoline derivatives to provide new inhibitors that could eventually lead to compounds with clinical usefulness against the deleterious effects of cathepsin B in cancer progression.
Collapse
Affiliation(s)
- Izidor Sosič
- University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
146
|
Siricoon S, Grams SV, Grams R. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica. Mol Biochem Parasitol 2012; 186:126-33. [DOI: 10.1016/j.molbiopara.2012.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022]
|
147
|
Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent Mater 2012; 29:116-35. [PMID: 22901826 DOI: 10.1016/j.dental.2012.08.004] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/04/2012] [Accepted: 08/05/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Contemporary adhesives lose their bond strength to dentin regardless of the bonding system used. This loss relates to the hydrolysis of collagen matrix of the hybrid layers. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. METHODS Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. RESULTS The identities, roles and function of collagenolytic enzymes in mineralized dentin has been gathered only within last 15 years, but they have already been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Identifying responsible enzymes facilitates the development of new, more efficient methods to improve the stability of dentin-adhesive bond and durability of bond strength. SIGNIFICANCE Understanding the nature and role of proteolytic degradation of dentin-adhesive interfaces has improved immensely and has practically grown to a scientific field of its own within only 10 years, holding excellent promise that stable resin-dentin bonds will be routinely available in a daily clinical setting already in a near future.
Collapse
|
148
|
Cheng XW, Shi GP, Kuzuya M, Sasaki T, Okumura K, Murohara T. Role for cysteine protease cathepsins in heart disease: focus on biology and mechanisms with clinical implication. Circulation 2012; 125:1551-62. [PMID: 22451605 DOI: 10.1161/circulationaha.111.066712] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xian Wu Cheng
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
149
|
Mazzoni A, Breschi L, Carrilho M, Nascimento FD, Orsini G, Ruggeri A, Gobbi P, Manzoli L, Tay FR, Pashley DH, Tjäderhane L. A review of the nature, role, and function of dentin non-collagenous proteins. Part II: enzymes, serum proteins, and growth factors. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00268.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
150
|
Shen C, Yu Y, Li H, Yan G, Liu M, Shen H, Yang P. Global profiling of proteolytically modified proteins in human metastatic hepatocellular carcinoma cell lines reveals CAPN2 centered network. Proteomics 2012; 12:1917-27. [DOI: 10.1002/pmic.201200027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chengpin Shen
- Department of Chemistry and Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| | - Yanyan Yu
- Department of Chemistry and Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| | - Hong Li
- Department of Chemistry and Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| | - Guoquan Yan
- Department of Chemistry and Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| | - Mingqi Liu
- Department of Chemistry and Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| | - Huali Shen
- Department of Chemistry and Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| |
Collapse
|