101
|
Glucosamine-supplementation promotes endoplasmic reticulum stress, hepatic steatosis and accelerated atherogenesis in apoE−/− mice. Atherosclerosis 2011; 219:134-40. [DOI: 10.1016/j.atherosclerosis.2011.07.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/23/2011] [Accepted: 07/21/2011] [Indexed: 11/17/2022]
|
102
|
Konta L, Száraz P, Magyar JÉ, Révész K, Bánhegyi G, Mandl J, Csala M. Inhibition of glycoprotein synthesis in the endoplasmic reticulum as a novel anticancer mechanism of (-)-epigallocatechin-3-gallate. Biofactors 2011; 37:468-76. [PMID: 22162335 DOI: 10.1002/biof.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 09/20/2011] [Indexed: 11/05/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) has been found to trigger the unfolded protein response (UPR) likely due to the inhibition of glucosidase II, a key enzyme of glycoprotein processing and quality control in the endoplasmic reticulum (ER). These findings strongly suggest that EGCG interferes with glycoprotein maturation and sorting in the ER. This hypothesis was tested in SK-Mel28 human melanoma cells by assessing the effect of EGCG and deoxynojirimycin (DNJ) on the synthesis of two endogenous glycoproteins. Both tyrosinase and vascular endothelial growth factor (VEGF) protein levels were remarkably reduced despite unaltered mRNA expression in EGCG- or DNJ-treated cells compared to control. The hindrance of tyrosinase and VEGF protein synthesis could be prevented by proteasome inhibitor, lactacystine. Collectively, our results support that glucosidase II inhibitor EGCG interferes with protein processing and quality control in the ER, which diverts tyrosinase, VEGF, and likely other glycoproteins towards proteasomal degradation. This mechanism provides a novel therapeutic approach in dermatology and might play an important role in the antitumor effect or hepatotoxicity of EGCG.
Collapse
Affiliation(s)
- Laura Konta
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University & MTA-SE Pathobiochemistry Research Group, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
103
|
Révész K, Tüttő A, Szelényi P, Konta L. Tea flavan-3-ols as modulating factors in endoplasmic reticulum function. Nutr Res 2011; 31:731-40. [DOI: 10.1016/j.nutres.2011.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/07/2011] [Accepted: 09/15/2011] [Indexed: 01/04/2023]
|
104
|
Gentile CL, Frye M, Pagliassotti MJ. Endoplasmic reticulum stress and the unfolded protein response in nonalcoholic fatty liver disease. Antioxid Redox Signal 2011; 15:505-21. [PMID: 21128705 PMCID: PMC3118611 DOI: 10.1089/ars.2010.3790] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/02/2010] [Indexed: 02/07/2023]
Abstract
The underlying causes of nonalcoholic fatty liver disease (NAFLD) are unclear, although recent evidence has implicated the endoplasmic reticulum (ER) in both the development of steatosis and progression to nonalcoholic steatohepatitis. Disruption of ER homeostasis, often termed "ER stress," has been observed in liver and adipose tissue of humans with NAFLD and/or obesity. Importantly, the signaling pathway activated by disruption of ER homeostasis, the unfolded protein response, has been linked to lipid biosynthesis, insulin action, inflammation, and apoptosis. Therefore, understanding the mechanisms that disrupt ER homeostasis in NAFLD and the role of ER-mediated signaling have become topics of intense investigation. The present review will examine the ER and the unfolded protein response in the context of NAFLD.
Collapse
Affiliation(s)
- Christopher L. Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Melinda Frye
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Michael J. Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
105
|
Peters LR, Raghavan M. Endoplasmic reticulum calcium depletion impacts chaperone secretion, innate immunity, and phagocytic uptake of cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:919-31. [PMID: 21670312 PMCID: PMC3371385 DOI: 10.4049/jimmunol.1100690] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of immunological functions are ascribed to cell surface-expressed forms of the endoplasmic reticulum (ER) chaperone calreticulin (CRT). In this study, we examined the impact of ER stress-inducing drugs upon cell surface CRT induction and the resulting immunological consequences. We showed that cell surface expression of CRT and secretion of CRT, BiP, gp96, and PDI were induced by thapsigargin (THP) treatment, which depletes ER calcium, but not by tunicamycin treatment, which inhibits protein glycosylation. Surface expression of CRT in viable, THP-treated fibroblasts correlated with their enhanced phagocytic uptake by bone marrow-derived dendritic cells. Incubation of bone marrow-derived dendritic cells with THP-treated fibroblasts enhanced sterile IL-6 production and LPS-induced generation of IL-1β, IL-12, IL-23, and TNF-α. However, extracellular CRT is not required for enhanced proinflammatory responses. Furthermore, the pattern of proinflammatory cytokine induction by THP-treated cells and cell supernatants resembled that induced by THP itself and indicated that other ER chaperones present in supernatants of THP-treated cells also do not contribute to induction of the innate immune response. Thus, secretion of various ER chaperones, including CRT, is induced by ER calcium depletion. CRT, previously suggested as an eat-me signal in dead and dying cellular contexts, can also promote phagocytic uptake of cells subject to ER calcium depletion. Finally, there is a strong synergy between calcium depletion in the ER and sterile IL-6, as well as LPS-dependent IL-1β, IL-12, IL-23, and TNF-α innate responses, findings that have implications for understanding inflammatory diseases that originate in the ER.
Collapse
Affiliation(s)
- Larry Robert Peters
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor MI 48109
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor MI 48109
| |
Collapse
|
106
|
An Approach to Further Enhance the Cellular Productivity of Exogenous Protein Hyper-producing Chinese Hamster Ovary (CHO) Cells. Cytotechnology 2011; 47:29-36. [PMID: 19003042 DOI: 10.1007/s10616-005-3765-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022] Open
Abstract
The cell line D29, which was easily and rapidly established by the promoter-activated production and glutamine synthetase hybrid system, secreted recombinant human interleukin-6 (hIL-6) at a productivity rate of 39.5 mug 10(-6) cells day(-1), one of the highest reported levels worldwide. The productivity rate was about 130-fold higher than that of the cell line A7, which was established without both promoter activation and gene amplification. Although D29 cells had a high copy number and high mRNA level of the hIL-6 gene as well as a high secretion rate of hIL-6, large amounts of intracellular hIL-6 protein accumulated in D29 cells compared to A7 cells. Northern blotting analysis showed no change in the GRP78/BiP expression level in D29 cells. In contrast, an electrophoresis mobility shift assay revealed strong activation of NF-kappaB in D29 cells. These results suggest that large amounts of hIL-6 translated from large amounts of hIL-6 mRNA cause excess accumulation of intact hIL-6 in the endoplasmic reticulum (ER), and that subsequent negative feedback signals via the ER overload response inhibit hIL-6 protein secretion. To enhance the hIL-6 productivity rate of D29 cells by releasing the negative feedback signals, the effect of pyrrolidinedithiocarbamate, an inhibitor of NF-kappaB activation, was examined. Suppression of NF-kappaB activation in D29 cells produced a 25% augmentation of the hIL-6 productivity rate. Therefore, in highly productive cells like D29 cells, the release of negative feedback signals could increase the total amount of recombinant protein secretion.
Collapse
|
107
|
Carneiro FRG, Ramalho-Oliveira R, Mognol GP, Viola JPB. Interferon regulatory factor 2 binding protein 2 is a new NFAT1 partner and represses its transcriptional activity. Mol Cell Biol 2011; 31:2889-901. [PMID: 21576369 PMCID: PMC3133407 DOI: 10.1128/mcb.00974-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/07/2010] [Accepted: 05/02/2011] [Indexed: 01/10/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors is expressed in a wide range of cell types and regulates genes involved in cell cycle, differentiation, and apoptosis. NFAT proteins share two well-conserved regions, the regulatory domain and the DNA binding domain. The N- and C-terminal ends are transactivation sites and show less sequence similarity, whereas their molecular functions remain poorly understood. Here, we identified a transcriptional repressor, interferon regulatory factor 2 binding protein 2 (IRF-2BP2), which specifically interacts with the C-terminal domain of NFAT1 among the NFAT family members. IRF-2BP2 was described as a corepressor by inhibiting both enhancer-activated and basal transcription. Gene reporter assays demonstrated that IRF-2BP2 represses the NFAT1-dependent transactivation of NFAT-responsive promoters. The ectopic expression of IRF-2BP2 in CD4 T cells resulted in decreased interleukin-2 (IL-2) and IL-4 production, supporting a repressive function of IRF-2BP2 for NFAT target genes. Furthermore, NFAT1 and IRF-2BP2 colocalized in the nucleus in activated cells, and the mutation of a newly identified nuclear localization signal in the IRF-2BP2 rendered it cytoplasmic, abolishing its repressive effect on NFAT1 activity. Collectively, our data demonstrate that IRF-2BP2 is a negative regulator of the NFAT1 transcription factor and suggest that NFAT1 repression occurs at the transcriptional level.
Collapse
Affiliation(s)
| | - Renata Ramalho-Oliveira
- Division of Cellular Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Giuliana P. Mognol
- Division of Cellular Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - João P. B. Viola
- Division of Cellular Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
108
|
Abstract
Under inflammatory situations, endoplasmic reticulum (ER) stress occurs at local sites and modulates inflammatory processes. NF-κB is a key regulator for immune and inflammatory responses, and its activity is influenced by ER stress positively or negatively. Recent investigation suggested that ER stress induces activation of NF-κB in the early phase, whereas in the later phase, consequent unfolded protein response (UPR) inhibits NF-κB. This review summarizes current knowledge on potential mechanisms underlying the biphasic, bidirectional regulation of NF-κB by the UPR and possible roles for ER stress in the regulation of inflammation.
Collapse
Affiliation(s)
- Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
109
|
Roussel BD, Irving JA, Ekeowa UI, Belorgey D, Haq I, Ordóñez A, Kruppa AJ, Duvoix A, Rashid ST, Crowther DC, Marciniak SJ, Lomas DA. Unravelling the twists and turns of the serpinopathies. FEBS J 2011; 278:3859-67. [DOI: 10.1111/j.1742-4658.2011.08201.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
110
|
Differential Modulation of Immunostimulant-Triggered NO Production by Endoplasmic Reticulum Stress Inducers in Vascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2011; 57:434-8. [DOI: 10.1097/fjc.0b013e31820d9486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
111
|
Pathogenicity of Misfolded and Dimeric HLA-B27 Molecules. Int J Rheumatol 2011; 2011:486856. [PMID: 21547037 PMCID: PMC3087312 DOI: 10.1155/2011/486856] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/28/2011] [Indexed: 01/04/2023] Open
Abstract
The association between HLA-B27 and the group of autoimmune inflammatory arthritic diseases, the spondyloarthropathies (SpAs) which include ankylosing spondylitis (AS) and Reactive Arthritis (ReA), has been well established and remains the strongest association between any HLA molecule and autoimmune disease. The mechanism behind this striking association remains elusive; however animal model and biochemical data suggest that HLA-B27 misfolding may be key to understanding its association with the SpAs. Recent investigations have focused on the unusual biochemical structures of HLA-B27 and their potential role in SpA pathogenesis. Here we discuss how these unusual biochemical structures may participate in cellular events leading to chronic inflammation and thus disease progression.
Collapse
|
112
|
Van den Eynden J, Notelaers K, Brône B, Janssen D, Nelissen K, Sahebali S, Smolders I, Hellings N, Steels P, Rigo JM. Glycine enhances microglial intracellular calcium signaling. A role for sodium-coupled neutral amino acid transporters. Pflugers Arch 2011; 461:481-91. [PMID: 21350800 DOI: 10.1007/s00424-011-0939-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/31/2011] [Accepted: 02/09/2011] [Indexed: 12/17/2022]
Abstract
The inhibitory neurotransmitter glycine is known to enhance microglial nitric oxide production. However, up to now, the mechanism is undocumented. Since calcium is an important second messenger in both immune and glial cells, we studied the effects of glycine on intracellular calcium signaling. We found that millimolar concentrations of glycine enhance microglial intracellular calcium transients induced by 100 μM ATP or by 500 nM thapsigargin. This modulation was unaffected by the glycine receptor antagonist strychnine and could not be mimicked by glycine receptor agonists such as taurine or β-alanine, indicating glycine receptor independency. The modulation of calcium responses could be mimicked by several structurally related amino acids (e.g., serine, alanine, or glutamine) and was inhibited in the presence of the neutral amino acid transporter substrate α-aminoisobutyric acid (AIB). We correlated these findings to immunofluorescence glycine uptake experiments which showed a clear glycine uptake which was inhibited by AIB. Furthermore, all amino acids that were shown to modulate calcium responses also evoked AIB-sensitive inward currents, mainly carried by sodium, as demonstrated by patch clamp experiments. Based on these findings, we propose that sodium-coupled neutral amino acid transporters are responsible for the observed glycine modulation of intracellular calcium responses.
Collapse
Affiliation(s)
- Jimmy Van den Eynden
- Institute of Biomedical Research, Hasselt University and Transnationale Universiteit Limburg, Agoralaan, Diepenbeek, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Smirnova OA, Ivanov AV, Ivanova ON, Valuev-Elliston VT, Kochetkov SN. Cell defense systems against oxidative stress and endoplasmic reticulum stress: Mechanisms of regulation and the effect of hepatitis C virus. Mol Biol 2011. [DOI: 10.1134/s0026893311010122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
114
|
Serwe A, Rudolph K, Anke T, Erkel G. Inhibition of TGF-β signaling, vasculogenic mimicry and proinflammatory gene expression by isoxanthohumol. Invest New Drugs 2011; 30:898-915. [DOI: 10.1007/s10637-011-9643-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 02/08/2011] [Indexed: 11/29/2022]
|
115
|
Huong PTT, Moon DO, Kim SO, Kim KE, Jeong SJ, Lee KW, Lee KS, Jang JH, Erikson RL, Ahn JS, Kim BY. Proteasome inhibitor-I enhances tunicamycin-induced chemosensitization of prostate cancer cells through regulation of NF-κB and CHOP expression. Cell Signal 2011; 23:857-65. [PMID: 21276850 DOI: 10.1016/j.cellsig.2011.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Although endoplasmic reticulum (ER) stress induction by some anticancer drugs can lead to apoptotic death of cancer cells, combination therapy with other chemicals would be much more efficient. It has been reported that proteasome inhibitors could induce cancer cell death through ER-stress. Our study, however, showed a differential mechanism of proteasome inhibitor-I (Pro-I)-induced cell death. Pro-I significantly enhanced apoptotic death of PC3 prostate cancer cells pretreated with tunicamycin (TM) while other signaling inhibitors against p38, mitogen activated kinase (MEK) and phosphatidyl-inositol 3-kinase (PI3K) did not, as evidenced by cell proliferation and cell cycle analyses. NF-κB inhibition by Pro-I, without direct effect on ER-stress, was found to be responsible for the TM-induced chemosensitization of PC3 cells. Moreover, TM-induced/enhancer-binding protein (C/EBP) homologous protein (CHOP) expression was enhanced by Pro-I without change in GRP78 expression. CHOP knockdown by siRNA also showed a significant decrease in Pro-I chemosensitization. All these data suggest that although TM could induce both NF-κB activation and CHOP expression through ER-stress, both NF-κB inhibition and increased CHOP level by Pro-I are required for enhanced chemosensitization of PC3 prostate cancer cells. Thus, our study might contribute to the identification of anticancer targets against prostate cancer cells.
Collapse
Affiliation(s)
- Pham Thi Thu Huong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 685-1 Yangcheonri, Ochangeup, Cheongwongun, 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Endoplasmic reticulum stress activates autophagy but not the proteasome in neuronal cells: implications for Alzheimer's disease. Cell Death Differ 2011; 18:1071-81. [PMID: 21252911 DOI: 10.1038/cdd.2010.176] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Protein folding stress in the endoplasmic reticulum (ER) may lead to activation of the unfolded protein response (UPR), aimed to restore cellular homeostasis via transcriptional and post-transcriptional mechanisms. ER stress is also reported to activate the ER overload response (EOR), which activates transcription via NF-κB. We previously demonstrated that UPR activation is an early event in pre-tangle neurons in Alzheimer's disease (AD) brain. Misfolded and unfolded proteins are degraded via the ubiquitin proteasome system (UPS) or autophagy. UPR activation is found in AD neurons displaying both early UPS pathology and autophagic pathology. Here we investigate whether activation of the UPR and/or EOR is employed to enhance the proteolytic capacity of neuronal cells. Expression of the immunoproteasome subunits β2i and β5i is increased in AD brain. However, expression of the proteasome subunits is not increased by the UPR or EOR. UPR activation does not relocalize the proteasome or increase overall proteasome activity. Therefore proteasomal degradation is not increased by ER stress. In contrast, UPR activation enhances autophagy and LC3 levels are increased in neurons displaying UPR activation in AD brain. Our data suggest that autophagy is the major degradational pathway following UPR activation in neuronal cells and indicate a connection between UPR activation and autophagic pathology in AD brain.
Collapse
|
117
|
Eraso P, Mazón MJ, Posas F, Portillo F. Gene expression profiling of yeasts overexpressing wild type or misfolded Pma1 variants reveals activation of the Hog1 MAPK pathway. Mol Microbiol 2011; 79:1339-52. [PMID: 21205016 DOI: 10.1111/j.1365-2958.2010.07528.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pilar Eraso
- Departamento de Bioquímica Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
118
|
Gentile CL, Frye MA, Pagliassotti MJ. Fatty acids and the endoplasmic reticulum in nonalcoholic fatty liver disease. Biofactors 2011; 37:8-16. [PMID: 21328622 PMCID: PMC3080031 DOI: 10.1002/biof.135] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/10/2010] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a burgeoning public health concern in westernized nations. The obesity-related disorder is associated with an increased risk of cardiovascular disease, type 2 diabetes and liver failure. Although the underlying pathogenesis of NAFLD is unclear, increasing evidence suggests that excess saturated fatty acids presented to or stored within the liver may play a role in both the development and progression of the disorder. A putative mechanism linking saturated fatty acids to NAFLD may be endoplasmic reticulum (ER) stress. Specifically, excess saturated fatty acids may induce an ER stress response that, if left unabated, can activate stress signaling pathways, cause hepatocyte cell death, and eventually lead to liver dysfunction. In the current review we discuss the involvement of saturated fatty acids in the pathogenesis of NAFLD with particular emphasis on the role of ER stress.
Collapse
Affiliation(s)
- Christopher L. Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Melinda A. Frye
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Michael J. Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
119
|
Irving JA, Ekeowa UI, Belorgey D, Haq I, Gooptu B, Miranda E, Pérez J, Roussel BD, Ordóñez A, Dalton LE, Thomas SE, Marciniak SJ, Parfrey H, Chilvers ER, Teckman JH, Alam S, Mahadeva R, Rashid ST, Vallier L, Lomas DA. The serpinopathies studying serpin polymerization in vivo. Methods Enzymol 2011; 501:421-66. [PMID: 22078544 DOI: 10.1016/b978-0-12-385950-1.00018-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The serpinopathies result from point mutations in members of the serine protease inhibitor or serpin superfamily. They are characterized by the formation of ordered polymers that are retained within the cell of synthesis. This causes disease by a "toxic gain of function" from the accumulated protein and a "loss of function" as a result of the deficiency of inhibitors that control important proteolytic cascades. The serpinopathies are exemplified by the Z (Glu342Lys) mutant of α₁-antitrypsin that results in the retention of ordered polymers within the endoplasmic reticulum of hepatocytes. These polymers form the intracellular inclusions that are associated with neonatal hepatitis, cirrhosis, and hepatocellular carcinoma. A second example results from mutations in the neurone-specific serpin-neuroserpin to form ordered polymers that are retained as inclusions within subcortical neurones as Collins' bodies. These inclusions underlie the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. There are different pathways to polymer formation in vitro but not all form polymers that are relevant in vivo. It is therefore essential that protein-based structural studies are interpreted in the context of human samples and cell and animal models of disease. We describe here the biochemical techniques, monoclonal antibodies, cell biology, animal models, and stem cell technology that are useful to characterize the serpin polymers that form in vivo.
Collapse
Affiliation(s)
- James A Irving
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Srinivasan V, Kriete A, Sacan A, Jazwinski SM. Comparing the yeast retrograde response and NF-κB stress responses: implications for aging. Aging Cell 2010; 9:933-41. [PMID: 20961379 DOI: 10.1111/j.1474-9726.2010.00622.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mitochondrial retrograde response has been extensively described in Saccharomyces cerevisiae, where it has been found to extend life span during times of mitochondrial dysfunction, damage or low nutrient levels. In yeast, the retrograde response genes (RTG) convey these stress responses to the nucleus to change the gene expression adaptively. Similarly, most classes of higher organisms have been shown to have some version of a central stress-mediating transcription factor, NF-κB. There have been several modifications along the phylogenetic tree as NF-κB has taken a larger role in managing cellular stresses. Here, we review similarities and differences in mechanisms and pathways between RTG genes in yeast and NF-κB as seen in more complex organisms. We perform a structural homology search and reveal similarities of Rtg proteins with eukaryotic transcription factors involved in development and metabolism. NF-κB shows more sophisticated functions when compared to RTG genes including participation in immune responses and induction of apoptosis under high levels of ROS-induced mitochondrial and nuclear DNA damage. Involvement of NF-κB in chromosomal stability, coregulation of mitochondrial respiration, and cross talk with the TOR (target of rapamycin) pathway points to a conserved mechanism also found in yeast.
Collapse
Affiliation(s)
- Visish Srinivasan
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
121
|
Abstract
Prolonged activation of the endoplasmic reticulum (ER) stress pathway known as the unfolded protein response (UPR) can lead to cell pathology and subsequent tissue dysfunction. There is now ample evidence that the UPR is chronically activated in atherosclerotic lesional cells, particularly advanced lesional macrophages and endothelial cells. The stressors in advanced lesions that can lead to prolonged activation of the UPR include oxidative stress, oxysterols, and high levels of intracellular cholesterol and saturated fatty acids. Importantly, these arterial wall stressors may be especially prominent in the settings of obesity, insulin resistance, and diabetes, all of which promote the clinical progression of atherosclerosis. In the case of macrophages, prolonged ER stress triggers apoptosis, which in turn leads to plaque necrosis if the apoptotic cells are not rapidly cleared. ER stress-induced endothelial cell apoptosis may also contribute to plaque progression. Another potentially important proatherogenic effect of prolonged ER stress is activation of inflammatory pathways in macrophages and, perhaps in response to atheroprone shear stress, endothelial cells. Although exciting work over the last decade has begun to shed light on the mechanisms and in vivo relevance of ER stress-driven atherosclerosis, much more work is needed to fully understand this area and to enable an informed approach to therapeutic translation.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
122
|
Suliman HB, Sweeney TE, Withers CM, Piantadosi CA. Co-regulation of nuclear respiratory factor-1 by NFkappaB and CREB links LPS-induced inflammation to mitochondrial biogenesis. J Cell Sci 2010; 123:2565-75. [PMID: 20587593 DOI: 10.1242/jcs.064089] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear respiratory factor-1 (NRF1) gene is activated by lipopolysaccharide (LPS), which might reflect TLR4-mediated mitigation of cellular inflammatory damage via initiation of mitochondrial biogenesis. To test this hypothesis, we examined NRF1 promoter regulation by NFκB, and identified interspecies-conserved κB-responsive promoter and intronic elements in the NRF1 locus. In mice, activation of Nrf1 and its downstream target, Tfam, by Escherichia coli was contingent on NFκB, and in LPS-treated hepatocytes, NFκB served as an NRF1 enhancer element in conjunction with NFκB promoter binding. Unexpectedly, optimal NRF1 promoter activity after LPS also required binding by the energy-state-dependent transcription factor CREB. EMSA and ChIP assays confirmed p65 and CREB binding to the NRF1 promoter and p65 binding to intron 1. Functionality for both transcription factors was validated by gene-knockdown studies. LPS regulation of NRF1 led to mtDNA-encoded gene expression and expansion of mtDNA copy number. In cells expressing plasmid constructs containing the NRF-1 promoter and GFP, LPS-dependent reporter activity was abolished by cis-acting κB-element mutations, and nuclear accumulation of NFκB and CREB demonstrated dependence on mitochondrial H(2)O(2). These findings indicate that TLR4-dependent NFκB and CREB activation co-regulate the NRF1 promoter with NFκB intronic enhancement and redox-regulated nuclear translocation, leading to downstream target-gene expression, and identify NRF-1 as an early-phase component of the host antibacterial defenses.
Collapse
Affiliation(s)
- Hagir B Suliman
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
123
|
McGuckin MA, Eri RD, Das I, Lourie R, Florin TH. ER stress and the unfolded protein response in intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2010; 298:G820-32. [PMID: 20338921 DOI: 10.1152/ajpgi.00063.2010] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endoplasmic reticulum (ER) stress is a phenomenon that occurs when excessive protein misfolding occurs during biosynthesis. ER stress triggers a series of signaling and transcriptional events known as the unfolded protein response (UPR). The UPR attempts to restore homeostasis in the ER but if unsuccessful can trigger apoptosis in the stressed cells and local inflammation. Intestinal secretory cells are susceptible to ER stress because they produce large amounts of complex proteins for secretion, most of which are involved in mucosal defense. This review focuses on ER stress in intestinal secretory cells and describes how increased protein misfolding could occur in these cells, the process of degradation of misfolded proteins, the major molecular elements of the UPR pathway, and links between the UPR and inflammation. Evidence is reviewed from mouse models and human inflammatory bowel diseases that ties ER stress and activation of the UPR with intestinal inflammation, and possible therapeutic approaches to ameliorate ER stress are discussed.
Collapse
Affiliation(s)
- Michael A McGuckin
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Qld 4029, Australia.
| | | | | | | | | |
Collapse
|
124
|
Maguire JA, Mulugeta S, Beers MF. Endoplasmic reticulum stress induced by surfactant protein C BRICHOS mutants promotes proinflammatory signaling by epithelial cells. Am J Respir Cell Mol Biol 2010; 44:404-14. [PMID: 20463293 DOI: 10.1165/rcmb.2009-0382oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic interstitial lung disease in both adults and children is associated with mutations of the surfactant protein C (SP-C) proprotein. Among these, mutations within the distal COOH propeptide, known as the BRICHOS domain, are associated with a severe disease phenotype. We showed that prolonged expression of the BRICHOS mutants, SP-C(Δexon4) and SP-C(L188Q), destabilizes endoplasmic reticulum (ER) quality-control mechanisms (the unfolded protein response, or UPR), resulting in the induction of ER stress signaling, an inhibition of the ubiquitin/proteasome system, and the activation of apoptotic pathways. Based on recent observations that the UPR and ER stress can be linked to the induction of proinflammatory signaling, we hypothesized that the epithelial cell dysfunction mediated by SP-C BRICHOS mutants would activate proinflammatory signaling pathways. In a test of this hypothesis, A549 and human embryonic kidney epithelial (HEK293) cells, transiently transfected with either SP-C(Δexon4) or SP-C(L188Q) mutants, each promoted the upregulation of multiple UPR response genes, including homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1 (HERPUD1) and GRP78. Commensurate with these results, increases in IL-8 secretion occurred and were accompanied by the activation of c-Jun N-terminal kinase (JNK)/activating protein-1 signaling. The stimulation of IL-8 cytokine release was completely attenuated by treatment with the JNK-specific inhibitor, SP600125. In addition, SP-C(Δexon4), but not SP-C(L188Q), activated NFκB. The treatment of SP-C(Δexon4) transfected cells with 4-phenylbutyric acid, a small molecule chaperone known to improve protein folding, blocked the activation of NFκB, but not the release of IL-8. Taken together, the results support the role of JNK signaling in mediating SP-C BRICHOS-induced cytokine release, and provide a link between SP-C BRICHOS mutants and proinflammatory cytokine signaling.
Collapse
Affiliation(s)
- Jean Ann Maguire
- Surfactant Biology Laboratories, Pulmonary and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | |
Collapse
|
125
|
Ma Y, Shimizu Y, Mann MJ, Jin Y, Hendershot LM. Plasma cell differentiation initiates a limited ER stress response by specifically suppressing the PERK-dependent branch of the unfolded protein response. Cell Stress Chaperones 2010; 15:281-93. [PMID: 19898960 PMCID: PMC2866998 DOI: 10.1007/s12192-009-0142-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 02/07/2023] Open
Abstract
In response to terminal differentiation signals that enable B cells to produce vast quantities of antibodies, a dramatic expansion of the secretory pathway and a corresponding increase in the molecular chaperones and folding enzymes that aid and monitor immunoglobulin synthesis occurs. Recent studies reveal that the unfolded protein response (UPR), which is normally activated by endoplasmic reticulum (ER) stress, plays a critical role in this process. Although B cells activate all three branches of the UPR in response to pharmacological inducers of the pathway, plasma cell differentiation elicits only a partial UPR in which components of the PKR-like ER kinase (PERK) branch are not expressed. This prompted us to further characterize UPR activation during plasma cell differentiation. We found that in response to lipopolysaccharides (LPS)-induced differentiation of the I.29 micro(+) B cell line, Ire1 was activated early, which led to splicing of XBP-1. PERK was partially phosphorylated with similar kinetics, but this was not sufficient to activate its downstream target eIF-2alpha, which initiates translation arrest, or to induce other targets like CHOP or GADD34. Both of these events preceded increased Ig synthesis, arguing this is not the signal for activating these two transducers. Targets of activating transcription factor 6 (ATF6) were up-regulated considerably later, arguing that the ATF6 branch is activated by a distinct signal. Pretreatment with LPS inhibited activation of the PERK branch by pharmacological inducers of the UPR, suggesting that differentiation-induced signals specifically silence this branch. This unique ability to differentially regulate various branches of the UPR allows B cells to accomplish distinct outcomes via the same UPR machinery.
Collapse
Affiliation(s)
- Yanjun Ma
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
- Department of Medical Oncology, Sammons Cancer Center Baylor University Medical Center, Dallas, TX 75246 USA
| | - Yuichiro Shimizu
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Melissa J. Mann
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Yi Jin
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
- Department of Molecular Science, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Linda M. Hendershot
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
- Department of Molecular Science, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| |
Collapse
|
126
|
Nrf2 and NF-κB and Their Concerted Modulation in Cancer Pathogenesis and Progression. Cancers (Basel) 2010; 2:483-97. [PMID: 24281078 PMCID: PMC3835087 DOI: 10.3390/cancers2020483] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/18/2010] [Accepted: 04/12/2010] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species, produced by oxidative stress, are implicated in the initiation, promotion, and malignant conversion of carcinogenesis through activation/suppression of redox-sensitive transcription factors. NF-E2-related factor 2 (Nrf2) encodes for antioxidant and general cytoprotection genes, while NF-κB regulates the expression of pro-inflammatory genes. A variety of anti-inflammatory or anti-carcinogenic phyto-chemicals suppress NF-κB signalling and activate the Nrf2-ARE pathway. In this review we consider the role of Nrf2 and NF-κB in cancer pathogenesis and progression, focusing on their concerted modulation and potential cross-talk.
Collapse
|
127
|
Lysosomal storage of oligosaccharide and glycosphingolipid in imino sugar treated cells. Glycoconj J 2010; 27:297-308. [DOI: 10.1007/s10719-010-9278-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|
128
|
Kitamura M, Hiramatsu N. The oxidative stress: endoplasmic reticulum stress axis in cadmium toxicity. Biometals 2010; 23:941-50. [PMID: 20130962 DOI: 10.1007/s10534-010-9296-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 01/24/2010] [Indexed: 12/13/2022]
Abstract
Cadmium preferentially accumulates in the kidney, the major target for cadmium-related toxicity. Several underlying mechanisms are postulated, and reactive oxygen species (ROS) have been considered as crucial mediators for tissue injuries. In addition to oxidative stress, we recently disclosed that endoplasmic reticulum (ER) stress also plays a critical role. Cadmium causes ER stress in vitro and in vivo and mediates induction of apoptosis in target tissues. In this article, we describe a role for ER stress and involvement of particular branches of the unfolded protein response (UPR) in cadmium-triggered tissue injury, especially nephrotoxicity. We also discuss relationship between oxidative stress and ER stress, and involvement of selective ROS in the induction of pro-apoptotic branches of the UPR.
Collapse
Affiliation(s)
- Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | |
Collapse
|
129
|
Price J, Zaidi AK, Bohensky J, Srinivas V, Shapiro IM, Ali H. Akt-1 mediates survival of chondrocytes from endoplasmic reticulum-induced stress. J Cell Physiol 2010; 222:502-8. [PMID: 20020442 DOI: 10.1002/jcp.22001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The unfolded protein response (UPR) is an evolutionary conserved adaptive mechanism that permits cells to react and adjust to conditions of endoplasmic reticulum (ER) stress. In addition to UPR, phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal regulated kinase (ERK) signaling pathways protect a variety of cells from ER stress. The goal of the present study was to assess the susceptibility of chondrocytes to ER stress and to determine the signaling pathways involved in their survival. We found that low concentration of thapsigargin (10 nM) reduced the viability of a chondrocyte cell line (N1511 cells) and that these cells were approximately 100 fold more susceptible to thapsigargin-induced stress than fibroblasts. Interestingly, in thapsigargin and tunicamycin-stressed chondrocytes induction of the proapoptotic transcription factor CHOP preceded that of the anti-apoptotic BiP by 12 h. Although both of these agents caused sustained Akt and ERK phosphorylation; inhibition of Akt phosphorylation sensitized chondrocytes to ER stress, while blocking ERK signaling by U0126 had no effect. We found that Akt-1, but not Akt-2 or Akt-3, is predominantly expressed in N1511 chondrocytes. Furthermore, siRNA-mediated knockdown of Akt-1 sensitized chondrocytes to ER stress, which was associated with increased capsase-3 activity and decreased Bcl(XL) expression. These data suggest that under condition of ER stress, multiple signaling processes regulate chondrocyte's survival-death decisions. Thus, rapid upregulation of CHOP likely contributes to chondrocyte death, while Akt-1-mediated inactivation of caspase 3 and induction of BclXL promotes survival.
Collapse
Affiliation(s)
- Jeremy Price
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
130
|
Hayakawa K, Nakajima S, Hiramatsu N, Okamura M, Huang T, Saito Y, Tagawa Y, Tamai M, Takahashi S, Yao J, Kitamura M. ER stress depresses NF-kappaB activation in mesangial cells through preferential induction of C/EBP beta. J Am Soc Nephrol 2009; 21:73-81. [PMID: 19875812 DOI: 10.1681/asn.2009040432] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Modest induction of endoplasmic reticulum (ER) stress confers resistance to inflammation in glomeruli. Recently, we found that ER stress leads to mesangial insensitivity to cytokine-induced activation of NF-kappaB, but the underlying mechanisms are incompletely understood. ER stress can trigger expression of CCAAT/enhancer-binding proteins (C/EBPs), which interact with transcription factors including NF-kappaB. Here, we investigated a role for C/EBPs in the ER stress-induced resistance to cytokines. Mesangial cells preferentially induced C/EBPbeta after exposure to thapsigargin or tunicamycin; induction of C/EBPdelta was modest and transient, and expression of C/EBPalpha was absent. The induction of C/EBPbeta correlated with accumulation of C/EBPbeta protein and enhanced transcriptional activity of C/EBP. Overexpression of C/EBPbeta markedly suppressed TNF-alpha-induced activation of NF-kappaB, independent of its transacting potential. Knockdown of C/EBPbeta by small interfering RNA reversed the suppressive effect of ER stress on NF-kappaB. In vivo, preconditioning of mice with ER stress induced renal C/EBPbeta and suppressed NF-kappaB-dependent gene expression in response to LPS. Using dominant negative mutants and null mutants for individual branches of the unfolded protein response, we identified the RNA-dependent protein kinase-like ER kinase (PERK) and the inositol-requiring ER-to-nucleus signal kinase 1 (IRE1) pathways as the unfolded protein response responsible for ER stress-induced C/EBPbeta. These results suggest that ER stress blunts cytokine-triggered activation of NF-kappaB, in part through PERK- and IRE1-mediated preferential induction of C/EBPbeta.
Collapse
Affiliation(s)
- Kunihiro Hayakawa
- Department of Molecular Signaling, University of Yamanashi, Shimokato 1110, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Kitamura M. Biphasic, bidirectional regulation of NF-kappaB by endoplasmic reticulum stress. Antioxid Redox Signal 2009; 11:2353-64. [PMID: 19187000 DOI: 10.1089/ars.2008.2391] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endoplasmic reticulum (ER) stress induces an adaptive program called the unfolded protein response (UPR), which affects activity of an array of kinases and transcription factors. Previous reports provided evidence for activation of nuclear factor-kappaB (NF-kappaB), the major transcription factor regulating inflammatory processes, by ER stress. However, recent investigation also suggested that preceding ER stress suppresses activation of NF-kappaB by subsequent exposure to inflammatory stimuli. Although ER stress induces activation of NF-kappaB in the early phase, consequent UPR may inhibit NF-kappaB-dependent cellular activation in the later phase. This article summarizes current knowledge on potential mechanisms underlying the biphasic, bidirectional regulation of NF-kappaB by ER stress.
Collapse
Affiliation(s)
- Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
132
|
Kitamura M. Endoplasmic reticulum stress in glomerulonephritis: the bad guy turns good? J Am Soc Nephrol 2009; 20:1871-3. [PMID: 19696223 DOI: 10.1681/asn.2009060581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Masanori Kitamura
- Department of Molecular Signaling, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
133
|
Gooptu B, Lomas DA. Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu Rev Biochem 2009; 78:147-76. [PMID: 19245336 DOI: 10.1146/annurev.biochem.78.082107.133320] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Point mutations cause members of the serine protease inhibitor (serpin) superfamily to undergo a novel conformational transition, forming ordered polymers. These polymers characterize a group of diseases termed the serpinopathies. The formation of polymers underlies the retention of alpha(1)-antitrypsin within hepatocytes and of neuroserpin within neurons to cause cirrhosis and dementia, respectively. Point mutations of antithrombin, C1 inhibitor, alpha(1)-antichymotrypsin, and heparin cofactor II cause a similar conformational transition, resulting in a plasma deficiency that is associated with thrombosis, angioedema, and emphysema. Polymers of serpins can also form in extracellular tissues where they activate inflammatory cascades. This is best described for the Z variant of alpha(1)-antitrypsin in which the proinflammatory properties of polymers provide an explanation for both progressive emphysema and the selective advantage of this mutant allele. Therapeutic strategies are now being developed to block the aberrant conformational transitions and so treat the serpinopathies.
Collapse
Affiliation(s)
- Bibek Gooptu
- School of Crystallography, Birkbeck College, University of London, London, UK.
| | | |
Collapse
|
134
|
Li S, Ye L, Yu X, Xu B, Li K, Zhu X, Liu H, Wu X, Kong L. Hepatitis C virus NS4B induces unfolded protein response and endoplasmic reticulum overload response-dependent NF-kappaB activation. Virology 2009; 391:257-64. [PMID: 19628242 DOI: 10.1016/j.virol.2009.06.039] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/25/2009] [Accepted: 06/22/2009] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus nonstructural protein 4B (NS4B) is an endoplasmic reticulum (ER) membrane associated protein and a potent causative factor of ER stress. Here we reported that unfolded protein response (UPR) can be activated by HCV NS4B through inducing both XBP1 mRNA splicing and ATF6 cleavage in human hepatic cells. Flow cytometric analysis revealed that HCV NS4B stimulates the production of reactive oxygen species (ROS) by perturbing intracellular Ca(2+) homeostasis. Luciferase assay showed that HCV NS4B also activates the multifunctional transcription factor, NF-kappaB, in a dose-dependent manner through Ca(2+) signaling and ROS. Further immunoblot analysis showed that HCV NS4B promotes NF-kappaB translocation into the nucleus via protein-tyrosine kinase (PTK) mediated phosphorylation and subsequent degradation of IkappaBalpha. These studies provide an important insight into the implication of NS4B in HCV life cycle and HCV-associated liver disease by affecting host intracellular signal transduction pathways.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Davies MJ, Miranda E, Roussel BD, Kaufman RJ, Marciniak SJ, Lomas DA. Neuroserpin polymers activate NF-kappaB by a calcium signaling pathway that is independent of the unfolded protein response. J Biol Chem 2009; 284:18202-9. [PMID: 19423713 PMCID: PMC2709363 DOI: 10.1074/jbc.m109.010744] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Indexed: 01/21/2023] Open
Abstract
The autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies is characterized by the accumulation of ordered polymers of mutant neuroserpin within the endoplasmic reticulum of neurones. We show here that intracellular neuroserpin polymers activate NF-kappaB by a pathway that is independent of the IRE1, ATF6, and PERK limbs of the canonical unfolded protein response but is dependent on intracellular calcium. This pathway provides a mechanism for cells to sense and react to the accumulation of folded structures of mutant serpins within the endoplasmic reticulum. Our results provide strong support for the endoplasmic reticulum overload response being independent of the unfolded protein response.
Collapse
Affiliation(s)
- Mark J. Davies
- From the Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Elena Miranda
- From the Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Benoit D. Roussel
- From the Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Randal J. Kaufman
- the Departments of Biological Chemistry and Internal Medicine and the Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Stefan J. Marciniak
- From the Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - David A. Lomas
- From the Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom and
| |
Collapse
|
136
|
Kelly E, Greene CM, Carroll TP, McElvaney NG, O'Neill SJ. Selenoprotein S/SEPS1 modifies endoplasmic reticulum stress in Z variant alpha1-antitrypsin deficiency. J Biol Chem 2009; 284:16891-16897. [PMID: 19398551 PMCID: PMC2719325 DOI: 10.1074/jbc.m109.006288] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 04/24/2009] [Indexed: 12/28/2022] Open
Abstract
Z alpha(1)-antitrypsin (ZAAT) deficiency is a disease associated with emphysematous lung disease and also with liver disease. The liver disease of AAT deficiency is associated with endoplasmic reticulum (ER) stress. SEPS1 is a selenoprotein that, through a chaperone activity, decreases ER stress. To determine the effect of SEPS1 on ER stress in ZAAT deficiency, we measured activity of the grp78 promoter and levels of active ATF6 as markers of the unfolded protein response in HepG2 cells transfected with the mutant form of AAT, a ZAAT transgene. We evaluated levels of NFkappaB activity as a marker of the ER overload response. To determine the effect of selenium supplementation on the function of SEPS1, we investigated glutathione peroxidase activity, grp78 promoter activity, and NFkappaB activity in the presence or absence of selenium. SEPS1 reduced levels of active ATF6. Overexpression of SEPS1 also inhibited grp78 promoter and NFkappaB activity, and this effect was enhanced in the presence of selenium supplementation. This finding demonstrates a role for SEPS1 in ZAAT deficiency and suggests a possible therapeutic potential for selenium supplementation.
Collapse
Affiliation(s)
- Emer Kelly
- From the Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Catherine M Greene
- From the Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | - Tomás P Carroll
- From the Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G McElvaney
- From the Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Shane J O'Neill
- From the Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
137
|
Rottner M, Freyssinet JM, Martínez MC. Mechanisms of the noxious inflammatory cycle in cystic fibrosis. Respir Res 2009; 10:23. [PMID: 19284656 PMCID: PMC2660284 DOI: 10.1186/1465-9921-10-23] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/13/2009] [Indexed: 01/09/2023] Open
Abstract
Multiple evidences indicate that inflammation is an event occurring prior to infection in patients with cystic fibrosis. The self-perpetuating inflammatory cycle may play a pathogenic part in this disease. The role of the NF-κB pathway in enhanced production of inflammatory mediators is well documented. The pathophysiologic mechanisms through which the intrinsic inflammatory response develops remain unclear. The unfolded mutated protein cystic fibrosis transmembrane conductance regulator (CFTRΔF508), accounting for this pathology, is retained in the endoplasmic reticulum (ER), induces a stress, and modifies calcium homeostasis. Furthermore, CFTR is implicated in the transport of glutathione, the major antioxidant element in cells. CFTR mutations can alter redox homeostasis and induce an oxidative stress. The disturbance of the redox balance may evoke NF-κB activation and, in addition, promote apoptosis. In this review, we examine the hypotheses of the integrated pathogenic processes leading to the intrinsic inflammatory response in cystic fibrosis.
Collapse
Affiliation(s)
- Mathilde Rottner
- 1INSERM U 770; Université Paris-Sud 11, Faculté de Médecine, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.
| | | | | |
Collapse
|
138
|
Domon H, Takahashi N, Honda T, Nakajima T, Tabeta K, Abiko Y, Yamazaki K. Up-regulation of the endoplasmic reticulum stress-response in periodontal disease. Clin Chim Acta 2009; 401:134-40. [DOI: 10.1016/j.cca.2008.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
|
139
|
Mitchell RM, Lee SY, Randazzo WT, Simmons Z, Connor JR. Influence of HFE variants and cellular iron on monocyte chemoattractant protein-1. J Neuroinflammation 2009; 6:6. [PMID: 19228389 PMCID: PMC2656486 DOI: 10.1186/1742-2094-6-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 02/19/2009] [Indexed: 08/30/2023] Open
Abstract
Background Polymorphisms in the MHC class 1-like gene known as HFE have been proposed as genetic modifiers of neurodegenerative diseases that include neuroinflammation as part of the disease process. Variants of HFE are relatively common in the general population and are most commonly associated with iron overload, but can promote subclinical cellular iron loading even in the absence of clinically identified disease. The effects of the variants as well as the resulting cellular iron dyshomeostasis potentially impact a number of disease-associated pathways. We tested the hypothesis that the two most common HFE variants, H63D and C282Y, would affect cellular secretion of cytokines and trophic factors. Methods We screened a panel of cytokines and trophic factors using a multiplexed immunoassay in human neuroblastoma SH-SY5Y cells expressing different variants of HFE. The influence of cellular iron secretion on the potent chemokine monocyte chemoattractant protein-1 (MCP-1) was assessed using ferric ammonium citrate and the iron chelator, desferroxamine. Additionally, an antioxidant, Trolox, and an anti-inflammatory, minocycline, were tested for their effects on MCP-1 secretion in the presence of HFE variants. Results Expression of the HFE variants altered the labile iron pool in SH-SY5Y cells. Of the panel of cytokines and trophic factors analyzed, only the release of MCP-1 was affected by the HFE variants. We further examined the relationship between iron and MCP-1 and found MCP-1 secretion tightly associated with intracellular iron status. A potential direct effect of HFE is considered because, despite having similar levels of intracellular iron, the association between HFE genotype and MCP-1 expression was different for the H63D and C282Y HFE variants. Moreover, HFE genotype was a factor in the effect of minocycline, a multifaceted antibiotic used in treating a number of neurologic conditions associated with inflammation, on MCP-1 secretion. Conclusion Our results demonstrate that HFE polymorphisms influence the synthesis and release of MCP-1. The mechanism of action involves cellular iron status but it appears there could be additional influences such as ER stress. Finally, these data demonstrate a pharmacogenetic effect of HFE polymorphisms on the ability of minocycline to inhibit MCP-1 secretion.
Collapse
Affiliation(s)
- Ryan M Mitchell
- George M Leader Family Laboratory, Department of Neurosurgery, Pennsylvania State University College of Medicine/Milton S Hershey Medical Center, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
140
|
Hayakawa K, Hiramatsu N, Okamura M, Yamazaki H, Nakajima S, Yao J, Paton AW, Paton JC, Kitamura M. Acquisition of Anergy to Proinflammatory Cytokines in Nonimmune Cells through Endoplasmic Reticulum Stress Response: A Mechanism for Subsidence of Inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 182:1182-91. [DOI: 10.4049/jimmunol.182.2.1182] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
141
|
McGuckin MA, Eri R, Simms LA, Florin THJ, Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis 2009; 15:100-13. [PMID: 18623167 DOI: 10.1002/ibd.20539] [Citation(s) in RCA: 432] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The etiology of human inflammatory bowel diseases (IBDs) is believed to involve inappropriate host responses to the complex commensal microbial flora in the gut, although an altered commensal flora is not completely excluded. A multifunctional cellular and secreted barrier separates the microbial flora from host tissues. Altered function of this barrier remains a major largely unexplored pathway to IBD. Although there is evidence of barrier dysfunction in IBD, it remains unclear whether this is a primary contributor to disease or a consequence of mucosal inflammation. Recent evidence from animal models demonstrating that genetic defects restricted to the epithelium can initiate intestinal inflammation in the presence of normal underlying immunity has refocused attention on epithelial dysfunction in IBD. We review the components of the secreted and cellular barrier, their regulation, including interactions with underlying innate and adaptive immunity, evidence from animal models of the barrier's role in preventing intestinal inflammation, and evidence of barrier dysfunction in both Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Michael A McGuckin
- Mucosal Diseases Program, Mater Medical Research Institute, University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
142
|
Coe H, Bedard K, Groenendyk J, Jung J, Michalak M. Endoplasmic reticulum stress in the absence of calnexin. Cell Stress Chaperones 2008; 13:497-507. [PMID: 18528784 PMCID: PMC2673926 DOI: 10.1007/s12192-008-0049-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/11/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022] Open
Abstract
Calnexin is a type I integral endoplasmic reticulum (ER) membrane chaperone involved in folding of newly synthesized (glycol)proteins. In this study, we used beta-galactosidase reporter gene knock-in and reverse transcriptase polymerase chain reaction (RT-PCR) to investigate activation of the calnexin gene during embryonic development. We showed that the calnexin gene was activated in neuronal tissue at the early stages of embryonic development but remained low in the heart, intestine, and smooth muscle. At early stages of embryonic development, large quantities of calnexin messenger RNA (mRNA) were also found in neuronal tissue and liver. There was no detectable calnexin mRNA in the heart, lung, and intestine. The absence of calnexin had no significant effect on ER stress response (unfolded protein response, UPR) at the tissue level as tested by IRE1-dependent splicing of Xbp1 mRNA. In contrast, non-stimulated calnexin-deficient cells showed increased activation of IRE1, as measured by RT-PCR and luciferase reporter gene analysis of splicing of Xbp1 mRNA and activation of the BiP promoter. This indicates that cnx (-/-) cells have increased constitutively active UPR. Importantly, cnx (-/-) cells have significantly increased proteasomal activity, which may play a role in the adaptive mechanisms addressing the acute ER stress observed in the absence of calnexin.
Collapse
Affiliation(s)
- Helen Coe
- Departments of Biochemistry and Pediatrics, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - Karen Bedard
- Departments of Biochemistry and Pediatrics, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - Jody Groenendyk
- Departments of Biochemistry and Pediatrics, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - Joanna Jung
- Departments of Biochemistry and Pediatrics, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - Marek Michalak
- Departments of Biochemistry and Pediatrics, University of Alberta, Edmonton, AB T6G 2H7 Canada
| |
Collapse
|
143
|
The fungal secondary metabolite trichodimerol inhibits TGF-β dependent cellular effects and tube formation of MDA-MB-231 cells. Invest New Drugs 2008; 27:491-502. [DOI: 10.1007/s10637-008-9201-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 11/04/2008] [Indexed: 12/13/2022]
|
144
|
Nagasaka A, Oda N, Nakai A, Hotta K, Nagata M, Kato T, Suzuki A, Itoh M, Miura H, Hakuta M, Yoshida S, Hibi Y, Iwase K. Thyroglobulin may affect telomerase activity in thyroid follicular cells. J Enzyme Inhib Med Chem 2008; 24:524-30. [PMID: 18830915 DOI: 10.1080/14756360802218920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Telomerase (TA) activity is known to be present in malignant tumor cells, but not in most somatic differentiated cells. TA shows relatively high activity in thyroid cancer cells, but reports vary. This fact prompted us to elucidate whether cell component inhibitors of TA in the thyroid follicles can modulate its activity. The activity of TA extracted from Hela cells was inhibited by mixing with the supernatant fraction of human thyroid tissue extract. To examine the effect of iodine, thyroid hormones (l-T3 and l-T4) and human thyroglobulin (hTg) contained in the thyroid follicles, l-T3, l-T4 and hTg were added to the TRAP assay system in vitro, using TA from Hela cells. Iodine, l-T3 and l-T4 did not affect TA activity, but hTg inhibited the TA activity in a dose-dependent manner (IC(50) of hTg: ca 0.45 microM: inhibiting concentration of hTg was from 0.15 microM to 3.0 microM). The hTg inhibition was not evident in the RT-PCR system, suggesting no effect of hTg on Taq DNA polymerase activity. The hTg inhibition of TA activity was attenuated by dNTP but not significantly by TS primer. These data suggest that hTg contained in thyroid follicular cells of various thyroid diseases may affect the TA activity measured in biopsied thyroid specimens, and that the reduction of the TA activity by hTg may induce slow progression and growth, and low grade malignancy of thyroid cancer, particularly differentiated carcinoma.
Collapse
Affiliation(s)
- Akio Nagasaka
- Department of Internal Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Kitamura M. Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am J Physiol Renal Physiol 2008; 295:F323-34. [DOI: 10.1152/ajprenal.00050.2008] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A number of pathophysiological insults lead to accumulation of unfolded proteins in the endoplasmic reticulum (ER) and cause ER stress. In response to accumulation of unfolded/misfolded proteins, cells adapt themselves to the stress condition via the unfolded protein response (UPR). For the cells, UPR is a double-edged sword. It triggers both prosurvival and proapoptotic signals. ER stress and UPR may, therefore, be involved in a diverse range of pathological situations. However, currently, information is limited regarding roles of ER stress and UPR in the renal pathophysiology. This review describes current knowledge on the relationship between ER stress and diseases and summarizes evidence for the link between ER stress/UPR and renal diseases.
Collapse
|
146
|
Thornton DJ, Rousseau K, McGuckin MA. Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol 2008; 70:459-86. [PMID: 17850213 DOI: 10.1146/annurev.physiol.70.113006.100702] [Citation(s) in RCA: 590] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The airways mucus gel performs a critical function in defending the respiratory tract against pathogenic and environmental challenges. In normal physiology, the secreted mucins, in particular the polymeric mucins MUC5AC and MUC5B, provide the organizing framework of the airways mucus gel and are major contributors to its rheological properties. However, overproduction of mucins is an important factor in the morbidity and mortality of chronic airways disease (e.g., asthma, cystic fibrosis, and chronic obstructive pulmonary disease). The roles of these enormous, multifunctional, O-linked glycoproteins in health and disease are discussed.
Collapse
Affiliation(s)
- David J Thornton
- Wellcome Trust Center for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
147
|
Kubisch CH, Logsdon CD. Endoplasmic reticulum stress and the pancreatic acinar cell. Expert Rev Gastroenterol Hepatol 2008; 2:249-60. [PMID: 19072360 DOI: 10.1586/17474124.2.2.249] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pancreas is the primary organ responsible for the digestion of food. Pancreatic acinar cells are specialized for the production of digestive enzymes, and these cells have a higher rate of protein synthesis than all other adult human tissues. Digestive enzymes are produced in the endoplasmic reticulum (ER), a multifunctional organelle responsible for the synthesis and correct folding of proteins in the secretory pathway. Disturbances of ER function lead to stress-response mechanisms that can restore homeostasis but can also, if uncontrolled, cause disease. Pancreatic acinar cells are particularly susceptible to ER perturbations, and mechanisms that relieve ER stress are necessary for normal pancreatic development. Furthermore, ER stress occurs during acute pancreatitis, and may also be present in pancreatic cancer. However, the specific roles of ER stress-response mechanisms in these diseases are unknown.
Collapse
Affiliation(s)
- Constanze H Kubisch
- Department of Internal Medicine/Gastroenterology, University of Munich, Marchioninistrasse 15, 81377 Munich, Germany.
| | | |
Collapse
|
148
|
Lee SH, Song R, Lee MN, Kim CS, Lee H, Kong YY, Kim H, Jang SK. A molecular chaperone glucose-regulated protein 94 blocks apoptosis induced by virus infection. Hepatology 2008; 47:854-66. [PMID: 18273841 DOI: 10.1002/hep.22107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED The hepatitis C virus (HCV) E2 protein has been shown to block apoptosis and has been suggested to facilitate persistent infection of the virus. Here, we report that the anti-apoptotic activity of E2 is mediated by activation of nuclear factor kappa B (NF-kappaB) that directs expression of survival gene products such as tumor necrosis factor (TNF-alpha) receptor-associated factor 2 (TRAF2), X-chromosome-linked inhibitor of apoptosis protein (XIAP), FLICE-like inhibitory protein (FLIP), and survivin. Increased levels of these proteins were observed in HCV-infected cells and a cell line producing HCV E2 protein. The activation of NF-kappaB was mediated by HCV-E2-induced expression of the molecular chaperone glucose-regulated protein 94 (GRP94). Overexpression of GRP94 alone resulted in expression of anti-apoptotic proteins and blocked apoptosis induced by tumor-necrosis-related apoptosis-inducing ligand (TRAIL). Interestingly, increased levels of GRP94 were observed in cells supporting HCV proliferation that originated from liver tissues from HCV patients. Moreover, small interfering RNA (siRNA) knock-down of GRP94 nullified the anti-apoptotic activity of HCV E2. CONCLUSION These data indicate that HCV E2 blocks apoptosis induced by HCV infection and the host immune system through overproduction of GRP94, and that HCV E2 plays an important role in persistent HCV infection.
Collapse
Affiliation(s)
- Song Hee Lee
- PBC, Department of Life Science, Pohang University of Science and Technology, Hyoja-dong, Pohang, Kyungbuk, Korea
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Salminen A, Paimela T, Suuronen T, Kaarniranta K. Innate immunity meets with cellular stress at the IKK complex: regulation of the IKK complex by HSP70 and HSP90. Immunol Lett 2008; 117:9-15. [PMID: 18282612 DOI: 10.1016/j.imlet.2007.12.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 12/19/2007] [Accepted: 12/22/2007] [Indexed: 12/21/2022]
Abstract
Several research models have shown that if cellular stress induces the heat shock response then this will suppress the NF-kappaB-mediated inflammatory response. The NF-kappaB signaling pathway mediates both stress signals and innate immunity signals. Heat shock proteins HSP70 and HSP90 regulate several signaling cascades to maintain cellular homeostasis. Recent studies have revealed that HSP70 and HSP90 proteins regulate the function of the IKK complex which is the major activator of the NF-kappaB complex. The heat shock response can cause the dissociation of the IKK complex, composed of protein kinase subunits IKKalpha and IKKbeta and the regulatory unit NEMO, and inhibit the activation of NF-kappaB signaling. Suppression of immune signaling during cellular stress may be a useful feedback response for helping cells to survive tissue injury. Furthermore, IKKalpha and IKKbeta kinases are important activators of tumorigenesis and hence the inhibition of long-term activation of the IKK complex by HSP70 and HSP90 proteins may prevent cancer development during chronic inflammation.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | |
Collapse
|
150
|
Hinthong O, Jin XL, Shisler JL. Characterization of wild-type and mutant vaccinia virus M2L proteins' abilities to localize to the endoplasmic reticulum and to inhibit NF-kappaB activation during infection. Virology 2008; 373:248-62. [PMID: 18190944 DOI: 10.1016/j.virol.2007.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 02/06/2023]
Abstract
Proinflammatory molecules are important for attracting immune effector cells to localized areas of viral infection. One such cellular mechanism facilitating this response is the NF-kappaB transcription factor. While wild-type vaccinia virus expresses multiple products to inhibit NF-kappaB during infection, the attenuated deletion mutant MVA lacks this ability. However, introduction of the wild-type M2L ORF into the MVA genome will re-establish the parental phenotype. As the M2L protein is unique to poxviruses, we characterized it to elucidate its mechanism to quell an inflammatory response. It was discovered that the M2L protein possesses motifs characteristic of ER-localized proteins: an N-terminal signal peptide sequence, C-terminal endoplasmic reticulum (ER) retention and retrieval sequences, and N-linked glycosylation sites. Indeed, the M2L protein was demonstrated to be N-linked glycosylated and expressed early during infection. Furthermore, confocal microscopic analysis revealed that the M2L protein co-localized with cellular ER proteins. Organelle location also affects M2L protein function: the elimination of the N-terminal leader sequence from the M2L protein compromised both its ER location and its ability to inhibit virus-induced NF-kappaB activation. There is only partial ER localization when a second mutant M2L protein lacking potential endoplasmic reticulum retention signal is expressed. However, this C-terminal deleted mutant protein is compromised in its ability to inhibit NF-kappaB activation. Determination of the ER location of the M2L proteins provides important insights for its function in future investigations.
Collapse
Affiliation(s)
- Olivia Hinthong
- Department of Microbiology, College of Medicine, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|