101
|
Caliari SR, Harley BAC. Collagen-GAG scaffold biophysical properties bias MSC lineage choice in the presence of mixed soluble signals. Tissue Eng Part A 2014; 20:2463-72. [PMID: 24568607 DOI: 10.1089/ten.tea.2013.0400] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biomaterial strategies for regenerating multitissue structures require unique approaches. One strategy is to design scaffolds so that their local biophysical properties can enhance site-specific effects of an otherwise heterogeneous biomolecular environment. This investigation examined the role of biomaterial physical properties (relative density, mineral content) on the human mesenchymal stem cell phenotype in the presence of mixed soluble signals to drive osteogenesis or chondrogenesis. We tested a series of three-dimensional collagen-glycosaminoglycan scaffolds with properties inspired by extracellular matrix characteristics across the osteotendinous interface (tendon, cartilage, and bone). We found that selective scaffold mineralization induced a depressed chondrogenic response compared with nonmineralized groups as demonstrated by gene expression and histological analyses. Interestingly, the greatest chondrogenic response was found in a higher density, nonmineralized scaffold variant despite increased contraction and cellular condensation in lower density nonmineralized scaffolds. In fact, the lower density scaffolds demonstrated a significantly higher expression of osteogenic transcripts as well as ample mineralization after 21 days of culture. This effect may be due to local stiffening of the scaffold microenvironment as the scaffold contracts, leading to increased cell density, accelerated differentiation, and possible endochondral ossification as evidenced by a transition from a glycosaminoglycan (GAG)-rich milieu to higher mineralization at later culture times. These findings will help shape the design rules for graded biomaterials to regenerate distinct fibrillar, fibrocartilagenous, and mineralized regions of orthopedic interfaces.
Collapse
Affiliation(s)
- Steven R Caliari
- 1 Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | | |
Collapse
|
102
|
Osidak EO, Osidak MS, Akhmanova MA, Domogatskii SP. Collagen—A biomaterial for delivery of growth factors and tissue regeneration. RUSS J GEN CHEM+ 2014. [DOI: 10.1134/s107036321402039x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
103
|
Chen PY, Hsieh HJ, Huang LLH. Shrinking mechanism of a porous collagen matrix immersed in solution. J Biomed Mater Res A 2014; 102:4581-9. [PMID: 24678021 DOI: 10.1002/jbm.a.35135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 11/10/2022]
Abstract
The porous structure of collagen-based matrices enables the infiltration of cells both in in vitro and clinical applications. Reconstituted porous collagen matrices often collapse when they are in contact with aqueous solutions; however, the mechanism for the collapse of the pores is not understood. We, therefore, investigated the interactions between the collagen matrix and different solutions, and discuss the mechanisms for the change in microstructure of the matrix on immersing it in solution. When a dried collagen matrix was immersed in aqueous solutions, the matrix shrunk and pores close to the surface closed. The shrinkage ratio and thickness of the compact microstructure close to the superficial area decreased with increasing ethanol content in the solution. The original porous structure of the collagen matrix was preserved when the matrix was immersed in absolute ethanol. The shrinkage of a porous collagen matrix in contact with aqueous solutions was attributed to the liquid/gas interfacial tension. The average pore diameter of the matrix also significantly affected the shrinkage of the matrix. The shrinkage of the matrix, explained using the Young-Laplace equation, was found to result from the pressure drop, and especially in the pores located superficially, leading to the collapse of the matrix microstructure. The integrity of the porous microstructure allows better penetration of cells in medical applications. The numbers of NIH/3T3 fibroblasts penetrated through the hydrated Col/PBS porous collagen matrices pre-immersed in absolute ethanol with subsequent water and DMEM culture medium replacements were significantly higher than those through matrices hydrated directly in DMEM.
Collapse
Affiliation(s)
- Po-Yang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
104
|
Hutchison RL, Craw JR. Use of acellular dermal regeneration template combined with NPWT to treat complicated extremity wounds in children. J Wound Care 2014; 22:708-12. [PMID: 24335895 DOI: 10.12968/jowc.2013.22.12.708] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The treatment of open wounds with exposed bone, tendon, or nerve is a challenging reconstructive problem, especially in children. The purpose of this study is to evaluate the safety and effectiveness of using acellular dermal templates combined with negative pressure wound dressings in the treatment of complicated paediatric soft tissue extremity wounds. METHOD A retrospective review of eight patients treated with acellular dermal templates for closure of complicated extremity wounds was performed. After debridement, all patients were treated with a template and a negative pressure wound treatment (NPWT) system. RESULTS The average age was 8.8 years with 4 females and 4 males. Four wounds were at the foot/ankle, with tendon exposed in all 4, nerve in 2, and bone in 3. There were 3 lower leg wounds, all with exposed bone. One patient had arm/hand wounds with exposed tendon. The size of the wounds and dermal graft averaged 86cm² and 57cm². The average time to wound closure was 65 days. The majority of the treatment was received as an outpatient, including NPWT. For inpatient and outpatient care, the average number of sponge system changes was 2.6 compared to 4.6, and time between changes was 3.5 compared to 6.8 days. Each patient had only one procedure each for application of the dermal substitute and later one skin grafting procedure. Complications were minimal, and all patients healed their wounds without the need of flaps. One patient required wound revision. CONCLUSION Our study demonstrates that a dermal template combined with NPWT can safely and effectively be used to treat complicated wounds in children. Closure was obtained without flaps, the majority of the treatment time was spent in the outpatient setting, and the complication rate was low. DECLARATION OF INTEREST There were no external sources of funding for this study. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- R L Hutchison
- MD, Hand and Plastic Surgeon, Assistant Professor, Division of Orthopaedic Surgery, Childrens Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - J R Craw
- MD, Chief Resident, Department of Orthopaedic Surgery, University of Missouri Kansas City School of Medicine; Kansas City, Missouri, USA
| |
Collapse
|
105
|
Nessler MB, Puchała J, Chrapusta A, Nessler K, Drukała J. Levels of plasma matrix metalloproteinases (MMP-2 and MMP-9) in response to INTEGRA® dermal regeneration template implantation. Med Sci Monit 2014; 20:91-6. [PMID: 24448309 PMCID: PMC3907513 DOI: 10.12659/msm.889135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 09/16/2013] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Cutaneous wound healing results in scar formation. Matrix metalloproteinases (MMP) transform extracellular matrix proteins and modulate inflammation and cell signaling, thus determining scar outcome. To provide rapid wound closure and reduced scarring, dermal scaffolds were introduced. Little is known about the influence of these materials on MMPs levels. MATERIAL AND METHODS In this in vivo study the levels of MMP-2, MMP-9, and mediators of inflammation and fibrosis (IL-4 and TGF-beta1) in patients treated with Integra® dermal regeneration template (IDRT) were investigated. In the group of 11 pediatric patients treated with IDRT, levels of selected molecules were analyzed before surgery and at day 1, 7, and 25 after scaffold implantation. RESULTS The mean IDRT take rate was 89.5 ± 4.7% with 4 patients (36%) who developed local infection. Patients were divided into 2 groups according to presence of infection (1 group with complications and 1 group without complications). In the group with complications, the IDRT take rate was significantly reduced compared to the group without complications (71.5 ± 5.4 vs. 100 ± 0.1; p<0.005). Plasma levels of MMP-2 were significantly (p<0.05) elevated in both groups on day 7 after the scaffold placement compared to baseline. Positive correlations between IL-4 and MMP-2 (p=0.01) in the group with complications and TGF-beta1 and MMP-9 (p=0.012) in both groups were observed. CONCLUSIONS These findings suggest that Integra® scaffold degradation is mainly caused by MMP-2, whereas inflammation associated with local infection increases levels of this molecule and it is not associated with elevation of MMP-9. This shows that dermal regeneration with Integra® uses molecular mechanisms other than scar formation during dermal wound healing.
Collapse
Affiliation(s)
- Michał Bohdan Nessler
- Department of Plastic and Reconstructive Surgery, Children's Burn Centre, University Children's Hospital, Jagiellonian University Medical College, Kraków, Poland
| | - Jacek Puchała
- Burns and Plastic Surgery Centre of Małopolska, Ludwik Rydygier Memorial Hospital in Cracow, Kraków, Poland
| | - Anna Chrapusta
- Department of Plastic and Reconstructive Surgery, Children's Burn Centre, University Children's Hospital, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Nessler
- Department of Family Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Justyna Drukała
- Laboratory of Cell and Tissue Engineering, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
106
|
Damodaran G, Syed M, Leigh I, Myers S, Navsaria H. Clinical application of skin substitutes. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.3.3.345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
107
|
Simpson DG. Dermal templates and the wound-healing paradigm: the promise of tissue regeneration. Expert Rev Med Devices 2014; 3:471-84. [PMID: 16866644 DOI: 10.1586/17434440.3.4.471] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dermal regeneration templates arguably represent the first and most clinically successful 'tissue engineering' solution designed for organ reconstruction. Wound healing in the skin normally occurs on a continuum. At one extreme of the continuum lies the promise of tissue regeneration and the complete restoration of normal structure and function. Unfortunately, in the adult, all too often, wound healing occurs at the other extreme of the continuum and the dermis is reconstituted as scar tissue. Dermal regeneration templates are designed to manage the wound-healing process and tip the scales toward regeneration. This review discusses the architecture and molecular composition of the skin and the events that mediate wound healing and scar formation. The development, evolution and commercialization of dermal templates are examined and the clinical and business considerations that drive the product-development cycle are discussed. In the near term, dermal templates cannot be expected to dramatically change in overall composition. Product development will be dominated by continued refinements of existing templates and the field of use will continue to expand as manufacturers seek to increase revenue and capture market share. Continued exploration of novel processing strategies, such as electrospinning, that can be used to fabricate nanoscale biomaterials, may provide a gateway to the next generation of dermal templates.
Collapse
Affiliation(s)
- David G Simpson
- Virginia Commonwealth University, Department of Anatomy & Neurobiology, Richmond, VA 23298-0709, USA.
| |
Collapse
|
108
|
Caliari SR, Mozdzen LC, Armitage O, Oyen ML, Harley BAC. Award Winner in the Young Investigator Category, 2014 Society for Biomaterials Annual Meeting and Exposition, Denver, Colorado, April 16-19, 2014: Periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties. J Biomed Mater Res A 2013; 102:917-27. [PMID: 24327556 DOI: 10.1002/jbm.a.35058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/20/2013] [Accepted: 12/06/2013] [Indexed: 01/13/2023]
Abstract
Orthopedic tissue engineering requires biomaterials with robust mechanics as well as adequate porosity and permeability to support cell motility, proliferation, and new extracellular matrix (ECM) synthesis. While collagen-glycosaminoglycan (CG) scaffolds have been developed for a range of tissue engineering applications, they exhibit poor mechanical properties. Building on previous work in our lab that described composite CG biomaterials containing a porous scaffold core and nonporous CG membrane shell inspired by mechanically efficient core-shell composites in nature, this study explores an approach to improve cellular infiltration and metabolic health within these core-shell composites. We use indentation analyses to demonstrate that CG membranes, while less permeable than porous CG scaffolds, show similar permeability to dense materials such as small intestine submucosa (SIS). We also describe a simple method to fabricate CG membranes with organized arrays of microscale perforations. We demonstrate that perforated membranes support improved tenocyte migration into CG scaffolds, and that migration is enhanced by platelet-derived growth factor BB-mediated chemotaxis. CG core-shell composites fabricated with perforated membranes display scaffold-membrane integration with significantly improved tensile properties compared to scaffolds without membrane shells. Finally, we show that perforated membrane-scaffold composites support sustained tenocyte metabolic activity as well as improved cell infiltration and reduced expression of hypoxia-inducible factor 1α compared to composites with nonperforated membranes. These results will guide the design of improved biomaterials for tendon repair that are mechanically competent while also supporting infiltration of exogenous cells and other extrinsic mediators of wound healing.
Collapse
Affiliation(s)
- Steven R Caliari
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | | | | | | | | |
Collapse
|
109
|
In situ tissue regeneration through host stem cell recruitment. Exp Mol Med 2013; 45:e57. [PMID: 24232256 PMCID: PMC3849571 DOI: 10.1038/emm.2013.118] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023] Open
Abstract
The field of tissue engineering has made steady progress in translating various tissue applications. Although the classical tissue engineering strategy, which involves the use of culture-expanded cells and scaffolds to produce a tissue construct for implantation, has been validated, this approach involves extensive cell expansion steps, requiring a lot of time and laborious effort before implantation. To bypass this ex vivo process, a new approach has been introduced. In situ tissue regeneration utilizes the body's own regenerating capacity by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the site of injury. This approach relies on development of a target-specific biomaterial scaffolding system that can effectively control the host microenvironment and mobilize host stem/progenitor cells to target tissues. An appropriate microenvironment provided by implanted scaffolds would facilitate recruitment of host cells that can be guided to regenerating structural and functional tissues.
Collapse
|
110
|
Chan KLS, Khankhel AH, Thompson RL, Coisman BJ, Wong KHK, Truslow JG, Tien J. Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability. J Biomed Mater Res A 2013; 102:3186-3195. [PMID: 24151175 DOI: 10.1002/jbm.a.34990] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/11/2013] [Accepted: 10/02/2013] [Indexed: 11/09/2022]
Abstract
The low stiffness of reconstituted collagen hydrogels has limited their use as scaffolds for engineering implantable tissues. Although chemical crosslinking has been used to stiffen collagen and protect it against enzymatic degradation in vivo, it remains unclear how crosslinking alters the vascularization of collagen hydrogels. In this study, we examine how the crosslinking agents genipin and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide alter vascular stability and function in microfluidic type I collagen gels in vitro. Under moderate perfusion (∼10 dyn/cm(2) shear stress), tubes of blood endothelial cells (ECs) exhibited indistinguishable stability and barrier function in untreated and crosslinked scaffolds. Surprisingly, under low perfusion (∼5 dyn/cm(2) shear stress) or nearly zero transmural pressure, microvessels in crosslinked scaffolds remained stable, while those in untreated gels rapidly delaminated and became poorly perfused. Similarly, tubes of lymphatic ECs under intermittent flow were more stable in crosslinked gels than in untreated ones. These effects correlated well with the degree of mechanical stiffening, as predicted by analysis of fracture energies at the cell-scaffold interface. This work demonstrates that crosslinking of collagen scaffolds does not hinder normal EC physiology; instead, crosslinked scaffolds promote vascular stability. Thus, routine crosslinking of scaffolds may assist in vascularization of engineered tissues.
Collapse
Affiliation(s)
- Kelvin L S Chan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Aimal H Khankhel
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Rebecca L Thompson
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Brent J Coisman
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Keith H K Wong
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - James G Truslow
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Joe Tien
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215.,Division of Materials Science and Engineering, Boston University, 15 St. Mary's Street, Brookline, MA 02446
| |
Collapse
|
111
|
Vitteková M, Dragúňová J, Kabát P, Božiková M, Bakoš D, Koller J. Cytotoxicity testing of scaffolds potentially suitable for the preparation of three-dimensional skin substitutes. Cell Tissue Bank 2013; 15:345-55. [PMID: 23907264 DOI: 10.1007/s10561-013-9390-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/12/2013] [Indexed: 10/26/2022]
Abstract
The preparation and study of three-dimensional functional skin substitutes has been the focus of intense research for several decades. Dermal substitutes are now commonly used in medical practice for a variety of applications. Here, we assess the toxicity of seven selected acellular dermal matrix materials to establish their potential for use in future three-dimensional skin substitute studies. The cytotoxicity of acellular dermis (of Allo- and Xenograft origin) prepared in our lab and biomaterials based on collagen and hyaluronic acid (Coladerm H and Coladerm H-L) were compared to that seen in three commercially available products (Xe-Derma, AlloDerm and Xeno-Impl). Murine fibroblasts NIH-3T3 and human dermal fibroblasts were used in cytotoxicity tests, with any resultant cytotoxic effects caused by the seven tested dermal scaffolds visualised using an inverted microscope system and confirmed in parallel using colorimetric MTT cell proliferation assays. While most of the dermal substitutes did not demonstrate a cytotoxic effect on our two cell types, Xeno and Xeno-Impl scaffolds clearly did. The cytotoxic effect of acellular Xeno dermal matrix could essentially be removed through a regime of multiple washes, but we were unable to remove the cytotoxic effect of Xeno-Impl. Thus, Xeno-Impl alone has been excluded from our future work on preparation of 3D skin substitutes.
Collapse
Affiliation(s)
- Miroslava Vitteková
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
112
|
Weisgerber DW, Kelkhoff DO, Caliari SR, Harley BAC. The impact of discrete compartments of a multi-compartment collagen-GAG scaffold on overall construct biophysical properties. J Mech Behav Biomed Mater 2013; 28:26-36. [PMID: 23973610 DOI: 10.1016/j.jmbbm.2013.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023]
Abstract
Orthopedic interfaces such as the tendon-bone junction (TBJ) present unique challenges for biomaterials development. Here we describe a multi-compartment collagen-GAG scaffold fabricated via lyophilization that contains discrete mineralized (CGCaP) and non-mineralized (CG) regions joined by a continuous interface. Modifying CGCaP preparation approaches, we demonstrated scaffold variants of increasing mineral content (40 vs. 80wt% CaP). We report the impact of fabrication parameters on microstructure, composition, elastic modulus, and permeability of the entire multi-compartment scaffold as well as discrete mineralized and non-mineralized compartments. Notably, individual mineralized and non-mineralized compartments differentially impacted the global properties of the multi-compartment composite. Of particular interest for the development of mechanically-loaded multi-compartment composites, the elastic modulus and permeability of the entire construct were governed primarily by the non-mineralized and mineralized compartments, respectively. Based on these results we hypothesize spatial variations in scaffold structural, compositional, and mechanical properties may be an important design parameter in orthopedic interface repair.
Collapse
Affiliation(s)
- D W Weisgerber
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
113
|
Brouwer KM, Wijnen RM, Reijnen D, Hafmans TG, Daamen WF, van Kuppevelt TH. Heparinized collagen scaffolds with and without growth factors for the repair of diaphragmatic hernia: construction and in vivo evaluation. Organogenesis 2013; 9:161-7. [PMID: 23867845 DOI: 10.4161/org.25587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A regenerative medicine approach to restore the morphology and function of the diaphragm in congenital diaphragmatic hernia is especially challenging because of the position and flat nature of this organ, allowing cell ingrowth primarily from the perimeter. Use of porous collagen scaffolds for the closure of surgically created diaphragmatic defects in rats has been shown feasible, but better ingrowth of cells, specifically blood vessels and muscle cells, is warranted. To stimulate this process, heparin, a glycosaminoglycan involved in growth factor binding, was covalently bound to porous collagenous scaffolds (14%), with or without vascular endothelial growth factor (VEGF; 0.4 µg/mg scaffold), hepatocyte growth factor (HGF; 0.5 µg/mg scaffold) or a combination of VEGF + HGF (0.2 + 0.5 µg/mg scaffold). All components were located primarily at the outside of scaffolds. Scaffolds were implanted in the diaphragm of rats and evaluated after 2 and 12 weeks. No herniations or eventrations were observed, and in several cases, growth factor-substituted scaffolds showed macroscopically visible blood vessels at the lung site. The addition of heparin led to an accelerated ingrowth of blood vessels at 2 weeks. In all scaffold types, giant cells and immune cells were present primarily at the liver side of the scaffold, and immune cells and individual macrophages at the lung side; these cell types decreased in number from week 2 to week 12. The addition of growth factors did not influence cellular response to the scaffolds, indicating that further optimization with respect to dosage and release profile is needed.
Collapse
Affiliation(s)
- Katrien M Brouwer
- Department of Biochemistry; NCMLS; Radboud University Nijmegen Medical Centre; Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
114
|
Changes in the plasma cytokine and growth factor profile are associated with impaired healing in pediatric patients treated with INTEGRA® for reconstructive procedures. Burns 2013; 39:667-73. [DOI: 10.1016/j.burns.2012.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 08/27/2012] [Accepted: 09/04/2012] [Indexed: 11/18/2022]
|
115
|
Maraldi T, Riccio M, Pisciotta A, Zavatti M, Carnevale G, Beretti F, La Sala GB, Motta A, De Pol A. Human amniotic fluid-derived and dental pulp-derived stem cells seeded into collagen scaffold repair critical-size bone defects promoting vascularization. Stem Cell Res Ther 2013; 4:53. [PMID: 23688855 PMCID: PMC3706961 DOI: 10.1186/scrt203] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/14/2013] [Indexed: 12/16/2022] Open
Abstract
Introduction The main aim of this study is to evaluate potential human stem cells, such as dental pulp stem cells and amniotic fluid stem cells, combined with collagen scaffold to reconstruct critical-size cranial bone defects in an animal model. Methods We performed two symmetric full-thickness cranial defects on each parietal region of rats and we replenished them with collagen scaffolds with or without stem cells already seeded into and addressed towards osteogenic lineage in vitro. After 4 and 8 weeks, cranial tissue samples were taken for histological and immunofluorescence analysis. Results We observed a new bone formation in all of the samples but the most relevant differences in defect correction were shown by stem cell–collagen samples 4 weeks after implant, suggesting a faster regeneration ability of the combined constructs. The presence of human cells in the newly formed bone was confirmed by confocal analysis with an antibody directed to a human mitochondrial protein. Furthermore, human cells were found to be an essential part of new vessel formation in the scaffold. Conclusion These data confirmed the strong potential of bioengineered constructs of stem cell–collagen scaffold for correcting large cranial defects in an animal model and highlighting the role of stem cells in neovascularization during skeletal defect reconstruction.
Collapse
|
116
|
Levinson H. A Paradigm of Fibroblast Activation and Dermal Wound Contraction to Guide the Development of Therapies for Chronic Wounds and Pathologic Scars. Adv Wound Care (New Rochelle) 2013; 2:149-159. [PMID: 24527338 PMCID: PMC3840547 DOI: 10.1089/wound.2012.0389] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Indexed: 12/16/2022] Open
Abstract
SIGNIFICANCE Delayed wound healing and pathologic scarring are abnormal processes that can be thought of as occurring on a wound healing continuum, where insufficient wound contraction leads to nonhealing wounds, and overexuberant wound contraction leads to scarring. Chronic nonhealing wounds, including diabetic foot wounds, decubitus ulcers, and venous stasis ulcers, affect millions of people annually in the United States and costs billions of dollars. Similarly, pathologic scaring affects more than 40 million Americans annually and also costs billions of dollars. CRITICAL ISSUES While there are multiple factors that contribute to chronic nonhealing wounds and pathologic scars, a derangement in wound contraction is common to both. In this article, we will present a paradigm of dermal wound contraction, derived from clinical observations and basic science evidence, which pertains to chronic nonhealing wounds and pathologic scars. RECENT ADVANCES We will review how select therapies currently under investigation and in development fit the paradigm. FUTURE DIRECTIONS The paradigm will facilitate translational research and enable the development of future innovative therapies.
Collapse
Affiliation(s)
- Howard Levinson
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Department of Pathology; Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
117
|
Tamaddon M, Walton RS, Brand DD, Czernuszka JT. Characterisation of freeze-dried type II collagen and chondroitin sulfate scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1153-1165. [PMID: 23392970 DOI: 10.1007/s10856-013-4882-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/28/2013] [Indexed: 06/01/2023]
Abstract
Collagen type-II is the dominant type of collagen in articular cartilage and chondroitin sulfate is one of the main components of cartilage extracellular matrix. Afibrillar and fibrillar type-II atelocollagen scaffolds with and without chondroitin sulfate were prepared using casting and freeze-drying methods. The scaffolds were characterised to highlight the effects of fibrillogenesis and chondroitin sulfate addition on viscosity, pore structure, porosity and mechanical properties. Microstructure analysis showed that fibrillogenesis increased the circularity of pores significantly in collagen-only scaffolds, whereas with it, no significant change was observed in chondroitin sulfate-containing scaffolds. Addition of chondroitin sulfate to afibrillar scaffolds increased the circularity of the pores and the proportion of pores between 50 and 300 μm suitable for chondrocytes growth. Fourier transform infrared spectroscopy explained the bonding between chondroitin sulfate and afibrillar collagen- confirmed with rheology results- which increased the compressive modulus 10-fold to 0.28 kPa. No bonding was observed in other scaffolds and consequently no significant changes in compressive modulus were detected.
Collapse
Affiliation(s)
- M Tamaddon
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
| | | | | | | |
Collapse
|
118
|
Choy ATH, Leong KW, Chan BP. Chemical modification of collagen improves glycosaminoglycan retention of their co-precipitates. Acta Biomater 2013; 9:4661-72. [PMID: 23009864 DOI: 10.1016/j.actbio.2012.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 11/16/2022]
Abstract
Being prevalent extracellular matrix components, collagen and glycosaminoglycan (GAG) are co-precipitated as scaffolds for tissue regeneration. However, the amount of GAG incorporated and its long-term retention present a persistent problem. In this study, chemical modifications, namely deamination, methylation and amination, were used to alter the net charge of collagen prior to fabrication of collagen-GAG co-precipitate. While most GAGs were lost in the untreated group and the deaminated group within 1 day, methylation and amination of collagen retained over 20% and 40% GAG after 6 days, respectively. Moreover, over 60% of GAG retention was achieved in the aminated group after cell seeding for 8 days. Furthermore, amination of collagen increased the GAG/hydroxyproline ratio in the co-precipitate to >4.5, approaching that of native nucleus pulposus. Ultrastructural analysis showed that the aminated group contains abundant granular substances resembling the extracellular matrix of native nucleus pulposus. Despite lower initial cell adhesion than untreated, all modified scaffolds promoted proliferation of human mesenchymal stem cells (hMSCs) and showed >95% cell viability at all time points. Cell morphology was distinct among the different groups, being round in the untreated control and methylated groups but elongated in deaminated and aminated groups. hMSCs adhered to scaffolds via collagen receptor integrin α2β1 in all groups, while all but the aminated group showed extensive expression of the general matrix receptor integrin αv. This work reports an effective method, namely amination of collagen, to improve GAG incorporation and retention in collagen-GAG co-precipitates, facilitating the fabrication of GAG-rich collagenous scaffold for intervertebral disc tissue engineering.
Collapse
Affiliation(s)
- A T H Choy
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | |
Collapse
|
119
|
Abstract
Bioengineered skin has great potential for use in regenerative medicine for treatment of severe wounds such as burns or chronic ulcers. Genetically modified skin substitutes have also been used as cell-based devices or "live bioreactors" to deliver therapeutics locally or systemically. Finally, these tissue constructs are used as realistic models of human skin for toxicological testing, to speed drug development and replace traditional animal-based tests in a variety of industries. Here we describe a method of generating bioengineered skin based on a natural scaffold, namely, decellularized human dermis and epidermal stem cells.
Collapse
Affiliation(s)
- Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY, USA
| | | | | |
Collapse
|
120
|
|
121
|
|
122
|
|
123
|
Gun'ko VM, Savina IN, Mikhalovsky SV. Cryogels: morphological, structural and adsorption characterisation. Adv Colloid Interface Sci 2013; 187-188:1-46. [PMID: 23218507 DOI: 10.1016/j.cis.2012.11.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 12/21/2022]
Abstract
Experimental results on polymer, protein, and composite cryogels and data treatment methods used for morphological, textural, structural, adsorption and diffusion characterisation of the materials are analysed and compared. Treatment of microscopic images with specific software gives quantitative structural information on both native cryogels and freeze-dried materials that is useful to analyse the drying effects on their structure. A combination of cryoporometry, relaxometry, thermoporometry, small angle X-ray scattering (SAXS), equilibrium and kinetic adsorption of low and high-molecular weight compounds, diffusion breakthrough of macromolecules within macroporous cryogel membranes, studying interactions of cells with cryogels provides a consistent and comprehensive picture of textural, structural and adsorption properties of a variety of cryogels. This analysis allows us to establish certain regularities in the cryogel properties related to narrow (diameter 0.4<d<2 nm), middle (2<d<50 nm) and broad (50<d<100 nm) nanopores, micropores (100 nm<d<100 μm) and macropores (d>100 μm) with boundary sizes within modified life science pore classification. Particular attention is paid to water bound in cryogels in native superhydrated or freeze-dried states. At least, five states of water - free unbound, weakly bound (changes in the Gibbs free energy-ΔG<0.5-0.8 kJ/mol) and strongly bound (-ΔG>0.8 kJ/mol), and weakly associated (chemical shift of the proton resonance δ(H)=1-2 ppm) and strongly associated (δ(H)=3-6 ppm) waters can be distinguished in hydrated cryogels using (1)H NMR, DSC, TSDC, TG and other methods. Different software for image treatment or developed to analyse the data obtained with the adsorption, diffusion, SAXS, cryoporometry and thermoporometry methods and based on regularisation algorithms is analysed and used for the quantitative morphological, structural and adsorption characterisation of individual and composite cryogels, including polymers filled with solid nano- or microparticles.
Collapse
Affiliation(s)
- Vladimir M Gun'ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kiev 03164, Ukraine.
| | | | | |
Collapse
|
124
|
Petersen A, Joly P, Bergmann C, Korus G, Duda GN. The Impact of Substrate Stiffness and Mechanical Loading on Fibroblast-Induced Scaffold Remodeling. Tissue Eng Part A 2012; 18:1804-17. [DOI: 10.1089/ten.tea.2011.0514] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ansgar Petersen
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Pascal Joly
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Camilla Bergmann
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Korus
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
125
|
Seet WT, Maarof M, Khairul Anuar K, Chua KH, Ahmad Irfan AW, Ng MH, Saim Aminuddin B, Idrus Ruszymah BH. Shelf-life evaluation of bilayered human skin equivalent, MyDerm™. PLoS One 2012; 7:e40978. [PMID: 22927903 PMCID: PMC3426510 DOI: 10.1371/journal.pone.0040978] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 06/20/2012] [Indexed: 11/29/2022] Open
Abstract
Skin plays an important role in defense against infection and other harmful biological agents. Due to its fragile structure, skin can be easily damaged by heat, chemicals, traumatic injuries and diseases. An autologous bilayered human skin equivalent, MyDerm™, was engineered to provide a living skin substitute to treat critical skin loss. However, one of the disadvantages of living skin substitute is its short shelf-life, hence limiting its distribution worldwide. The aim of this study was to evaluate the shelf-life of MyDerm™ through assessment of cell morphology, cell viability, population doubling time and functional gene expression levels before transplantation. Skin samples were digested with 0.6% Collagenase Type I followed by epithelial cells dissociation with TrypLE Select. Dermal fibroblasts and keratinocytes were culture-expanded to obtain sufficient cells for MyDerm™ construction. MyDerm™ was constructed with plasma-fibrin as temporary biomaterial and evaluated at 0, 24, 48 and 72 hours after storage at 4°C for its shelf-life determination. The morphology of skin cells derived from MyDerm™ remained unchanged across storage times. Cells harvested from MyDerm™ after storage appeared in good viability (90.5%±2.7% to 94.9%±1.6%) and had short population doubling time (58.4±8.7 to 76.9±19 hours). The modest drop in cell viability and increased in population doubling time at longer storage duration did not demonstrate a significant difference. Gene expression for CK10, CK14 and COL III were also comparable between different storage times. In conclusion, MyDerm™ can be stored in basal medium at 4°C for at least 72 hours before transplantation without compromising its functionality.
Collapse
Affiliation(s)
- Wan Tai Seet
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Manira Maarof
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Khairoji Khairul Anuar
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kien-Hui Chua
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Abdul Wahab Ahmad Irfan
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Bin Saim Aminuddin
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- Ear, Nose and Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Selangor, Malaysia
| | - Bt Hj Idrus Ruszymah
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
126
|
Engineering endostatin-expressing cartilaginous constructs using injectable biopolymer hydrogels. Acta Biomater 2012; 8:2203-12. [PMID: 22370447 DOI: 10.1016/j.actbio.2012.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/04/2012] [Accepted: 02/16/2012] [Indexed: 11/20/2022]
Abstract
The release of an anti-angiogenic agent, such as type XVIII/endostatin, from an implantable scaffold may be of benefit in the repair of articular cartilage. The objectives of this study are to develop an injectable mesenchymal stem cell (MSC)-incorporating collagen-based hydrogel capable of undergoing covalent cross-linking in vivo and overexpressing endostatin using nonviral transfection, and to investigate methods for the retention of the endostatin protein within the scaffolds. The effects of different cross-linking agents (genipin, transglutaminase-2, and microbial transglutaminase) and different binding molecules for endostatin retention (heparin, heparan sulfate, and chondroitin sulfate) are evaluated. Cartilaginous constructs that overexpress endostatin for 3 weeks are successfully engineered. Most of the endostatin is released into the surrounding media and is not retained within the constructs. The presence of two common basement membrane molecules, laminin and type IV collagen, which have been reported in developing and mature articular cartilage and are generally associated with type XVIII collagen in vivo, is also observed in the engineered cartilaginous constructs. Endostatin-producing cartilaginous constructs can be formulated by growing nonvirally transfected mesenchymal stem cells in collagen gels covalently cross-linked using genipin, transglutaminase-2, and microbial transglutaminase. These constructs warrant further investigation for cartilage repair procedures. The novel finding of laminin and type IV collagen in the engineered cartilage constructs may be of importance for future work toward understanding the role of basement membrane molecules in chondrogenesis and in the physiology and pathology of articular cartilage.
Collapse
|
127
|
Mallick KK, Winnett J, van Grunsven W, Lapworth J, Reilly GC. Three-dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. J Biomed Mater Res A 2012; 100:2948-59. [DOI: 10.1002/jbm.a.34238] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 03/01/2012] [Accepted: 04/19/2012] [Indexed: 11/10/2022]
|
128
|
Tian H, Chen Y, Ding C, Li G. Interaction study in homogeneous collagen/chondroitin sulfate blends by two-dimensional infrared spectroscopy. Carbohydr Polym 2012; 89:542-50. [DOI: 10.1016/j.carbpol.2012.03.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 11/28/2022]
|
129
|
Kanda N, Morimoto N, Ayvazyan AA, Takemoto S, Kawai K, Nakamura Y, Sakamoto Y, Taira T, Suzuki S. Evaluation of a novel collagen-gelatin scaffold for achieving the sustained release of basic fibroblast growth factor in a diabetic mouse model. J Tissue Eng Regen Med 2012; 8:29-40. [DOI: 10.1002/term.1492] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 01/18/2012] [Accepted: 01/24/2012] [Indexed: 01/13/2023]
Affiliation(s)
- Norikazu Kanda
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine; Kyoto University; 54 Kawahara-cho Shogoin Sakyo-ku Kyoto Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine; Kyoto University; 54 Kawahara-cho Shogoin Sakyo-ku Kyoto Japan
| | - Artem A. Ayvazyan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine; Kyoto University; 54 Kawahara-cho Shogoin Sakyo-ku Kyoto Japan
| | - Satoru Takemoto
- Department of Plastic and Reconstructive Surgery; Matsue City Hospital; 32-1 Noshira-cho Matsue-shi Shimane Japan
| | - Katsuya Kawai
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine; Kyoto University; 54 Kawahara-cho Shogoin Sakyo-ku Kyoto Japan
| | - Yoko Nakamura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine; Kyoto University; 54 Kawahara-cho Shogoin Sakyo-ku Kyoto Japan
| | - Yuki Sakamoto
- Gunze Research and Development Centre; 1 Ishiburo Inokurashin-machi Ayabe Kyoto Japan
| | - Tsuguyoshi Taira
- Gunze Research and Development Centre; 1 Ishiburo Inokurashin-machi Ayabe Kyoto Japan
| | - Shigehiko Suzuki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine; Kyoto University; 54 Kawahara-cho Shogoin Sakyo-ku Kyoto Japan
| |
Collapse
|
130
|
Banerjee I, Mishra D, Das T, Maiti S, Maiti TK. Caprine (Goat) Collagen: A Potential Biomaterial for Skin Tissue Engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:355-73. [DOI: 10.1163/092050610x551943] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Indranil Banerjee
- a Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Debasish Mishra
- b Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Tamal Das
- c Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Swatilekha Maiti
- d Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Tapas K. Maiti
- e Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
131
|
Matsumoto Y, Arai K, Momose H, Kuroyanagi Y. Development of a Wound Dressing Composed of a Hyaluronic Acid Sponge Containing Arginine. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:993-1004. [DOI: 10.1163/156856209x444394] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yasuhiro Matsumoto
- a R&D Center for Artificial Skin, School of Allied Health Sciences, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555, Japan
| | - Kiwako Arai
- b R&D Center for Artificial Skin, School of Allied Health Sciences, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555, Japan
| | - Hitomi Momose
- c R&D Center for Artificial Skin, School of Allied Health Sciences, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555, Japan
| | - Yoshimitsu Kuroyanagi
- d R&D Center for Artificial Skin, School of Allied Health Sciences, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555, Japan
| |
Collapse
|
132
|
|
133
|
Mathematical modeling and frequency gradient analysis of cellular and vascular invasion into integra and strattice: toward optimal design of tissue regeneration scaffolds. Plast Reconstr Surg 2012; 129:89-99. [PMID: 22186502 DOI: 10.1097/prs.0b013e318230c5f1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rapid, effective host cell invasion and vascularization is essential for durable incorporation of avascular tissue-replacement scaffolds. In this study, the authors sought to qualitatively and quantitatively determine which of two commercially available products (i.e., Strattice and Integra) facilitates more rapid cellular and vascular invasion in a murine model of graft incorporation. METHODS Integra and Strattice were implanted subcutaneously into the dorsa of C57BL/6 mice; harvested after 3, 7, or 14 days; and stained with hematoxylin and eosin, 4',6-diamidino-2-phenylindole, and immunohistochemical stains for CD31 and α-smooth muscle actin. Exponential decay equations describing cellular invasion through each layer were fit to each material/time point. Mean cell density and cell frequency maps were created denoting extent of invasion by location within the scaffold. RESULTS Qualitative analysis demonstrated extensive cellular infiltration into Integra by 3 days and increasing over the remaining 14 days. Invasion of Strattice was sparse, even after 14 days. α-Smooth muscle actin immunohistochemistry revealed blood vessel formation within Integra by 14 days but no analogous neovascularization in Strattice. Mean decay equations for Integra and Strattice were y = 76.3(0.59) and y = 75.5(0.33), respectively. Both cell density measurements and frequency mapping demonstrated that, at all time points, Integra manifested a greater density/depth of cellular invasion when compared with Strattice. CONCLUSIONS These data confirm empiric clinical observations that Integra is more rapidly invaded than Strattice when placed in a suitable host bed. A remnant microvasculature template is not sufficient for effective cellular ingrowth into an artificial tissue construct. These findings provide insight into means for improving future dermal replacement products.
Collapse
|
134
|
Böttcher-Haberzeth S, Biedermann T, Schiestl C, Hartmann-Fritsch F, Schneider J, Reichmann E, Meuli M. Matriderm® 1 mm versus Integra® Single Layer 1.3 mm for one-step closure of full thickness skin defects: a comparative experimental study in rats. Pediatr Surg Int 2012; 28:171-7. [PMID: 22057576 DOI: 10.1007/s00383-011-2990-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Dermal templates, such as Matriderm® and Integra®, are widely used in plastic and reconstructive surgery, often as two-step procedures. A recent development is the application of thin dermal templates covered with split thickness skin grafts in one-step procedures. In this experimental study, we compare the two thin matrices Matriderm® 1 mm and Integra® Single Layer in a one-step procedure with particular focus on neodermis formation. METHODS Matriderm® 1 mm and Integra® Dermal Regeneration Template-Single Layer (1.3 mm) were compared in a rat model. In three groups of five animals each, a full thickness wound was covered with (a) Matriderm® 1 mm and neonatal rat epidermis, (b) Integra® Single Layer and neonatal rat epidermis, or, (c) neonatal rat epidermis only (control). Histological sections 2 weeks post transplantation were analyzed with regard to take of template and epidermis, neodermal thickness, collagen deposition, vascularization, and inflammatory response. RESULTS Take of both templates was complete in all animals. The Matriderm®-based neodermis was thinner but showed a higher cell density than the Integra®-based neodermis. The other parameters were similar in both matrices. CONCLUSION The two templates demonstrate a comparable biological behavior early after transplantation. The only difference was found regarding neodermal thickness, probably resulting from faster degradation of Matriderm®. These preliminary data suggest that both dermal templates appear similarly suitable for transplantation in a one-step procedure.
Collapse
Affiliation(s)
- Sophie Böttcher-Haberzeth
- Department of Surgery, Tissue Biology Research Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
135
|
Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S. Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci 2012; 12:286-311. [PMID: 22278779 DOI: 10.1002/mabi.201100325] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/16/2011] [Indexed: 12/23/2022]
Abstract
The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.
Collapse
Affiliation(s)
- Rajeswari Ravichandran
- Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
136
|
Abstract
Applications of regenerative medicine technology may offer novel therapies for patients with injuries, end-stage organ failure, or other clinical problems. Currently, patients suffering from diseased and injured organs can be treated with transplanted organs. However, there is a severe shortage of donor organs that is worsening yearly as the population ages and new cases of organ failure increase. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The stem cell field is also advancing rapidly, opening new avenues for this type of therapy. For example, therapeutic cloning and cellular reprogramming may one day provide a potentially limitless source of cells for tissue engineering applications. While stem cells are still in the research phase, some therapies arising from tissue engineering endeavors have already entered the clinical setting successfully, indicating the promise regenerative medicine holds for the future.
Collapse
Affiliation(s)
- Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
137
|
Patel MN, Atala A. Tissue engineering of the penis. ScientificWorldJournal 2011; 11:2567-78. [PMID: 22235188 PMCID: PMC3253692 DOI: 10.1100/2011/323989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 08/27/2010] [Indexed: 12/20/2022] Open
Abstract
Congenital disorders, cancer, trauma, or other conditions of the genitourinary tract can lead to significant organ damage or loss of function, necessitating eventual reconstruction or replacement of the damaged structures. However, current reconstructive techniques are limited by issues of tissue availability and compatibility. Physicians and scientists have begun to explore tissue engineering and regenerative medicine strategies for repair and reconstruction of the genitourinary tract. Tissue engineering allows the development of biological substitutes which could potentially restore normal function. Tissue engineering efforts designed to treat or replace most organs are currently being undertaken. Most of these efforts have occurred within the past decade. However, before these engineering techniques can be applied to humans, further studies are needed to ensure the safety and efficacy of these new materials. Recent progress suggests that engineered urologic tissues and cell therapy may soon have clinical applicability.
Collapse
Affiliation(s)
- Manish N Patel
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
138
|
Anderson JR, Fear MW, Phillips JK, Dawson LF, Wallace H, Wood FM, Rea SM. A preliminary investigation of the reinnervation and return of sensory function in burn patients treated with INTEGRA®. Burns 2011; 37:1101-8. [DOI: 10.1016/j.burns.2011.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 12/17/2022]
|
139
|
Papa G, Pangos M, Renzi N, Ramella V, Panizzo N, Arnez ZM, Marij AZ. Five years of experience using a dermal substitute: indications, histologic studies, and first results using a new single-layer tool. Dermatol Surg 2011; 37:1631-7. [PMID: 22092974 DOI: 10.1111/j.1524-4725.2011.02156.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dermal substitutes have been used in Europe since 1996 as a mean of reconstructing the dermal layer. OBJECTIVES To introduce the dermal substitute as a dual-stage reconstructing procedure using the dual-layer version and as a single-stage procedure, combining the single layer with a skin graft to achieve immediate closure. Our further objective was to evaluate the persistence of a commercial dermal substitute in the host's dermal layer using serial histologic studies. MATERIALS AND METHODS The dermal substitute used was a membrane made using a porous coprecipitate of type I bovine collagen and glycosaminoglycan organized in a three-dimensional structure that allows the host's cell to migrate into it. It is available in a double-layer structure, covered by a silicone sheet, and in a single-layer structure without silicon. RESULTS AND CONCLUSION We describe the dermal substitute indications in dermatologic surgery and our first results with the single layer as a single-stage procedure with an 80% to 100% take rate. Our histological studies of both products show their perfect integration and the persistence of the peculiar three-dimensional structure (neodermis) 5 years from implantation of the dual-layer dermal substitute.
Collapse
Affiliation(s)
- Giovanni Papa
- Department of Plastic and Reconstructive Surgery, Ospedale di Cattinara, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
140
|
The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering. Biomaterials 2011; 32:8990-8. [PMID: 21880362 DOI: 10.1016/j.biomaterials.2011.08.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/14/2011] [Indexed: 12/31/2022]
Abstract
Current tissue engineering approaches for tendon defects require improved biomaterials to balance microstructural and mechanical design criteria. Collagen-glycosaminoglycan (CG) scaffolds have shown considerable success as in vivo regenerative templates and in vitro constructs to study cell behavior. While these scaffolds possess many advantageous qualities, their mechanical properties are typically orders of magnitude lower than orthopedic tissues such as tendon. Taking inspiration from mechanically efficient core-shell composites in nature such as plant stems and porcupine quills, we have created core-shell CG composites that display high bioactivity and improved mechanical integrity. These composites feature integration of a low density, anisotropic CG scaffold core with a high density, CG membrane shell. CG membranes were fabricated via an evaporative process that allowed separate tuning of membrane thickness and elastic moduli and were found to be isotropic in-plane. The membranes were then integrated with an anisotropic CG scaffold core via freeze-drying and subsequent crosslinking. Increasing the relative thickness of the CG membrane shell was shown to increase composite tensile elastic modulus by as much as a factor of 36 in a manner consistent with predictions from layered composites theory. CG scaffold-membrane composites were found to support tendon cell viability, proliferation, and metabolic activity in vitro, suggesting they maintain sufficient permeability while demonstrating improved mechanical strength. This work suggests an effective, biomimetic approach for balancing strength and bioactivity requirements of porous scaffolds for tissue engineering.
Collapse
|
141
|
Mohd Yussof SJ, Halim AS, Mat Saad AZ, Jaafar H. Evaluation of the Biocompatibility of a Bilayer Chitosan Skin Regenerating Template, Human Skin Allograft, and Integra Implants in Rats. ACTA ACUST UNITED AC 2011. [DOI: 10.5402/2011/857483] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Introduction. Chitosan is a nontoxic, biocompatible, and biodegradable polymer obtained from chitin by N-deacetylation using strong alkali. Chitosan in a form of a bilayer skin regenerating template can act as a scaffold for regeneration. Integra is a two-layer skin regeneration system, constructed of a matrix of crosslinked fibers that acts as a scaffold for regenerating dermal skin cells. Human skin allografts (HSAs) are the “gold standard” for temporary coverage of clean burn wounds. Objectives. The objective of this study was to conduct in-vivo, preclinical biocompatibility evaluations of Integra, HSA, and Chitosan skin regenerating template (SRT). Methods. Paravertebral subcutaneous pockets were created for the implantation of test materials. Implants were retrieved after 4, 7, 14, 21, and 28 days. Slides of sections through the implants were examined to determine biocompatibility. Results. Chitosan SRT and Integra showed similar inflammatory patterns. HSA showed a higher inflammatory reaction initially which then reduced to levels similar to Integra and Chitosan SRT. Chitosan SRT and Integra also shared similar angiogenesis levels. Towards the end, all implants were degraded with decreased tissue response. Conclusion. Integra, Chitosan SRT, and HSA have been shown to be biocompatible. Integra and Chitosan SRT seem to illicit similar tissue responses.
Collapse
Affiliation(s)
- Shah Jumaat Mohd Yussof
- Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA, Shah Alam, 40450 Selangor, Malaysia
| | - Ahmad Sukari Halim
- Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Arman Zaharil Mat Saad
- Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| |
Collapse
|
142
|
Abstract
Major skin loss from trauma or burns cannot always be replaced with the patient's own skin. An engineered skin replacement would restore the barrier function of the skin, remain permanently on the wound, and minimize late functional complications of wound contraction. Cultured epithelial autograft (CEA) sheets reproduce the epidermis' function and have been used in burn patients to close large wounds. There are several promising avenues for dermal replacement, but none has yet had wide clinical application.
Collapse
Affiliation(s)
- G G Gallico
- Department of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114
| | | |
Collapse
|
143
|
Lammers G, van de Westerlo EM, Versteeg EM, van Kuppevelt TH, Daamen WF. A Comparison of Seven Methods to Analyze Heparin in Biomaterials: Quantification, Location, and Anticoagulant Activity. Tissue Eng Part C Methods 2011; 17:669-76. [DOI: 10.1089/ten.tec.2011.0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gerwen Lammers
- Department of Biochemistry 280, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Els M. van de Westerlo
- Department of Biochemistry 280, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Elly M. Versteeg
- Department of Biochemistry 280, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Toin H. van Kuppevelt
- Department of Biochemistry 280, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Willeke F. Daamen
- Department of Biochemistry 280, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
144
|
Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 2011; 29:322-37. [DOI: 10.1016/j.biotechadv.2011.01.005] [Citation(s) in RCA: 1167] [Impact Index Per Article: 83.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/02/2010] [Accepted: 01/14/2011] [Indexed: 11/19/2022]
|
145
|
Haugh MG, Murphy CM, McKiernan RC, Altenbuchner C, O'Brien FJ. Crosslinking and Mechanical Properties Significantly Influence Cell Attachment, Proliferation, and Migration Within Collagen Glycosaminoglycan Scaffolds. Tissue Eng Part A 2011; 17:1201-8. [DOI: 10.1089/ten.tea.2010.0590] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew G. Haugh
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Department of Mechanical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ciara M. Murphy
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross C. McKiernan
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cornelia Altenbuchner
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Mechanical Engineering, University of Applied Science Regensburg, Regensburg, Germany
| | - Fergal J. O'Brien
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Department of Mechanical Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
146
|
Rnjak J, Wise SG, Mithieux SM, Weiss AS. Severe Burn Injuries and the Role of Elastin in the Design of Dermal Substitutes. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:81-91. [DOI: 10.1089/ten.teb.2010.0452] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jelena Rnjak
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Steven G. Wise
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | | | - Anthony S. Weiss
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| |
Collapse
|
147
|
Yang TL. Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. Int J Mol Sci 2011; 12:1936-63. [PMID: 21673932 PMCID: PMC3111643 DOI: 10.3390/ijms12031936] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 01/15/2023] Open
Abstract
Chitin-based materials and their derivatives are receiving increased attention in tissue engineering because of their unique and appealing biological properties. In this review, we summarize the biomedical potential of chitin-based materials, specifically focusing on chitosan, in tissue engineering approaches for epithelial and soft tissues. Both types of tissues play an important role in supporting anatomical structures and physiological functions. Because of the attractive features of chitin-based materials, many characteristics beneficial to tissue regeneration including the preservation of cellular phenotype, binding and enhancement of bioactive factors, control of gene expression, and synthesis and deposition of tissue-specific extracellular matrix are well-regulated by chitin-based scaffolds. These scaffolds can be used in repairing body surface linings, reconstructing tissue structures, regenerating connective tissue, and supporting nerve and vascular growth and connection. The novel use of these scaffolds in promoting the regeneration of various tissues originating from the epithelium and soft tissue demonstrates that these chitin-based materials have versatile properties and functionality and serve as promising substrates for a great number of future applications.
Collapse
Affiliation(s)
- Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, 100, Taiwan; E-Mail: ; Tel.: +886-2-23123456 ext. 63526
| |
Collapse
|
148
|
Nillesen STM, Lammers G, Wismans RG, Ulrich MM, Middelkoop E, Spauwen PH, Faraj KA, Schalkwijk J, Daamen WF, van Kuppevelt TH. Design and in vivo evaluation of a molecularly defined acellular skin construct: reduction of early contraction and increase in early blood vessel formation. Acta Biomater 2011; 7:1063-71. [PMID: 20965285 DOI: 10.1016/j.actbio.2010.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/09/2010] [Accepted: 10/12/2010] [Indexed: 11/29/2022]
Abstract
Skin substitutes are of great benefit in the treatment of patients with full thickness wounds, but there is a need for improvement with respect to wound closure with minimal contraction, early vascularisation, and elastin formation. In this study we designed and developed an acellular double-layered skin construct, using matrix molecules and growth factors to target specific biological processes. The epidermal layer was prepared using type I collagen, heparin and fibroblast growth factor 7 (FGF7), while the porous dermal layer was prepared using type I collagen, solubilised elastin, dermatan sulfate, heparin, fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF). The construct was biochemically and morphologically characterised and evaluated in vivo using a rat full thickness wound model. The results were compared with the commercial skin substitute IntegraDRT and untreated wounds. The double-layered construct was prepared according to the design specifications. The epidermal layer was about 40 μm thick, containing 9% heparin and 0.2 μg FGF7 mg per layer, localised at the periphery. The dermal layer was 2.5 mm thick, had rounded pores and contained 10% dermatan sulfate+heparin, and 0.7 μg FGF2+VEGF mg per layer. The double-layered skin construct was implanted in a skin defect and on day 7, 14, 28 and 112 the (remaining) wound area was photographed, excised and (immuno) histologically evaluated. The double-layered skin construct showed more cell influx, significantly less contraction and increased blood vessel formation at early time points in comparison with IntegraDRT and/or the untreated wound. On day 14 the double-layered skin construct also had the fewest myofibroblasts present. On day 112 the double-layered skin construct contained more elastic fibres than IntegraDRT and the untreated wound. Structures resembling hair follicles and sebaceous glands were found in the double-layered skin construct and the untreated wound, but hardly any were found in IntegraDRT. The results provide new opportunities for the application of acellular skin constructs in the treatment of surgical wounds.
Collapse
Affiliation(s)
- S T M Nillesen
- Department of Biochemistry 280, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
|
150
|
Abstract
There are a number of conditions of the bladder that can lead to loss of function. Many of these require reconstructive procedures. However, current techniques may lead to a number of complications. Replacement of bladder tissues with functionally equivalent ones created in the laboratory could improve the outcome of reconstructive surgery. A review of the literature was conducted using PubMed to identify studies that provide evidence that tissue engineering techniques may be useful in the development of alternatives to current methods of bladder reconstruction. A number of animal studies and several clinical experiences show that it is possible to reconstruct the bladder using tissues and neo-organs produced in the laboratory. Materials that could be used to create functionally equivalent urologic tissues in the laboratory, especially non-autologous cells that have the potential to reject have many technical limitations. Current research suggests that the use of biomaterial-based, bladder-shaped scaffolds seeded with autologous urothelial and smooth muscle cells is currently the best option for bladder tissue engineering. Further research to develop novel biomaterials and cell sources, as well as information gained from developmental biology, signal transduction studies and studies of the wound healing response would be beneficial.
Collapse
Affiliation(s)
- Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|