101
|
Prittinen J, Jiang Y, Ylärinne JH, Pakkanen TA, Lammi MJ, Qu C. Chondrocyte behavior on nanostructured micropillar polypropylene and polystyrene surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:424-31. [PMID: 25175232 DOI: 10.1016/j.msec.2014.07.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/27/2014] [Accepted: 07/13/2014] [Indexed: 01/26/2023]
Abstract
This study was aimed to investigate whether patterned polypropylene (PP) or polystyrene (PS) could enhance the chondrocytes' extracellular matrix (ECM) production and phenotype maintenance. Bovine primary chondrocytes were cultured on smooth PP and PS, as well as on nanostructured micropillar PP (patterned PP) and PS (patterned PS) for 2 weeks. Subsequently, the samples were collected for fluorescein diacetate-based cell viability tests, for immunocytochemical assays of types I and II collagen, actin and vinculin, for scanning electronic microscopic analysis of cell morphology and distribution, and for gene expression assays of Sox9, aggrecan, procollagen α1(II), procollagen α1(X), and procollagen α2(I) using quantitative RT-PCR assays. After two weeks of culture, the bovine primary chondrocytes had attached on both patterned PP and PS, while practically no adhesion was observed on smooth PP. However, the best adhesion of the cells was on smooth PS. The cells, which attached on patterned PP and PS surfaces synthesized types I and II collagen. The chondrocytes' morphology was extended, and an abundant ECM network formed around the attached chondrocytes on both patterned PP and PS. Upon passaging, no significant differences on the chondrocyte-specific gene expression were observed, although the highest expression level of aggrecan was observed on the patterned PS in passage 1 chondrocytes, and the expression level of procollagen α1(II) appeared to decrease in passaged chondrocytes. However, the expressions of procollagen α2(I) were increased in all passaged cell cultures. In conclusion, the bovine primary chondrocytes could be grown on patterned PS and PP surfaces, and they produced extracellular matrix network around the adhered cells. However, neither the patterned PS nor PP could prevent the dedifferentiation of chondrocytes.
Collapse
Affiliation(s)
- Juha Prittinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Yu Jiang
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Janne H Ylärinne
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Tapani A Pakkanen
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Mikko J Lammi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Chengjuan Qu
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
102
|
Lei C, Zhu H, Li J, Li J, Feng X, Chen J. Preparation and characterization of polyhydroxybutyrate-co
-hydroxyvalerate/silk fibroin nanofibrous scaffolds for skin tissue engineering. POLYM ENG SCI 2014. [DOI: 10.1002/pen.23958] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Caihong Lei
- Key Laboratory of Fiber Materials and Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Hailin Zhu
- Key Laboratory of Fiber Materials and Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Jingjing Li
- Key Laboratory of Fiber Materials and Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Jiuming Li
- Key Laboratory of Fiber Materials and Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Xinxing Feng
- The Quartermaster Research Institute of the General Logistic Department of CPLA; Beijing 100082 China
| | - Jianyong Chen
- Key Laboratory of Fiber Materials and Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University; Hangzhou 310018 China
| |
Collapse
|
103
|
Eatemadi A, Daraee H, Zarghami N, Melat Yar H, Akbarzadeh A. Nanofiber: Synthesis and biomedical applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:111-21. [DOI: 10.3109/21691401.2014.922568] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
104
|
Ramier J, Grande D, Bouderlique T, Stoilova O, Manolova N, Rashkov I, Langlois V, Albanese P, Renard E. From design of bio-based biocomposite electrospun scaffolds to osteogenic differentiation of human mesenchymal stromal cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1563-1575. [PMID: 24584668 DOI: 10.1007/s10856-014-5174-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/07/2014] [Indexed: 06/03/2023]
Abstract
Electrospinning coupled with electrospraying provides a straightforward and robust route toward promising electrospun biocomposite scaffolds for bone tissue engineering. In this comparative investigation, four types of poly(3-hydroxybutyrate) (PHB)-based nanofibrous scaffolds were produced by electrospinning a PHB solution, a PHB/gelatin (GEL) mixture or a PHB/GEL/nHAs (hydroxyapatite nanoparticles) mixed solution, and by electrospinning a PHB/GEL solution and electrospraying a nHA dispersion simultaneously. SEM and TEM analyses demonstrated that the electrospun nHA-blended framework contained a majority of nHAs trapped within the constitutive fibers, whereas the electrospinning-electrospraying combination afforded fibers with a rough surface largely covered by the bioceramic. Structural and morphological characterizations were completed by FTIR, mercury intrusion porosimetry, and contact angle measurements. Furthermore, an in vitro investigation of human mesenchymal stromal cell (hMSC) adhesion and proliferation properties showed a faster cell development on gelatin-containing scaffolds. More interestingly, a long-term investigation of hMSC osteoblastic differentiation over 21 days indicate that hMSCs seeded onto the nHA-sprayed scaffold developed a significantly higher level of alkaline phosphatase activity, as well as a higher matrix biomineralization rate through the staining of the generated calcium deposits: the fiber surface deposition of nHAs by electrospraying enabled their direct exposure to hMSCs for an efficient transmission of the bioceramic osteoinductive and osteoconductive properties, producing a suitable biocomposite scaffold for bone tissue regeneration.
Collapse
Affiliation(s)
- Julien Ramier
- Systèmes Polymères Complexes, Institut de Chimie et des Matériaux Paris-Est, Equipe UMR 7182 CNRS, Université Paris Est Créteil, 2, rue Henri Dunant, Thiais, 94320, France
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Nanotechnology biomimetic cartilage regenerative scaffolds. Arch Plast Surg 2014; 41:231-40. [PMID: 24883273 PMCID: PMC4037768 DOI: 10.5999/aps.2014.41.3.231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 06/29/2013] [Accepted: 06/30/2013] [Indexed: 11/08/2022] Open
Abstract
Cartilage has a limited regenerative capacity. Faced with the clinical challenge of reconstruction of cartilage defects, the field of cartilage engineering has evolved. This article reviews current concepts and strategies in cartilage engineering with an emphasis on the application of nanotechnology in the production of biomimetic cartilage regenerative scaffolds. The structural architecture and composition of the cartilage extracellular matrix and the evolution of tissue engineering concepts and scaffold technology over the last two decades are outlined. Current advances in biomimetic techniques to produce nanoscaled fibrous scaffolds, together with innovative methods to improve scaffold biofunctionality with bioactive cues are highlighted. To date, the majority of research into cartilage regeneration has been focused on articular cartilage due to the high prevalence of large joint osteoarthritis in an increasingly aging population. Nevertheless, the principles and advances are applicable to cartilage engineering for plastic and reconstructive surgery.
Collapse
|
106
|
Tissue engineering and regenerative repair in wound healing. Ann Biomed Eng 2014; 42:1494-507. [PMID: 24788648 DOI: 10.1007/s10439-014-1010-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/05/2014] [Indexed: 12/14/2022]
Abstract
Wound healing is a highly evolved defense mechanism against infection and further injury. It is a complex process involving multiple cell types and biological pathways. Mammalian adult cutaneous wound healing is mediated by a fibroproliferative response leading to scar formation. In contrast, early to mid-gestational fetal cutaneous wound healing is more akin to regeneration and occurs without scar formation. This early observation has led to extensive research seeking to unlock the mechanism underlying fetal scarless regenerative repair. Building upon recent advances in biomaterials and stem cell applications, tissue engineering approaches are working towards a recapitulation of this phenomenon. In this review, we describe the elements that distinguish fetal scarless and adult scarring wound healing, and discuss current trends in tissue engineering aimed at achieving scarless tissue regeneration.
Collapse
|
107
|
Balasundaram G, Storey DM, Webster TJ. Novel nano-rough polymers for cartilage tissue engineering. Int J Nanomedicine 2014; 9:1845-53. [PMID: 24790427 PMCID: PMC3998868 DOI: 10.2147/ijn.s55865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study presents an innovative method for creating a highly porous surface with nanoscale roughness on biologically relevant polymers, specifically polyurethane (PU) and polycaprolactone (PCL). Nanoembossed polyurethane (NPU) and nanoembossed polycaprolactone (NPCL) were produced by the casting of PU and PCL over a plasma-deposited, spiky nanofeatured crystalline titanium (Ti) surface. The variables used in the process of making the spiky Ti surface can be altered to change the physical properties of the spiky particles, and thus, the cast polymer substrate surface can be altered. The spiky Ti surface is reusable to produce additional nanopolymer castings. In this study, control plain PU and PCL polymers were produced by casting the polymers over a plain Ti surface (without spikes). All polymer surface morphologies were characterized using both scanning electron microscopy and atomic force microscopy, and their surface energies were measured using liquid contact angle measurements. The results revealed that both NPU and NPCL possessed a higher degree of nanometer surface roughness and higher surface energy compared with their respective unaltered polymers. Further, an in vitro study was carried out to determine chondrocyte (cartilage-producing cells) functions on NPU and NPCL compared with on control plain polymers. Results of this study provided evidence of increased chondrocyte numbers on NPU and NPCL compared with their respective plain polymers after periods of up to 7 days. Moreover, the results provide evidence of greater intracellular protein production and collagen secretion by chondrocytes cultured on NPU and NPCL compared with control plain polymers. In summary, the present in vitro results of increased chondrocyte functions on NPU and NPCL suggest these materials may be suitable for numerous polymer-based cartilage tissue-engineering applications and, thus, deserve further investigation.
Collapse
Affiliation(s)
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA ; Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
108
|
Mi HY, Jing X, Turng LS. Fabrication of porous synthetic polymer scaffolds for tissue engineering. J CELL PLAST 2014. [DOI: 10.1177/0021955x14531002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue engineering provides a novel and promising approach to replace damaged tissue with an artificial substitute. Porous synthetic biodegradable polymers are the preferred materials for this substitution due to their microstructure, biocompatibility, biodegradability, and low cost. As a crucial element in tissue engineering, a scaffold acts as an artificial extracellular matrix (ECM) and provides support for cell migration, differentiation, and reproduction. The fabrication of viable scaffolds, however, has been a challenge in both clinical and academic settings. Methods such as solvent casting/particle leaching, thermally induced phase separation (TIPS), electrospinning, gas foaming, and rapid prototyping (additive manufacturing) have been developed or introduced for scaffold fabrication. Each method has its own advantages and disadvantages. In this review, the commonly used synthetic polymer scaffold fabrication methods will be introduced and discussed in detail, and recent progress regarding scaffold fabrication—such as combining different scaffold fabrication methods, combining various materials, and improving current scaffold fabrication methods—will be reviewed as well.
Collapse
Affiliation(s)
- Hao-Yang Mi
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI, USA
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, China
- Department of Mechanical Engineering, University of Wisconsin–Madison, Madison, WI , USA
| | - Xin Jing
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI, USA
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, China
- Department of Mechanical Engineering, University of Wisconsin–Madison, Madison, WI , USA
| | - Lih-Sheng Turng
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI, USA
- Department of Mechanical Engineering, University of Wisconsin–Madison, Madison, WI , USA
| |
Collapse
|
109
|
Fabrication and Formation Mechanism of Electrospun Spatially Defined Fibrous Patterning Structures on Conductive and Insulating Substrates. ACTA ACUST UNITED AC 2014. [DOI: 10.4028/www.scientific.net/kem.609-610.842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Besides the conductive patterning substrate, spatially well-defined microfibrous architectures can also be electrospun by using an insulating topographically structured collector (e.g.a nylon fabric). In both cases, it is proposed that the formation of the electrospun microfibrous patterns can be ascribed to the re-distribution of static electric field whenever collectors with different topography are introduced. Moreover, a series of simulation of the static electric field for various collectors (e.g.flat Al foil, conductive and insulating patterned substrates) have been systematically made to illustrate the formation mechanism, respectively. Our results are considered to warrant further scientific understanding on the formation of electrospun microfibrous patterning constructs, and helpful for easy generation of spatially defined architectures which have applications in a variety of areas such as tissue engineering, cell adhesion, proliferation and migration,etc.
Collapse
|
110
|
Role of insulin-transferrin-selenium in auricular chondrocyte proliferation and engineered cartilage formation in vitro. Int J Mol Sci 2014; 15:1525-37. [PMID: 24451136 PMCID: PMC3907884 DOI: 10.3390/ijms15011525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/28/2022] Open
Abstract
The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS) on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%), or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X) and glycosaminoglycan (GAG) expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype)/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS) in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan) and hypertrophy (i.e., lower mRNA expression of Col X and MMP13). In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.
Collapse
|
111
|
Garrigues NW, Little D, Sanchez-Adams J, Ruch DS, Guilak F. Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering. J Biomed Mater Res A 2014; 102:3998-4008. [PMID: 24375991 DOI: 10.1002/jbm.a.35068] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/29/2013] [Accepted: 12/11/2013] [Indexed: 12/25/2022]
Abstract
Macroscale scaffolds created from cartilage-derived matrix (CDM) demonstrate chondroinductive or chondro-inductive properties, but many fabrication methods do not allow for control of nanoscale architecture. In this regard, electrospun scaffolds have shown significant promise for cartilage tissue engineering. However, nanofibrous materials generally exhibit a relatively small pore size and require techniques such as multilayering or the inclusion of sacrificial fibers to enhance cellular infiltration. The objectives of this study were (1) to compare multilayer to single-layer electrospun poly(ɛ-caprolactone) (PCL) scaffolds for cartilage tissue engineering, and (2) to determine whether incorporation of CDM into the PCL fibers would enhance chondrogenesis by human adipose-derived stem cells (hASCs). PCL and PCL-CDM scaffolds were prepared by sequential collection of 60 electrospun layers from the surface of a grounded saline bath into a single scaffold, or by continuous electrospinning onto the surface of a grounded saline bath and harvest as a single-layer scaffold. Scaffolds were seeded with hASCs and evaluated over 28 days in culture. The predominant effects on hASCs of incorporation of CDM into scaffolds were to stimulate sulfated glycosaminoglycan synthesis and COL10A1 gene expression. Compared with single-layer scaffolds, multilayer scaffolds enhanced cell infiltration and ACAN gene expression. However, compared with single-layer constructs, multilayer PCL constructs had a much lower elastic modulus, and PCL-CDM constructs had an elastic modulus approximately 1% that of PCL constructs. These data suggest that multilayer electrospun constructs enhance homogeneous cell seeding, and that the inclusion of CDM stimulates chondrogenesis-related bioactivity.
Collapse
Affiliation(s)
- N William Garrigues
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, 27710; Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina, 27710
| | | | | | | | | |
Collapse
|
112
|
Goonoo N, Bhaw-Luximon A, Jhurry D. In vitro and in vivo cytocompatibility of electrospun nanofiber scaffolds for tissue engineering applications. RSC Adv 2014. [DOI: 10.1039/c4ra05218h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An electrospun polymeric-based nanofibrous scaffold mimicking the extracellular matrix and serving as a temporary support for cell growth, adhesion, migration and proliferation.
Collapse
Affiliation(s)
- N. Goonoo
- ANDI Centre of Excellence for Biomedical and Biomaterials Research
- University of Mauritius
- Réduit, Mauritius
| | - A. Bhaw-Luximon
- ANDI Centre of Excellence for Biomedical and Biomaterials Research
- University of Mauritius
- Réduit, Mauritius
| | - D. Jhurry
- ANDI Centre of Excellence for Biomedical and Biomaterials Research
- University of Mauritius
- Réduit, Mauritius
| |
Collapse
|
113
|
Petrova S, Jäger E, Konefał R, Jäger A, Venturini CG, Spěváček J, Pavlova E, Štěpánek P. Novel poly(ethylene oxide monomethyl ether)-b-poly(ε-caprolactone) diblock copolymers containing a pH-acid labile ketal group as a block linkage. Polym Chem 2014. [DOI: 10.1039/c4py00114a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acidic physiological conditions trigger degradation of amphiphilic block copolymers containing a ketal group as a block linkage into biocompatible degradation products.
Collapse
Affiliation(s)
- S. Petrova
- Institute of Macromolecular Chemistry v.v.i
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6, Czech Republic
| | - E. Jäger
- Institute of Macromolecular Chemistry v.v.i
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6, Czech Republic
| | - R. Konefał
- Institute of Macromolecular Chemistry v.v.i
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6, Czech Republic
| | - A. Jäger
- Institute of Macromolecular Chemistry v.v.i
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6, Czech Republic
| | - C. G. Venturini
- Institute of Macromolecular Chemistry v.v.i
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6, Czech Republic
| | - J. Spěváček
- Institute of Macromolecular Chemistry v.v.i
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6, Czech Republic
| | - E. Pavlova
- Institute of Macromolecular Chemistry v.v.i
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6, Czech Republic
| | - P. Štěpánek
- Institute of Macromolecular Chemistry v.v.i
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6, Czech Republic
| |
Collapse
|
114
|
Aghdam RM, Shakhesi S, Najarian S, Mohammadi MM, Ahmadi Tafti SH, Mirzadeh H. Fabrication of a Nanofibrous Scaffold for the In Vitro Culture of Cardiac Progenitor Cells for Myocardial Regeneration. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2013.800983] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
115
|
Khansari S, Duzyer S, Sinha-Ray S, Hockenberger A, Yarin AL, Pourdeyhimi B. Two-stage desorption-controlled release of fluorescent dye and vitamin from solution-blown and electrospun nanofiber mats containing porogens. Mol Pharm 2013; 10:4509-26. [PMID: 24191694 DOI: 10.1021/mp4003442] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present work, a systematic study of the release kinetics of two embedded model drugs (one completely water soluble and one partially water soluble) from hydrophilic and hydrophobic nanofiber mats was conducted. Fluorescent dye Rhodamine B was used as a model hydrophilic drug in controlled release experiments after it was encapsulated in solution-blown soy-protein-containing hydrophilic nanofibers as well as in electrospun hydrophobic poly(ethylene terephthalate) (PET)-containing nanofibers. Vitamin B2 (riboflavin), a partially water-soluble model drug, was also encapsulated in hydrophobic PET-containing nanofiber mats, and its release kinetics was studied. The nanofiber mats were submerged in water, and the amount of drug released was tracked by fluorescence intensity. It was found that the release process saturates well below 100% release of the embedded compound. This is attributed to the fact that desorption is the limiting process in the release from biopolymer-containing nanofibers similar to the previously reported release from petroleum-derived polymer nanofibers. Release from monolithic as well as core-shell nanofibers was studied in the present work. Moreover, to facilitate the release and ultimately to approach 100% release, we also incorporated porogens, for example, poly(ethylene glycol), PEG. It was also found that the release rate can be controlled by the porogen choice in nanofibers. The effect of nanocracks created by leaching porogens on drug release was studied experimentally and evaluated theoretically, and the physical parameters characterizing the release process were established. The objective of the present work is a detailed experimental and theoretical investigation of controlled drug release from nanofibers facilitated by the presence of porogens. The novelty of this work is in forming nanofibers containing biodegradable and biocompatible soy proteins to facilitate controlled drug release as well as in measuring detailed quantitative characteristics of the desorption processes responsible for release of the model substance (fluorescent dye) and the vitamin (riboflavin) in the presence of porogens.
Collapse
Affiliation(s)
- S Khansari
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago , 842 West Taylor Street, Chicago, Illinois 60607-7022, United States
| | | | | | | | | | | |
Collapse
|
116
|
Son YJ, Kim WJ, Yoo HS. Therapeutic applications of electrospun nanofibers for drug delivery systems. Arch Pharm Res 2013; 37:69-78. [DOI: 10.1007/s12272-013-0284-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/29/2013] [Indexed: 01/01/2023]
|
117
|
Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct. Arch Plast Surg 2013; 40:676-86. [PMID: 24286039 PMCID: PMC3840173 DOI: 10.5999/aps.2013.40.6.676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/21/2013] [Accepted: 09/05/2013] [Indexed: 01/31/2023] Open
Abstract
Background To overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-β1 (LTGF) into an electrospun poly(L-lactide) scaffold. Methods The electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats. Results Chemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen. Conclusions We have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.
Collapse
|
118
|
Tuin SA, Pourdeyhimi B, Loboa EG. Interconnected, microporous hollow fibers for tissue engineering: Commercially relevant, industry standard scale-up manufacturing. J Biomed Mater Res A 2013. [DOI: 10.1002/jbm.a.35002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Stephen A. Tuin
- Joint Department of Biomedical Engineering; at the University of North Carolina at Chapel Hill and North Carolina State University; 4208B EBIII, CB 7115, 911 Oval Raleigh, NC 27695
| | - Behnam Pourdeyhimi
- Nonwovens Cooperative Research Center, The Nonwovens Institute, North Carolina State University; 1000 Main Campus Drive Raleigh North Carolina 27695
| | - Elizabeth G. Loboa
- Joint Department of Biomedical Engineering; at the University of North Carolina at Chapel Hill and North Carolina State University; 4208B EBIII, CB 7115, 911 Oval Raleigh, NC 27695
- Materials Science Engineering; North Carolina State University; EB1 911 Partners Way Raleigh North Carolina 27695
| |
Collapse
|
119
|
Subramony SD, Su A, Yeager K, Lu HH. Combined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffolds. J Biomech 2013; 47:2189-96. [PMID: 24267271 DOI: 10.1016/j.jbiomech.2013.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/12/2013] [Indexed: 12/22/2022]
Abstract
Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a significant clinical challenge, largely due to the need for mechanically competent scaffold systems for grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli on stem cell differentiation.
Collapse
Affiliation(s)
- Siddarth D Subramony
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Amanda Su
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Keith Yeager
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| |
Collapse
|
120
|
Azevedo JV, Mano JF, Alves NM. Development of new poly(ϵ-caprolactone)/chitosan films. POLYM INT 2013. [DOI: 10.1002/pi.4430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
121
|
Lee JK, Responte DJ, Cissell DD, Hu JC, Nolta JA, Athanasiou KA. Clinical translation of stem cells: insight for cartilage therapies. Crit Rev Biotechnol 2013; 34:89-100. [PMID: 24083452 DOI: 10.3109/07388551.2013.823596] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The limited regenerative capacity of articular cartilage and deficiencies of current treatments have motivated the investigation of new repair technologies. In vitro cartilage generation using primary cell sources is limited by cell availability and expansion potential. Pluripotent stem cells possess the capacity for chondrocytic differentiation and extended expansion, providing a potential future solution to cell-based cartilage regeneration. However, despite successes in producing cartilage using adult and embryonic stem cells, the translation of these technologies to the clinic has been severely limited. This review discusses recent advances in stem cell-based cartilage tissue engineering and the major current limitations to clinical translation of these products. Concerns regarding appropriate animal models and studies, stem cell manufacturing, and relevant regulatory processes and guidelines will be addressed. Understanding the significant hurdles limiting the clinical use of stem cell-based cartilage may guide future developments in the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Biomedical Engineering, University of California , Davis, CA , USA
| | | | | | | | | | | |
Collapse
|
122
|
Junka R, Valmikinathan CM, Kalyon DM, Yu X. Laminin Functionalized Biomimetic Nanofibers For Nerve Tissue Engineering. J BIOMATER TISS ENG 2013; 3:494-502. [PMID: 24083073 DOI: 10.1166/jbt.2013.1110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Large-gap peripheral nerve injuries present a significant challenge for nerve regeneration due to lack of suitable grafts, insufficient cell penetration, and repair. Biomimetic nanofibrous scaffolds, functionalized on the surface with extracellular matrix proteins, can lead to novel therapies for repair and regeneration of damaged peripheral nerves. Here, nanofibrous scaffolds electrospun from blends of poly(caprolactone) (PCL) and chitosan were fabricated. Taking advantage of the amine groups on the chitosan, the surface of the scaffolds were functionalized with laminin by carbodiimide based crosslinking. Crosslinking allowed laminin to be attached to the surfaces of the PCL-chitosan nanofibers at relatively high concentrations that were not possible using conventional adsorption methods. The nanofibrous meshes were tested for wettability, mechanical properties and cell attachment and proliferation. Blending of chitosan with PCL provided more favorable surfaces for attachment of Schwann cells due to the reduction of the contact angle in comparison to neat PCL. Proliferation rates of Schwann cells grown on PCL-chitosan scaffolds with crosslinked laminin were significantly higher than the rates for PCL-chitosan nanofibrous matrices with adsorbed laminin. PCL-chitosan scaffolds with modified surfaces via crosslinking of laminin could potentially serves as versatile substrates with excellent mechanical and surface properties for in vivo cell delivery for nerve tissue engineering applications.
Collapse
Affiliation(s)
- Radoslaw Junka
- Department of Chemistry, Chemical Biology and Biomedical Engineering Stevens Institute of Technology, Hoboken, NJ, 07030
| | | | | | | |
Collapse
|
123
|
Fu S, Yang L, Fan J, Wen Q, Lin S, Wang B, Chen L, Meng X, Chen Y, Wu J. In vitro mineralization of hydroxyapatite on electrospun poly(ɛ-caprolactone)–poly(ethylene glycol)–poly(ɛ-caprolactone) fibrous scaffolds for tissue engineering application. Colloids Surf B Biointerfaces 2013; 107:167-73. [DOI: 10.1016/j.colsurfb.2013.01.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
|
124
|
Koh CT, Strange DGT, Tonsomboon K, Oyen ML. Failure mechanisms in fibrous scaffolds. Acta Biomater 2013; 9:7326-34. [PMID: 23470550 DOI: 10.1016/j.actbio.2013.02.046] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 11/18/2022]
Abstract
Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness.
Collapse
Affiliation(s)
- C T Koh
- Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ, UK
| | | | | | | |
Collapse
|
125
|
Zhai W, Qiu LJ, Mo XM, Wang S, Xu YF, Peng B, Liu M, Huang JH, Wang GC, Zheng JH. Coaxial electrospinning of P(LLA-CL)/heparin biodegradable polymer nanofibers: potential vascular graft for substitution of femoral artery. J Biomed Mater Res B Appl Biomater 2013:471-478. [PMID: 23744736 DOI: 10.1002/jbm.b.32972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/28/2013] [Accepted: 04/21/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Zhai
- Department of Urology; Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai 200072 China
| | - Li-jun Qiu
- Institute of Biological Engineering; Donghua University; Shanghai 201620 China
| | - Xiu-mei Mo
- Institute of Biological Engineering; Donghua University; Shanghai 201620 China
| | - Sheng Wang
- Department of Intensive Care Unit; Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai 200072 China
| | - Yun-fei Xu
- Department of Urology; Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai 200072 China
| | - Bo Peng
- Department of Urology; Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai 200072 China
| | - Min Liu
- Department of Urology; Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai 200072 China
| | - Jun-hua Huang
- Department of Urology; Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai 200072 China
| | - Guang-chun Wang
- Department of Urology; Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai 200072 China
| | - Jun-hua Zheng
- Department of Urology; Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai 200072 China
| |
Collapse
|
126
|
Zhu W, Du H, Huang Y, Sun S, Xu N, Ni H, Cai X, Li X, Shen Z. Cationic poly(ester-phosphoester)s: Facile synthesis and antibacterial properties. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Hong Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Ying Huang
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University; Hangzhou 310006 China
| | - Shuai Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Ning Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Huagang Ni
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Xia Cai
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University; Hangzhou 310006 China
| | - Xiaodong Li
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University; Hangzhou 310006 China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| |
Collapse
|
127
|
Pelipenko J, Kocbek P, Govedarica B, Rošic R, Baumgartner S, Kristl J. The topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes. Eur J Pharm Biopharm 2013; 84:401-11. [DOI: 10.1016/j.ejpb.2012.09.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/03/2012] [Accepted: 09/21/2012] [Indexed: 11/26/2022]
|
128
|
Ye K, Felimban R, Moulton SE, Wallace GG, Bella CD, Traianedes K, Choong PFM, Myers DE. Bioengineering of articular cartilage: past, present and future. Regen Med 2013; 8:333-49. [DOI: 10.2217/rme.13.28] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The treatment of cartilage defects poses a clinical challenge owing to the lack of intrinsic regenerative capacity of cartilage. The use of tissue engineering techniques to bioengineer articular cartilage is promising and may hold the key to the successful regeneration of cartilage tissue. Natural and synthetic biomaterials have been used to recreate the microarchitecture of articular cartilage through multilayered biomimetic scaffolds. Acellular scaffolds preserve the microarchitecture of articular cartilage through a process of decellularization of biological tissue. Although promising, this technique often results in poor biomechanical strength of the graft. However, biomechanical strength could be improved if biomaterials could be incorporated back into the decellularized tissue to overcome this limitation.
Collapse
Affiliation(s)
- Ken Ye
- Department of Orthopaedics, St Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia.
| | - Raed Felimban
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
| | - Simon E Moulton
- Intelligent Polymer Research Institute, University of Wollongong, ARC Centre of Excellence for Electromaterials Science (ACES), Squires Way, North Wollongong, New South Wales 2552, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, University of Wollongong, ARC Centre of Excellence for Electromaterials Science (ACES), Squires Way, North Wollongong, New South Wales 2552, Australia
| | - Claudia Di Bella
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
| | - Kathy Traianedes
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Peter FM Choong
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
| | - Damian E Myers
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
129
|
Jin HJ, Hwang MO, Yoon JS, Lee KH, Chin IJ, Kim MN. Preparation and characterization of electrospun poly(l-lactic acid-co-succinic acid-co-1,4-butane diol) fibrous membranes. Macromol Res 2013. [DOI: 10.1007/bf03219018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
130
|
Bosworth LA, Turner LA, Cartmell SH. State of the art composites comprising electrospun fibres coupled with hydrogels: a review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013. [DOI: 10.1016/j.nano.2012.10.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
131
|
Gao C, Wang Y, Gou P, Cai X, Li X, Zhu W, Shen Z. Synthesis and characterization of resorcinarene-centered amphiphilic A8B4miktoarm star copolymers based on poly(ε-caprolactone) and poly(ethylene glycol) by combination of CROP and “click” chemistry. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chen Gao
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Ying Wang
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Pengfei Gou
- Dongfang Turbine Co. Ltd; Deyang 618000 China
| | - Xia Cai
- Affiliated Stomatology Hospital; School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Xiaodong Li
- Affiliated Stomatology Hospital; School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Weipu Zhu
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Zhiquan Shen
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 People's Republic of China
| |
Collapse
|
132
|
Nanosized fibers' effect on adult human articular chondrocytes behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1539-45. [DOI: 10.1016/j.msec.2012.12.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/24/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
133
|
Saquing CD, Tang C, Monian B, Bonino CA, Manasco JL, Alsberg E, Khan SA. Alginate–Polyethylene Oxide Blend Nanofibers and the Role of the Carrier Polymer in Electrospinning. Ind Eng Chem Res 2013. [DOI: 10.1021/ie302385b] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carl D. Saquing
- Department
of Chemical and Biomolecular
Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Christina Tang
- Department
of Chemical and Biomolecular
Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Brinda Monian
- Department
of Chemical and Biomolecular
Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Christopher A. Bonino
- Department
of Chemical and Biomolecular
Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Joshua L. Manasco
- Department
of Chemical and Biomolecular
Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207,
United States
| | - Saad A. Khan
- Department
of Chemical and Biomolecular
Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
134
|
Tutak W, Sarkar S, Lin-Gibson S, Farooque TM, Jyotsnendu G, Wang D, Kohn J, Bolikal D, Simon CG. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Biomaterials 2013; 34:2389-98. [DOI: 10.1016/j.biomaterials.2012.12.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 12/21/2022]
|
135
|
Schulte VA, Alves DF, Dalton PP, Moeller M, Lensen MC, Mela P. Microengineered PEG Hydrogels: 3D Scaffolds for Guided Cell Growth. Macromol Biosci 2013; 13:562-72. [DOI: 10.1002/mabi.201200376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/20/2012] [Indexed: 11/08/2022]
|
136
|
Bulman SE, Barron V, Coleman CM, Barry F. Enhancing the Mesenchymal Stem Cell Therapeutic Response: Cell Localization and Support for Cartilage Repair. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:58-68. [DOI: 10.1089/ten.teb.2012.0101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sarah E. Bulman
- Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
- Smith&Nephew, York Science Park, Heslington, York, United Kingdom
| | - Valerie Barron
- Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
| | - Cynthia M. Coleman
- Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
| |
Collapse
|
137
|
Ramalingam M, Young MF, Thomas V, Sun L, Chow LC, Tison CK, Chatterjee K, Miles WC, Simon CG. Nanofiber scaffold gradients for interfacial tissue engineering. J Biomater Appl 2013; 27:695-705. [PMID: 22286209 PMCID: PMC3508378 DOI: 10.1177/0885328211423783] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have designed a 2-spinnerette device that can directly electrospin nanofiber scaffolds containing a gradient in composition that can be used to engineer interfacial tissues such as ligament and tendon. Two types of nanofibers are simultaneously electrospun in an overlapping pattern to create a nonwoven mat of nanofibers containing a composition gradient. The approach is an advance over previous methods due to its versatility - gradients can be formed from any materials that can be electrospun. A dye was used to characterize the 2-spinnerette approach and applicability to tissue engineering was demonstrated by fabricating nanofibers with gradients in amorphous calcium phosphate nanoparticles (nACP). Adhesion and proliferation of osteogenic cells (MC3T3-E1 murine pre-osteoblasts) on gradients was enhanced on the regions of the gradients that contained higher nACP content yielding a graded osteoblast response. Since increases in soluble calcium and phosphate ions stimulate osteoblast function, we measured their release and observed significant release from nanofibers containing nACP. The nanofiber-nACP gradients fabricated herein can be applied to generate tissues with osteoblast gradients such as ligaments or tendons. In conclusion, these results introduce a versatile approach for fabricating nanofiber gradients that can have application for engineering graded tissues.
Collapse
Affiliation(s)
- Murugan Ramalingam
- Polymers Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (U.S.A.)
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 (USA)
- National Institute of Health and Medical Research, Faculty of Medicine, University of Strasbourg, 67085 Strasbourg Cedex (France)
| | - Marian F. Young
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 (USA)
| | - Vinoy Thomas
- Ceramics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (U.S.A.)
- Center for Nanoscale Materials & Biointegration, University of Alabama at Birmingham, Birmingham, AL 35294 (U.S.A.)
| | - Limin Sun
- American Dental Association, Paffenbarger Research Center, National Institute of Standards and Technology, Gaithersburg, MD 20899 (U.S.A.)
| | - Laurence C. Chow
- American Dental Association, Paffenbarger Research Center, National Institute of Standards and Technology, Gaithersburg, MD 20899 (U.S.A.)
| | - Christopher K. Tison
- Polymers Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (U.S.A.)
| | - Kaushik Chatterjee
- Polymers Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (U.S.A.)
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 (USA)
| | - William C. Miles
- Polymers Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (U.S.A.)
| | - Carl G. Simon
- Polymers Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (U.S.A.)
| |
Collapse
|
138
|
Levorson EJ, Raman Sreerekha P, Chennazhi KP, Kasper FK, Nair SV, Mikos AG. Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration. Biomed Mater 2013; 8:014103. [PMID: 23353096 DOI: 10.1088/1748-6041/8/1/014103] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recently, scaffolds for tissue regeneration purposes have been observed to utilize nanoscale features in an effort to reap the cellular benefits of scaffold features resembling extracellular matrix (ECM) components. However, one complication surrounding electrospun nanofibers is limited cellular infiltration. One method to ameliorate this negative effect is by incorporating nanofibers into microfibrous scaffolds. This study shows that it is feasible to fabricate electrospun scaffolds containing two differently scaled fibers interspersed evenly throughout the entire construct as well as scaffolds containing fibers composed of two discrete materials, specifically fibrin and poly(ε-caprolactone). In order to accomplish this, multiscale fibrous scaffolds of different compositions were generated using a dual extrusion electrospinning setup with a rotating mandrel. These scaffolds were then characterized for fiber diameter, porosity and pore size and seeded with human mesenchymal stem cells to assess the influence of scaffold architecture and composition on cellular responses as determined by cellularity, histology and glycosaminoglycan (GAG) content. Analysis revealed that nanofibers within a microfiber mesh function to maintain scaffold cellularity under serum-free conditions as well as aid the deposition of GAGs. This supports the hypothesis that scaffolds with constituents more closely resembling native ECM components may be beneficial for cartilage regeneration.
Collapse
Affiliation(s)
- Erica J Levorson
- Department of Bioengineering, Rice University, MS-142, PO Box 1892, Houston, TX 77251-1892, USA
| | | | | | | | | | | |
Collapse
|
139
|
Cartilage and Ligament Tissue Engineering. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
140
|
Kim HS, Ham HO, Son YJ, Messersmith PB, Yoo HS. Electrospun catechol-modified poly(ethyleneglycol) nanofibrous mesh for anti-fouling properties. J Mater Chem B 2013; 1:3940-3949. [DOI: 10.1039/c3tb20444h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
141
|
Subramony SD, Dargis BR, Castillo M, Azeloglu EU, Tracey MS, Su A, Lu HH. The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials 2012; 34:1942-53. [PMID: 23245926 DOI: 10.1016/j.biomaterials.2012.11.012] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/10/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) represent a promising and clinically relevant cell source for tissue engineering applications. As such, guiding MSCs toward specific lineages and maintaining these phenotypes have been particularly challenging as the contributions of mechanical, chemical and structural cues to the complex differentiation process are largely unknown. To fully harness the potential of MSCs for regenerative medicine, a systematic investigation into the individual and combined effects of these stimuli is needed. In addition, unlike chemical stimulation, for which temporal and concentration gradients are difficult to control, mechanical stimulation and scaffold-based cues may be relatively more biomimetic and can be applied with greater control to ensure fidelity in MSC differentiation. The objective of this study is to investigate the role of nanofiber matrix alignment and mechanical stimulation on MSC differentiation, focusing on elucidating the relative contribution of each parameter in guided regeneration of functional connective tissues. It is observed that nanofiber alignment directs MSC response to physiological loading and that fibroblastic differentiation requires a combination of physiologically-relevant cell-material interactions in conjunction with mechanical stimulation. Importantly, the results of this study reveal that systemic and readily controllable cues, such as scaffold alignment and optimized mechanical stimulation, are sufficient to drive MSC differentiation, without the need for additional chemical stimuli. Moreover, these findings yield a set of fundamental design rules that can be readily applied to connective tissue regeneration strategies.
Collapse
Affiliation(s)
- Siddarth D Subramony
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Nandakumar A, Tahmasebi Birgani Z, Santos D, Mentink A, Auffermann N, van der Werf K, Bennink M, Moroni L, van Blitterswijk C, Habibovic P. Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration. Biofabrication 2012; 5:015006. [PMID: 23229020 DOI: 10.1088/1758-5082/5/1/015006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plasma treatment is a method to modify the physicochemical properties of biomaterials, which consequently may affect interactions with cells. Based on the rationale that physical cues on the surface of culture substrates and implants, such as surface roughness, have proven to alter cell behaviour, we used electrospinning to fabricate fibrous three-dimensional scaffolds made of a poly (ethylene oxide terephthalate)/poly (butylene terephthalate) copolymer to mimic the physical microenvironment of extracellular matrix and applied radio-frequency oxygen plasma treatment to create nanoscale roughness. Scanning electron microscopy (SEM) analysis revealed a fibre diameter of 5.49 ± 0.96 µm for as-spun meshes. Atomic force microscopy (AFM) measurements determined an exponential increase of surface roughness with plasma treatment time. An increase in hydrophilicity after plasma treatment was observed, which was associated with higher oxygen content in plasma treated scaffolds compared to untreated ones. A more pronounced adsorption of bovine serum albumin occurred on scaffolds treated with plasma for 15 and 30 min compared to untreated fibres. Clinically relevant human mesenchymal stromal cells (hMSCs) were cultured on untreated, 15 and 30 min treated scaffolds. SEM analysis confirmed cell attachment and a pronounced spindle-like morphology on all scaffolds. No significant differences were observed between different scaffolds regarding the amount of DNA, metabolic activity and alkaline phosphatase (ALP) activity after 7 days of culture. The amount of ALP positive cells increased between 7 and 21 days of culture on both untreated and 30 min treated meshes. In addition, ALP staining of cells on plasma treated meshes appeared more pronounced than on untreated meshes after 21 days of culture. Quantitative polymerase chain reaction showed significant upregulation of bone sialoprotein and osteonectin expression on oxygen plasma treated fibres compared to untreated fibres in basic culture medium after 7 days of culture, while no differences were observed in the expression of other osteogenic markers. At 21 days, no osteocalcin protein could be detected by ELISA at any of the substrates. In conclusion, this study shows that oxygen plasma treatment can successfully be applied to modify the nanoscale surface properties of polymeric electrospun fibre meshes, which in turn may positively affect osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- A Nandakumar
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Rampichová M, Chvojka J, Buzgo M, Prosecká E, Mikeš P, Vysloužilová L, Tvrdík D, Kochová P, Gregor T, Lukáš D, Amler E. Elastic three-dimensional poly (ε-caprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells. Cell Prolif 2012; 46:23-37. [PMID: 23216517 DOI: 10.1111/cpr.12001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/17/2012] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES We prepared 3D poly (ε-caprolactone) (PCL) nanofibre scaffolds and tested their use for seeding, proliferation, differentiation and migration of mesenchymal stem cell (MSCs). MATERIALS AND METHODS 3D nanofibres were prepared using a special collector for common electrospinning; simultaneously, a 2D PCL nanofibre layer was prepared using a classic plain collector. Both scaffolds were seeded with MSCs and biologically tested. MSC adhesion, migration, proliferation and osteogenic differentiation were investigated. RESULTS The 3D PCL scaffold was characterized by having better biomechanical properties, namely greater elasticity and resistance against stress and strain, thus this scaffold will be able to find broad applications in tissue engineering. Clearly, while nanofibre layers of the 2D scaffold prevented MSCs from migrating through the conformation, cells infiltrated freely through the 3D scaffold. MSC adhesion to the 3D nanofibre PCL layer was also statistically more common than to the 2D scaffold (P < 0.05), and proliferation and viability of MSCs 2 or 3 weeks post-seeding, were also greater on the 3D scaffold. In addition, the 3D PCL scaffold was also characterized by displaying enhanced MSC osteogenic differentiation. CONCLUSIONS We draw the conclusion that all positive effects observed using the 3D PCL nanofibre scaffold are related to the larger fibre surface area available to the cells. Thus, the proposed 3D structure of the nanofibre layer will find a wide array of applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- M Rampichová
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Science of the Czech Republic, Videnska 1083, 142 40, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Schagemann JC, Paul S, Casper ME, Rohwedel J, Kramer J, Kaps C, Mittelstaedt H, Fehr M, Reinholz GG. Chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells via biomimetic and bioactive poly-ε-caprolactone scaffolds. J Biomed Mater Res A 2012. [DOI: 10.1002/jbm.a.34457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
145
|
Kai D, Jin G, Prabhakaran MP, Ramakrishna S. Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells. Biotechnol J 2012; 8:59-72. [DOI: 10.1002/biot.201200249] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/05/2012] [Accepted: 10/08/2012] [Indexed: 11/07/2022]
|
146
|
Danesin R, Brun P, Roso M, Delaunay F, Samouillan V, Brunelli K, Iucci G, Ghezzo F, Modesti M, Castagliuolo I, Dettin M. Self-assembling peptide-enriched electrospun polycaprolactone scaffolds promote the h-osteoblast adhesion and modulate differentiation-associated gene expression. Bone 2012; 51:851-9. [PMID: 22926428 DOI: 10.1016/j.bone.2012.08.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/24/2012] [Accepted: 08/13/2012] [Indexed: 10/28/2022]
Abstract
Electrospun polycaprolactone (PCL) is able to support the adhesion and growth of h-osteoblasts and to delay their degradation rate to a greater extent with respect to other polyesters. The drawbacks linked to its employment in regenerative medicine arise from its hydrophobic nature and the lack of biochemical signals linked to it. This work reports on the attempt to add five different self-assembling (SA) peptides to PCL solutions before electrospinning. The hybrid scaffolds obtained had regular fibers (SEM analysis) whose diameters were similar to those of the extracellular matrix, more stable hydrophilic (contact angle measurement) surfaces, and an amorphous phase constrained by peptides (DSC analysis). They appeared to have a notable capacity to promote the h-osteoblast adhesion and differentiation process by increasing the gene expression of alkaline phosphatase, bone sialoprotein, and osteopontin. Adding an Arg-Gly-Asp (RGD) motif to a self-assembling sequence was found to enhance cell adhesion, while the same motif condensed with a scrambled sequence did not, indicating that there is a cooperative effect between RGD and 3D architecture created by the self-assembling peptides. The study demonstrates that self-assembling peptide scaffolds are still able to promote beneficial effects on h-osteoblasts even after they have been included in electrospun polycaprolactone. The possibility of linking biochemical messages to self-assembling peptides could lead the way to a 3D decoration of fibrous scaffolds.
Collapse
Affiliation(s)
- Roberta Danesin
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131, Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Protein- and peptide-based electrospun nanofibers in medical biomaterials. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1242-62. [DOI: 10.1016/j.nano.2012.02.013] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 02/20/2012] [Accepted: 02/24/2012] [Indexed: 11/18/2022]
|
148
|
Noriega S, Hasanova G, Subramanian A. The effect of ultrasound stimulation on the cytoskeletal organization of chondrocytes seeded in three-dimensional matrices. Cells Tissues Organs 2012; 197:14-26. [PMID: 22987069 DOI: 10.1159/000339772] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2012] [Indexed: 12/21/2022] Open
Abstract
The impact of low-intensity diffuse ultrasound (LIDUS) stimulation on the cytoskeletal organization of chondrocytes seeded in three-dimensional (3D) scaffolds was evaluated. Chondrocytes seeded on 3D chitosan matrices were exposed to LIDUS at 5.0 MHz (approx. 15 kPa, 51 s, 4 applications/day) in order to study the organization of actin, tubulin and vimentin. The results showed that actin presented a punctate cytosolic distribution and tubulin presented a quasiparallel organization of microtubules, whereas vimentin distribution was unaffected. Chondrocytes seeded on 3D scaffolds responded to US stimulation by the disruption of actin stress fibers and were sensitive to the presence of Rho-activated kinase (ROCK) inhibitor (Y27632). The gene expression of ROCK-I, a key element in the formation of stress fibers and mDia1, was significantly upregulated under the application of US. We conclude that the results of both the cytoskeletal analyses and gene expression support the argument that the presence of punctate actin upon US stimulation was accompanied by the upregulation of the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Sandra Noriega
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68516, USA
| | | | | |
Collapse
|
149
|
Zhang L, Bai J, Zhang Y, Li C, Zhang J. A Novel Approach to Prepare CaCO3/Polyvinylpyrrolidone (PVP) Composite Nanofibers. J MACROMOL SCI B 2012. [DOI: 10.1080/00222348.2012.664454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lijuan Zhang
- a Chemical Engineering College, Inner Mongolia University of Technology , Huhhote , P. R. China
| | - Jie Bai
- a Chemical Engineering College, Inner Mongolia University of Technology , Huhhote , P. R. China
| | - Yongfeng Zhang
- a Chemical Engineering College, Inner Mongolia University of Technology , Huhhote , P. R. China
| | - Chunping Li
- a Chemical Engineering College, Inner Mongolia University of Technology , Huhhote , P. R. China
| | - Jianbin Zhang
- a Chemical Engineering College, Inner Mongolia University of Technology , Huhhote , P. R. China
| |
Collapse
|
150
|
Performance of electrospun poly(ε-caprolactone) fiber meshes used with mineral trioxide aggregates in a pulp capping procedure. Acta Biomater 2012; 8:2986-95. [PMID: 22542886 DOI: 10.1016/j.actbio.2012.04.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/27/2012] [Accepted: 04/19/2012] [Indexed: 01/09/2023]
Abstract
Living dental pulp tissue exposed to the oral environment should be protected with an appropriate pulp capping material to support the dentinogenesis potential of the pulp cells. Mineral trioxide aggregate (MTA) is the material of choice for the treatment of pulp. However, due to cytotoxicity during the initial setting phase of MTA, a new material is required that can act as a barrier to direct contact but facilitate the favorable effect of MTA. This study examined the feasibility of using electrospun poly(ε-caprolactone) fiber (PCL-F) meshes in the MTA-based pulp capping procedures. An experimental pulp capping was performed on the premolars of beagle dogs, and the efficacy of the PCL-F meshes was evaluated after 8 weeks. PCL-F/MTA formed a dentin bridge that was approximately fourfold thicker than that formed by the MTA. Columnar polarized odontoblast-like cells with long processes and tubular dentin-like matrices were observed beneath the dentin bridge in the PCL-F/MTA. The cells were also intensely immunostained for dentin sialoprotein. In cell cultures, PCL-F/MTA reduced cell death to ~8% of that in the MTA group. The proliferation of the cells cultured on PCL-F/MTA was much greater than that of cells cultured on MTA. Furthermore, PCL-F/MTA promoted the differentiation of MDPC23 cells to odontoblast-like cells and biomineralization, as confirmed by the expression of alkaline phosphatase and dentin sialophosphoprotein, and by the deposition of calcium. Based on these histologic findings and the cell responses observed in this study, PCL-F may be used efficiently in the MTA-based dental pulp therapy.
Collapse
|