101
|
Wan XY, Zhai XF, Jiang YP, Han T, Zhang QY, Xin HL. Antimetastatic effects of norcantharidin on hepatocellular carcinoma cells by up-regulating FAM46C expression. Am J Transl Res 2017; 9:155-166. [PMID: 28123642 PMCID: PMC5250712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Norcantharidin (NCTD), a demethylated analog of cantharidin, possesses antimetastatic effects on HCC cells. The aim of this study was to identify target proteins of NCTD. In this study, we confirmed the antimetastatic effects of NCTD on SMMC-7721 and MHCC-97H cells. Through RNA sequencing, we found a non-canonical poly (A) polymerase, Family-with-sequence-similarity-46C (FAM46C) was up-regulated in response to NCTD exposure. Gene set enrichment analysis on The Cancer Genome Atlas liver HCC (LIHC) dataset revealed that metastasis down pathway was strongly associated with FAM46C expression. Overexpression of FAM46C in HCC cells suppressed cell migration and invasion via suppressing transforming growth factor-β (TGF-β)/Smad signaling and epithelial-mesenchymal transition (EMT) process. Additionally, the antimetastatic effects of NCTD on HCC cells were partially rescued by FAM46C knockdown. Collectively, our results suggested that FAM46C, up-regulated by NCTD treatment, played a critical role in promoting the migration and invasion of HCC cells via TGF-β/Smad signaling. We identified a new therapeutic target of NCTD.
Collapse
Affiliation(s)
- Xu-Ying Wan
- The integrated TCM & Western Medicine Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghai 200433, P. R. China
| | - Xiao-Feng Zhai
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical UniversityShanghai 200433, P. R. China
| | - Yi-Ping Jiang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical UniversityShanghai 200433, P. R. China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical UniversityShanghai 200433, P. R. China
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical UniversityShanghai 200433, P. R. China
| | - Hai-Liang Xin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical UniversityShanghai 200433, P. R. China
| |
Collapse
|
102
|
Li H, Yao Z, He W, Gao H, Bai Y, Yang S, Zhang L, Zhan R, Tan J, Zhou J, Takata M, Wu J, Luo G. P311 induces the transdifferentiation of epidermal stem cells to myofibroblast-like cells by stimulating transforming growth factor β1 expression. Stem Cell Res Ther 2016; 7:175. [PMID: 27906099 PMCID: PMC5131552 DOI: 10.1186/s13287-016-0421-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background Epithelial to mesenchymal transition, especially to myofibroblasts, plays an important role in wound healing, fibrosis, and carcinogenesis. Epidermal stem cells (EpSCs) are responsible for epidermal renewal and wound re-epithelialization. However, it remains unclear whether and how EpSCs transdifferentiate into myofibroblasts or myofibroblast-like cells (MFLCs). Here, we provide the first evidence showing that P311 induces EpSC to MFLC transdifferentiation (EpMyT) via TGFβ1/Smad signaling. Methods Wound healing and mesenchymal features were observed in the P311 KO and P311 WT mouse model of superficial second-degree burns. After the primary human or mouse EpSCs were forced to highly express P311 using an adenoviral vector, EpMyT was observed by immunofluorescence, real-time PCR, and western blot. The activity of TGFβ1 and Smad2/3 in EpSCs with different P311 levels was observed by western blot. The TβRI/II inhibitor LY2109761 and Smad3 siRNA were applied to block the EpMyT in P311-overexpressing EpSCs and exogenous TGFβ1 was to restore the EpMyT in P311 KO EpSCs. Furthermore, the mechanism of P311 regulating TGFβ1 was investigated by bisulfite sequencing PCR, luciferase activity assay, and real-time PCR. Results P311 KO mouse wounds showed delayed re-epithelialization and reduced mesenchymal features. The human or mouse EpSCs with overexpressed P311 exhibited fusiform morphological changes, upregulated expression of myofibroblast markers (α-SMA and vimentin), and downregulated expression of EpSC markers (β1-integrin and E-cadherin). P311-expressing EpSCs showed decreased TGFβ1 mRNA and increased TGFβ1 protein, TβRI/II mRNA, and activated Smad2/3. Moreover, LY2109761 and Smad3 siRNA reversed P311-induced EpMyT. Under the stimulation of exogenous TGFβ1, the phosphorylation of Smad2 and Smad3 in P311 KO EpSCs was significantly lower than that in P311 WT EpSCs and the EpMyT in P311 KO EpSCs was restored. Furthermore, P311 enhanced the methylation of TGFβ1 promoter and increased activities of TGFβ1 5′/3′ untranslated regions (UTRs) to stimulate TGFβ1 expression. P311+α-SMA+ cells and P311+vimentin+ cells were observed in the epidermis of human burn wounds. Also, P311 was upregulated by IL-1β, IL-6, TNFα, and hypoxia. Conclusions P311 is a novel TGFβ1/Smad signaling-mediated regulator of transdifferentiation in EpSCs during cutaneous wound healing. Furthermore, P311 might stimulate TGFβ1 expression by promoting TGFβ1 promoter methylation and by activating the TGFβ1 5′/3′ UTR. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0421-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhihui Yao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.,People's Liberation Army Hospital 59, Kaiyuan, Yunnan Province, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongyan Gao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yang Bai
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Sisi Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lu Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianglin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junyi Zhou
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
103
|
Sekhon HK, Sircar K, Kaur G, Marwah M. Evaluation of Role of Myofibroblasts in Oral Cancer: A Systematic Review. Int J Clin Pediatr Dent 2016; 9:233-239. [PMID: 27843256 PMCID: PMC5086012 DOI: 10.5005/jp-journals-10005-1370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/02/2016] [Indexed: 12/23/2022] Open
Abstract
Aim To conduct a systematic review on the role of myofibroblasts in progression of oral cancer. The myofibroblast is essential for the integrity of the mammalian body by virtue of its role in wound healing, but it also plays a negative role due to their role in promoting tumor development. Settings and design Systematic review. Materials and methods Bibliographic searches were conducted in several electronic databases using all publications in PubMed, PubMed central, EMBASE, CancerLit, Google scholar, and Cochrane CCTR between 1990 and June 2015. Results The search of all publications from various electronic databases revealed 1,371 citations. The total number of studies considered for systematic review was 43. The total number of patients included in the studies was 990. Conclusion Myofibroblasts are a significant component in stroma of oral cancer cases, though not identified in all cases. This systematic review shows that clinical, pathological, and immunohistochemistry tests have correlated the presence of high myofibroblast count in oral cancer cell stroma. Key Messages Myofibroblasts play a significant role in oral cancer invasion and progression. Various studies have demonstrated their association with oral cancer. This review tends to highlight their role in the pathogenesis of oral cancer over the decade. How to cite this article Sekhon HK, Sircar K, Kaur G, Marwah M. Evaluation of Role of Myofibroblasts in Oral Cancer: A Systematic Review. Int J Clin Pediatr Dent 2016;9(3):233-239.
Collapse
Affiliation(s)
- Harjeet K Sekhon
- Senior Lecturer, Department of Oral Pathology and Microbiology, D.J. College of Dental Sciences & Research, Modinagar, Uttar Pradesh, India
| | - Keya Sircar
- Head, Department of Oral Pathology and Microbiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Gurbani Kaur
- Ex-post Graduate Student, Department of Periodontology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Muneet Marwah
- Postgraduate, Department of Prosthodontics, Government Dental College Thiruvananthapuram, Kerala, India
| |
Collapse
|
104
|
Xiao Y, Liu J, Peng Y, Xiong X, Huang L, Yang H, Zhang J, Tao L. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression. PLoS One 2016; 11:e0160855. [PMID: 27602565 PMCID: PMC5014405 DOI: 10.1371/journal.pone.0160855] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/26/2016] [Indexed: 01/22/2023] Open
Abstract
Tubular epithelial-mesenchymal transition (EMT) has been widely accepted as the underlying mechanisms of renal interstitial fibrosis (RIF). The production of reactive oxygen species (ROS) plays a vital role in tubular EMT process. The purpose of this study was to investigate the involved molecular mechanisms in TGF-beta-induced EMT and identify the potential role of glutathione S-transferase alpha 3 (GSTA3) in this process. The iTRAQ screening was performed to identify protein alterations of the rats underwent unilateral-ureteral obstruction (UUO). Protein expression of GSTA3 in patients with obstructive nephropathy and UUO rats was detected by immunohistochemistry. Protein and mRNA expression of GSTA3 in UUO rats and NRK-52E cells were determined by Western blot and RT-PCR. siRNA and overexpression plasmid were transfected specifically to assess the role of GSTA3 in RIF. The generation of ROS was measured by dichlorofluorescein fluorescence analysis. GSTA3 protein and mRNA expression was significantly reduced in UUO rats. Immunohistochemical analysis revealed that GSTA3 expression was reduced in renal cortex in UUO rats and patients with obstructive nephropathy. Treating with TGF-β1 down-regulated GSTA3 expression in NRK-52E cells, which have been found to be correlated with the decreased expression in E-cadherin and megalin and increased expression in α-smooth muscle actin. Furthermore, knocking down GSTA3 in NRK-52 cells led to increased production of ROS and tubular EMT, whereas overexpressing GSTA3 ameliorated ROS production and prevented the occurrence of tubular EMT. GSTA3 plays a protective role against tubular EMT in renal fibrosis, suggesting GSTA3 is a potential therapeutic target for RIF.
Collapse
Affiliation(s)
- Yun Xiao
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China, 410078.,Division of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, 510120
| | - Jishi Liu
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China, 410078
| | - Yu Peng
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China, 410078
| | - Xuan Xiong
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China, 410078
| | - Ling Huang
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China, 410078
| | - Huixiang Yang
- Division of Digestive Medicine, Xiangya Hospital, Central South University, Changsha, China, 410078
| | - Jian Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Lijian Tao
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China, 410078.,State Key Laboratory of Medical Genetics of China, Central South University, Changsha, China, 410078
| |
Collapse
|
105
|
Fong ELS, Harrington DA, Farach-Carson MC, Yu H. Heralding a new paradigm in 3D tumor modeling. Biomaterials 2016; 108:197-213. [PMID: 27639438 DOI: 10.1016/j.biomaterials.2016.08.052] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/14/2022]
Abstract
Numerous studies to date have contributed to a paradigm shift in modeling cancer, moving from the traditional two-dimensional culture system to three-dimensional (3D) culture systems for cancer cell culture. This led to the inception of tumor engineering, which has undergone rapid advances over the years. In line with the recognition that tumors are not merely masses of proliferating cancer cells but rather, highly complex tissues consisting of a dynamic extracellular matrix together with stromal, immune and endothelial cells, significant efforts have been made to better recapitulate the tumor microenvironment in 3D. These approaches include the development of engineered matrices and co-cultures to replicate the complexity of tumor-stroma interactions in vitro. However, the tumor engineering and cancer biology fields have traditionally relied heavily on the use of cancer cell lines as a cell source in tumor modeling. While cancer cell lines have contributed to a wealth of knowledge in cancer biology, the use of this cell source is increasingly perceived as a major contributing factor to the dismal failure rate of oncology drugs in drug development. Backing this notion is the increasing evidence that tumors possess intrinsic heterogeneity, which predominantly homogeneous cancer cell lines poorly reflect. Tumor heterogeneity contributes to therapeutic resistance in patients. To overcome this limitation, cancer cell lines are beginning to be replaced by primary tumor cell sources, in the form of patient-derived xenografts and organoids cultures. Moving forward, we propose that further advances in tumor engineering would require that tumor heterogeneity (tumor variants) be taken into consideration together with tumor complexity (tumor-stroma interactions). In this review, we provide a comprehensive overview of what has been achieved in recapitulating tumor complexity, and discuss the importance of incorporating tumor heterogeneity into 3D in vitro tumor models. This work carves out the roadmap for 3D tumor engineering and highlights some of the challenges that need to be addressed as we move forward into the next chapter.
Collapse
Affiliation(s)
- Eliza L S Fong
- Department of Physiology, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore.
| | | | | | - Hanry Yu
- Department of Physiology, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore; Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
106
|
Attieh Y, Vignjevic DM. The hallmarks of CAFs in cancer invasion. Eur J Cell Biol 2016; 95:493-502. [PMID: 27575401 DOI: 10.1016/j.ejcb.2016.07.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 01/27/2023] Open
Abstract
The ability of cancer cells to move out of the primary tumor and disseminate through the circulation to form metastases is one of the main contributors to poor patient outcome. The tumor microenvironment provides a niche that supports cancer cell invasion and proliferation. Carcinoma-associated fibroblasts (CAFs) are a highly enriched cell population in the tumor microenvironment that plays an important role in cancer invasion. However, it remains unclear whether CAFs directly stimulate cancer cell invasion or they remodel the extracellular matrix to make it more permissive for invasion. Here we discuss paracrine communication between cancer cells and CAFs that promotes tumor invasion but also stimulates CAFs to remodel the matrix increasing cancer dissemination.
Collapse
Affiliation(s)
- Youmna Attieh
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France; Sorbonne Universités, UPMC Univ Paris06, IFD, 4 Place Jussieu, 75252 Paris cedex05, France.
| | | |
Collapse
|
107
|
Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, Tomic-Canic M. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res 2016; 365:495-506. [PMID: 27461257 DOI: 10.1007/s00441-016-2464-0] [Citation(s) in RCA: 414] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/24/2016] [Indexed: 12/28/2022]
Abstract
The epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including the loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics that confer migratory capacity. EMT and its converse, MET (mesenchymal-epithelial transition), are integral stages of many physiologic processes and, as such, are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes (the resident skin epithelial cells) migrate across the wound bed to restore the epidermal barrier. Moreover, EMT plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblasts arise from cells of the epithelial lineage in response to injury but are pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the faulty repair of fibrotic wounds might identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. Graphical Abstract Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic wound healing (right).
Collapse
Affiliation(s)
- Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
- The Research Residency Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fla., USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
| | - Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
- Faculty of Medical Sciences, The University of the West Indies, Bridgetown, Barbados
| | - Vivien Chen
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
| | - Sophia Liu
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
| | - Karen I Garzon
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA.
| |
Collapse
|
108
|
Horejs CM. Basement membrane fragments in the context of the epithelial-to-mesenchymal transition. Eur J Cell Biol 2016; 95:427-440. [PMID: 27397693 DOI: 10.1016/j.ejcb.2016.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 01/18/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) enables cells of epithelial phenotype to become motile and change to a migratory mesenchymal phenotype. EMT is known to be a fundamental requisite for tissue morphogenesis, and EMT-related pathways have been described in cancer metastasis and tissue fibrosis. Epithelial structures are marked by the presence of a sheet-like extracellular matrix, the basement membrane, which is assembled from two major proteins, laminin and collagen type IV. This specialized matrix is essential for tissue function and integrity, and provides an important barrier to the potential pathogenic migration of cells. The profound phenotypic transition in EMT involves the epithelial cells disrupting the basement membrane. Matrix metalloproteinases (MMPs) are known to cleave components of basement membranes, but MMP-basement membrane crosstalk during EMT in vivo is poorly understood. However, MMPs have been reported to play a role in EMT-related processes and a variety of basement membrane fragments have been shown to be released by specific MMPs in vitro and in vivo exhibiting distinct biological activities. This review discusses general considerations regarding the basement membrane in the context of EMT, a possible role for specific MMPs in EMT and highlights biologically active basement membrane fragments liberated by MMPs.
Collapse
Affiliation(s)
- Christine-Maria Horejs
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vaeg 2, 17177 Stockholm, Sweden.
| |
Collapse
|
109
|
May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine 2016; 75:89-116. [PMID: 26255210 DOI: 10.1016/j.cyto.2015.05.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
IL-4 and IL-13 are pleiotropic Th2 cytokines produced by a wide variety of different cell types and responsible for a broad range of biology and functions. Physiologically, Th2 cytokines are known to mediate host defense against parasites but they can also trigger disease if their activities are dysregulated. In this review we discuss the rationale for targeting the IL-4/IL-13 axes in asthma, atopic dermatitis, allergic rhinitis, COPD, cancer, inflammatory bowel disease, autoimmune disease and fibrotic disease as well as evaluating the associated clinical data derived from blocking IL-4, IL-13 or IL-4 and IL-13 together.
Collapse
|
110
|
Bavle RM, Paremala K. Cancer Conundrum. J Oral Maxillofac Pathol 2016; 19:276-9. [PMID: 26980951 PMCID: PMC4774276 DOI: 10.4103/0973-029x.174648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Radhika Manoj Bavle
- Department of Oral and Maxillofacial Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India. E-mail:
| | - K Paremala
- Department of Oral and Maxillofacial Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India. E-mail:
| |
Collapse
|
111
|
Treatment of endometrioma for improving fertility. Eur J Obstet Gynecol Reprod Biol 2016; 209:81-85. [PMID: 26968428 DOI: 10.1016/j.ejogrb.2016.02.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/19/2016] [Indexed: 11/24/2022]
Abstract
Endometrioma is a frequent clinical manifestation of endometriosis. It is controversial how endometriomas may affect women's fertility. This review addresses: the impact of the endometrioma per se and of its surgical treatment on ovarian physiology, on the ovarian reserve, on spontaneous conception and pregnancy outcomes, and on IVF/ICSI outcomes. Based on current evidence, although there are plausible biological detrimental effects on the ovarian cortex surrounding the endometrioma and an impairment of the normal ovarian physiology, the clinical impact of the endometrioma per se is not significantly altered. There is a negligible detrimental effect on ovarian reserve with spontaneous ovulation not being impaired. Conversely, surgical excision of an endometrioma reduces ovarian reserve as measured by AMH levels. Studies investigating the impact of the endometrioma per se and of its surgical treatment in women requiring IVF/ICSI show similar implantation rates, clinical pregnancy rates and live birth rates between women with endometrioma and controls.
Collapse
|
112
|
Tumor cell expression of MMP3 as a prognostic factor for poor survival in pancreatic, pulmonary, and mammary carcinoma. Genes Cancer 2016; 6:480-9. [PMID: 26807201 PMCID: PMC4701227 DOI: 10.18632/genesandcancer.90] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast, lung, and pancreatic cancers collectively represent one third of all diagnosed tumors and are responsible for almost 40% of overall cancer mortality. Despite improvements in current treatments, efforts to develop more specific therapeutic options are warranted. Here we identify matrix metalloproteinase 3 (MMP3) as a potential target within all three of these tumor types. MMP3 has previously been shown to induce expression of Rac1b, a tumorigenic splice isoform of Rac1. In this study we find that MMP3 and Rac1b proteins are both strongly expressed by the tumor cells of all three tumor types and that expression of MMP3 protein is prognostic of poor survival in pancreatic cancer patients. We also find that MMP3 gene expression can serve as a prognostic marker for patient survival in breast and lung cancer. These results suggest an oncogenic MMP3-Rac1b signaling axis as a driver of tumor progression in three common poor prognosis tumor types, further suggesting that new therapies to target these pathways could have substantial therapeutic benefit.
Collapse
|
113
|
miR-26a suppresses EMT by disrupting the Lin28B/let-7d axis: potential cross-talks among miRNAs in IPF. J Mol Med (Berl) 2016; 94:655-65. [PMID: 26787543 DOI: 10.1007/s00109-016-1381-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/20/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and highly lethal fibrotic lung disease with unknown cause or cure. Although some microRNAs (miRNAs), such as miR-26a and let-7d, have been confirmed, the contribution to the pathophysiological processes of IPF, the roles of miRNAs and intrinsic links between them in fibrotic lung diseases are not yet well understood. In this study, we found that Lin28B could induce the process of epithelial-mesenchymal transition (EMT) by inhibiting let-7d, whereas inhibition of Lin28B mitigated TGF-β1-induced fibrogenesis and attenuated EMT in both cultured A549 cells and MLE-12 cells. More importantly, over-expression of miR-26a could simultaneously enhance the expression of let-7d in A549 cells, and further study confirmed that Lin28B was one of the direct targets of miR-26a, which mediates, at least in part, the regulatory effects of miR-26a on the biogenesis of let-7d. Finally, we constructed a regulatory network among miRNAs involved in the progression of IPF. Taken together, our study deciphered the essential role of Lin28B in the pathogenesis of EMT, and unraveled a novel mechanism that miR-26a is a modulator of let-7d. This study also defines the miRNAs network involved in IPF, which may have implications for developing new strategies for pulmonary fibrosis. KEY MESSAGE Upregulation of Lin28B contributes to idiopathic pulmonary fibrosis. Lin28B causes epithelial-mesenchymal transition (EMT) by inhibition of let-7d. Lin28B is one of the targets of microRNA-26a. miR-26a enhances the expression of let-7d via targeting regulation of Lin28B. A regulatory network among miRNAs involved in the progression of IPF.
Collapse
|
114
|
Bhome R, Al Saihati H, Goh R, Bullock M, Primrose J, Thomas G, Sayan A, Mirnezami A. Translational aspects in targeting the stromal tumour microenvironment: from bench to bedside. NEW HORIZONS IN TRANSLATIONAL MEDICINE 2016; 3:9-21. [PMID: 27275004 PMCID: PMC4888939 DOI: 10.1016/j.nhtm.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
Abstract
Solid tumours comprise, not only malignant cells but also a variety of stromal cells and extracellular matrix proteins. These components interact via an array of signalling pathways to create an adaptable network that may act to promote or suppress cancer progression. To date, the majority of anti-tumour chemotherapeutic agents have principally sought to target the cancer cell. Consequently, resistance develops because of clonal evolution, as a result of selection pressure during tumour expansion. The concept of activating or inhibiting other cell types within the tumour microenvironment is relatively novel and has the advantage of targeting cells which are genetically stable and less likely to develop resistance. This review outlines key players in the stromal tumour microenvironment and discusses potential targeting strategies that may offer therapeutic benefit.
Collapse
Affiliation(s)
- R. Bhome
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
- University Surgery, South Academic Block, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - H.A. Al Saihati
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - R.W. Goh
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
- School of Medicine, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - M.D. Bullock
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
- University Surgery, South Academic Block, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - J.N. Primrose
- University Surgery, South Academic Block, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - G.J. Thomas
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - A.E. Sayan
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - A.H. Mirnezami
- Cancer Sciences, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
- University Surgery, South Academic Block, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
115
|
Raffaghello L, Vacca A, Pistoia V, Ribatti D. Cancer associated fibroblasts in hematological malignancies. Oncotarget 2015; 6:2589-603. [PMID: 25474039 PMCID: PMC4413603 DOI: 10.18632/oncotarget.2661] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022] Open
Abstract
Tumor microenvironment plays an important role in cancer initiation and progression. In hematological malignancies, the bone marrow represents the paradigmatic anatomical site in which tumor microenvironment expresses its morphofunctional features. Among the cells participating in the composition of this microenvironment, cancer associated fibrobasts (CAFs) have received less attention in hematopoietic tumors compared to solid cancers. In this review article, we discuss the involvement of CAFs in progression of hematological malignancies and the potential targeting of CAFs in a therapeutic perspective.
Collapse
Affiliation(s)
| | - Angelo Vacca
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Pistoia
- Laboratorio di Oncologia, Istituto G. Gaslini, Genova, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy, National Cancer Institute "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
116
|
Guo M, Dou J. Advances and perspectives of colorectal cancer stem cell vaccine. Biomed Pharmacother 2015; 76:107-20. [PMID: 26653557 DOI: 10.1016/j.biopha.2015.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is essentially an environmental and genetic disease featured by uncontrolled cell growth and the capability to invade other parts of the body by forming metastases, which inconvertibly cause great damage to tissues and organs. It has become one of the leading causes of cancer-related mortality in the developed countries such as United States, and approximately 1.2 million new cases are yearly diagnosed worldwide, with the death rate of more than 600,000 annually and incidence rates are increasing in most developing countries. Apart from the generally accepted theory that pathogenesis of colorectal cancer consists of genetic mutation of a certain target cell and diversifications in tumor microenvironment, the colorectal cancer stem cells (CCSCs) theory makes a different explanation, stating that among millions of colon cancer cells there is a specific and scanty cellular population which possess the capability of self-renewal, differentiation and strong oncogenicity, and is tightly responsible for drug resistance and tumor metastasis. Based on these characteristics, CCSCs are becoming a novel target cells both in the clinical and the basic studies, especially the study of CCSCs vaccines due to induced efficient immune response against CCSCs. This review provides an overview of CCSCs and preparation technics and targeting factors related to CCSCs vaccines in detail.
Collapse
Affiliation(s)
- Mei Guo
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
117
|
Abstract
Pathologic organ fibrosis is a condition that can affect all major tissues and is typically ascribed to the excessive accumulation of extracellular matrix components, predominantly collagens. It typically leads to compromise of organ function and subsequent organ failure, and it is estimated that 45% of deaths in the developed world are linked to fibrotic disease. Fibrosis and cancer are known to be inextricably linked; however, we are only just beginning to understand the common and overlapping molecular pathways between the two. Here, we discuss what is known about the intersection of fibrosis and cancer, with a focus on cancer metastasis, and highlight some of the exciting new potential clinical targets that are emerging from analysis of the molecular pathways associated with these two devastating diseases.
Collapse
Affiliation(s)
- Thomas R Cox
- Authors' Affiliation: Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Janine T Erler
- Authors' Affiliation: Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
118
|
Bernard K, Logsdon NJ, Ravi S, Xie N, Persons BP, Rangarajan S, Zmijewski JW, Mitra K, Liu G, Darley-Usmar VM, Thannickal VJ. Metabolic Reprogramming Is Required for Myofibroblast Contractility and Differentiation. J Biol Chem 2015; 290:25427-38. [PMID: 26318453 DOI: 10.1074/jbc.m115.646984] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 01/08/2023] Open
Abstract
Contraction is crucial in maintaining the differentiated phenotype of myofibroblasts. Contraction is an energy-dependent mechanism that relies on the production of ATP by mitochondria and/or glycolysis. Although the role of mitochondrial biogenesis in the adaptive responses of skeletal muscle to exercise is well appreciated, mechanisms governing energetic adaptation of myofibroblasts are not well understood. Our study demonstrates induction of mitochondrial biogenesis and aerobic glycolysis in response to the differentiation-inducing factor transforming growth factor β1 (TGF-β1). This metabolic reprogramming is linked to the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. Inhibition of p38 MAPK decreased accumulation of active peroxisome proliferator-activated receptor γ coactivator 1α in the nucleus and altered the translocation of mitochondrial transcription factor A to the mitochondria. Genetic or pharmacologic approaches that block mitochondrial biogenesis or glycolysis resulted in decreased contraction and reduced expression of TGF-β1-induced α-smooth muscle actin and collagen α-2(I) but not of fibronectin or collagen α-1(I). These data indicate a critical role for TGF-β1-induced metabolic reprogramming in regulating myofibroblast-specific contractile signaling and support the concept of integrating bioenergetics with cellular differentiation.
Collapse
Affiliation(s)
- Karen Bernard
- From the Division of Pulmonary, Allergy and Critical Care Medicine,
| | - Naomi J Logsdon
- From the Division of Pulmonary, Allergy and Critical Care Medicine
| | - Saranya Ravi
- Departments of Pathology and Center for Free Radicals Biology and Medicine, University of Alabama, Birmingham, Alabama 35294
| | - Na Xie
- From the Division of Pulmonary, Allergy and Critical Care Medicine
| | | | - Sunad Rangarajan
- From the Division of Pulmonary, Allergy and Critical Care Medicine
| | | | | | - Gang Liu
- From the Division of Pulmonary, Allergy and Critical Care Medicine
| | - Victor M Darley-Usmar
- Departments of Pathology and Center for Free Radicals Biology and Medicine, University of Alabama, Birmingham, Alabama 35294
| | | |
Collapse
|
119
|
Palumbo A, Da Costa NDOM, Bonamino MH, Pinto LFR, Nasciutti LE. Genetic instability in the tumor microenvironment: a new look at an old neighbor. Mol Cancer 2015; 14:145. [PMID: 26227631 PMCID: PMC4521350 DOI: 10.1186/s12943-015-0409-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
The recent exponential increase in our knowledge of cellular and molecular mechanisms involved in carcinogenesis has largely failed to translate into new therapies and clinical practices. This lack of success may result in part from the fact that most studies focus on tumor cells as potential therapeutic targets and neglect the complex microenvironment that undergoes profound changes during tumor development. Furthermore, an unfortunate association of factors such as tumor genetic complexity, overestimation of biomarker and drug potentials, as well as a poor understanding of tumor microenvironment in diagnosis and prognosis leads to the current levels of treatment failure regarding a vast majority of cancer types. A growing body of evidence points to the importance of the functional diversity of immune and structural cells during tumor development. In this sense, the lack of technologies that would allow for molecular screening of individual stromal cell types poses a major challenge for the development of therapies targeting the tumor microenvironment. Progress in microenvironment genetic studies represents a formidable opportunity for the development of new selective drugs because stromal cells have lower mutation rates than malignant cells, and should prove to be good targets for therapy.
Collapse
Affiliation(s)
- Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Prédio de Ciências da Saúde - Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373 - bloco F, sala 26, 21941-902, Rio de Janeiro, RJ, Brasil. .,Programa de Carcinogênese Molecular, Instituto Nacional de Câncer José de Alencar Gomes da Silva, Rua André Cavalcanti, 37 - 6° andar - Centro, 20231-050, Rio de Janeiro, RJ, Brasil.
| | - Nathalia de Oliveira Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer José de Alencar Gomes da Silva, Rua André Cavalcanti, 37 - 6° andar - Centro, 20231-050, Rio de Janeiro, RJ, Brasil.
| | - Martin Hernan Bonamino
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer José de Alencar Gomes da Silva, Rua André Cavalcanti, 37 - 6° andar - Centro, 20231-050, Rio de Janeiro, RJ, Brasil. .,Fundação Oswaldo Cruz, Vice-presidência de Pesquisa e Laboratórios de Referência, Rio de Janeiro, Brasil, Av. Brasil, 4365 - Pavilhão Mourisco - Manguinhos, 21040-900, Rio de Janeiro, RJ, Brasil.
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer José de Alencar Gomes da Silva, Rua André Cavalcanti, 37 - 6° andar - Centro, 20231-050, Rio de Janeiro, RJ, Brasil.
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Prédio de Ciências da Saúde - Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373 - bloco F, sala 26, 21941-902, Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
120
|
Lee JW. Transmembrane 4 L Six Family Member 5 (TM4SF5)-Mediated Epithelial-Mesenchymal Transition in Liver Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:141-63. [PMID: 26404468 DOI: 10.1016/bs.ircmb.2015.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The membrane protein TM4SF5, a member of the transmembrane 4L six family, forms a tetraspanin-enriched microdomain (TEM) on the cell surface, where many different membrane proteins and receptors form a massive protein-protein complex to regulate cellular functions including transdifferentiation, migration, and invasion. We recently reported that TM4SF5 causes epithelial-mesenchymal transition (EMT), eventually contributing to aberrant multilayer cellular growth, drug resistance, enhanced migration, invasion, its circulation in the blood, tumor initiation for successful metastasis, and muscle development in zebrafish. In this review, I summarize the information on the role of TM4SF5 in EMT-related functions at TM4SF5-enriched microdomain (T5EM) on cell surface, where proteins such as TM4SF5, CD151, CD44, integrins, and epidermal growth factor receptor (EGFR) can form numerous protein complexes. TM4SF5-mediated EMT contributes to diverse cellular functions, leading to fibrotic phenotypes and initiating and maintaining tumors in primary and/or metastatic regions, in addition to its role in muscle development in zebrafish. Anti-TM4SF5 strategies for addressing the protein networks can lead to regulation of the fibrotic, tumorigenic, and tumor-maintaining functions of TM4SF5-positive hepatic cells. This review is for us to (re)consider the antifibrotic or antitumorigenic (i.e., anti-EMT-related diseases) strategies of dealing with protein networks that would be involved in cross-talks to regulate various cellular functions during TM4SF5-dependent progression from fibrotic to cancerous hepatic cells.
Collapse
Affiliation(s)
- Jung Weon Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Tumor Microenvironment Global Core Research Center, Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Korea.
| |
Collapse
|
121
|
Abstract
Myofibroblasts are activated in response to tissue injury with the primary task to repair lost or damaged extracellular matrix. Enhanced collagen secretion and subsequent contraction - scarring - are part of the normal wound healing response and crucial to restore tissue integrity. Due to myofibroblasts ability to repair but not regenerate, accumulation of scar tissue is always associated with reduced organ performance. This is a fair price to pay by the body for not falling apart. Whereas myofibroblasts typically vanish after successful repair, dysregulation of the normal repair process can lead to persistent myofibroblast activation, for instance by chronic inflammation or mechanical stress in the tissue. Excessive repair leads to the accumulation of stiff collagenous ECM contractures - fibrosis - with dramatic consequences for organ function. The clinical need to terminate detrimental myofibroblast activities has stimulated researchers to answer a number of essential questions: where do myofibroblasts come from, what are the factors leading to their activation, how do we discriminate myofibroblasts from other cells, what is the molecular basis for their contractile activity, and how can we stop or at least control them? This article reviews the current state of the myofibroblast literature by emphasizing their role in ocular repair and fibrosis. It appears that although the eye is quite an extraordinary organ, ocular myofibroblasts behave or misbehave just like their siblings in other organs.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, 150 College Street, FitzGerald Building, Room 234, Toronto, M5S 3E2 Ontario, Canada.
| |
Collapse
|
122
|
Cichon MA, Radisky DC. Extracellular matrix as a contextual determinant of transforming growth factor-β signaling in epithelial-mesenchymal transition and in cancer. Cell Adh Migr 2015; 8:588-94. [PMID: 25482625 PMCID: PMC4594483 DOI: 10.4161/19336918.2014.972788] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular matrix (ECM) provides both structural support and contextual information to cells within tissues and organs. The combination of biochemical and biomechanical signals from the ECM modulates responses to extracellular signals toward differentiation, proliferation, or apoptosis; alterations in the ECM are necessary for development and remodeling processes, but aberrations in the composition and organization of ECM are associated with disease pathology and can predispose to development of cancer. The primary cell surface sensors of the ECM are the integrins, which provide the physical connection between the ECM and the cytoskeleton and also convey biochemical information about the composition of the ECM. Transforming growth factor-β (TGF-β) is an extracellular signaling molecule that is a powerful controller of a variety of cellular functions, and that has been found to induce very different outcomes according to cell type and cellular context. It is becoming clear that ECM-mediated signaling through integrins is reciprocally influenced by TGF-β: integrin expression, activation, and responses are affected by cellular exposure to TGF-β, and TGF-β activation and cellular responses are in turn controlled by signaling from the ECM through integrins. Epithelial-mesenchymal transition (EMT), a physiological process that is activated by TGF-β in normal development and in cancer, is also affected by the composition and structure of the ECM. Here, we will outline how signaling from the ECM controls the contextual response to TGF-β, and how this response is selectively modulated during disease, with an emphasis on recent findings, current challenges, and future opportunities.
Collapse
|
123
|
Ganesan K, Nirmal RM, Nassar MM, Veeravarmal V, Amsaveni R, Kumar A. Evaluation of myofibroblasts in oral squamous cell carcinoma using H1 calponin: An immunohistochemical study. J Oral Maxillofac Pathol 2015; 19:42-6. [PMID: 26097306 PMCID: PMC4451667 DOI: 10.4103/0973-029x.157200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/17/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral mucosa. Stromal myofibroblasts play an important role in tumor invasion and metastasis, due to its ability to modify the extracellular matrix. The purpose of this study was to evaluate and compare the presence of myofibroblasts in normal mucosa, early invasive carcinoma and different grades of OSCC. MATERIALS AND METHODS The study included the archival tissues of 18 OSCC of well, moderate and poorly differentiated grades, three early invasive carcinomas and five normal mucosa. Myofibroblasts were identified by immunohistochemical detection of h1 calponin. RESULTS The percentage and intensity of h1 calponin were examined and positive immunostaining was observed in the myofibroblasts of all SCCs and early invasive carcinomas; however, these cells did not stain in the normal epithelium specimens. The presence of myofibroblasts was significantly higher in invasive pattern of OSCCs compared to normal mucosa cases (P < 0.070). A significant difference was not observed between the different grades of OSCC (P ≤ 0.812). CONCLUSION These findings show the presence of myofibroblasts in OSCC but not in normal mucosa, suggesting that the genetically altered epithelium (carcinomatous epithelium) may have an inductive effect on the adjacent stroma to produce myofibroblasts. Also transdifferentiation of myofibroblasts is induced somewhere in the invasive stage of SCC irrespective of the epithelial cell differentiation.
Collapse
Affiliation(s)
- Kesavan Ganesan
- Department of Oral Pathology, Madha Dental College and Hospital, Chennai, India
| | - R Madhavan Nirmal
- Department of Oral Pathology, Rajah Muthiah Dental College and Hospital, Chidambaram, Tamil Nadu, India
| | - M Mohamed Nassar
- Department of Oral Pathology, Rajah Muthiah Dental College and Hospital, Chidambaram, Tamil Nadu, India
| | - V Veeravarmal
- Department of Oral Pathology, Rajah Muthiah Dental College and Hospital, Chidambaram, Tamil Nadu, India
| | - R Amsaveni
- Department of Oral Pathology, Rajah Muthiah Dental College and Hospital, Chidambaram, Tamil Nadu, India
| | - Arul Kumar
- Department of Oral Pathology, Rajah Muthiah Dental College and Hospital, Chidambaram, Tamil Nadu, India
| |
Collapse
|
124
|
Kang MK, Park SH, Choi YJ, Shin D, Kang YH. Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition. J Mol Med (Berl) 2015; 93:759-72. [PMID: 26062793 DOI: 10.1007/s00109-015-1301-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 05/03/2015] [Accepted: 05/12/2015] [Indexed: 01/28/2023]
Abstract
UNLABELLED Renal fibrosis is a crucial event in the pathogenesis of diabetic nephropathy (DN). The process known as epithelial to mesenchymal transition (EMT) contributes to the accumulation of matrix proteins in kidneys, in which renal tubular epithelial cells play an important role in progressive renal fibrosis. The current study investigated that chrysin (5,7-dihydroxyflavone) present in bee propolis and herbs, inhibited renal tubular EMT and tubulointerstitial fibrosis due to chronic hyperglycemia. Human renal proximal tubular epithelial cells (RPTEC) were incubated in media containing 5.5 mM glucose, 27.5 mM mannitol (as an osmotic control), or 33 mM glucose (HG) in the absence and presence of 1-20 μM chrysin for 72 h. Chrysin significantly inhibited high glucose-induced renal EMT through blocking expression of the mesenchymal markers vimentin, α-smooth muscle actin, and fibroblast-specific protein-1 in RPTEC and db/db mice. Chrysin reversed the HG-induced down-regulation of the epithelial marker E-cadherin and the HG-enhanced N-cadherin induction in RPTEC. In addition, chrysin inhibited the production of collagen IV in tubular cells and the deposition of collagen fibers in mouse kidneys. Furthermore, chrysin blocked tubular cell migration concurrent with decreasing matrix metalloproteinase-2 activity, indicating epithelial cell derangement and tubular basement membrane disruption. Chrysin restored the induction of the tight junction proteins Zona occludens protein-1 (ZO-1) and occludin downregulated in diabetic mice. Chrysin inhibited renal tubular EMT-mediated tubulointerstitial fibrosis caused by chronic hyperglycemia. Therefore, chrysin may be a potent renoprotective agent for the treatment of renal fibrosis-associated DN. KEY MESSAGES • Glucose increases renal tubular epithelial induction of vimentin, α-SMA and FSP-1. • Glucose enhances renal EMT by blocking tubular epithelial E-cadherin expression. • Chrysin inhibits tubular EMT-mediated tubulointerstitial fibrosis in mouse kidneys. • Chrysin restores renal tubular induction of ZO-1 and occludin downregulated in diabetic mice. • Chrysin blocks glucose-induced renal tubular cell migration with reducing MMP-2 activity.
Collapse
Affiliation(s)
- Min-Kyung Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do, 200-702, Republic of Korea
| | | | | | | | | |
Collapse
|
125
|
Johansson A, Hamzah J, Ganss R. More than a scaffold: Stromal modulation of tumor immunity. Biochim Biophys Acta Rev Cancer 2015; 1865:3-13. [PMID: 26071879 DOI: 10.1016/j.bbcan.2015.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 12/25/2022]
Abstract
Current clinical success with anti-cancer immunotherapy provides exciting new treatment opportunities. While encouraging, more needs to be done to induce durable effects in a higher proportion of patients. Increasing anti-tumor effector T cell quantity or quality alone does not necessarily correlate with therapeutic outcome. Instead, the tumor microenvironment is a critical determinant of anti-cancer responsiveness to immunotherapy and can confer profound resistance. Yet, the tumor-promoting environment - due to its enormous plasticity - also delivers the best opportunities for adjuvant therapy aiming at recruiting, priming and sustaining anti-tumor cytotoxicity. While the tumor environment as an entity is increasingly well understood, current interventions are still broad and often systemic. In contrast, tumors grow in a highly compartmentalized environment which includes the vascular/perivascular niche, extracellular matrix components and in some tumors lymph node aggregates; all of these structures harbor and instruct subsets of immune cells. Targeting and re-programming specific compartments may provide better opportunities for adjuvant immunotherapy.
Collapse
Affiliation(s)
- Anna Johansson
- Vascular Biology and Stromal Targeting, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, Western Australia 6009, Australia
| | - Juliana Hamzah
- Targeted Drug Delivery, Imaging and Therapy, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, Western Australia 6009, Australia
| | - Ruth Ganss
- Vascular Biology and Stromal Targeting, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
126
|
Zhao X, Fan J, Zhi F, Li A, Li C, Berger AE, Boorgula MP, Barkataki S, Courneya JP, Chen Y, Barnes KC, Cheadle C. Mobilization of epithelial mesenchymal transition genes distinguishes active from inactive lesional tissue in patients with ulcerative colitis. Hum Mol Genet 2015; 24:4615-24. [PMID: 26034135 DOI: 10.1093/hmg/ddv192] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/19/2015] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic, relapsing and debilitating idiopathic inflammation, with variable and complex pathophysiologies. Our objective was to elucidate patterns of gene expression underlying the progression of UC disease. Single endoscopic pinch FFPE biopsies (n = 41) were sampled at both active and inactive stages at the same site in individual UC patients and compared with each other and with non-inflammatory bowel disease healthy controls. Gene expression results were validated by quantitative reverse transcriptase-PCR (QRT-PCR), and results at the protein level were validated by immunohistochemistry and western blot. Analysis of microarray results demonstrated that UC patients in remission display an intermediate gene expression phenotype between active UC patients and controls. It is clear that UC active site recovery does not revert fully back to a healthy control phenotype. Both UC active and inactive tissue displayed evidence, at both the gene expression and protein level, of a positive precancerous state as indicated by increases in the expression of Chitinase 3-Like-1, and the colorectal cancer metastasis marker MMP1. A key distinguishing feature between active and inactive UC, however, was the mobilization of marker genes and proteins for the Epithelial Mesenchymal Transition (EMT) pathway only in active UC. Analysis of the gene expression signatures associated with UC remission identified multiple pathways which appear to be permanently dysregulated in UC patients at formerly active sites in spite of clear histological recovery. Among these pathways, the EMT pathway was specifically up-regulated only in active UC emphasizing the potential for cancer progression in these patients.
Collapse
Affiliation(s)
- Xinmei Zhao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China, Division of Allergy and Clinical Immunology, the Johns Hopkins School of Medicine, Baltimore, MD 21224, USA and
| | - Jinshui Fan
- Division of Allergy and Clinical Immunology, the Johns Hopkins School of Medicine, Baltimore, MD 21224, USA and
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China, Department of Gastroenterology and Institute of Gastroenterology, Guangzhou First Municipal People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Chen Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Alan E Berger
- Division of Allergy and Clinical Immunology, the Johns Hopkins School of Medicine, Baltimore, MD 21224, USA and
| | - Meher Preethi Boorgula
- Division of Allergy and Clinical Immunology, the Johns Hopkins School of Medicine, Baltimore, MD 21224, USA and
| | - Sangjucta Barkataki
- Division of Allergy and Clinical Immunology, the Johns Hopkins School of Medicine, Baltimore, MD 21224, USA and
| | - Jean-Paul Courneya
- Division of Allergy and Clinical Immunology, the Johns Hopkins School of Medicine, Baltimore, MD 21224, USA and
| | - Yuqing Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kathleen C Barnes
- Division of Allergy and Clinical Immunology, the Johns Hopkins School of Medicine, Baltimore, MD 21224, USA and
| | - Chris Cheadle
- Division of Allergy and Clinical Immunology, the Johns Hopkins School of Medicine, Baltimore, MD 21224, USA and
| |
Collapse
|
127
|
Monument MJ, Hart DA, Salo PT, Befus AD, Hildebrand KA. Neuroinflammatory Mechanisms of Connective Tissue Fibrosis: Targeting Neurogenic and Mast Cell Contributions. Adv Wound Care (New Rochelle) 2015; 4:137-151. [PMID: 25785237 DOI: 10.1089/wound.2013.0509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/26/2013] [Indexed: 12/26/2022] Open
Abstract
Significance: The pathogenesis of fibrogenic wound and connective tissue healing is complex and incompletely understood. Common observations across a vast array of human and animal models of fibroproliferative conditions suggest neuroinflammatory mechanisms are important upstream fibrogenic events. Recent Advances: As detailed in this review, mast cell hyperplasia is a common observation in fibrotic tissue. Recent investigations in human and preclinical models of hypertrophic wound healing and post-traumatic joint fibrosis provides evidence that fibrogenesis is governed by a maladaptive neuropeptide-mast cell-myofibroblast signaling pathway. Critical Issues: The blockade and manipulation of these factors is providing promising evidence that if timed correctly, the fibrogenic process can be appropriately regulated. Clinically, abnormal fibrogenic healing responses are not ubiquitous to all patients and the identification of those at-risk remains an area of priority. Future Directions: Ultimately, an integrated appreciation of the common pathobiology shared by many fibrogenic connective tissue conditions may provide a scientific framework to facilitate the development of novel antifibrotic prevention and treatment strategies.
Collapse
Affiliation(s)
- Michael J. Monument
- Division of Orthopaedic Surgery, McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David A. Hart
- Division of Orthopaedic Surgery, McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul T. Salo
- Division of Orthopaedic Surgery, McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - A. Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin A. Hildebrand
- Division of Orthopaedic Surgery, McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
128
|
Cichon MA, Nelson CM, Radisky DC. Regulation of epithelial-mesenchymal transition in breast cancer cells by cell contact and adhesion. Cancer Inform 2015; 14:1-13. [PMID: 25698877 PMCID: PMC4325704 DOI: 10.4137/cin.s18965] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/29/2014] [Accepted: 01/04/2015] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological program that is activated during cancer cell invasion and metastasis. We show here that EMT-related processes are linked to a broad and conserved program of transcriptional alterations that are influenced by cell contact and adhesion. Using cultured human breast cancer and mouse mammary epithelial cells, we find that reduced cell density, conditions under which cell contact is reduced, leads to reduced expression of genes associated with mammary epithelial cell differentiation and increased expression of genes associated with breast cancer. We further find that treatment of cells with matrix metalloproteinase-3 (MMP-3), an inducer of EMT, interrupts a defined subset of cell contact-regulated genes, including genes encoding a variety of RNA splicing proteins known to regulate the expression of Rac1b, an activated splice isoform of Rac1 known to be a key mediator of MMP-3-induced EMT in breast, lung, and pancreas. These results provide new insights into how MMPs act in cancer progression and how loss of cell-cell interactions is a key step in the earliest stages of cancer development.
Collapse
Affiliation(s)
- Magdalena A Cichon
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL USA
| |
Collapse
|
129
|
Gliotoxin from Aspergillus fumigatus reverses epithelial to mesenchymal transition: Implications in renal fibrosis. Int J Med Microbiol 2015; 305:11-9. [DOI: 10.1016/j.ijmm.2014.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 09/02/2014] [Accepted: 09/27/2014] [Indexed: 11/20/2022] Open
|
130
|
Ahmad A, Askari S, Befekadu R, Hahn-Strömberg V. Investigating the association between polymorphisms in connective tissue growth factor and susceptibility to colon carcinoma. Mol Med Rep 2014; 11:2493-503. [PMID: 25502877 PMCID: PMC4337474 DOI: 10.3892/mmr.2014.3083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/25/2014] [Indexed: 01/01/2023] Open
Abstract
There have been numerous studies on the gene expression of connective tissue growth factor (CTGF) in colorectal cancer, however very few have investigated polymorphisms in this gene. The present study aimed to determine whether single nucleotide polymorphisms (SNPs) in the CTGF gene are associated with a higher susceptibility to colon cancer and/or an invasive tumor growth pattern. The CTGF gene was genotyped for seven SNPs (rs6918698, rs1931002, rs9493150, rs12526196, rs12527705, rs9399005 and rs12527379) by pyrosequencing. Formalin-fixed paraffin-embedded tissue samples (n=112) from patients diagnosed with colon carcinoma, and an equal number of blood samples from healthy controls, were selected for genomic DNA extraction. The complexity index was measured using images of tumor samples (n=64) stained for cytokeratin-8. The images were analyzed and correlated with the identified CTGF SNPs and clinicopathological parameters of the patients, including age, gender, tumor penetration, lymph node metastasis, systemic metastasis, differentiation and localization of tumor. It was demonstrated that the frequency of the SNP rs6918698 GG genotype was significantly associated (P=0.05) with an increased risk of colon cancer, as compared with the GC and CC genotypes. The other six SNPs (rs1931002, rs9493150, rs12526196, rs12527705, rs9399005 and rs12527379) exhibited no significant difference in the genotype and allele frequencies between patients diagnosed with colon carcinoma and the normal healthy population. A trend was observed between genotype variation at rs6918698 and the complexity index (P=0.052). The complexity index and genotypes for any of the studied SNPs were not significantly correlated with clinical or pathological parameters of the patients. These results indicate that the rs6918698 GG genotype is associated with an increased risk of developing colon carcinoma, and genetic variations at the rs6918698 are associated with the growth pattern of the tumor. The present results may facilitate the identification of potential biomarkers of the disease in addition to drug targets.
Collapse
Affiliation(s)
- Abrar Ahmad
- Department of Clinical Medicine, Örebro University, Örebro 701 81, Sweden
| | - Shlear Askari
- Department of Clinical Medicine, Örebro University, Örebro 701 81, Sweden
| | - Rahel Befekadu
- Department of Laboratory Medicine, Section for Transfusion Medicine, Örebro University Hospital, Örebro 701 85, Sweden
| | | |
Collapse
|
131
|
Liu X, Giguère V. Inactivation of RARβ inhibits Wnt1-induced mammary tumorigenesis by suppressing epithelial-mesenchymal transitions. NUCLEAR RECEPTOR SIGNALING 2014; 12:e004. [PMID: 25422594 PMCID: PMC4242291 DOI: 10.1621/nrs.12004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
Retinoic acid receptor β (RARβ) has been proposed to act as a tumor suppressor in
breast cancer. In contrast, recent data have shown that RARβ promotes ERBB2-induced mammary
gland tumorigenesis through remodeling of the stromal compartment and activation of
cancer-associated fibroblasts. However, it is currently unknown whether RARβ oncogenic
activity is specific to ERBB2-induced tumors, or whether it influences the initiation and
progression of other breast cancer subtypes. Accordingly, we set out to investigate the involvement
of RARβ in basal-like breast cancer using mouse mammary tumor virus (MMTV)-wingless-related
integration site 1 (Wnt1)-induced mammary gland tumorigenesis as a model system. We found that
compared with wild type mice, inactivation of Rarb resulted in a lengthy delay in
Wnt1-induced mammary gland tumorigenesis and in a significantly slower tumor growth
rate. Ablation of Rarb altered the composition of the stroma, repressed the
activation of cancer-associated fibroblasts, and reduced the recruitment of inflammatory cells and
angiogenesis. Reduced expression of IGF-1 and activity of its downstream signaling pathway
contribute to attenuate EMT in the Rarb-null tumors. Our results show that, in the
absence of retinoid signaling via RARβ, reduced IGF-1 signaling results in suppression of
epithelial-mesenchymal transition and delays tumorigenesis induced by the Wnt1
oncogene. Accordingly, our work reinforces the concept that antagonizing RARβ-dependent
retinoid signaling could provide a therapeutic avenue to treat poor outcome breast cancers.
Collapse
Affiliation(s)
- Xingxing Liu
- Goodman Cancer Research Centre, 1160 Pine Avenue West, McGill University, Montréal, Québec H3A 1A3 (XL, VG) and Departments of Biochemistry, Medicine and Oncology, 3655 Promenade Sir William Osler, McGill University, Montréal, Québec H3G 1Y6 (VG), Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, 1160 Pine Avenue West, McGill University, Montréal, Québec H3A 1A3 (XL, VG) and Departments of Biochemistry, Medicine and Oncology, 3655 Promenade Sir William Osler, McGill University, Montréal, Québec H3G 1Y6 (VG), Canada
| |
Collapse
|
132
|
Role of the urokinase-fibrinolytic system in epithelial-mesenchymal transition during lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:55-68. [PMID: 25447049 DOI: 10.1016/j.ajpath.2014.08.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 08/04/2014] [Accepted: 08/28/2014] [Indexed: 01/10/2023]
Abstract
Alveolar type II epithelial (ATII) cell injury precedes development of pulmonary fibrosis. Mice lacking urokinase-type plasminogen activator (uPA) are highly susceptible, whereas those deficient in plasminogen activator inhibitor (PAI-1) are resistant to lung injury and pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) has been considered, at least in part, as a source of myofibroblast formation during fibrogenesis. However, the contribution of altered expression of major components of the uPA system on ATII cell EMT during lung injury is not well understood. To investigate whether changes in uPA and PAI-1 by ATII cells contribute to EMT, ATII cells from patients with idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease, and mice with bleomycin-, transforming growth factor β-, or passive cigarette smoke-induced lung injury were analyzed for uPA, PAI-1, and EMT markers. We found reduced expression of E-cadherin and zona occludens-1, whereas collagen-I and α-smooth muscle actin were increased in ATII cells isolated from injured lungs. These changes were associated with a parallel increase in PAI-1 and reduced uPA expression. Further, inhibition of Src kinase activity using caveolin-1 scaffolding domain peptide suppressed bleomycin-, transforming growth factor β-, or passive cigarette smoke-induced EMT and restored uPA expression while suppressing PAI-1. These studies show that induction of PAI-1 and inhibition of uPA during fibrosing lung injury lead to EMT in ATII cells.
Collapse
|
133
|
Shenoy AK, Lu J. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier. Cancer Lett 2014; 380:534-544. [PMID: 25449784 DOI: 10.1016/j.canlet.2014.10.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/19/2022]
Abstract
Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics.
Collapse
Affiliation(s)
- Anitha K Shenoy
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, United States.
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, United States.
| |
Collapse
|
134
|
Mhawech-Fauceglia P, Yan L, Sharifian M, Ren X, Liu S, Kim G, Gayther SA, Pejovic T, Lawrenson K. Stromal Expression of Fibroblast Activation Protein Alpha (FAP) Predicts Platinum Resistance and Shorter Recurrence in patients with Epithelial Ovarian Cancer. CANCER MICROENVIRONMENT 2014; 8:23-31. [PMID: 25331442 DOI: 10.1007/s12307-014-0153-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/08/2014] [Indexed: 12/17/2022]
Abstract
The microenvironment plays an important role in tumorigenesis. Fibroblast activation protein alpha (FAP) is overexpressed by fibroblasts present in the microenvironment of many tumors. High FAP expression is a negative prognostic factor in several malignancies, but this has not been investigated in epithelial ovarian cancer (EOC). The aim of this study is to define the value of FAP in EOC. Immunohistochemical staining using an anti-FAP antibody was performed on 338 EOC tissues. mRNA levels in cancer cell lines and FAP silencing using siRNA was also done. FAP immunoexpression by tumor stroma was a significant predictive factor for platinum resistance (p = 0.0154). In survival analysis of days to recurrence, FAP stoma (+) was associated with shorter recurrence than those with FAP (-) stroma (p = 0.0247). In 21.8 % of tumors, FAP protein was expressed by the tumor epithelium, and FAP mRNA was more highly expressed in tumors (n = 489) than in normal tissues (n = 8) (p = 3.88 × 10(-4)). In vitro, addition of FAP to EOC cells induced a 10-12 % increase in cell viability both in the presence and absence of cisplatin. Conversely, siRNA silencing of FAP resulted in ~10 % reduction in EOC cell proliferation. We have shown that FAP expression in EOC is associated with poorer clinical outcomes. FAP may have novel cell-autonomous effects suggesting that targeting FAP could have pleiotropic anti-tumor effects, and anti-FAP therapy could be a highly effective novel treatment for EOC, especially in cisplatinum-resistant cases.
Collapse
Affiliation(s)
- Paulette Mhawech-Fauceglia
- Department of Pathology, University of Southern California/Keck School of Medicine, Los Angeles, CA, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Kothari AN, Mi Z, Zapf M, Kuo PC. Novel clinical therapeutics targeting the epithelial to mesenchymal transition. Clin Transl Med 2014; 3:35. [PMID: 25343018 PMCID: PMC4198571 DOI: 10.1186/s40169-014-0035-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/25/2014] [Indexed: 01/25/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is implicated in many processes, ranging from tissue and organogenesis to cancer and metastatic spread. Understanding the key regulatory mechanisms and mediators within this process offers the opportunity to develop novel therapeutics with broad clinical applicability. To date, several components of EMT already are targeted using pharmacologic agents in fibrosis and cancer. As our knowledge of EMT continues to grow, the potential for novel therapeutics will also increase. This review focuses on the role of EMT both as a necessary part of development and a key player in disease progression, specifically the similarity in pathways used during both processes as targets for drug development. Also, the key role of the tumor microenvironment with EMT is outlined, focusing on both co-factors and cell types with the ability to modulate the progression of EMT in cancer and metastatic disease. Lastly, we discuss the current status of clinical therapies both in development and those progressed to clinical trial specifically targeting pathologic EMTs including small molecule inhibitors, non-coding RNAs, exogenous co-factors, and adjunctive therapies to current chemotherapeutics.
Collapse
Affiliation(s)
- Anai N Kothari
- Department of Surgery, Oncology Institute, Loyola University Medical Center, 2160 South First Ave, EMS Bldg, Rm 3244, Maywood 60153, IL, USA
| | - Zhiyong Mi
- Department of Surgery, Oncology Institute, Loyola University Medical Center, 2160 South First Ave, EMS Bldg, Rm 3244, Maywood 60153, IL, USA
| | - Matthew Zapf
- Department of Surgery, Oncology Institute, Loyola University Medical Center, 2160 South First Ave, EMS Bldg, Rm 3244, Maywood 60153, IL, USA
| | - Paul C Kuo
- Department of Surgery, Oncology Institute, Loyola University Medical Center, 2160 South First Ave, EMS Bldg, Rm 3244, Maywood 60153, IL, USA
| |
Collapse
|
136
|
Mehner C, Miller E, Khauv D, Nassar A, Oberg AL, Bamlet WR, Zhang L, Waldmann J, Radisky ES, Crawford HC, Radisky DC. Tumor cell-derived MMP3 orchestrates Rac1b and tissue alterations that promote pancreatic adenocarcinoma. Mol Cancer Res 2014; 12:1430-9. [PMID: 24850902 PMCID: PMC4201965 DOI: 10.1158/1541-7786.mcr-13-0557-t] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
UNLABELLED Pancreatic ductal adenocarcinoma (PDA) arises at the convergence of genetic alterations in KRAS with a fostering microenvironment shaped by immune cell influx and fibrotic changes; identification of the earliest tumorigenic molecular mediators evokes the proverbial chicken and egg problem. Matrix metalloproteinases (MMP) are key drivers of tumor progression that originate primarily from stromal cells activated by the developing tumor. Here, MMP3, known to be expressed in PDA, was found to be associated with expression of Rac1b, a tumorigenic splice isoform of Rac1, in all stages of pancreatic cancer. Using a large cohort of human PDA tissue biopsies specimens, both MMP3 and Rac1b are expressed in PDA cells, that the expression levels of the two markers are highly correlated, and that the subcellular distribution of Rac1b in PDA is significantly associated with patient outcome. Using transgenic mouse models, coexpression of MMP3 with activated KRAS in pancreatic acinar cells stimulates metaplasia and immune cell infiltration, priming the stromal microenvironment for early tumor development. Finally, exposure of cultured pancreatic cancer cells to recombinant MMP3 stimulates expression of Rac1b, increases cellular invasiveness, and activation of tumorigenic transcriptional profiles. IMPLICATIONS MMP3 acts as a coconspirator of oncogenic KRAS in pancreatic cancer tumorigenesis and progression, both through Rac1b-mediated phenotypic control of pancreatic cancer cells themselves, and by giving rise to the tumorigenic microenvironment; these findings also point to inhibition of this pathway as a potential therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Christine Mehner
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 U S A
| | - Erin Miller
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 U S A
| | - Davitte Khauv
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 U S A
| | - Aziza Nassar
- Department of Pathology, Mayo Clinic, Jacksonville, Florida
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research
| | - William R Bamlet
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research
| | - Lizhi Zhang
- Department of Pathology, Mayo Clinic, Rochester, Minnesota; and
| | - Jens Waldmann
- Department of Visceral-, Thoracic- and Vascular Surgery, Unikliniken Marburg Und Giessen, Marburg, Germany
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 U S A
| | - Howard C Crawford
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 U S A
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 U S A;
| |
Collapse
|
137
|
Brabrand A, Kariuki II, Engstrøm MJ, Haugen OA, Dyrnes LA, Åsvold BO, Lilledahl MB, Bofin AM. Alterations in collagen fibre patterns in breast cancer. A premise for tumour invasiveness? APMIS 2014; 123:1-8. [PMID: 25131437 DOI: 10.1111/apm.12298] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/04/2014] [Indexed: 01/15/2023]
Abstract
Stromal tissue in the breast plays a key role in cancer invasiveness due to molecular and cellular changes. Collagen is the main component of the stroma. The purposes of this study were to investigate differences in collagen fibre patterns between tumour-induced stromal tissue and normal stroma, and between high-grade and low-grade breast cancer stroma, using second harmonic generation microscopy. Thirty-seven ductal carcinomas were examined: Twenty-one Luminal A phenotype and sixteen HER2 or Basal-like phenotype. Three regions were examined in each case: intratumoral, juxtatumoral and extratumoral. Two images were captured in each region. Two characteristics of collagen fibres were examined: the degree of straightness, and the degree of alignment. Collagen fibres were visually classified as curly, intermediate or straight, and as parallel or not parallel. The results of angle measurement and visual analysis showed that collagen fibres were straightest in the intratumoral region and curliest in the extratumoral region. Collagen fibres were more parallel in the juxtatumoral region compared to the two other regions. There were no significant differences between high-grade and low-grade tumours. As a breast tumour progresses, collagen fibres appear to straighten and align at the tumour boundary. This could facilitate invasion of the tumour into the surrounding stroma.
Collapse
Affiliation(s)
- Anders Brabrand
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Kang M, Ryu J, Lee D, Lee MS, Kim HJ, Nam SH, Song HE, Choi J, Lee GH, Kim TY, Lee H, Kim SJ, Ye SK, Kim S, Lee JW. Correlations between transmembrane 4 L6 family member 5 (TM4SF5), CD151, and CD63 in liver fibrotic phenotypes and hepatic migration and invasive capacities. PLoS One 2014; 9:e102817. [PMID: 25033048 PMCID: PMC4102591 DOI: 10.1371/journal.pone.0102817] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/21/2014] [Indexed: 12/21/2022] Open
Abstract
Transmembrane 4 L6 family member 5 (TM4SF5) is overexpressed during CCl4-mediated murine liver fibrosis and in human hepatocellular carcinomas. The tetraspanins form tetraspanin-enriched microdomains (TEMs) consisting of large membrane protein complexes on the cell surface. Thus, TM4SF5 may be involved in the signal coordination that controls liver malignancy. We investigated the relationship between TM4SF5-positive TEMs with liver fibrosis and tumorigenesis, using normal Chang hepatocytes that lack TM4SF5 expression and chronically TGFβ1-treated Chang cells that express TM4SF5. TM4SF5 expression is positively correlated with tumorigenic CD151 expression, but is negatively correlated with tumor-suppressive CD63 expression in mouse fibrotic and human hepatic carcinoma tissues, indicating cooperative roles of the tetraspanins in liver malignancies. Although CD151 did not control the expression of TM4SF5, TM4SF5 appeared to control the expression levels of CD151 and CD63. TM4SF5 interacted with CD151, and caused the internalization of CD63 from the cell surface into late lysosomal membranes, presumably leading to terminating the tumor-suppressive functions of CD63. TM4SF5 could overcome the tumorigenic effects of CD151, especially cell migration and extracellular matrix (ECM)-degradation. Taken together, TM4SF5 appears to play a role in liver malignancy by controlling the levels of tetraspanins on the cell surface, and could provide a promising therapeutic target for the treatment of liver malignancies.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Medicinal Bioconvergence Research Center, Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul, Republic of Korea
| | - Jihye Ryu
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Medicinal Bioconvergence Research Center, Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul, Republic of Korea
| | - Doohyung Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Medicinal Bioconvergence Research Center, Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul, Republic of Korea
| | - Mi-Sook Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Medicinal Bioconvergence Research Center, Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul, Republic of Korea
| | - Hye-Jin Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Medicinal Bioconvergence Research Center, Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul, Republic of Korea
| | - Seo Hee Nam
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
| | - Haeng Eun Song
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Medicinal Bioconvergence Research Center, Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul, Republic of Korea
| | - Jungeun Choi
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
| | - Gyu-Ho Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Medicinal Bioconvergence Research Center, Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul, Republic of Korea
| | - Tai Young Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Medicinal Bioconvergence Research Center, Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul, Republic of Korea
| | - Hansoo Lee
- Department of Biological Sciences, Kangwon National University, Chunchon, Kangwon-do, Republic of Korea
| | - Sang Jick Kim
- Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea
| | - Sang-Kyu Ye
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Semi Kim
- Department of Biological Sciences, Kangwon National University, Chunchon, Kangwon-do, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Medicinal Bioconvergence Research Center, Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul, Republic of Korea
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
139
|
O'Connor JW, Gomez EW. Biomechanics of TGFβ-induced epithelial-mesenchymal transition: implications for fibrosis and cancer. Clin Transl Med 2014; 3:23. [PMID: 25097726 PMCID: PMC4114144 DOI: 10.1186/2001-1326-3-23] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/02/2014] [Indexed: 12/18/2022] Open
Abstract
Fibrosis, a disease that results in loss of organ function, contributes to a significant number of deaths worldwide and sustained fibrotic activation has been suggested to increase the risk of developing cancer in a variety of tissues. Fibrogenesis and tumor progression are regulated in part through the activation and activity of myofibroblasts. Increasing evidence links myofibroblasts found within fibrotic lesions and the tumor microenvironment to a process termed epithelial-mesenchymal transition (EMT), a phenotypic change in which epithelial cells acquire mesenchymal characteristics. EMT can be stimulated by soluble signals, including transforming growth factor (TGF)-β, and recent studies have identified a role for mechanical cues in directing EMT. In this review, we describe the role that EMT plays in fibrogenesis and in the progression of cancer, with particular emphasis placed on biophysical signaling mechanisms that control the EMT program. We further describe specific TGFβ-induced intracellular signaling cascades that are affected by cell- and tissue-level mechanics. Finally, we highlight the implications of mechanical induction of EMT on the development of treatments and targeted intervention strategies for fibrosis and cancer.
Collapse
Affiliation(s)
- Joseph W O'Connor
- Department of Chemical Engineering, The Pennsylvania State University, 204 Fenske Laboratory, 16802 University Park, PA, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, 204 Fenske Laboratory, 16802 University Park, PA, USA ; Department of Biomedical Engineering, The Pennsylvania State University, 16802 University Park, PA, USA
| |
Collapse
|
140
|
Chao CH, Chang CC, Wu MJ, Ko HW, Wang D, Hung MC, Yang JY, Chang CJ. MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Invest 2014; 124:3093-106. [PMID: 24911147 DOI: 10.1172/jci73351] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 04/21/2014] [Indexed: 01/02/2023] Open
Abstract
Dysregulation of epigenetic controls is associated with tumorigenesis in response to microenvironmental stimuli; however, the regulatory pathways involved in epigenetic dysfunction are largely unclear. We have determined that a critical epigenetic regulator, microRNA-205 (miR-205), is repressed by the ligand jagged1, which is secreted from the tumor stroma to promote a cancer-associated stem cell phenotype. Knockdown of miR-205 in mammary epithelial cells promoted epithelial-mesenchymal transition (EMT), disrupted epithelial cell polarity, and enhanced symmetric division to expand the stem cell population. Furthermore, miR-205-deficient mice spontaneously developed mammary lesions, while activation of miR-205 markedly diminished breast cancer stemness. These data provide evidence that links tumor microenvironment and microRNA-dependent regulation to disruption of epithelial polarity and aberrant mammary stem cell division, which in turn leads to an expansion of stem cell population and tumorigenesis. This study elucidates an important role for miR-205 in the regulation of mammary stem cell fate, suggesting a potential therapeutic target for limiting breast cancer genesis.
Collapse
|
141
|
Du Y, Guo D, Wu Q, Liu D, Bi H. Zinc chloride inhibits human lens epithelial cell migration and proliferation involved in TGF-β1 and TNF-α signaling pathways in HLE B-3 cells. Biol Trace Elem Res 2014; 159:425-33. [PMID: 24752973 DOI: 10.1007/s12011-014-9979-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/10/2014] [Indexed: 01/23/2023]
Abstract
Zinc is one of the most abundant essential elements in the human body, which is an essential, coenzyme-like component of many enzymes, and is indispensable to their functions. However, high levels of zinc ions can lead to cell damage. In the present study, we explored the effects of high concentrations of zinc chloride (ZnCl2) on lens epithelial cell proliferation and migration and further investigated the effects of different concentrations of ZnCl2 on caspase-9 and caspase-12, transforming growth factor-beta 1 (TGF-β1), and tumor necrosis factor-alpha (TNF-α). We found that ZnCl2 could inhibit human lens epithelial (HLE) B-3 cell migration and induce apoptosis/necrosis. In addition, ZnCl2 can efficiently decrease the expressions of caspase-9 and caspase-12, increase the expression of TNF-α at both gene and protein levels, and thus induces cell death. Taken together, our results indicate that ZnCl2 can inhibit HLE B-3 cell migration and proliferation by decreasing the expression of TGF-β1 and increasing the expression of TNF-α and finally lead to HLE B-3 cell death.
Collapse
Affiliation(s)
- Yuxiang Du
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | | | | | | | | |
Collapse
|
142
|
Jarkovska K, Dvorankova B, Halada P, Kodet O, Szabo P, Gadher SJ, Motlik J, Kovarova H, Smetana K. Revelation of fibroblast protein commonalities and differences and their possible roles in wound healing and tumourigenesis using co-culture models of cells. Biol Cell 2014; 106:203-18. [PMID: 24698078 DOI: 10.1111/boc.201400014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/27/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND INFORMATION The in vitro co-culture models of communication between normal fibroblasts and epithelial cells, such as keratinocytes or squamous cell carcinoma cells of FaDu line representing wound healing or cancer development, were established by non-direct contact between the cells and utilised in this study to examine epithelia-induced changes in overall fibroblast proteome patterns. RESULTS We were able to select the proteins co-regulated in both models in order to evaluate possible molecular commonalities between wound healing and tumour development. Amongst the most pronounced were the proteins implemented in contractile activity and formation of actin cytoskeleton such as caldesmon, calponin-2, myosin regulatory light-chain 12A and cofilin-1, which were expressed independently of the presence of α-smooth muscle actin. Additionally, proteins altered differently highlighted functional and cellular phenotypes during transition of fibroblasts towards myofibroblasts or cancer-associated fibroblasts. Results showed coordinated regulation of cytoskeleton proteins selective for wound healing which were lost in tumourigenesis model. Vimentin bridged this group of proteins with other regulated proteins in human fibroblasts involved in protein or RNA processing and metabolic regulation. CONCLUSIONS The findings provide strong support for crucial role of stromal microenvironment in wound healing and tumourigenesis. In particular, epithelia-induced protein changes in fibroblasts offer new potential targets which may lead to novel tailored cancer therapeutic strategies.
Collapse
Affiliation(s)
- Karla Jarkovska
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Saito S, Morishima K, Ui T, Matsubara D, Tamura T, Oguni S, Hosoya Y, Sata N, Lefor AT, Yasuda Y, Niki T. Stromal fibroblasts are predictors of disease-related mortality in esophageal squamous cell carcinoma. Oncol Rep 2014; 32:348-54. [PMID: 24859885 DOI: 10.3892/or.2014.3216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/28/2014] [Indexed: 11/06/2022] Open
Abstract
The growth, invasiveness and metastasis of human cancers are determined not only by cancer cells, but also by their microenvironment. Activated stromal fibroblasts promote tumor progression by secreting growth factors. In the present study, we focused on interrelations between cancer and fibroblasts, the main component of tumor stroma. We retrospectively analyzed the relations of mortality to clinical, pathological, and α-smooth muscle actin (α-SMA) characteristics in 97 consecutive patients with esophageal squamous cell carcinoma (ESCC). In vitro, we used TE-11, KYSE150 and KYSE220 ESCC cell lines and isolated esophageal stromal fibroblasts, some of which were immortalized. Migration assays were conducted to assess the effects of fibroblasts on cancer-cell migration and 3-dimensional organotypic cultures. In vivo, TE-11 and KYSE220 cells plus immortalized fibroblasts were co-transplanted subcutaneously in Nod/Scid mice to assess the effects of fibroblasts on tumorigenicity. Clinicopathologically, the α-SMA expression of cancer stroma was correlated with venous invasion (p<0.01), nodal involvement (p=0.02), recurrence (p=0.01), and was a predictor of survival in patients with stage I and II ESCC (p=0.04). In vitro, the presence of fibroblasts strongly promoted the migration of TE-11, KYSE150 and KYSE220 cells. On organotypic culture, stromal invasion was observed only in the presence of immortalized fibroblasts. In vivo, tumors developed or grew in a fibroblast‑dependent manner after implantation. Our findings provide evidence that stromal fibroblasts and tumor cells interact to promote tumor progression in ESCC. In patients with earlier stage ESCC, α-SMA may be a predictor of mortality. Inhibition of paracrine systems associated with tumor fibroblasts may slow or reverse tumor progression, potentially leading to the development of new targeted therapies.
Collapse
Affiliation(s)
- Shin Saito
- Department of Surgery, Jichi Medical University, Shimotsuke-City, Tochigi 329-0498, Japan
| | - Kazue Morishima
- Department of Surgery, Jichi Medical University, Shimotsuke-City, Tochigi 329-0498, Japan
| | - Takashi Ui
- Department of Surgery, Jichi Medical University, Shimotsuke-City, Tochigi 329-0498, Japan
| | - Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke-City, Tochigi 329-0498, Japan
| | - Tomoko Tamura
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke-City, Tochigi 329-0498, Japan
| | - Sachiko Oguni
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke-City, Tochigi 329-0498, Japan
| | - Yoshinori Hosoya
- Department of Surgery, Jichi Medical University, Shimotsuke-City, Tochigi 329-0498, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Shimotsuke-City, Tochigi 329-0498, Japan
| | - Alan T Lefor
- Department of Surgery, Jichi Medical University, Shimotsuke-City, Tochigi 329-0498, Japan
| | - Yoshikazu Yasuda
- Department of Surgery, Jichi Medical University, Shimotsuke-City, Tochigi 329-0498, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke-City, Tochigi 329-0498, Japan
| |
Collapse
|
144
|
Yang TS, Yang XH, Chen X, Wang XD, Hua J, Zhou DL, Zhou B, Song ZS. MicroRNA-106b in cancer-associated fibroblasts from gastric cancer promotes cell migration and invasion by targeting PTEN. FEBS Lett 2014; 588:2162-9. [PMID: 24842611 DOI: 10.1016/j.febslet.2014.04.050] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/02/2014] [Accepted: 04/13/2014] [Indexed: 12/20/2022]
Abstract
It is well established that the interaction between cancer cells and microenvironment has a critical role in tumor development, but the roles of miRNAs in this interaction are rarely known. Here, we have shown that miR-106b is up-regulated in cancer associated fibroblasts compared with normal fibroblasts established from patients with gastric cancer, the expression level of miR-106b is associated with poor prognosis of patients, and CAFs with down-regulated miR-106b could significantly inhibit gastric cancer cell migration and invasion by targeting PTEN. Taken together, these data suggest that miR-106b might be a novel candidate target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ting-Song Yang
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Xiao-Hu Yang
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Xi Chen
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Xu-Dong Wang
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Jie Hua
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Dong-Lei Zhou
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Bo Zhou
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Zhen-Shun Song
- Department of General Surgery, Tenth Peoples' Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
145
|
Amini-Nik S, Cambridge E, Yu W, Guo A, Whetstone H, Nadesan P, Poon R, Hinz B, Alman BA. β-Catenin-regulated myeloid cell adhesion and migration determine wound healing. J Clin Invest 2014; 124:2599-610. [PMID: 24837430 DOI: 10.1172/jci62059] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 03/27/2014] [Indexed: 01/28/2023] Open
Abstract
A β-catenin/T cell factor-dependent transcriptional program is critical during cutaneous wound repair for the regulation of scar size; however, the relative contribution of β-catenin activity and function in specific cell types in the granulation tissue during the healing process is unknown. Here, cell lineage tracing revealed that cells in which β-catenin is transcriptionally active express a gene profile that is characteristic of the myeloid lineage. Mice harboring a macrophage-specific deletion of the gene encoding β-catenin exhibited insufficient skin wound healing due to macrophage-specific defects in migration, adhesion to fibroblasts, and ability to produce TGF-β1. In irradiated mice, only macrophages expressing β-catenin were able to rescue wound-healing deficiency. Evaluation of scar tissue collected from patients with hypertrophic and normal scars revealed a correlation between the number of macrophages within the wound, β-catenin levels, and cellularity. Our data indicate that β-catenin regulates myeloid cell motility and adhesion and that β-catenin-mediated macrophage motility contributes to the number of mesenchymal cells and ultimate scar size following cutaneous injury.
Collapse
|
146
|
Chakraborty S, John R, Nag A. Cytoglobin in tumor hypoxia: novel insights into cancer suppression. Tumour Biol 2014; 35:6207-19. [PMID: 24816917 DOI: 10.1007/s13277-014-1992-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/17/2014] [Indexed: 01/19/2023] Open
Abstract
Emerging new and intriguing roles of cytoglobin (Cygb) have attracted considerable attention of cancer researchers in recent years. Hypoxic upregulation of Cygb as well as its altered expression in various human cancers suggest another possible role of this newly discovered globin in tumor cell response under low oxygen tension. Since tumor hypoxia is strongly associated with malignant progression of disease and poor treatment response, it constitutes an area of paramount importance for rational design of cancer selective therapies. However, the mechanisms involved during this process are still elusive. This review outlines the current understanding of Cygb's involvement in tumor hypoxia and discusses its role in tumorigenesis. A better perception of Cygb in tumor hypoxia response is likely to open novel perspectives for future tumor therapy.
Collapse
Affiliation(s)
- Sankalpa Chakraborty
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | | | | |
Collapse
|
147
|
Lam CRI, Wong HK, Nai S, Chua CK, Tan NS, Tan LP. A 3D Biomimetic Model of Tissue Stiffness Interface for Cancer Drug Testing. Mol Pharm 2014; 11:2016-21. [DOI: 10.1021/mp500059q] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chee Ren Ivan Lam
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Hui Kian Wong
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Spencer Nai
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Chee Kai Chua
- School
of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Nguan Soon Tan
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
- Institute
of Molecular and Cell Biology, Agency of Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Lay Poh Tan
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| |
Collapse
|
148
|
Abstract
The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.
Collapse
|
149
|
Sandoval P, Jiménez-Heffernan JA, Rynne-Vidal Á, Pérez-Lozano ML, Gilsanz Á, Ruiz-Carpio V, Reyes R, García-Bordas J, Stamatakis K, Dotor J, Majano PL, Fresno M, Cabañas C, López-Cabrera M. Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J Pathol 2014; 231:517-31. [PMID: 24114721 DOI: 10.1002/path.4281] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 12/29/2022]
Abstract
Peritoneal dissemination is a frequent metastatic route for cancers of the ovary and gastrointestinal tract. Tumour cells metastasize by attaching to and invading through the mesothelial cell (MC) monolayer that lines the peritoneal cavity. Metastases are influenced by carcinoma-associated fibroblasts (CAFs), a cell population that derives from different sources. Hence, we investigated whether MCs, through mesothelial-mesenchymal transition (MMT), were a source of CAFs during peritoneal carcinomatosis and whether MMT affected the adhesion and invasion of tumour cells. Biopsies from patients with peritoneal dissemination revealed the presence of myofibroblasts expressing mesothelial markers in the proximity of carcinoma implants. Prominent new vessel formation was observed in the peritoneal areas harbouring tumour cells when compared with tumour-free regions. The use of a mouse model of peritoneal dissemination confirmed the myofibroblast conversion of MCs and the increase in angiogenesis at places of tumour implants. Treatment of omentum MCs with conditioned media from carcinoma cell cultures resulted in phenotype changes reminiscent of MMT. Adhesion experiments demonstrated that MMT enhanced the binding of cancer cells to MCs in a β1-integrin-dependent manner. Scanning electron microscopy imaging showed that the enhanced adhesion was mostly due to increased cell-cell interaction and not to a mere matrix exposure. Invasion assays suggested a reciprocal stimulation of the invasive capacity of tumour cells and MCs. Our results demonstrate that CAFs can derive from mesothelial cells during peritoneal metastasis. We suggest that MMT renders the peritoneum more receptive for tumour cell attachment/invasion and contributes to secondary tumour growth by promoting its vascularization.
Collapse
Affiliation(s)
- Pilar Sandoval
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 2014; 4:62. [PMID: 24734219 PMCID: PMC3973916 DOI: 10.3389/fonc.2014.00062] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/14/2014] [Indexed: 01/02/2023] Open
Abstract
Tumor- or cancer-associated fibroblasts (CAFs) are one of the most abundant stromal cell types in different carcinomas and comprise a heterogeneous cell population. Classically, CAFs are assigned with pro-tumorigenic effects stimulating tumor growth and progression. More recent studies demonstrated also tumor-inhibitory effects of CAFs suggesting that tumor-residing fibroblasts exhibit a similar degree of plasticity as other stromal cell types. Reciprocal interactions with the tumor milieu and different sources of origin are emerging as two important factors underlying CAF heterogeneity. This review highlights recent advances in our understanding of CAF biology and proposes to expand the term of cellular “polarization,” previously introduced to describe different activation states of various immune cells, onto CAFs to reflect their phenotypic diversity.
Collapse
Affiliation(s)
- Martin Augsten
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|