101
|
Effects and Mechanism of Particulate Matter on Tendon Healing Based on Integrated Analysis of DNA Methylation and RNA Sequencing Data in a Rat Model. Int J Mol Sci 2022; 23:ijms23158170. [PMID: 35897746 PMCID: PMC9332732 DOI: 10.3390/ijms23158170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Exposure to particulate matter (PM) has been linked with the severity of various diseases. To date, there is no study on the relationship between PM exposure and tendon healing. Open Achilles tenotomy of 20 rats was performed. The animals were divided into two groups according to exposure to PM: a PM group and a non-PM group. After 6 weeks of PM exposure, the harvest and investigations of lungs, blood samples, and Achilles tendons were performed. Compared to the non-PM group, the white blood cell count and tumor necrosis factor-alpha expression in the PM group were significantly higher. The Achilles tendons in PM group showed significantly increased inflammatory outcomes. A TEM analysis showed reduced collagen fibrils in the PM group. A biomechanical analysis demonstrated that the load to failure value was lower in the PM group. An upregulation of the gene encoding cyclic AMP response element-binding protein (CREB) was detected in the PM group by an integrated analysis of DNA methylation and RNA sequencing data, as confirmed via a Western blot analysis showing significantly elevated levels of phosphorylated CREB. In summary, PM exposure caused a deleterious effect on tendon healing. The molecular data indicate that the action mechanism of PM may be associated with upregulated CREB signaling.
Collapse
|
102
|
Mok TN, He Q, Zhang X, Sin TH, Wang H, Hou H, Pan J, Zheng X, Zha Z, Li J. Effects of 6-Hydroxykaempferol: A Potential Natural Product for Amelioration of Tendon Impairment. Front Pharmacol 2022; 13:919104. [PMID: 35935848 PMCID: PMC9354238 DOI: 10.3389/fphar.2022.919104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Tendon impairment is a common injury associated with impairment of range of motion and pain. Currently, evidence has confirmed that natural herbs contribute to orthopedics and have shown excellent results in the clinical management of tendon impairment. Shujin Huoxue tablet (SHT) and its complex prescriptions are regularly used in tendon rupture therapy with positive results. This study aimed to discover the potential molecules that promote tendon healing. The Chinese traditional medicine system pharmacological database analysis platform (TCMSP) is the primary resource. The Traditional Chinese Medicine Integrated Database and Encyclopedia of Traditional Chinese Medicine database were used as secondary databases. The GeneCards database was used to search for reported tendinopathy-related genes by keywords. Functions of the targeted genes were analyzed using Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes. Protein–protein interaction information was extracted from the STRING database. Docking study, MTT assay, quantitative real-time PCR, and migration assays were performed to obtain a better understanding of the herbs according to cell function to test the basic pharmacological action in vitro. A total of 104 disease nodes, 496 target gene nodes, 35 ingredient nodes, and one drug node were extracted. According to the TCMSP database, 6-hydroxykaempferol, which reportedly promotes the proliferation of microvascular endothelial cells, is a molecule found in SHT. We found that it promoted the proliferation and migration of tendon fibroblasts and elevated tendon repair-related gene expression. Purified 6-hydroxykaempferol promoted the proliferation and migration of tendon fibroblasts and increased their mRNA expression in tendon proliferation.
Collapse
Affiliation(s)
- Tsz Ngai Mok
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou, China
| | - Qiyu He
- Pediatric Cardiac Surgery Center, National Center for Cardiovascular Disease and Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical, Beijing, China
| | - Xiaoxi Zhang
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou, China
| | - Tat Hang Sin
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huajun Wang
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou, China
| | - Huige Hou
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou, China
| | - Jinghua Pan
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou, China
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaofei Zheng
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou, China
| | - Zhengang Zha
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou, China
| | - Jieruo Li
- Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital and The First Clinical College, Jinan University, Guangzhou, China
- *Correspondence: Jieruo Li,
| |
Collapse
|
103
|
Benage LG, Sweeney JD, Giers MB, Balasubramanian R. Dynamic Load Model Systems of Tendon Inflammation and Mechanobiology. Front Bioeng Biotechnol 2022; 10:896336. [PMID: 35910030 PMCID: PMC9335371 DOI: 10.3389/fbioe.2022.896336] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamic loading is a shared feature of tendon tissue homeostasis and pathology. Tendon cells have the inherent ability to sense mechanical loads that initiate molecular-level mechanotransduction pathways. While mature tendons require physiological mechanical loading in order to maintain and fine tune their extracellular matrix architecture, pathological loading initiates an inflammatory-mediated tissue repair pathway that may ultimately result in extracellular matrix dysregulation and tendon degeneration. The exact loading and inflammatory mechanisms involved in tendon healing and pathology is unclear although a precise understanding is imperative to improving therapeutic outcomes of tendon pathologies. Thus, various model systems have been designed to help elucidate the underlying mechanisms of tendon mechanobiology via mimicry of the in vivo tendon architecture and biomechanics. Recent development of model systems has focused on identifying mechanoresponses to various mechanical loading platforms. Less effort has been placed on identifying inflammatory pathways involved in tendon pathology etiology, though inflammation has been implicated in the onset of such chronic injuries. The focus of this work is to highlight the latest discoveries in tendon mechanobiology platforms and specifically identify the gaps for future work. An interdisciplinary approach is necessary to reveal the complex molecular interplay that leads to tendon pathologies and will ultimately identify potential regenerative therapeutic targets.
Collapse
Affiliation(s)
- Lindsay G. Benage
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - James D. Sweeney
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Morgan B. Giers
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
- *Correspondence: Morgan B. Giers,
| | - Ravi Balasubramanian
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
- School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
104
|
Assessment of Pain and External Load in Amputee Football Using Digital Pain Drawing and GNSS Tracking—A Pilot Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amputee Football (AF) players move using lofstrand crutches (LC) and a single leg during training and matches, which may expose them to excessive loads. Due to a lack of scientific articles describing these issues, this pilot study aims to gain insight into the assessment of pain experiences, as well as external loads during training and matches in AF. An observational study design was followed. Twelve male AF players (2 goalkeepers—GK and 10 field players—FP), 29.9 ± 8.7 years, stature 178.3 ± 6.5 cm, body mass 77.2 ± 8.9 kg were involved in the study. After stature and body mass measures, participants filled out the questionnaire for pain. The players were familiarized with digital pain drawing (DPD). Afterwards, they reported pain typically felt in relation to regular AF training and playing matches—recall pain (RP). During a two-day training camp (TC) with two training sessions each day and during a two-day international tournament (IT) with two matches each day, the players were monitored using DPD, rate of perceived exertion (RPE) and overall pain level (OPL) scales. In addition, during an international tournament (IT), match players were monitored using a GNSS tracking system for external load assessment. All of the participants reported multiple locations of pain after AF training or a match. The area of recall pain (RP) was the highest: +0.5% when compared to the end of TC and +43% when compared to end of IT. The pain area registered at the end of IT was significantly lower (p = 0.028) compared to RP and lower without statistical significance when compared to the end of TC. Average RPE was 3.31 ± 1.38 and average OPL was 2.86 ± 1.81 in 0–10 scale. Typical RPE was higher than that registered at the end of IT. Also typical OPL was higher compared to that registered after the end of TC, which was higher than after the end of IT. The average distance covered by a FP during a match ranged from 2483.14 ± 583.64 m to 2911.08 ± 828.90 m. AF field players suffered pain as a consequence of training and matches. The loads coming from playing and training, combined with pain, may lead to injuries. Further research directions should include assessments of the relationship of pain characteristics, injuries and GNSS tracking parameters.
Collapse
|
105
|
Abstract
It is well established that humans and other mammals are minimally regenerative compared with organisms such as zebrafish, salamander or amphibians. In recent years, however, the identification of regenerative potential in neonatal mouse tissues that normally heal poorly in adults has transformed our understanding of regenerative capacity in mammals. In this Review, we survey the mammalian tissues for which regenerative or improved neonatal healing has been established, including the heart, cochlear hair cells, the brain and spinal cord, and dense connective tissues. We also highlight common and/or tissue-specific mechanisms of neonatal regeneration, which involve cells, signaling pathways, extracellular matrix, immune cells and other factors. The identification of such common features across neonatal tissues may direct therapeutic strategies that will be broadly applicable to multiple adult tissues.
Collapse
Affiliation(s)
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
106
|
Korcari A, Buckley MR, Loiselle AE. Characterization of scar tissue biomechanics during adult murine flexor tendon healing. J Mech Behav Biomed Mater 2022; 130:105192. [PMID: 35339739 PMCID: PMC11103245 DOI: 10.1016/j.jmbbm.2022.105192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Tendon injuries are very common and result in significant impairments in mobility and quality of life. During healing, tendons produce a scar at the injury site, characterized by abundant and disorganized extracellular matrix and by permanent deficits in mechanical integrity compared to healthy tendon. Although a significant amount of work has been done to understand the healing process of tendons and to develop potential therapeutics for tendon regeneration, there is still a significant gap in terms of assessing the direct effects of therapeutics on the functional and material quality specifically of the scar tissue, and thus, on the overall tendon healing process. In this study, we focused on characterizing the mechanical properties of only the scar tissue in flexor digitorum longus (FDL) tendons during the proliferative and early remodeling healing phases and comparing these properties with the mechanical properties of the composite healing tissue. Our method was sensitive enough to identify significant differences in structural and material properties between the scar and tendon-scar composite tissues. To account for possible inaccuracies due to the small aspect ratio of scar tissue, we also applied inverse finite element analysis (iFEA) to compute mechanical properties based on simulated tests with accurate specimen geometries and boundary conditions. We found that the scar tissue linear tangent moduli calculated from iFEA were not significantly different from those calculated experimentally at all healing timepoints, validating our experimental findings, and suggesting the assumptions in our experimental calculations were accurate. Taken together, this study first demonstrates that due to the presence of uninjured stubs, testing composite healing tendons without isolating the scar tissue overestimates the material properties of the scar itself. Second, our scar isolation method promises to enable more direct assessment of how different treatment regimens (e.g., cellular ablation, biomechanical and/or biochemical stimuli, tissue engineered scaffolds) affect scar tissue function and material quality in multiple different types of tendons.
Collapse
Affiliation(s)
- Antonion Korcari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Mark R Buckley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
107
|
Donderwinkel I, Tuan RS, Cameron NR, Frith JE. Tendon tissue engineering: Current progress towards an optimized tenogenic differentiation protocol for human stem cells. Acta Biomater 2022; 145:25-42. [PMID: 35470075 DOI: 10.1016/j.actbio.2022.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022]
Abstract
Tendons are integral to our daily lives by allowing movement and locomotion but are frequently injured, leading to patient discomfort and impaired mobility. Current clinical procedures are unable to fully restore the native structure of the tendon, resulting in loss of full functionality, and the weakened tissue following repair often re-ruptures. Tendon tissue engineering, involving the combination of cells with biomaterial scaffolds to form new tendon tissue, holds promise to improve patient outcomes. A key requirement for efficacy in promoting tendon tissue formation is the optimal differentiation of the starting cell populations, most commonly adult tissue-derived mesenchymal stem/stromal cells (MSCs), into tenocytes, the predominant cellular component of tendon tissue. Currently, a lack of consensus on the protocols for effective tenogenic differentiation is hampering progress in tendon tissue engineering. In this review, we discuss the current state of knowledge regarding human stem cell differentiation towards tenocytes and tendon tissue formation. Tendon development and healing mechanisms are described, followed by a comprehensive overview of the current protocols for tenogenic differentiation, including the effects of biochemical and biophysical cues, and their combination, on tenogenesis. Lastly, a synthesis of the key features of these protocols is used to design future approaches. The holistic evaluation of current knowledge should facilitate and expedite the development of efficacious stem cell tenogenic differentiation protocols with future impact in tendon tissue engineering. STATEMENT OF SIGNIFICANCE: The lack of a widely-adopted tenogenic differentiation protocol has been a major hurdle in the tendon tissue engineering field. Building on current knowledge on tendon development and tendon healing, this review surveys peer-reviewed protocols to present a holistic evaluation and propose a pathway to facilitate and expedite the development of a consensus protocol for stem cell tenogenic differentiation and tendon tissue engineering.
Collapse
|
108
|
Song JH, Kang C, Han SY, Park WH, Kim MH, Moon JH, Tae JY, Park HY, Yoo IH, Park JH, Yeo YH, Kim DY. Comparative analysis of Achilles tendon healing outcomes after open tenotomy versus percutaneous tenotomy: An experimental study in rats. J Orthop Res 2022; 40:1446-1456. [PMID: 34370341 DOI: 10.1002/jor.25159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 02/04/2023]
Abstract
There is growing interest in conservative treatment of Achilles tendon rupture. However, the majority of experimental studies of Achilles tendon have been performed by open tenotomy. More appropriate model of conservative treatment of Achilles tendon rupture is required. We performed an experimental study to evaluate whether outcomes differ between open tenotomy and percutaneous tenotomy of the Achilles tendon in rats. The Achilles tendons of 48 rats were transected. The animals were divided into two groups according to surgical technique: open tenotomy or microscopy-assisted percutaneous tenotomy. After 1, 2, and 4 weeks, functional, biomechanical, and histological analyses were performed. Western blot was performed for quantitative molecular analysis at 1 week. The Achilles functional index was superior in the percutaneous tenotomy group, compared with the open tenotomy group, at 1 week. The cross-sectional area was significantly larger in the percutaneous tenotomy group than in the open tenotomy group at 4 weeks. Relative to the native tendons, load to failure and stiffness yielded comparable results at 2 weeks in the percutaneous tenotomy group and at 4 weeks in the open tenotomy group. The histological score was significantly better in the percutaneous tenotomy group than in the open tenotomy group at 1 week. At 1 week, interleukin-1β expression in the open tenotomy group was higher than in the percutaneous tenotomy group. In summary, Achilles tendon healing was substantially affected by the tenotomy method. We presume that our percutaneous tenotomy method might constitute a useful experimental animal model for conservative treatment of Achilles tendon rupture.
Collapse
Affiliation(s)
- Jae H Song
- Department of Orthopedic Surgery, Konyang University Hospital, Daejeon, Republic of Korea
| | - Chan Kang
- Department of Orthopedic Surgery, Regional Rheumatoid and Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Seung Y Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Won H Park
- Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon, Republic of Korea
| | - Min H Kim
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Ji H Moon
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jung Y Tae
- Department of Medicine, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hyeon Y Park
- Department of Occupational Therapy, Konyang University, Daejeon, Republic of Korea
| | - In H Yoo
- Department of Occupational Therapy, Konyang University, Daejeon, Republic of Korea
| | - Jong H Park
- Department of Biomedical Material, College of Medical Engineering, Konyang University, Daejeon, Republic of Korea
| | - Yong H Yeo
- Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon, Republic of Korea
| | - Dae Y Kim
- Department of Orthopedic Surgery, Konyang University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
109
|
Izumi S, Oichi T, Shetye SS, Zhang K, Wilson K, Iwamoto M, Kuo CK, Akabudike N, Adachi N, Soslowsky LJ, Enomoto-Iwamoto M. Inhibition of glucose use improves structural recovery of injured Achilles tendon in mice. J Orthop Res 2022; 40:1409-1419. [PMID: 34460123 PMCID: PMC8882710 DOI: 10.1002/jor.25176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/21/2021] [Accepted: 08/16/2021] [Indexed: 02/04/2023]
Abstract
Injured tendons do not regain their native structure except at fetal or very young ages. Healing tendons often show mucoid degeneration involving accumulation of sulfated glycosaminoglycans (GAGs), but its etiology and molecular base have not been studied substantially. We hypothesized that quality and quantity of gene expression involving the synthesis of proteoglycans having sulfated GAGs are altered in injured tendons and that a reduction in synthesis of sulfated GAGs improves structural and functional recovery of injured tendons. C57BL6/j mice were subjected to Achilles tendon tenotomy surgery. The injured tendons accumulated sulfate proteoglycans as early as 1-week postsurgery and continued so by 4-week postsurgery. Transcriptome analysis revealed upregulation of a wide range of proteoglycan genes that have sulfated GAGs in the injured tendons 1 and 3 weeks postsurgery. Genes critical for enzymatic reaction of initiation and elongation of chondroitin sulfate GAG chains were also upregulated. After the surgery, mice were treated with the 2-deoxy-d-glucose (2DG) that inhibits conversion of glucose to glucose-6-phosphate, an initial step of glucose metabolism as an energy source and precursors of monosaccharides of GAGs. The 2DG treatment reduced accumulation of sulfated proteoglycans, improved collagen fiber alignment, and reduced the cross-sectional area of the injured tendons. The modulus of the 2DG-treated groups was higher than that in the vehicle group, but not of statistical significance. Our findings suggest that mucoid degeneration in injured tendons may result from the upregulated expression of genes involved the synthesis of sulfate proteoglycans and can be inhibited by reduction of glucose utilization.
Collapse
Affiliation(s)
- Soutarou Izumi
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health sciences, Hiroshima University, Japan
| | - Takeshi Oichi
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore
| | - Snehal S. Shetye
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia PA
| | - Kairui Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University
| | - Kimberly Wilson
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore
| | - Masahiro Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore
| | - Catherine K. Kuo
- Fischell Department of Bioengineering, University of Maryland College Park
| | - Ngozi Akabudike
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health sciences, Hiroshima University, Japan
| | - Louis J. Soslowsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia PA
| | | |
Collapse
|
110
|
Electrospun, Resorbable, Drug-Eluting, Nanofibrous Membranes Promote Healing of Allograft Tendons. MEMBRANES 2022; 12:membranes12050529. [PMID: 35629855 PMCID: PMC9147671 DOI: 10.3390/membranes12050529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022]
Abstract
In spite of advances in medical technology, the repair of Achilles tendon ruptures remains challenging. Reconstruction with an autograft tendon provides the advantage of a higher healing rate; nevertheless, the development of donor-site morbidity cannot be ignored. We developed biodegradable, drug-eluting, nanofibrous membranes employing an electrospinning technique and evaluated their effectiveness on the healing of allograft tendons. Poly-D-L-lactide-glycolide was used as the polymeric material for the nanofibers, while doxycycline was selected as the drug for delivery. The in vitro and in vivo drug-release profiles were investigated. The biomechanical properties of allografted Achilles tendons repaired using the nanofibrous membranes were tested in euthanized rabbits at 2-, 4-, and 6-week time intervals. Histological examination was performed for the evaluation of tissue reaction and tendon healing. The level of postoperative animal activity was also monitored using an animal behavior cage. The experimental results showed that the degradable nanofibers used as a vehicle could provide sustained release of doxycycline for 42 days after surgery with very low systemic drug concentration. Allograft Achilles tendon reconstruction assisted by drug-loaded nanofibers was associated with better biomechanical properties at 6 weeks post-surgery. In addition, the animals exhibited a better level of activity after surgery. The use of drug-eluting, nanofibrous membranes could enhance healing in Achilles tendon allograft reconstruction surgery.
Collapse
|
111
|
Dede Eren A, Vermeulen S, Schmitz TC, Foolen J, de Boer J. The loop of phenotype: Dynamic reciprocity links tenocyte morphology to tendon tissue homeostasis. Acta Biomater 2022; 163:275-286. [PMID: 35584748 DOI: 10.1016/j.actbio.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Cells and their surrounding extracellular matrix (ECM) are engaged in dynamic reciprocity to maintain tissue homeostasis: cells deposit ECM, which in turn presents the signals that define cell identity. This loop of phenotype is obvious for biochemical signals, such as collagens, which are produced by and presented to cells, but the role of biomechanical signals is also increasingly recognised. In addition, cell shape goes hand in hand with cell function and tissue homeostasis. Aberrant cell shape and ECM is seen in pathological conditions, and control of cell shape in micro-fabricated platforms disclose the causal relationship between cell shape and cell function, often mediated by mechanotransduction. In this manuscript, we discuss the loop of phenotype for tendon tissue homeostasis. We describe cell shape and ECM organization in normal and diseased tissue, how ECM composition influences tenocyte shape, and how that leads to the activation of signal transduction pathways and ECM deposition. We further describe the use of technologies to control cell shape to elucidate the link between cell shape and its phenotypical markers and focus on the causal role of cell shape in the loop of phenotype. STATEMENT OF SIGNIFICANCE: The dynamic reciprocity between cells and their surrounding extracellular matrix (ECM) influences biomechanical and biochemical properties of ECM as well as cell function through activation of signal transduction pathways that regulate gene and protein expression. We refer to this reciprocity as Loop of Phenotype and it has been studied and demonstrated extensively by using micro-fabricated platforms to manipulate cell shape and cell fate. In this manuscript, we discuss this concept in tendon tissue homeostasis by giving examples in healthy and pathological tenson tissue. Furthermore, we elaborate this by showing how biomaterials are used to feed this reciprocity to manipulate cell shape and function. Finally, we elucidate the link between cell shape and its phenotypical markers and focus on the activation of signal transduction pathways and ECM deposition.
Collapse
Affiliation(s)
- Aysegul Dede Eren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Steven Vermeulen
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine, Instructive Biomaterial Engineering, Maastricht, the Netherlands
| | - Tara C Schmitz
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jasper Foolen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
112
|
Gardner BB, He TC, Wu S, Liu W, Gutierrez-Sherman V, Mass DP. Growth Factor Expression During Healing in 3 Distinct Tendons. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2022; 4:214-219. [PMID: 35880149 PMCID: PMC9308159 DOI: 10.1016/j.jhsg.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/09/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose We investigated unique tendon growth-factor expression profiles over time in response to simultaneous, similar injuries. Characterizing these genetic differences lays the foundation for creating targeted, tendon-specific therapies and provides insight into why current growth-factor treatments have success in some applications but not others. Methods The left fourth digital flexor, triceps, and supraspinatus tendons in 24 rats were cut to 50% of their transverse width at the midbelly under anesthesia. On postoperative days 1, 3, 5, 7, and 14, randomly selected rats were sacrificed, and the damaged tendons were excised and flash-frozen in liquid nitrogen. The expressional fibroblast growth factor 1, bone morphogenic protein 13, and transforming growth factor β-1 were measured at each time point and compared to their respective, uninjured levels with real-time polymerase chain reaction. Results The digital flexor tendon showed exponentially elevated expression of all 3 factors over the preinjury baseline values. Expression in the triceps and supraspinatus had more variation over time. The triceps tendon showed a considerable decrease of transforming growth factor β-1 and bone morphogenic protein 13 expression. The supraspinatus tendon had statistically significant increases of both transforming growth factor β-1 and bone morphogenic protein 13 expression relative to preoperative, uninjured levels, with a nonstatistically significant decrease of fibroblast growth factor 1. Conclusions Our study suggests different tendons express their own unique growth-factor profiles after similar, simultaneous injuries. The digital flexor showed particularly high, sustained levels of growth-factor expression in comparison to the supraspinatus and triceps, suggesting that variable dosing may be necessary for growth-factor therapies aimed at supplementing innate responses in these different tendon types. Clinical relevance These data show different tendons express unique trends of growth-factor expression over time in response to injury, suggesting each unique tendon may require specific dosing or knockdown therapies. These observations serve as a foundation for more tendon-specific questioning, experimentation, and therapeutic design.
Collapse
|
113
|
Chevrier A, Hurtig MB, Lavertu M. Chitosan-platelet-rich plasma implants improve rotator cuff repair in a large animal model: Pilot study. J Biomater Appl 2022; 37:183-194. [PMID: 35435027 DOI: 10.1177/08853282221085058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Freeze-dried formulations of chitosan can be solubilized in platelet-rich plasma (PRP) to form injectable implants that are used as an adjunct treatment during surgical repair of the rotator cuff. The purpose of the current study was to assess chitosan-PRP implant residency, test safety, and assess efficacy over standard-of-care controls in a sheep model of rotator cuff repair. The infraspinatus tendon was transected unilaterally and immediately repaired with suture anchors in 22 skeletally mature ewes. In treatment groups, formulations containing chitosan, trehalose, and calcium chloride were solubilized with autologous leukocyte-rich PRP and injected at the tendon-bone interface and on top of the repaired site (1 mL or 2 mL doses). Implant residency was assessed histologically at 1 day. Outcome measures included MRI assessment at baseline, 6 weeks, and 12 weeks, histopathology and clinical pathology. Chitosan-PRP implants were resident at the injection site at 1 day and induced recruitment of polymorphonuclear cells. The tendon gap, which corresponds to the length of abnormally hyperintense tissue attached to the humeral head, was decreased by treatment with the 2 mL dose when compared to controls at 12 weeks on MRI images. Some histological features were improved by the 2 mL dose treatment compared to controls at 12 weeks. There was no treatment-specific effect on all standard safety outcome measures, which suggests high safety. This study provides preliminary evidence on the safety and efficacy of chitosan-PRP implants in a large animal model that could potentially be translated to a clinical setting.
Collapse
Affiliation(s)
- Anik Chevrier
- Department of Chemical Engineering, 5596Polytechnique Montreal, Montreal, QC, Canada
| | - Mark B Hurtig
- Department of Clinical Studies, 3653University of Guelph, Guelph, ON, Canada
| | - Marc Lavertu
- Department of Chemical Engineering and Institute of Biomedical Engineering, 5596Polytechnique Montreal, Montreal, QC, Canada
| |
Collapse
|
114
|
Abraham AC, Fang F, Golman M, Oikonomou P, Thomopoulos S. The role of loading in murine models of rotator cuff disease. J Orthop Res 2022; 40:977-986. [PMID: 34081350 PMCID: PMC8639823 DOI: 10.1002/jor.25113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 05/31/2021] [Indexed: 02/04/2023]
Abstract
Rotator cuff disease pathogenesis is associated with intrinsic (e.g., age, joint laxity, muscle weakness) and extrinsic (e.g., mechanical load, fatigue) factors that lead to chronic degeneration of the cuff tissues. However, etiological studies are difficult to perform in patients due to the long duration of disease onset and progression. Therefore, the purpose of this study was to determine the effects of altered joint loading on the rotator cuff. Mice were subjected to one of three load-dependent rotator cuff tendinopathy models: underuse loading, achieved by injecting botulinum toxin-A into the supraspinatus muscle; overuse loading, achieved using downhill treadmill running; destabilization loading, achieved by surgical excision of the infraspinatus tendon. All models were compared to cage activity animals. Whole joint function was assessed longitudinally using gait analysis. Tissue-scale structure and function were determined using microCT, tensile testing, and histology. The molecular response of the supraspinatus tendon and enthesis was determined by measuring the expression of 84 wound healing-associated genes. Underuse and destabilization altered forepaw weight-bearing, decreased tendon-to-bone attachment strength, decreased mineral density of the humeral epiphysis, and reduced tendon strength. Transcriptional activity of the underuse group returned to baseline levels by 4 weeks, while destabilization had significant upregulation of inflammation, growth factors, and extracellular matrix remodeling genes. Surprisingly, overuse activity caused changes in walking patterns, increased tendon stiffness, and primarily suppressed expression of wound healing-related genes. In summary, the tendinopathy models demonstrated how divergent muscle loading can result in clinically relevant alterations in rotator cuff structure, function, and gene expression.
Collapse
Affiliation(s)
- Adam C. Abraham
- University of Michigan, Department of Orthopaedic Surgery, Biomedical Science Research Building, 109 Zina Pitcher Pl, Ann Arbor, MI 48109, USA,Corresponding author Adam C. Abraham, Ph.D., Research Investigator, University of Michigan, Department of Orthopaedic Surgery, Ann Arbor, MI 48109, USA,
| | - Fei Fang
- Columbia University Irving Medical Center, Department of Orthopaedic Surgery, New York, NY 10032, USA
| | - Mikhail Golman
- Columbia University, Department of Biomedical Engineering, New York, NY 10027
| | | | - Stavros Thomopoulos
- Columbia University Irving Medical Center, Department of Orthopaedic Surgery, New York, NY 10032, USA,Columbia University, Department of Biomedical Engineering, New York, NY 10027
| |
Collapse
|
115
|
Dietrich-Zagonel F, Aspenberg P, Eliasson P. Dexamethasone Enhances Achilles Tendon Healing in an Animal Injury Model, and the Effects Are Dependent on Dose, Administration Time, and Mechanical Loading Stimulation. Am J Sports Med 2022; 50:1306-1316. [PMID: 35234541 PMCID: PMC9014685 DOI: 10.1177/03635465221077101] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Corticosteroid treatments such as dexamethasone are commonly used to treat tendinopathy but with mixed outcomes. Although this treatment can cause tendon rupture, it can also stimulate the tendon to heal. However, the mechanisms behind corticosteroid treatment during tendon healing are yet to be understood. PURPOSE To comprehend when and how dexamethasone treatment can ameliorate injured tendons by using a rat model of Achilles tendon healing. STUDY DESIGN Controlled laboratory study. METHODS An overall 320 rats were used for a sequence of 6 experiments. We investigated whether the drug effect was time-, dose-, and load-dependent. Additionally, morphological data and drug administration routes were examined. Healing tendons were tested mechanically or used for histological examination 12 days after transection. Blood was collected for flow cytometry analysis in 1 experiment. RESULTS We found that the circadian rhythm and drug injection timing influenced the treatment outcome. Dexamethasone treatment at the right time point (days 7-11) and dose (0.1 mg/kg) significantly improved the material properties of the healing tendon, while the adverse effects were reduced. Local dexamethasone treatment did not lead to increased peak stress, but it triggered systemic granulocytosis and lymphopenia. Mechanical loading (full or moderate) is essential for the positive effects of dexamethasone, as complete unloading leads to the absence of improvements. CONCLUSION We conclude that dexamethasone treatment to improve Achilles tendon healing is dose- and time-dependent, and positive effects are perceived even in a partly unloaded condition. CLINICAL RELEVANCE These findings are promising from a clinical perspective, as the positive effect of this drug was seen even when given at lower doses and in a moderate loading condition, which better mimics the load level in patients with tendon ruptures.
Collapse
Affiliation(s)
- Franciele Dietrich-Zagonel
- Department of Biomedical and Clinical
Sciences, Faculty of Medicine and Health Science, Linköping University, Linköping,
Sweden,Franciele Dietrich-Zagonel,
MSc, PhD, Division of Surgery, Orthopedics and Oncology, Department of
Biomedical and Clinical Sciences, Linköping University, Cell Biology Building
Floor 10, SE-58183 Linköping, Sweden (
)
| | - Per Aspenberg
- Department of Biomedical and Clinical
Sciences, Faculty of Medicine and Health Science, Linköping University, Linköping,
Sweden
| | - Pernilla Eliasson
- Department of Biomedical and Clinical
Sciences, Faculty of Medicine and Health Science, Linköping University, Linköping,
Sweden
| |
Collapse
|
116
|
Ruder MC, Zauel R, Diefenbach BJ, Bey MJ. Quantifying shoulder activity after rotator cuff repair: Technique and preliminary results. J Orthop Res 2022; 40:917-924. [PMID: 34191325 DOI: 10.1002/jor.25122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/13/2021] [Accepted: 06/25/2021] [Indexed: 02/04/2023]
Abstract
Repair tissue healing after rotator cuff repair remains a significant clinical problem, and excessive shoulder activity after surgical repair is believed to contribute to re-tears. In contrast, small animal studies have demonstrated that complete removal of activity impairs tendon healing and have advocated for an "appropriate" level of activity, but in humans the appropriate amount of shoulder activity to enhance healing is not known. As an initial step toward understanding the relationship between postoperative shoulder activity and repair tissue healing, the objectives of this study were to assess the precision, accuracy, and feasibility of a wrist-worn triaxial accelerometer for measuring shoulder activity. Following assessments of precision (±0.002 g) and accuracy (±0.006 g), feasibility was assessed by measuring 1 week of shoulder activity in 14 rotator cuff repair patients and 8 control subjects. Shoulder activity was reported in terms of volume (mean acceleration, activity count, mean activity index, active time) and intensity (intensity gradient). Patients had significantly less volume (p ≤ .03) and intensity (p = .01) than controls. Time post-surgery was significantly associated with the volume (p ≤ .05 for mean acceleration, activity count, and mean activity index) and intensity (p = .03) of shoulder activity, but not active time (p = .08). These findings indicate this approach has the accuracy and precision necessary to continuously monitor shoulder activity with a wrist-worn sensor. The preliminary data demonstrate the ability to discriminate between healthy control subjects and patients recovering from rotator cuff repair and provide support for using a wearable sensor to monitor changes over time in shoulder activity.
Collapse
Affiliation(s)
| | - Roger Zauel
- Henry Ford Health System, Detroit, Michigan, USA
| | | | | |
Collapse
|
117
|
Hamilton AG, Townsend JM, Detamore MS. Automated Decellularization of Musculoskeletal Tissues with High Extracellular Matrix Retention. Tissue Eng Part C Methods 2022; 28:137-147. [PMID: 35245975 DOI: 10.1089/ten.tec.2022.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Manual tissue decellularization is an onerous process that requires the application of many sequential treatments by an operator and can be prone to user error and result variability. While automated decellularization devices have been previously reported, with advances being made in recent years toward open-source platforms, previous automated decellularization devices have been reliant on hardware or software components that are closed-source and proprietary. The aim of the current work was to develop and validate a full open-source automated decellularization system to be available for others to adopt. The open-source decellularization apparatus is a low-cost (<$2000) device that may easily be adapted to an array of decellularization protocols, with an example parts' list provided herein. The automated decellularization device was used to decellularize hyaline cartilage, knee meniscus, and tendon tissues. Cartilage, meniscus, and tendon tissue demonstrated 97%, 99%, and 96% reduction in DNA content after decellularization, respectively, and with effective decellularization confirmed visually via histology. High retentions of glycosaminoglycans (GAGs), collagen, and other proteins were observed in meniscus and tendon following decellularization. Results with manual decellularization with meniscus tissue were consistent with the automated decellularization process. Decellularized cartilage (DCC) demonstrated a 34% decrease in GAG content, while the protein and collagen content did not significantly change. The current study demonstrated that native-like decellularized tissues were produced reproducibly using the reported open-source automated decellularization platform, providing an adoptable platform for production of decellularized tissues by others. Impact statement Decellularized extracellular matrix (ECM)-based materials are appealing for tissue engineering, but production of these materials is historically time-intensive, tedious, and prone to user error. Adoption of an automated system may be a barrier for many research groups due to cost and complexity. In this article, a low-cost open-source platform for automated decellularization is presented. This method is validated by decellularizing porcine musculoskeletal tissues and demonstrating the native-like compositional properties of these decellularized tissues. The ability to produce decellularized tissue in an automated manner is useful for further research of ECM-based materials and potential clinical applications.
Collapse
Affiliation(s)
- Alex G Hamilton
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jakob M Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
118
|
Lin KY, Chen P, Chen ACY, Chan YS, Lei KF, Chiu CH. Leukocyte-Rich Platelet-Rich Plasma Has Better Stimulating Effects on Tenocyte Proliferation Compared With Leukocyte-Poor Platelet-Rich Plasma. Orthop J Sports Med 2022; 10:23259671221084706. [PMID: 35309233 PMCID: PMC8928403 DOI: 10.1177/23259671221084706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Rotator cuff (RC) tendinopathy is one of the most common causes of shoulder pain. Platelet-rich plasma (PRP) has been frequently used in clinical scenarios, but its efficacy remains inconsistent. Purpose: To investigate the different responses of human tenocytes from torn RCs to leukocyte-rich PRP (LR-PRP) and leukocyte-poor PRP (LP-PRP) in a 2-chamber coculture device. Study Design: Controlled laboratory study. Methods: PRP was prepared using different platelet and leukocyte concentrations according to 5 groups: (1) LR-PRP with 5000 platelets/µL, (2) LR-PRP with 10,000 platelets/µL, (3) LP-PRP with 5000 platelets/µL, (4) LP-PRP with 10,000 platelets/µL, and (5) control with only culture medium supplementation and without PRP stimulation. Platelet-derived growth factor–AB (PDGF-AB) and transforming growth factor–β1 (TGF-β1) were measured in LR-PRP and LP-PRP via enzyme-linked immunosorbent assay. Microscopy, water-soluble tetrazolium salt assay, and quantitative real-time polymerase chain reaction were used to investigate the morphology, proliferation, and gene expression of RC tenocytes exposed to different PRP formulations. Data were collected from at least 3 independent measurements. The results were analyzed via 1-way analysis of variance, followed by the post hoc Bonferroni test. Results: The ratio of leukocytes to 5000 platelets/µL was 29.5 times higher in LR-PRP than in LP-PRP (P < .05). In the 5000 platelets/µL groups, the levels of TGF-β1 and PDGF-AB were both significantly higher in LR-PRP versus LP-PRP (TGF-β1: 367.0 ± 16.5 vs 308.6 ± 30.3 pg/mL, respectively [P = .043]; PDGF-AB: 172.1 ± 1.8 vs 94.1 ± 4.2 pg/mL, respectively [P < .001]). Compared with the control group, RC tenocyte proliferation was 1.42 ± 0.01 and 1.41 ± 0.03 times higher in the LR-PRP groups with 5000 platelets/µL and 10,000 platelets/µL, respectively (P < .05). The expression of tenocyte-related genes was higher in tenocytes cultured in LR-PRP. Conclusion: Both the LR-PRP groups with 5000 platelets/µL and 10,000 platelets/µL induced more growth factor release and increased RC tenocyte proliferation than did the LP-PRP groups. Clinical Relevance: In RC repair, LR-PRP may be better than LP-PRP for increasing the proliferation of tenocytes.
Collapse
Affiliation(s)
- Keng-Yi Lin
- Department of Medicine, Chang Gung University, Taoyuan
| | - Poyu Chen
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan
| | - Alvin Chao-Yu Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou
| | - Yi-Sheng Chan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou
| | - Kin Fong Lei
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan
| | - Chih-Hao Chiu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan
- Comprehensive Sports Medicine Center, Chang Gung Memorial Hospital, Taoyuan
| |
Collapse
|
119
|
Beamon WL, Duffy DJ, Chang YJ, Moore GE. Effect of calcanean bone-tunnel orientation for teno-osseous repair in a canine common calcanean tendon avulsion model. Vet Surg 2022; 51:688-696. [PMID: 35277992 PMCID: PMC9314852 DOI: 10.1111/vsu.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/13/2022] [Accepted: 02/13/2022] [Indexed: 11/27/2022]
Abstract
Objective To determine the influence of bone‐tunnel anchoring technique on teno‐osseous repair of the common calcanean tendon (CCT) in dogs. Study design Randomized, ex vivo, biomechanical. Population Forty‐two skeletally mature canine hindlimbs. Methods Canine hindlimbs were dissected to produce a model simulating avulsion of the CCT and accessory tendons from the calcaneus. Hindlimbs were randomized to 1 of 3 anchoring techniques (n = 14/group): a single transverse tunnel (TT), vertical tunnels (VT), or modified bone tunnels (MT) for teno‐osseous repair in a 3‐loop‐pulley (3LP) pattern using 0 USP polypropylene. Yield, peak and failure loads, construct stiffness, loads to produce a 3 mm teno‐osseous gap, and failure modes were compared between groups. Results The only difference detected consisted of TT constructs yielding at loads 25% higher than MT constructs (P = .027). Conclusion Although yield loads were lower in MT constructs than other groups, the bone‐tunnel anchoring techniques tested here did not appear to influence the biomechanical properties or gapping characteristics of teno‐osseous repairs in this canine CCT avulsion model. Clinical significance All drilling techniques and bone‐tunnel orientations tested in the study reported here offer viable options to reattach the CCT to the calcaneus. Surgeons should evaluate how bone‐tunnel orientation may affect placement of adjunctive fixation methods to stabilize the talocrural joint after primary CCT repair in dogs.
Collapse
Affiliation(s)
- Weston L Beamon
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Daniel J Duffy
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Yi-Jen Chang
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - George E Moore
- Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
120
|
Prabhath A, Vernekar VN, Esdaille CJ, Eisenberg E, Lebaschi A, Badon M, Seyedsalehi A, Dzidotor G, Tang X, Dyment N, Thomopoulos S, Kumbar SG, Deymier A, Weber E, Laurencin CT. Pegylated insulin-like growth factor-1 biotherapeutic delivery promotes rotator cuff regeneration in a rat model. J Biomed Mater Res A 2022; 110:1356-1371. [PMID: 35253991 DOI: 10.1002/jbm.a.37378] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/27/2022]
Abstract
Tears in the rotator cuff are challenging to repair because of the complex, hypocellular, hypovascular, and movement-active nature of the tendon and its enthesis. Insulin-like Growth Factor-1 (IGF-1) is a promising therapeutic for this repair. However, its unstable nature, short half-life, and ability to disrupt homeostasis has limited its clinical translation. Pegylation has been shown to improve the stability and sustain IGF-1 levels in the systemic circulation without disrupting homeostasis. To provide localized delivery of IGF-1 in the repaired tendons, we encapsulated pegylated IGF-1 mimic and its controls (unpegylated IGF-1 mimic and recombinant human IGF-1) in polycaprolactone-based matrices and evaluated them in a pre-clinical rodent model of rotator cuff repair. Pegylated-IGF-1 mimic delivery reestablished the characteristic tendon-to-bone enthesis structure and improved tendon tensile properties within 8 weeks of repair compared to controls, signifying the importance of pegylation in this complex tissue regeneration. These results demonstrate a simple and scalable biologic delivery technology alternative to tissue-derived grafts for soft tissue repair.
Collapse
Affiliation(s)
- Anupama Prabhath
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA.,Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
| | - Varadraj N Vernekar
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Caldon J Esdaille
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA
| | - Ellen Eisenberg
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, Connecticut, USA
| | - Amir Lebaschi
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Mary Badon
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA
| | - Amir Seyedsalehi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA.,Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
| | - Godwin Dzidotor
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA.,Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Xiaoyan Tang
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA.,Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Nathaniel Dyment
- McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA.,Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Sangamesh G Kumbar
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA.,Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA.,Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Alix Deymier
- Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
| | - Eckhard Weber
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA.,Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA.,Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
121
|
Lyu K, Liu X, Jiang L, Chen Y, Lu J, Zhu B, Liu X, Li Y, Wang D, Li S. The Functions and Mechanisms of Low-Level Laser Therapy in Tendon Repair (Review). Front Physiol 2022; 13:808374. [PMID: 35242050 PMCID: PMC8886125 DOI: 10.3389/fphys.2022.808374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Tendon injury is a common disease of the musculoskeletal system, accounting for roughly 30%–40% of sports system disorder injuries. In recent years, its incidence is increasing. Many studies have shown that low-level laser therapy (LLLT) has a significant effect on tendon repair by firstly activating cytochrome C oxidase and thus carrying out the photon absorption process, secondly acting in all the three phases of tendon repair, and finally improving tendon recovery. The repair mechanisms of LLLT are different in the three phases of tendon repair. In the inflammatory phase, LLLT mainly activates a large number of VEGF and promotes angiogenesis under hypoxia. During the proliferation phase, LLLT increases the amount of collagen type III by promoting the proliferation of fibroblasts. Throughout the remodeling phase, LLLT mainly activates M2 macrophages and downregulates inflammatory factors, thus reducing inflammatory responses. However, it should also be noted that in the final phase of tendon repair, the use of LLLT causes excessive upregulation of some growth factors, which will lead to tendon fibrosis. In summary, we need to further investigate the functions and mechanisms of LLLT in the treatment of tendon injury and to clarify the nature of LLLT for the treatment of diverse tendon injury diseases.
Collapse
Affiliation(s)
- Kexin Lyu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xueli Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Li Jiang
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Jingwei Lu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Bin Zhu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xinyue Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Yujie Li
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Dingxuan Wang
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
122
|
Cetik RM, Yabanoglu Ciftci S, Arica B, Baysal I, Akarca Dizakar SO, Erbay Elibol FK, Gencer A, Demir T, Ayvaz M. Evaluation of the Effects of Transforming Growth Factor-Beta 3 (TGF-β3) Loaded Nanoparticles on Healing in a Rat Achilles Tendon Injury Model. Am J Sports Med 2022; 50:1066-1077. [PMID: 35188807 DOI: 10.1177/03635465211073148] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Achilles tendon (AT) midsubstance injuries may heal suboptimally, especially in athletes. Transforming growth factor-beta 3 (TGF-β3) shows promise because of its recently discovered tendinogenic effects. Using poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles (NPs) may enhance the results by a sustained-release effect. HYPOTHESIS The application of TGF-β3 will enhance AT midsubstance healing, and the NP form will achieve better outcomes. STUDY DESIGN Controlled laboratory study. METHODS A total of 80 rats underwent unilateral AT transection and were divided into 4 groups: (1) control (C); (2) empty chitosan film (Ch); (3) chitosan film containing free TGF-β3 (ChT); and (4) chitosan film containing TGF-β3-loaded NPs (ChN). The animals were sacrificed at 3 and 6 weeks. Tendons were evaluated for morphology (length and cross-sectional area [CSA]), biomechanics (maximum load, stress, stiffness, and elastic modulus), histology, immunohistochemical quantification (types I and III collagen [COL1 and COL3]), and gene expression (COL1A1, COL3A1, scleraxis, and tenomodulin). RESULTS Morphologically, at 3 weeks, ChT (15 ± 2.7 mm) and ChN (15.6 ± 1.6 mm) were shorter than C (17.6 ± 1.8 mm) (P = .019 and = .004, respectively). At 6 weeks, the mean CSA of ChN (10.4 ± 1.9 mm2) was similar to that of intact tendons (6.4 ± 1.1 mm2) (P = .230), while the other groups were larger. Biomechanically, at 3 weeks, ChT (42.8 ± 4.9 N) had a higher maximum load than C (27 ± 9.1 N; P = .004) and Ch (29.2 ± 5.7 N; P = .005). At 6 weeks, ChN (26.9 ± 3.9 MPa) had similar maximum stress when compared with intact tendons (34.1 ± 7.8 MPa) (P = .121); the other groups were significantly lower. Histologically, at 6 weeks, the mean Movin score of ChN (4.5 ± 1.5) was lower than that of ChT (6.3 ± 1.8). Immunohistochemically, ChN had higher COL3 (1.469 ± 0.514) at 3 weeks and lower COL1 (1.129 ± 0.368) at 6 weeks. COL1A1 gene expression was higher in ChT and ChN at 3 weeks, but COL3A1 gene expression was higher in ChN. CONCLUSION The application of TGF-β3 had a positive effect on AT midsubstance healing, and the sustained-release NP form improved the outcomes, more specifically accelerating the remodeling process. CLINICAL RELEVANCE This study demonstrated the effectiveness of TGF-β3 on tendon healing on a rat model, which is an important step toward clinical use. The novel method of using PLGA-b-PEG NPs as a drug-delivery system with sustained-release properties had promising results.
Collapse
Affiliation(s)
- Riza Mert Cetik
- Hacettepe University Faculty of Medicine, Department of Orthopedics and Traumatology, Ankara, Turkey
| | | | - Betul Arica
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey
| | - Ipek Baysal
- Hacettepe University Vocational School of Health Services, Ankara, Turkey
| | | | - Fatma Kubra Erbay Elibol
- TOBB ETÜ University of Economics and Technology, Department of Biomedical Engineering, Ankara, Turkey
| | - Ayse Gencer
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey
| | - Teyfik Demir
- TOBB ETÜ University of Economics and Technology, Department of Mechanical Engineering, Ankara, Turkey
| | - Mehmet Ayvaz
- Hacettepe University Faculty of Medicine, Department of Orthopedics and Traumatology, Ankara, Turkey
| |
Collapse
|
123
|
Yu JS, Dare DM, Edon D, Sinatro AL, Sarver DC, Rodeo S, Dines JS, Mendias CL. Shoulder Lesions Do Not Increase Inflammatory Biomarkers in Patients Undergoing Surgery for Glenohumeral Instability: An Exploratory Study. TRANSLATIONAL SPORTS MEDICINE 2022; 2022:4220356. [PMID: 38655158 PMCID: PMC11022782 DOI: 10.1155/2022/4220356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/10/2022] [Indexed: 04/26/2024]
Abstract
Circulating protein biomarkers have demonstrated utility as a diagnostic tool in predicting musculoskeletal disease severity, but their utility in the evaluation of shoulder lesions associated with shoulder instability is unknown. Thus, the purpose of this exploratory study was to determine whether preoperative biomarkers of cartilage turnover and inflammation are associated with specific shoulder lesions in shoulder instability. Thirty-three patients (29.9 ± 9.4 years of age, 4.5 ± 4.7 dislocations) undergoing surgical treatment for shoulder instability were assessed for the presence or absence of associated shoulder lesions. Biomarkers including cartilage oligomeric matrix protein (COMP), C-reactive protein (HS-CRP), interleukin-8 (IL-8), and macrophage inflammatory protein-1β (MIP-1b) were collected at the time of surgery. Patients with Hill-Sachs lesions had a 31% increase in COMP plasma levels (p=0.046). No other significant differences were observed for COMP, HS-CRP, IL-8, and MIP-1b with any shoulder lesion including Hill-Sachs lesions, capsular injuries, bony Bankart lesions, and SLAP lesions. In conclusion, inflammatory biomarkers including HS-CRP, IL-8, and MIP-1b were not associated with specific shoulder lesions, while biomarkers of cartilage turnover (COMP) were only elevated in Hill-Sachs lesions. These findings suggest that these biomarkers may have limited utility as prognostic indicators in patients with shoulder instability, though large-scale and longitudinal studies are still necessary.
Collapse
Affiliation(s)
- Jonathan S. Yu
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - David M. Dare
- Hospital for Special Surgery, New York, NY, USA
- Raleigh Orthopedic Clinic, Raleigh, NC, USA
| | - Daniel Edon
- Hospital for Special Surgery, New York, NY, USA
| | - Alec L. Sinatro
- Hospital for Special Surgery, New York, NY, USA
- Albert Einstein College of Medicine, New York, NY, USA
| | - Dylan C. Sarver
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Scott Rodeo
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Joshua S. Dines
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Christopher L. Mendias
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
124
|
Brebels J, Mignon A. Polymer-Based Constructs for Flexor Tendon Repair: A Review. Polymers (Basel) 2022; 14:867. [PMID: 35267690 PMCID: PMC8912457 DOI: 10.3390/polym14050867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
A flexor tendon injury is acquired fast and is common for athletes, construction workers, and military personnel among others, treated in the emergency department. However, the healing of injured flexor tendons is stretched over a long period of up to 12 weeks, therefore, remaining a significant clinical problem. Postoperative complications, arising after traditional tendon repair strategies, include adhesion and tendon scar tissue formation, insufficient mechanical strength for early active mobilization, and infections. Various researchers have tried to develop innovative strategies for developing a polymer-based construct that minimalizes these postoperative complications, yet none are routinely used in clinical practice. Understanding the role such constructs play in tendon repair should enable a more targeted approach. This review mainly describes the polymer-based constructs that show promising results in solving these complications, in the hope that one day these will be used as a routine practice in flexor tendon repair, increasing the well-being of the patients. In addition, the review also focuses on the incorporation of active compounds in these constructs, to provide an enhanced healing environment for the flexor tendon.
Collapse
Affiliation(s)
| | - Arn Mignon
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium;
| |
Collapse
|
125
|
Kallenbach JG, Freeberg MAT, Abplanalp D, Alenchery RG, Ajalik RE, Muscat S, Myers JA, Ashton JM, Loiselle A, Buckley MR, van Wijnen AJ, Awad HA. Altered TGFB1 regulated pathways promote accelerated tendon healing in the superhealer MRL/MpJ mouse. Sci Rep 2022; 12:3026. [PMID: 35194136 PMCID: PMC8863792 DOI: 10.1038/s41598-022-07124-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/11/2022] [Indexed: 12/23/2022] Open
Abstract
To better understand the molecular mechanisms of tendon healing, we investigated the Murphy Roth's Large (MRL) mouse, which is considered a model of mammalian tissue regeneration. We show that compared to C57Bl/6J (C57) mice, injured MRL tendons have reduced fibrotic adhesions and cellular proliferation, with accelerated improvements in biomechanical properties. RNA-seq analysis revealed that differentially expressed genes in the C57 healing tendon at 7 days post injury were functionally linked to fibrosis, immune system signaling and extracellular matrix (ECM) organization, while the differentially expressed genes in the MRL injured tendon were dominated by cell cycle pathways. These gene expression changes were associated with increased α-SMA+ myofibroblast and F4/80+ macrophage activation and abundant BCL-2 expression in the C57 injured tendons. Transcriptional analysis of upstream regulators using Ingenuity Pathway Analysis showed positive enrichment of TGFB1 in both C57 and MRL healing tendons, but with different downstream transcriptional effects. MRL tendons exhibited of cell cycle regulatory genes, with negative enrichment of the cell senescence-related regulators, compared to the positively-enriched inflammatory and fibrotic (ECM organization) pathways in the C57 tendons. Serum cytokine analysis revealed decreased levels of circulating senescence-associated circulatory proteins in response to injury in the MRL mice compared to the C57 mice. These data collectively demonstrate altered TGFB1 regulated inflammatory, fibrosis, and cell cycle pathways in flexor tendon repair in MRL mice, and could give cues to improved tendon healing.
Collapse
Affiliation(s)
- Jacob G Kallenbach
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Margaret A T Freeberg
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - David Abplanalp
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Rahul G Alenchery
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Raquel E Ajalik
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Samantha Muscat
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacquelyn A Myers
- UR Genomics Research Center (GRC), University of Rochester Medical Center, Rochester, NY, USA
| | - John M Ashton
- UR Genomics Research Center (GRC), University of Rochester Medical Center, Rochester, NY, USA
| | - Alayna Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Hani A Awad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.
| |
Collapse
|
126
|
Maffulli N, Gougoulias N, Maffulli GD, Oliva F, Migliorini F. Slowed-Down Rehabilitation Following Percutaneous Repair of Achilles Tendon Rupture. Foot Ankle Int 2022; 43:244-252. [PMID: 34581220 PMCID: PMC8841642 DOI: 10.1177/10711007211038594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Following percutaneous repair of acute Achilles tendon (AT) ruptures, early postoperative weightbearing is advocated; however, it is debatable how aggressive rehabilitation should be. We compared the clinical and functional outcomes in 2 groups of patients who followed either our "traditional" or a "slowed down" rehabilitation after percutaneous surgical repair. METHODS Sixty patients were prospectively recruited to a slowed down (29 patients) or a traditional (31 patients) rehabilitation program. Both groups were allowed immediate weightbearing postoperatively; a removable brace with 5 heel wedges was applied at 2 weeks. In the slowed-down group, 1 wedge was removed after 4 weeks. Gradual removal of the boot took place after 4 wedges were kept for 4 weeks. In the traditional group, 1 wedge was removed every 2 weeks, with removal of the boot after 2 wedges had been kept for 2 weeks. The AT Resting Angle (ATRA) evaluated tendon elongation. Patient reported functional outcomes were assessed using the AT Rupture Score (ATRS). Calf circumference difference and the isometric plantarflexion strength of the gastro-soleus complex were evaluated. RESULTS At the 12-month follow-up, both ATRA and ATRS were more favorable in the slowed-down group. The isometric strength and the calf circumference were more similar to the contralateral leg in the slowed-down group than in the traditional one. CONCLUSION Following percutaneous repair of acute Achilles tendon patients undergoing slowed down rehabilitation performed better than the traditional one. These conclusions must be considered within the limitations of the present study. LEVEL OF EVIDENCE Level II, prospective comparative study.
Collapse
Affiliation(s)
- Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi (SA), Italy,School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, England, United Kingdom,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, London, England, United Kingdom,Nicola Maffulli MD, MS, PhD, Queen Mary University of London, Mile End Hospital, 275 Bancroft Rd, London, E1 4DG, England, United Kingdom.
| | - Nikolaos Gougoulias
- General Hospital of Katerini, Greece,Frimley Park Hospital, Frimley, Surrey, England, United Kingdom
| | | | - Francesco Oliva
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi (SA), Italy
| | - Filippo Migliorini
- Department of Orthopaedics, University Clinic Aachen, RWTH Aachen University Clinic, Aachen, Germany
| |
Collapse
|
127
|
Yao Z, Qian Y, Jin Y, Wang S, Li J, Yuan WE, Fan C. Biomimetic multilayer polycaprolactone/sodium alginate hydrogel scaffolds loaded with melatonin facilitate tendon regeneration. Carbohydr Polym 2022; 277:118865. [PMID: 34893270 DOI: 10.1016/j.carbpol.2021.118865] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 11/04/2021] [Indexed: 02/09/2023]
Abstract
Tendon injury is one of the most common musculoskeletal diseases in the world, severely challenging the public health care system. Electrospinning technique using polymer materials (i.e. polycaprolactone (PCL)) and hydrogels (i.e. sodium alginate (ALG)) contribute to the development and application of smart composite scaffolds in the tendon tissue engineering by advantageously integrating mechanical properties and biocompatibility. As a potential natural antioxidant, melatonin (MLT) represents the potential to promote tendon repair. Here, we develop an MLT-loaded PCL/ALG composite scaffold that effectively promotes tendon injury repair in vivo and in vitro via a controlled release of MLT, possibly mechanically relying on an antioxidant stress pathway. This biomimetic composite scaffold will be of great significance in the tendon tissue engineering.
Collapse
Affiliation(s)
- Zhixiao Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.
| | - Yi Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shikun Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Juehong Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.
| |
Collapse
|
128
|
Russo V, El Khatib M, Prencipe G, Citeroni MR, Faydaver M, Mauro A, Berardinelli P, Cerveró-Varona A, Haidar-Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Stöckl J, Barboni B. Tendon Immune Regeneration: Insights on the Synergetic Role of Stem and Immune Cells during Tendon Regeneration. Cells 2022; 11:434. [PMID: 35159244 PMCID: PMC8834336 DOI: 10.3390/cells11030434] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Tendon disorders represent a very common pathology in today's population, and tendinopathies that account 30% of tendon-related injuries, affect yearly millions of people which in turn cause huge socioeconomic and health repercussions worldwide. Inflammation plays a prominent role in the development of tendon pathologies, and advances in understanding the underlying mechanisms during the inflammatory state have provided additional insights into its potential role in tendon disorders. Different cell compartments, in combination with secreted immune modulators, have shown to control and modulate the inflammatory response during tendinopathies. Stromal compartment represented by tenocytes has shown to display an important role in orchestrating the inflammatory response during tendon injuries due to the interplay they exhibit with the immune-sensing and infiltrating compartments, which belong to resident and recruited immune cells. The use of stem cells or their derived secretomes within the regenerative medicine field might represent synergic new therapeutical approaches that can be used to tune the reaction of immune cells within the damaged tissues. To this end, promising opportunities are headed to the stimulation of macrophages polarization towards anti-inflammatory phenotype together with the recruitment of stem cells, that possess immunomodulatory properties, able to infiltrate within the damaged tissues and improve tendinopathies resolution. Indeed, the comprehension of the interactions between tenocytes or stem cells with the immune cells might considerably modulate the immune reaction solving hence the inflammatory response and preventing fibrotic tissue formation. The purpose of this review is to compare the roles of distinct cell compartments during tendon homeostasis and injury. Furthermore, the role of immune cells in this field, as well as their interactions with stem cells and tenocytes during tendon regeneration, will be discussed to gain insights into new ways for dealing with tendinopathies.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Melisa Faydaver
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Arlette A. Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Marcello Raspa
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Ferdinando Scavizzi
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Fabrizio Bonaventura
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| |
Collapse
|
129
|
He P, Ruan D, Huang Z, Wang C, Xu Y, Cai H, Liu H, Fei Y, Heng BC, Chen W, Shen W. Comparison of Tendon Development Versus Tendon Healing and Regeneration. Front Cell Dev Biol 2022; 10:821667. [PMID: 35141224 PMCID: PMC8819183 DOI: 10.3389/fcell.2022.821667] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
Tendon is a vital connective tissue in human skeletal muscle system, and tendon injury is very common and intractable in clinic. Tendon development and repair are two closely related but still not fully understood processes. Tendon development involves multiple germ layer, as well as the regulation of diversity transcription factors (Scx et al.), proteins (Tnmd et al.) and signaling pathways (TGFβ et al.). The nature process of tendon repair is roughly divided in three stages, which are dominated by various cells and cell factors. This review will describe the whole process of tendon development and compare it with the process of tendon repair, focusing on the understanding and recent advances in the regulation of tendon development and repair. The study and comparison of tendon development and repair process can thus provide references and guidelines for treatment of tendon injuries.
Collapse
Affiliation(s)
- Peiwen He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Zizhan Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Honglu Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Hengzhi Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School of Stomatology, Bejing, China
| | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| |
Collapse
|
130
|
Gu H, Chen S, Zhang M, Wen Y, Li B. Differences in the expression profiles of lncRNAs and mRNAs in partially injured anterior cruciate ligament and medial collateral ligament of rabbits. PeerJ 2022; 10:e12781. [PMID: 35070509 PMCID: PMC8760859 DOI: 10.7717/peerj.12781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), as a novel regulatory factor, are considered to play a vital role in various biological processes and diseases. However, the overall expression profile and biological functions of lncRNAs in the partially injured anterior cruciate ligament (ACL) and medial collateral ligament (MCL) have not been clearly explored. Partially injured models of ACL and MCL were established in 3-month-old healthy male New Zealand white rabbits. Expression of lncRNAs and mRNAs in the ligament tissue was detected by high-throughput sequencing technology, and biological functions of differentially expressed RNAs were evaluated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Validation of several differentially expressed RNAs was performed using quantitative real-time PCR (qRT-PCR). Protein-protein interaction (PPI) analysis and competitive endogenous RNA (ceRNA) prediction were used to identify interactions among hub genes and the interaction among lncRNAs, miRNAs, and mRNAs. The results showed that compared with the normal group, there were 267 mRNAs and 329 lncRNAs differentially expressed in ACL and 726 mRNAs and 609 lncRNAs in MCL in the injured group. Compared with MCL, 420 mRNAs and 470 lncRNAs were differentially expressed in ACL in the normal group; 162 mRNAs and 205 lncRNAs were differentially expressed in ACL in the injured group. Several important lncRNAs and genes were identified, namely, COL7A1, LIF, FGFR2, EPHA2, CSF1, MMP2, MMP9, SOX5, LOX, MSTRG.1737.1, MSTRG.26038.25, MSTRG.20209.5, MSTRG.22764.1, and MSTRG.18113.1, which are closely related to inflammatory response, tissue damage repair, cell proliferation, differentiation, migration, and apoptosis. Further study of the functions of these genes may help to better understand the specific molecular mechanisms underlying the occurrence of endogenous repair disorders in ACL, which may provide new ideas for further exploration of effective means to promote endogenous repair of ACL injury.
Collapse
Affiliation(s)
- Huining Gu
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Siyuan Chen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Mingzheng Zhang
- Department of Joint Surgery and Sports Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yu Wen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Bin Li
- Department of Joint Surgery and Sports Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
131
|
Lehner C, Spitzer G, Langthaler P, Jakubecova D, Klein B, Weissenbacher N, Wagner A, Gehwolf R, Trinka E, Iglseder B, Paulweber B, Aigner L, Couillard-Després S, Weiss R, Tempfer H, Traweger A. Allergy-induced systemic inflammation impairs tendon quality. EBioMedicine 2022; 75:103778. [PMID: 35007819 PMCID: PMC8749446 DOI: 10.1016/j.ebiom.2021.103778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
Background Treatment of degenerating tendons still presents a major challenge, since the aetiology of tendinopathies remains poorly understood. Besides mechanical overuse, further known predisposing factors include rheumatoid arthritis, diabetes, obesity or smoking all of which combine with a systemic inflammation. Methods To determine whether the systemic inflammation accompanying these conditions contributes to the onset of tendinopathy, we studied the effect of a systemic inflammation induced by an allergic episode on tendon properties. To this end, we induced an allergic response in mice by exposing them to a timothy grass pollen allergen and subsequently analysed both their flexor and Achilles tendons. Additionally, we analysed data from a health survey comprising data from more than 10.000 persons for an association between the occurrence of an allergy and tendinopathy. Findings Biomechanical testing and histological analysis revealed that tendons from allergic mice not only showed a significant reduction of both elastic modulus and tensile stress, but also alterations of the tendon matrix. Moreover, treatment of 3D tendon-like constructs with sera from allergic mice resulted in a matrix-remodelling expression profile and the expression of macrophage-associated markers and matrix metalloproteinase 2 (MMP2) was increased in allergic Achilles tendons. Data from the human health study revealed that persons suffering from an allergy have an increased propensity to develop a tendinopathy. Interpretation Our study demonstrates that the presence of a systemic inflammation accompanying an allergic condition negatively impacts on tendon structure and function. Funding This study was financially supported by the Fund for the Advancement of Scientific Research at Paracelsus Medical University (PMU-FFF E-15/22/115-LEK), by the Land Salzburg, the Salzburger Landeskliniken (SALK, the Health Care Provider of the University Hospitals Landeskrankenhaus and Christian Doppler Klinik), the Paracelsus Medical University, Salzburg and by unrestricted grants from Bayer, AstraZeneca, Sanofi-Aventis, Boehringer-Ingelheim.
Collapse
Affiliation(s)
- Christine Lehner
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Gabriel Spitzer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Patrick Langthaler
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Affiliated member of the European Reference Network EpiCARE, Austria; Department of Mathematics, Paris Lodron University of Salzburg, Salzburg, Austria; Team Biostatistics and Big Medical Data, IDA Lab Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Dominika Jakubecova
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Klein
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Nadja Weissenbacher
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andrea Wagner
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Renate Gehwolf
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Affiliated member of the European Reference Network EpiCARE, Austria; Department of Public Health, Health Services Research and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria; Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience Salzburg, Austria
| | - Bernhard Iglseder
- Department of Geriatric Medicine, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine, St. Johanns University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig Aigner
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Sebastien Couillard-Després
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Richard Weiss
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg 5020, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
132
|
Secretome from In Vitro Mechanically Loaded Myoblasts Induces Tenocyte Migration, Transition to a Fibroblastic Phenotype and Suppression of Collagen Production. Int J Mol Sci 2021; 22:ijms222313089. [PMID: 34884895 PMCID: PMC8657858 DOI: 10.3390/ijms222313089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
It is known that mechanical loading of muscles increases the strength of healing tendon tissue, but the mechanism involved remains elusive. We hypothesized that the secretome from myoblasts in co-culture with tenocytes affects tenocyte migration, cell phenotype, and collagen (Col) production and that the effect is dependent on different types of mechanical loading of myoblasts. To test this, we used an in vitro indirect transwell co-culture system. Myoblasts were mechanically loaded using the FlexCell® Tension system. Tenocyte cell migration, proliferation, apoptosis, collagen production, and several tenocyte markers were measured. The secretome from myoblasts decreased the Col I/III ratio and increased the expression of tenocyte specific markers as compared with tenocytes cultured alone. The secretome from statically loaded myoblasts significantly enhanced tenocyte migration and Col I/III ratio as compared with dynamic loading and controls. In addition, the secretome from statically loaded myoblasts induced tenocytes towards a myofibroblast-like phenotype. Taken together, these results demonstrate that the secretome from statically loaded myoblasts has a profound influence on tenocytes, affecting parameters that are related to the tendon healing process.
Collapse
|
133
|
Papavasiliou T, Nicholas R, Cooper L, Chan JCY, Ibanez J, Bain CJ, Uppal L. Utilisation of a 3D printed ex vivo flexor tendon model to improve surgical training. J Plast Reconstr Aesthet Surg 2021; 75:1255-1260. [PMID: 34896043 DOI: 10.1016/j.bjps.2021.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Surgery for hand trauma accounts for a significant proportion of the plastic surgery trainee activity. The aim of this article is to create a standardised simulation training module for flexor tendon repair techniques for residents prior to their first encounter in the clinical setting. METHODS A step-ladder approach flexor tendon repair training with four levels of difficulty was conducted using a three-dimensional (3D) printed anatomical simulation model and a silicone tendon rod on a cohort of 28 plastic surgery Senior House Officers (SHOs) of various stages in their training (n=28). Assessment of knowledge (online questionnaire) and practical skills using validated score systems (global rating scale and task specific score) was performed at the beginning and end of the module by hand experts of our unit. RESULTS The overall average knowledge-based scores of the cohort pre- and post-assessment were 1.48/5 (29.6%) and 3.56/5 (71.5%), respectively. The overall average skills-based scores of the cohort pre- and post-assessments were 3.05/5 (61%) and 4.12/5 (82.5%), respectively. Significant (p<0.01) difference of improvement of knowledge and skills was noted on all trainees. All trainees confirmed that the training module improved their confidence with flexor tendon repair. CONCLUSION We demonstrate a standardised simulation training framework that employs a 3D printed flexor tendon simulation model proven to improve the skills of residents especially during their early learning curve and which paves the way to a more universal, standardised and validated training across hand surgery.
Collapse
Affiliation(s)
- Theodora Papavasiliou
- Department of Plastic Surgery, Guys' and St' Thomas' Hospitals, Westminster Bridge Rd, Lambeth SE1 7EH, London.
| | - Rebecca Nicholas
- Department of Plastic Surgery, Guys' and St' Thomas' Hospitals, Westminster Bridge Rd, Lambeth SE1 7EH, London
| | - Lilli Cooper
- Department of Plastic Surgery, Guys' and St' Thomas' Hospitals, Westminster Bridge Rd, Lambeth SE1 7EH, London
| | - Jeffrey C Y Chan
- Department of Plastic Surgery, Guys' and St' Thomas' Hospitals, Westminster Bridge Rd, Lambeth SE1 7EH, London
| | - Javier Ibanez
- Department of Plastic Surgery, Guys' and St' Thomas' Hospitals, Westminster Bridge Rd, Lambeth SE1 7EH, London
| | - Charles J Bain
- Department of Plastic Surgery, Guys' and St' Thomas' Hospitals, Westminster Bridge Rd, Lambeth SE1 7EH, London
| | - Lauren Uppal
- Department of Plastic Surgery, Guys' and St' Thomas' Hospitals, Westminster Bridge Rd, Lambeth SE1 7EH, London
| |
Collapse
|
134
|
Chevrier A, Hurtig MB, Lavertu M. Chitosan-Platelet-Rich Plasma Implants Improve Rotator Cuff Repair in a Large Animal Model: Pivotal Study. Pharmaceutics 2021; 13:pharmaceutics13111955. [PMID: 34834370 PMCID: PMC8622568 DOI: 10.3390/pharmaceutics13111955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to assess the safety and efficacy of chitosan-platelet-rich plasma (PRP) hybrid implants used as an adjunct to surgical rotator cuff repair in a pivotal Good Laboratory Practice (GLP)-compliant study. The infraspinatus tendon was transected in 48 skeletally mature ewes and repaired with a transosseous-equivalent (TOE) technique. In the two treatment groups, a chitosan-PRP solution was injected at the footprint between the tendon and the bone and on top of the repaired site (2 mL or 3 mL doses, n = 12 per group). To further assess chitosan safety, a chitosan-water solution was injected at the same sites (3 mL, n = 12). Outcome measures included Magnetic Resonance Imaging (MRI) assessment and clinical pathology at 3 months and 6 months and histopathology at 6 months. The tendon gap was decreased at 3 months on MRI images and certain histopathological features were improved at 6 months by chitosan-PRP treatment compared to controls. The group treated with chitosan-water was not different from controls. Chitosan-PRP treatment induced no negative effects in the sheep, which suggests high safety. This study provides further evidence on the safety and efficacy of chitosan-PRP for rotator cuff repair augmentation, which could eventually be used in a clinical setting.
Collapse
Affiliation(s)
- Anik Chevrier
- Chemical Engineering Department, Polytechnique Montreal, 2900 Boul. Édouard-Montpetit, Montreal, QC H3T 1J4, Canada;
| | - Mark B. Hurtig
- Department of Clinical Studies, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Marc Lavertu
- Chemical Engineering Department, Polytechnique Montreal, 2900 Boul. Édouard-Montpetit, Montreal, QC H3T 1J4, Canada;
- Biomedical Engineering Institute, Polytechnique Montreal, 2900 Boul, Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-514-340-4711 (ext. 3906)
| |
Collapse
|
135
|
Atta G, Tempfer H, Kaser-Eichberger A, Traweger A, Heindl LM, Schroedl F. Is the human sclera a tendon-like tissue? A structural and functional comparison. Ann Anat 2021; 240:151858. [PMID: 34798297 DOI: 10.1016/j.aanat.2021.151858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Collagen rich connective tissues fulfill a variety of important functions throughout the human body, most of which having to resist mechanical challenges. This review aims to compare structural and functional aspects of tendons and sclera, two tissues with distinct location and function, but with striking similarities regarding their cellular content, their extracellular matrix and their low degree of vascularization. The description of these similarities meant to provide potential novel insight for both the fields of orthopedic research and ophthalmology.
Collapse
Affiliation(s)
- Ghada Atta
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Herbert Tempfer
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Andreas Traweger
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Integrated Oncology (CIO) Aachen - Bonn - Cologne - Düsseldorf, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| |
Collapse
|
136
|
Effects of aging on the histology and biochemistry of rat tendon healing. BMC Musculoskelet Disord 2021; 22:949. [PMID: 34781961 PMCID: PMC8594129 DOI: 10.1186/s12891-021-04838-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Tendon diseases and injuries are a serious problem for the aged population, often leading to pain, disability and a significant decline in quality of life. The purpose of this study was to determine the influence of aging on biochemistry and histology during tendon healing and to provide a new strategy for improving tendon healing. METHOD A total of 24 Sprague-Dawley rats were equally divided into a young and an aged group. A rat patellar tendon defect model was used in this study. Tendon samples were collected at weeks 2 and 4, and hematoxylin-eosin, alcian blue and immunofluorescence staining were performed for histological analysis. Meanwhile, reverse transcription-polymerase chain reaction (RT-PCR) and western blot were performed to evaluate the biochemical changes. RESULTS The histological scores in aged rats were significantly lower than those in young rats. At the protein level, collagen synthesis-related markers Col-3, Matrix metalloproteinase-1 and Metallopeptidase Inhibitor 1(TIMP-1) were decreased at week 4 in aged rats compared with those of young rats. Though there was a decrease in the expression of the chondrogenic marker aggrecan at the protein level in aged tendon, the Micro-CT results from weeks 4 samples showed no significant difference(p>0.05) on the ectopic ossification between groups. Moreover, we found more adipocytes accumulated in the aged tendon defect with the Oil Red O staining and at the gene and protein levels the markers related to adipogenic differentiation. CONCLUSIONS Our findings indicate that tendon healing is impaired in aged rats and is characterized by a significantly lower histological score, decreased collagen synthesis and more adipocyte accumulation in patellar tendon after repair.
Collapse
|
137
|
Sikorski Ł, Czamara A. Ground Reaction Forces during Vertical Hops Are Correlated with the Number of Supervised Physiotherapy Visits after Achilles Tendon Surgery. J Clin Med 2021; 10:jcm10225299. [PMID: 34830581 PMCID: PMC8620226 DOI: 10.3390/jcm10225299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/26/2022] Open
Abstract
The objective of this study was to assess the effectiveness of, and the correlation between, an average of 42 supervised physiotherapy (SVPh) visits for the vertical ground reaction forces component (vGRF) using ankle hops during two- and one-legged vertical hops (TLH and OLH, respectively), six months after the surgical suturing of the Achilles tendon using the open method (SSATOM) via Keesler’s technique. Hypothesis: Six months of supervised physiotherapy with a higher number of visits (SPHNVs) was positively correlated with higher vGRF values during TLH and OLH. Group I comprised male patients (n = 23) after SSATOM (SVPh x = 42 visits), and Group II comprised males (n = 23) without Achilles tendon injuries. In the study groups, vGRF was measured during TLH and OLH in the landing phase using two force plates. The vGRF was normalized to the body mass. The limb symmetry index (LSI) of vGRF values was calculated. The ranges of motion of the foot and circumferences of the ankle joint and shin were measured. Then, 10 m unassisted walking, the Thompson test, and pain were assessed. A parametric test for dependent and independent samples, ANOVA and Tukey’s test for between-group comparisons, and linear Pearson’s correlation coefficient calculations were performed. Group I revealed significantly lower vGRF values during TLH and OLH for the operated limb and LSI values compared with the right and left legs in Group II (p ≤ 0.001). A larger number of visits correlates with higher vGRF values for the operated limb during TLH (r = 0.503; p = 0.014) and OLH (r = 0.505; p = 0.014). An average of 42 SVPh visits in 6 months was insufficient to obtain similar values of relative vGRF and their LSI during TLH and OLH, but the hypothesis was confirmed that SPHNVs correlate with higher relative vGRF values during TLH and OLH in the landing phase.
Collapse
Affiliation(s)
- Łukasz Sikorski
- Department of Physiotherapy, College of Physiotherapy in Wrocław, 50-038 Wrocław, Poland;
- Correspondence: ; Tel.: +48-601-911-013
| | - Andrzej Czamara
- Department of Physiotherapy, College of Physiotherapy in Wrocław, 50-038 Wrocław, Poland;
- Center of Rehabilitation and Medical Education, 50-038 Wrocław, Poland
| |
Collapse
|
138
|
Delgado Caceres M, Angerpointner K, Galler M, Lin D, Michel PA, Brochhausen C, Lu X, Varadarajan AR, Warfsmann J, Stange R, Alt V, Pfeifer CG, Docheva D. Tenomodulin knockout mice exhibit worse late healing outcomes with augmented trauma-induced heterotopic ossification of Achilles tendon. Cell Death Dis 2021; 12:1049. [PMID: 34741033 PMCID: PMC8571417 DOI: 10.1038/s41419-021-04298-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022]
Abstract
Heterotopic ossification (HO) represents a common problem after tendon injury with no effective treatment yet being developed. Tenomodulin (Tnmd), the best-known mature marker for tendon lineage cells, has important effects in tendon tissue aging and function. We have reported that loss of Tnmd leads to inferior early tendon repair characterized by fibrovascular scaring and therefore hypothesized that its lack will persistently cause deficient repair during later stages. Tnmd knockout (Tnmd-/-) and wild-type (WT) animals were subjected to complete Achilles tendon surgical transection followed by end-to-end suture. Lineage tracing revealed a reduction in tendon-lineage cells marked by ScleraxisGFP, but an increase in alpha smooth muscle actin myofibroblasts in Tnmd-/- tendon scars. At the proliferative stage, more pro-inflammatory M1 macrophages and larger collagen II cartilaginous template were detected in this group. At the remodeling stage, histological scoring revealed lower repair quality in the injured Tnmd-/- tendons, which was coupled with higher HO quantified by micro-CT. Tendon biomechanical properties were compromised in both groups upon injury, however we identified an abnormal stiffening of non-injured Tnmd-/- tendons, which possessed higher static and dynamic E-moduli. Pathologically thicker and abnormally shaped collagen fibrils were observed by TEM in Tnmd-/- tendons and this, together with augmented HO, resulted in diminished running capacity of Tnmd-/- mice. These novel findings demonstrate that Tnmd plays a protecting role against trauma-induced endochondral HO and can inspire the generation of novel therapeutics to accelerate repair.
Collapse
Affiliation(s)
- Manuel Delgado Caceres
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Katharina Angerpointner
- Hand, Elbow and Plastic Surgery Department, Schön Klinik München Harlaching, Munich, Germany
| | - Michael Galler
- Department of Trauma Surgery, Caritas Hospital St. Josef, Regensburg, Germany
| | - Dasheng Lin
- Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Philipp A Michel
- Department of Trauma-, Hand-, and Reconstructive Surgery, University Hospital Münster, Münster, Germany
| | | | - Xin Lu
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Adithi R Varadarajan
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Jens Warfsmann
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany
| | - Volker Alt
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Clinic and Policlinic for Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Christian G Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Clinic and Policlinic for Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
139
|
Systemic Immunosuppression for Prevention of Recurrent Tendon Adhesions. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3834. [PMID: 34667696 PMCID: PMC8519255 DOI: 10.1097/gox.0000000000003834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/02/2021] [Indexed: 12/05/2022]
Abstract
Background: The recovery for patients after tendon repair is frequently limited by development of tendon adhesions. This scar tissue formation is dependent on immune system activation. Tacrolimus has unique properties that may contribute to the prevention of overactive scarring by inhibition of inflammatory cytokines. Methods: Herein, we present a case using systemic immunosuppression to prevent recurrent adhesion accumulation in a patient with a prior spaghetti wrist injury. Tacrolimus began 1 week before repeat-secondary tenolysis surgery, and it continued for 3 months postoperative. Dosing was tapered to a serum level between 5 and 8 µg/L. Results: The 27-year-old male patient suffered a volar wrist laceration transecting all flexor tendons and volar wrist nerves. He underwent immediate repair but had a poor outcome despite early range of motion therapy. A primary tenolysis only improved his average arc of finger motion from 72 to 95 degrees. Secondary tenolysis augmented with systemic tacrolimus improved his arc of finger motion from 95 to 202 degrees. Mechanistically, tacrolimus prevents proper function of activated T and B cells. This results in decreased proliferation, angiogenesis, and cytoskeletal organization of fibroblasts on inflammation and integrin adhesions, and it potentially explains the reduced tendon molecule adhesions seen in this patient. Conclusions: Tacrolimus may be effective in reducing motion, limiting tendon adhesions. The novel use of this medication resulted in the return of near-normal hand function in a patient placed on low-dose tacrolimus after primary tenolysis had failed.
Collapse
|
140
|
Avci S, Gungor H, Kumru AS, Sahin M, Gezer A, Gok U, Kara H, Avcil M. Effects of Apixaban, Rivaroxaban, Dabigatran and Enoxaparin on Histopathology and Laboratory Parameters in Achilles Tendon Injury: An in vivo Study. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2021; 9:205-214. [PMID: 34667466 PMCID: PMC8473998 DOI: 10.4103/sjmms.sjmms_90_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 11/04/2022]
Abstract
Objectives To compare the effects of apixaban, rivaroxaban, dabigatran and enoxaparin on histopathology and blood parameters in rats with Achilles tendon injury. Materials and Methods Thirty adult, male Wistar albino rats weighting 220-240 g were randomly divided into five (one control and four treatment) groups and placed in a controlled environment. The Achilles tendon was incised and re-sutured in each rat, after which each group was provided the following treatment for 28 days: a) 2 ml saline to the control group, b) apixaban in 1 ml of saline (10 mg/kg/day) +1 ml of saline, c) rivaroxaban in 1 ml of saline (2 mg/kg/day) +1 ml saline, d) dabigatran in 1 ml of saline (30 mg/kg/day) +1 ml of saline, e) enoxaparin (80 μg/kg/day) + 2 ml of saline. Results Hemogram, biochemical and coagulation parameters differed significantly between the control and treatment groups (P < 0.05). Compared with the control group, in the apixaban group, type I and type III collagen immunoreactivity were severe and moderate, respectively. In the rivaroxaban and dabigatran groups, both type I and type III collagen immunoreactivity were medium and severe, respectively. In the enoxaparin group, type I and type III collagen immunoreactivity were mild and severe, respectively. Conclusion The higher concentration of type I collagen in the apixaban and dabigatran indicates faster tendon healing in these groups, and the higher concentration of the type III collagen in the enoxaparin group indicates slower healing in this group.
Collapse
Affiliation(s)
- Sema Avci
- Department of Emergency Medicine, Medical Faculty, Usak University, Usak, Turkey
| | - Huseyin Gungor
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Alper Serhat Kumru
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mahmut Sahin
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Arzu Gezer
- Department of Geriatrics, Vocational School of Health Services, Ataturk University, Erzurum, Turkey
| | - Uzeyir Gok
- Department of Otorhinolaryngology, Medical Faculty, Amasya University, Amasya, Turkey
| | - Haki Kara
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mucahit Avcil
- Department of Emergency Medicine, Medical Faculty, Usak University, Usak, Turkey
| |
Collapse
|
141
|
Williamson PM, Freedman BR, Kwok N, Beeram I, Pennings J, Johnson J, Hamparian D, Cohen E, Galloway JL, Ramappa AJ, DeAngelis JP, Nazarian A. Tendinopathy and tendon material response to load: What we can learn from small animal studies. Acta Biomater 2021; 134:43-56. [PMID: 34325074 DOI: 10.1016/j.actbio.2021.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022]
Abstract
Tendinopathy is a debilitating disease that causes as much as 30% of all musculoskeletal consultations. Existing treatments for tendinopathy have variable efficacy, possibly due to incomplete characterization of the underlying pathophysiology. Mechanical load can have both beneficial and detrimental effects on tendon, as the overall tendon response depends on the degree, frequency, timing, and magnitude of the load. The clinical continuum model of tendinopathy offers insight into the late stages of tendinopathy, but it does not capture the subclinical tendinopathic changes that begin before pain or loss of function. Small animal models that use high tendon loading to mimic human tendinopathy may be able to fill this knowledge gap. The goal of this review is to summarize the insights from in-vivo animal studies of mechanically-induced tendinopathy and higher loading regimens into the mechanical, microstructural, and biological features that help characterize the continuum between normal tendon and tendinopathy. STATEMENT OF SIGNIFICANCE: This review summarizes the insights gained from in-vivo animal studies of mechanically-induced tendinopathy by evaluating the effect high loading regimens have on the mechanical, structural, and biological features of tendinopathy. A better understanding of the interplay between these realms could lead to improved patient management, especially in the presence of painful tendon.
Collapse
|
142
|
Decellularized tendon matrix membranes prevent post-surgical tendon adhesion and promote functional repair. Acta Biomater 2021; 134:160-176. [PMID: 34303866 DOI: 10.1016/j.actbio.2021.07.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Adhesion often occurs after tendon injury, and results in sliding disorder and movement limitation with no ideal solution for it in clinic. In this study, an anti-adhesion membrane, i.e., decellularized tendon matrix (DTM) for tendon is successfully prepared by an optimized tendon decellularization method from homologous extracellular matrix. Microsection technology has been used to optimize the method of decellularization in order to better preserve the bioactive components in tissues and reduce the chemical reagent residues on the premise of effective decellularization with relatively shorter time and less reagents for decellularization. The physic-chemical properties and biological functions of DTM are evaluated, and high-throughput and high-precision tandem mass tags (TMT) labeling proteomics technology is used to analyze protein components of DTM, which may provide the scientific support for application of the innovative product. In vitro biosafety tests show that DTM not only is non-toxic but also promote cell proliferation. Subcutaneous implantation test confirms that DTM is completely degraded after 12 weeks and there is no obvious inflammatory reaction. The results of Achilles tendon repair in rabbits show that DTM can not only prevent tendon adhesion but also improve the quality of tendon repair, which demonstrates its tremendous application potential. STATEMENT OF SIGNIFICANCE: There is no ideal solution for adhesion after tendon injury. In this study, a dense tendon anti-adhesion membrane (DTM) was successfully prepared from homologous extracellular matrix (ECM). This DTM could effectively retain bioactive ingredients, and prevent adhesion as well as improve the quality of tendon repair in vivo. An optimized decellularization method was used which could effectively decellularize tendon in a short time, better preserve bioactive components, and reduce reagent residues. For the first time, high-throughput and high-precision tandem mass tags (TMT) labeling proteomics technology was used to qualitatively and quantitatively analyze the protein composition of fresh tendon, acellular tendon and DTM, which provided not only scientific support for the application of DTM, but also comprehensive and accurate data support for related research of bovine tendons and decellularization.
Collapse
|
143
|
Ruan D, Fei Y, Qian S, Huang Z, Chen W, Tang C, Xiang X, Xu J, Yin Z, Chen X, Heng BC, Liu W, Shen W, Ouyang H. Early-Stage Primary Anti-inflammatory Therapy Enhances the Regenerative Efficacy of Platelet-Rich Plasma in a Rabbit Achilles Tendinopathy Model. Am J Sports Med 2021; 49:3357-3371. [PMID: 34549620 DOI: 10.1177/03635465211037354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendinopathy is a pervasive clinical problem that afflicts both athletes and the general public. Although the inflammatory changes in tendinopathy are well characterized, how the therapeutic effects of platelet-rich plasma (PRP) on tendinopathy are being modulated by the inflammatory environment is not well defined. PURPOSE/HYPOTHESIS In this study, we aimed to compare the therapeutic effects of PRP alone versus a combination of PRP with a primary glucocorticoid (GC) injection at the early stage of tendinopathy. We hypothesized that PRP treatment could promote better tendon regeneration through the suppression of inflammation with GC. STUDY DESIGN Controlled laboratory study. METHODS The gene expression profile of tendon stem/progenitor cells (TSPCs) cultured with PRP was analyzed with RNA sequencing. To evaluate the cell viability, senescence, and apoptosis of TSPCs under different conditions, TSPCs were treated with 0.1 mg/mL triamcinolone acetonide (TA) and/or 10% PRP in an IL1B-induced inflammatory environment. To further verify the effects of the sequential therapy of GCs and PRP, an early tendinopathy animal model was established through a local injection of collagenase in the rabbit Achilles tendon. The tendinopathy model was then treated with isopycnic normal saline (NS group), TA (TA group), PRP (PRP group), or TA and PRP successively (TA+PRP group). At 8 weeks after treatment, the tendons were assessed with magnetic resonance imaging (MRI), histological examination, transmission electron microscopy (TEM), and mechanical testing. RESULTS Gene Ontology enrichment analysis indicated that PRP treatment of TPSCs induced an inflammatory response, regulated cell migration, and remodeled the extracellular matrix. Compared with the sole use of PRP, successive treatment with TA followed by PRP yielded similar results in cell viability and senescence but less cell apoptosis in vitro. In vivo experiments demonstrated that the TA+PRP group achieved significantly better tendon regeneration, as confirmed by MRI, histological examination, TEM, and mechanical testing. CONCLUSION This study showed that the primary use of GCs did not exert any obvious deleterious side effects on the treated tendon but instead enhanced the regenerative effects of PRP in early inflammatory tendinopathy. CLINICAL RELEVANCE The sequential therapy of GCs followed by PRP provides a promising treatment strategy for tendinopathy in clinical practice. PRP combined with the primary use of GCs appears to promote tendon regeneration in early inflammatory tendinopathy.
Collapse
Affiliation(s)
- Dengfeng Ruan
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedics Research Institute, Zhejiang University, Hangzhou, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Institute of Sports Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group, Hangzhou, China
| | | | | | | | - Weishan Chen
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedics Research Institute, Zhejiang University, Hangzhou, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedics Research Institute, Zhejiang University, Hangzhou, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Institute of Sports Medicine, Zhejiang University, Hangzhou, China; Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Xiang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Jialu Xu
- Department of Infectious Diseases, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Hepatology Institute, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Zi Yin
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group, Hangzhou, China
| | - Xiao Chen
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group, Hangzhou, China
| | | | - Wanlu Liu
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China; Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedics Research Institute, Zhejiang University, Hangzhou, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Institute of Sports Medicine, Zhejiang University, Hangzhou, China; Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Ouyang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group, Hangzhou, China.,Investigation performed at the Department of Orthopedic Surgery, Second Affiliated Hospital; Zhejiang University-University of Edinburgh Institute; and School of Basic Medical Sciences; Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
144
|
Lu V, Tennyson M, Zhang J, Khan W. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Tendon and Ligament Repair-A Systematic Review of In Vivo Studies. Cells 2021; 10:cells10102553. [PMID: 34685532 PMCID: PMC8533909 DOI: 10.3390/cells10102553] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Tendon and ligament injury poses an increasingly large burden to society. This systematic review explores whether mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) can facilitate tendon/ligament repair in vivo. On 26 May 2021, a systematic search was performed on PubMed, Web of Science, Cochrane Library, Embase, to identify all studies that utilised MSC-EVs for tendon/ligament healing. Studies administering EVs isolated from human or animal-derived MSCs into in vivo models of tendon/ligament injury were included. In vitro, ex vivo, and in silico studies were excluded, and studies without a control group were excluded. Out of 383 studies identified, 11 met the inclusion criteria. Data on isolation, the characterisation of MSCs and EVs, and the in vivo findings in in vivo models were extracted. All included studies reported better tendon/ligament repair following MSC-EV treatment, but not all found improvements in every parameter measured. Biomechanics, an important index for tendon/ligament repair, was reported by only eight studies, from which evidence linking biomechanical alterations to functional improvement was weak. Nevertheless, the studies in this review showcased the safety and efficacy of MSC-EV therapy for tendon/ligament healing, by attenuating the initial inflammatory response and accelerating tendon matrix regeneration, providing a basis for potential clinical use in tendon/ligament repair.
Collapse
Affiliation(s)
- Victor Lu
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (V.L.); (J.Z.)
| | - Maria Tennyson
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - James Zhang
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (V.L.); (J.Z.)
| | - Wasim Khan
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
- Correspondence: ; Tel.: +44-(0)-7791-025554
| |
Collapse
|
145
|
Zhang S, Ju W, Chen X, Zhao Y, Feng L, Yin Z, Chen X. Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact Mater 2021; 8:124-139. [PMID: 34541391 PMCID: PMC8424392 DOI: 10.1016/j.bioactmat.2021.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormal tendons are rarely ever repaired to the natural structure and morphology of normal tendons. To better guide the repair and regeneration of injured tendons through a tissue engineering method, it is necessary to have insights into the internal morphology, organization, and composition of natural tendons. This review summarized recent researches on the structure and function of the extracellular matrix (ECM) components of tendons and highlight the application of multiple detection methodologies concerning the structure of ECMs. In addition, we look forward to the future of multi-dimensional biomaterial design methods and the potential of structural repair for tendon ECM components. In addition, focus is placed on the macro to micro detection methods for tendons, and current techniques for evaluating the extracellular matrix of tendons at the micro level are introduced in detail. Finally, emphasis is given to future extracellular matrix detection methods, as well as to how future efforts could concentrate on fabricating the biomimetic tendons. Summarize recent research on the structure and function of the extracellular matrix (ECM) components of tendons. Comments on current research methods concerning the structure of ECMs. Perspective on the future of multi-dimensional detection techniques and structural repair of tendon ECM components.
Collapse
Affiliation(s)
- Shichen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China
| | - Yanyan Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
146
|
Yu Y, Sun B, Wang Z, Yang M, Cui Z, Lin S, Jin M, Yi C. Exosomes From M2 Macrophage Promote Peritendinous Fibrosis Posterior Tendon Injury via the MiR-15b-5p/FGF-1/7/9 Pathway by Delivery of circRNA-Ep400. Front Cell Dev Biol 2021; 9:595911. [PMID: 34513819 PMCID: PMC8432299 DOI: 10.3389/fcell.2021.595911] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/24/2021] [Indexed: 01/02/2023] Open
Abstract
Achilles tendon rupture prognosis is usually unsatisfactory. After the tendon is injured, it may not function properly because of the fibrotic healing response, which restrains tendon motion. Inflammatory monocytes and tissue-resident macrophages are indispensable regulators in tissue repair, fibrosis, and regeneration. Exosomes from macrophages are crucial factors in tissue microenvironment regulation following tissue injury. This study therefore aimed to clarify the roles of macrophage exosomes in tendon injury (TI) repair. The results show that macrophages play a role after TI. M1 macrophages were increased relative to peritendinous fibrosis after TI. High-throughput sequencing showed abnormal expression of circular RNAs (circRNAs) between exosomes from M2 and M0 macrophages. Among the abnormal expressions of circRNA, circRNA-Ep400 was significantly increased in M2 macrophage exosomes. The results also show that M2 macrophage-derived circRNA-Ep400-containing exosomes are important for promoting peritendinous fibrosis after TI. Bioinformatics and dual-luciferase reporting experiments confirmed that miR-15b-5p and fibroblast growth factor (FGF)-1/7/9 were downstream targets of circRNA-Ep400. High circRNA-Ep400-containing exosome treatment inhibited miR-15b-5p, but promoted FGF1/7/9 expression in both fibroblasts and tenocytes. Furthermore, high circRNA-Ep400-containing exosome treatment promoted fibrosis, proliferation, and migration in both fibroblasts and tenocytes. Taken together, the results show that M2 macrophage-derived circRNA-Ep400-containing exosomes promote peritendinous fibrosis after TI via the miR-15b-5p/FGF-1/7/9 pathway, which suggests novel therapeutics for tendon injury treatment.
Collapse
Affiliation(s)
- Yinxian Yu
- Department of Orthopaedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binbin Sun
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopaedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengkai Yang
- Department of Orthopaedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Cui
- Department of Orthopaedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Subin Lin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chengqing Yi
- Department of Orthopaedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
147
|
Ciardulli MC, Lovecchio J, Scala P, Lamparelli EP, Dale TP, Giudice V, Giordano E, Selleri C, Forsyth NR, Maffulli N, Della Porta G. 3D Biomimetic Scaffold for Growth Factor Controlled Delivery: An In-Vitro Study of Tenogenic Events on Wharton's Jelly Mesenchymal Stem Cells. Pharmaceutics 2021; 13:pharmaceutics13091448. [PMID: 34575523 PMCID: PMC8465418 DOI: 10.3390/pharmaceutics13091448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
The present work described a bio-functionalized 3D fibrous construct, as an interactive teno-inductive graft model to study tenogenic potential events of human mesenchymal stem cells collected from Wharton’s Jelly (hWJ-MSCs). The 3D-biomimetic and bioresorbable scaffold was functionalized with nanocarriers for the local controlled delivery of a teno-inductive factor, i.e., the human Growth Differentiation factor 5 (hGDF-5). Significant results in terms of gene expression were obtained. Namely, the up-regulation of Scleraxis (350-fold, p ≤ 0.05), type I Collagen (8-fold), Decorin (2.5-fold), and Tenascin-C (1.3-fold) was detected at day 14; on the other hand, when hGDF-5 was supplemented in the external medium only (in absence of nanocarriers), a limited effect on gene expression was evident. Teno-inductive environment also induced pro-inflammatory, (IL-6 (1.6-fold), TNF (45-fold, p ≤ 0.001), and IL-12A (1.4-fold)), and anti-inflammatory (IL-10 (120-fold) and TGF-β1 (1.8-fold)) cytokine expression upregulation at day 14. The presented 3D construct opens perspectives for the study of drug controlled delivery devices to promote teno-regenerative events.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena, Italy; (J.L.); (E.G.)
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Tina Patricia Dale
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena, Italy; (J.L.); (E.G.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell’Emilia, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Via Vincenzo Toffano 2/2, 40125 Bologna, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Nicholas Robert Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London E1 4NL, UK
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Research Centre for Biomaterials BIONAM, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: ; Tel.: +39-089-965-234
| |
Collapse
|
148
|
Bao D, Sun J, Gong M, Shi J, Qin B, Deng K, Liu G, Zeng S, Xiang Z, Fu S. Combination of graphene oxide and platelet-rich plasma improves tendon-bone healing in a rabbit model of supraspinatus tendon reconstruction. Regen Biomater 2021; 8:rbab045. [PMID: 34484806 PMCID: PMC8411035 DOI: 10.1093/rb/rbab045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 02/05/2023] Open
Abstract
The treatment of rotator cuff tear is one of the major challenges for orthopedic surgeons. The key to treatment is the reconstruction of the tendon-bone interface (TBI). Autologous platelet-rich plasma (PRP) is used as a therapeutic agent to accelerate the healing of tendons, as it contains a variety of growth factors and is easy to prepare. Graphene oxide (GO) is known to improve the physical properties of biomaterials and promote tissue repair. In this study, PRP gels containing various concentrations of GO were prepared to promote TBI healing and supraspinatus tendon reconstruction in a rabbit model. The incorporation of GO improved the ultrastructure and mechanical properties of the PRP gels. The gels containing 0.5 mg/ml GO (0.5 GO/PRP) continuously released transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor (PDGF)-AB, and the released TGF-β1 and PDGF-AB were still at high concentrations, ∼1063.451 pg/ml and ∼814.217 pg/ml, respectively, on the 14th day. In vitro assays showed that the 0.5 GO/PRP gels had good biocompatibility and promoted bone marrow mesenchymal stem cells proliferation and osteogenic and chondrogenic differentiation. After 12 weeks of implantation, the magnetic resonance imaging, micro-computed tomography and histological results indicated that the newly regenerated tendons in the 0.5 GO/PRP group had a similar structure to natural tendons. Moreover, the biomechanical results showed that the newly formed tendons in the 0.5 GO/PRP group had better biomechanical properties compared to those in the other groups, and had more stable TBI tissue. Therefore, the combination of PRP and GO has the potential to be a powerful advancement in the treatment of rotator cuff injuries.
Collapse
Affiliation(s)
- Dingsu Bao
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiacheng Sun
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Min Gong
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Jie Shi
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Bo Qin
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Kai Deng
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Gang Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Shengqiang Zeng
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shijie Fu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| |
Collapse
|
149
|
Xu K, Shao Y, Xia Y, Qian Y, Jiang N, Liu X, Yang L, Wang C. Tenascin-C regulates migration of SOX10 tendon stem cells via integrin-α9 for promoting patellar tendon remodeling. Biofactors 2021; 47:768-777. [PMID: 34058037 DOI: 10.1002/biof.1759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022]
Abstract
Insufficient attention has been focused on the directional migration of SOX10+ tendon stem cells (STSCs) during tendon remodeling. Here, we investigate whether tenascin-C (TNC) promotes STSC motility and migration. Based on the hypothesis that TNCs induce STSC migration, RNA-sequencing (RNA-seq) was conducted, identifying 2107 differentially expressed genes (DEGs), of which 1272 were up-regulated and 835 down-regulated following treatment with TNC versus the control. The DEGs were principally involved in cell adhesion and cell membrane signal transduction. Highly enriched-related signaling included the PI3K-Akt, focal adhesion, and ECM-receptor interaction pathways. Protein interaction analysis established that TNC was positively correlated with ITGA9 (integrin-α9). Furthermore, TNC activated the phosphorylation levels of FAK and Akt, and knockdown of ITGA9 with siRNA revealed that TNC contributes to STSC migration via the targeting of ITGA9. In addition, in vivo administration of TNC promoted tissue regeneration of injured tendons. In conclusion, TNC regulated the migration of STSCs via ITGA9, thereby promoting the regeneration of tendon injuries.
Collapse
Affiliation(s)
- Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Yibo Shao
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yi Xia
- Hubei University of Chinese Medicine, Huangjiahu Hospital, Wuhan, China
| | - Yuna Qian
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Nan Jiang
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianqiong Liu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Yang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Chunli Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
150
|
Lu H, Li S, Zhang T, Wang Z, Chen C, Chen H, Xiao H, Wang L, Chen Y, Tang Y, Xie S, Wu B, Hu J. Treadmill running initiation times and bone-tendon interface repair in a murine rotator cuff repair model. J Orthop Res 2021; 39:2017-2027. [PMID: 32936496 DOI: 10.1002/jor.24863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 02/04/2023]
Abstract
Postoperative exercise has been demonstrated to be beneficial for bone-tendon interface (BTI) healing, yet the debate regarding the optimal time to initiate exercise after tendon enthesis repair is ongoing. This study aimed to evaluate the initiation times for exercise after enthesis repair. A total of 192 C57BL/6 mice underwent acute supraspinatus tendon injury repair. The animals were then randomly assigned to four groups: free cage activity after repair (control group); treadmill running started on postoperative day 2 (2-day delayed group); treadmill running started on postoperative day 7 (7-day delayed group), and treadmill running started on postoperative day 14 (14-day delayed group). Mice were euthanized at 4 and 8 weeks postoperatively, and histological, biomechanical, and bone morphometric tests were performed. Higher failure loads and bone volume fractions were found for the 7-day delayed group and the 14-day delayed group at 4 weeks postoperatively. The 7-day delayed group had better biomechanical properties and higher bone volume fractions than the 2-day delayed group at 4 weeks postoperatively. Histologically, the 7-day delayed group exhibited lower modified tendon-to-bone maturity scores than the control group and the 2-day delayed group at 4 and 8 weeks postoperatively. Quantitative reverse-transcription polymerase chain reaction results showed that the 7-day delayed group had higher expressions of chondrogenic- and osteogenic-related genes. Statement of clinical significance: Postoperative treadmill running initiated on postoperative day 7 had a more prominent effect on BTI healing than other treatment regimens in this study and could accelerate BTI healing and rotator cuff repair.
Collapse
Affiliation(s)
- Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Zhanwen Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Can Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Huabin Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Han Xiao
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Yifu Tang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Shanshan Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Bing Wu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|