101
|
Hadjar O, Wang P, Futrell JH, Dessiaterik Y, Zhu Z, Cowin JP, Iedema MJ, Laskin J. Design and Performance of an Instrument for Soft Landing of Biomolecular Ions on Surfaces. Anal Chem 2007; 79:6566-74. [PMID: 17668931 DOI: 10.1021/ac070600h] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new ion deposition apparatus was designed and constructed in our laboratory. Our research objectives were to investigate interactions of biomolecules with hydrophilic and hydrophobic surfaces and to carry out exploratory experiments aimed at highly selective deposition of spatially defined and uniquely selected biological molecules on surfaces. The apparatus includes a high-transmission electrospray ion source, a quadrupole mass filter, a bending quadrupole that deflects the ion beam and prevents neutral molecules originating in the ion source from impacting the surface, an ultrahigh vacuum (UHV) chamber for ion deposition by soft landing, and a vacuum lock system for introducing surfaces into the UHV chamber without breaking vacuum. Ex situ analysis of surfaces following soft landing of mass-selected peptide ions was performed using 15 keV Ga+ time-of-flight secondary ion mass spectrometry and grazing incidence infrared reflection-absorption spectroscopy. It is shown that these two techniques are highly complementary methods for characterization of surfaces prepared with a range of doses of mass-selected biomolecular ions. We also demonstrated that soft landing of peptide ions on surfaces can be utilized for controlled preparation of peptide films of known coverage for fundamental studies of matrix effects in SIMS.
Collapse
Affiliation(s)
- Omar Hadjar
- Pacific Northwest National Laboratory, Fundamental Science Directorate and Environmental Molecular Sciences Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Liu YT, Huang CM. In vivo sampling of extracellular beta-thymosin by ultrafiltration probes. Ann N Y Acad Sci 2007; 1112:104-13. [PMID: 17495246 DOI: 10.1196/annals.1415.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In vivo detection and monitoring of extracellular beta-thymosin will facilitate the understanding of their biological function and association with disease progression. A novel technique using capillary ultrafiltration (CUF) probes linked to mass spectrometry is capable of sensing extracellular thymosin beta-4 and/or thymosin beta-10 in vivo in wounded skin and other tissue microenvironments. In this review, we highlight the association of extracellular beta-thymosin with skin wound healing and the potential adjuvant effects on vaccination. The fabrication and biological application of CUF probes are also described. Data from CUF probe-captured beta-thymosin may guide future exploration of extracellular beta-thymosin.
Collapse
Affiliation(s)
- Yu-Tsueng Liu
- Moores Cancer Center, University of California, San Diego, CA 92161, USA
| | | |
Collapse
|
103
|
Abstract
The excited state dynamics of protonated adenine in the gas phase were investigated by femtosecond pump-probe transient mass spectroscopy. Adenine was protonated in an electrospray ionization source and transferred to a Paul trap. Two femtosecond laser pulses at 266 nm and 800 nm excited the lowest electronic pipi* state and probed the excited-state dynamics by monitoring ion fragment formation. The measured excited state decay is monoexponential with a lifetime shorter than 161 fs. This agrees with a theoretical prediction of very fast internal conversion via a conical intersection with the ground state.
Collapse
Affiliation(s)
- Dirk Nolting
- Max Born Institute, Max-Born-Strasse 2a, 12489 Berlin, Germany.
| | | | | | | |
Collapse
|
104
|
Mihalca R, van der Burgt YEM, Heck AJR, Heeren RMA. Disulfide bond cleavages observed in SORI-CID of three nonapeptides complexed with divalent transition-metal cations. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:450-8. [PMID: 17295413 DOI: 10.1002/jms.1175] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tandem MS sequencing of peptides that contain a disulfide bond is often hampered when using a slow heating technique. We show that complexation of a transition-metal ion with a disulfide-bridge-containing nonapeptide yields very rich tandem mass spectra, including fragments that involve the cleavage of the disulfide bond up to 56% of the total product ion intensity. On the contrary, MS/MS of the corresponding protonated nonapeptides results predominantly in fragments from the region that is not involved in the disulfide bond. Eleven different combinations of three nonapeptides and three metal ions were measured using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) combined with sustained off-resonance irradiation collision induced dissociation (SORI-CID). All observed fragments are discussed with respect to four different types of product ions: neutral losses, b/y-fragmentation with and without the disulfide bond cleavage, and losses of internal amino acids without rupture of the disulfide bridge. Furthermore, it is shown that the observed complementary fragment pairs obtained from peptide-metal complexes can be used to determine the region of the binding site of the metal ion. This approach offers an efficient way to cleave disulfide-bridged structures using low energy MS/MS, which leads to increased sequence coverage and more confidence in peptide or protein assignments.
Collapse
Affiliation(s)
- Romulus Mihalca
- FOM Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
105
|
Tang Y, Pingitore F, Mukhopadhyay A, Phan R, Hazen TC, Keasling JD. Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris hildenborough using gas chromatography-mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry. J Bacteriol 2007; 189:940-9. [PMID: 17114264 PMCID: PMC1797301 DOI: 10.1128/jb.00948-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 11/05/2006] [Indexed: 11/20/2022] Open
Abstract
Flux distribution in central metabolic pathways of Desulfovibrio vulgaris Hildenborough was examined using 13C tracer experiments. Consistent with the current genome annotation and independent evidence from enzyme activity assays, the isotopomer results from both gas chromatography-mass spectrometry (GC-MS) and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) indicate the lack of an oxidatively functional tricarboxylic acid (TCA) cycle and an incomplete pentose phosphate pathway. Results from this study suggest that fluxes through both pathways are limited to biosynthesis. The data also indicate that >80% of the lactate was converted to acetate and that the reactions involved are the primary route of energy production [NAD(P)H and ATP production]. Independently of the TCA cycle, direct cleavage of acetyl coenzyme A to CO and 5,10-methyl tetrahydrofuran also leads to production of NADH and ATP. Although the genome annotation implicates a ferredoxin-dependent oxoglutarate synthase, isotopic evidence does not support flux through this reaction in either the oxidative or the reductive mode; therefore, the TCA cycle is incomplete. FT-ICR MS was used to locate the labeled carbon distribution in aspartate and glutamate and confirmed the presence of an atypical enzyme for citrate formation suggested in previous reports [the citrate synthesized by this enzyme is the isotopic antipode of the citrate synthesized by the (S)-citrate synthase]. These findings enable a better understanding of the relation between genome annotation and actual metabolic pathways in D. vulgaris and also demonstrate that FT-ICR MS is a powerful tool for isotopomer analysis, overcoming the problems with both GC-MS and nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Yinjie Tang
- Virtual Institute of Microbial Stress and Survival, Department of Chemical Engineering and Bioengineering, University of California, Berkeley, California, USA
| | | | | | | | | | | |
Collapse
|
106
|
Choi KM, Yoon SH, Sun M, Oh JY, Moon JH, Kim MS. Characteristics of photodissociation at 193 nm of singly protonated peptides generated by matrix-assisted laser desorption ionization (MALDI). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1643-53. [PMID: 16934996 DOI: 10.1016/j.jasms.2006.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/15/2006] [Accepted: 07/19/2006] [Indexed: 05/11/2023]
Abstract
Photodissociation (PD) at 193 nm of various singly protonated peptides was investigated. These include peptides with an arginine residue at the C-terminus, N-terminus, at both termini, inside the chain, and those without an arginine residue. Monoisotopomeric selection was made for the precursor ions. Interference from the post-source decay (PSD) product signals was reduced as much as possible by using the deflection system (reported previously) and subtracting the remaining signals from the laser-on signals. The presence of an arginine residue and its position inside the peptide were found to significantly affect the PD spectra, as reported previously. Presence of a proline, aspartic acid, or glutamic acid residue hardly affected the PD spectral patterns. By comparing the PD spectra obtained at a few different wavelengths, it is concluded that the dissociation of the photoexcited ions occurs in their ground electronic states. Tentative explanations for the observed spectral correlations based on the statistical picture for the reactions are also presented.
Collapse
Affiliation(s)
- Kyung Mi Choi
- National Creative Research Initiative Center for Control of Reaction Dynamics and School of Chemistry, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
107
|
Dodds ED, Hagerman PJ, Lebrilla CB. Fragmentation of Singly Protonated Peptides via a Combination of Infrared and Collisional Activation. Anal Chem 2006; 78:8506-11. [PMID: 17165846 DOI: 10.1021/ac0614442] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The coupling of matrix-assisted laser desorption/ionization (MALDI) to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) provides an exceptionally capable platform for peptide analysis, but an important limitation of this approach is the difficulty in obtaining informative tandem mass spectra (MS/MS) of singly protonated peptides. This difficulty is especially pronounced with peptide ions containing basic amino acid residues (for example, tryptic peptides). While such ions can be fragmented in some instrument configurations, most FTICR instruments have comparatively little facility for high-energy fragmentation. Here, a novel MS/MS approach implemented with MALDI-FTICR-MS and specifically intended for enhanced fragmentation of singly protonated peptides is described. The method involves infrared irradiation in concert with the simultaneous application of sustained off-resonance irradiation collision-induced dissociation (SORI-CID). This form of MS/MS, described as a combination of infrared and collisional activation (CIRCA), is shown to provide a greater capacity for dissociation of singly charged model peptide ions as compared to infrared multiphoton dissociation (IRMPD) or SORI-CID alone. Overall, the CIRCA approach is demonstrated to be a feasible technique for accessing useful fragmentation pathways of singly charged peptides, including those harboring basic amino acid residues--a crucial feature in the context of proteomics.
Collapse
Affiliation(s)
- Eric D Dodds
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | |
Collapse
|
108
|
Wang YS, Sabu S, Wei SC, Josh Kao CM, Kong X, Liau SC, Han CC, Chang HC, Tu SY, Kung AH, Zhang JZH. Dissociation of heme from gaseous myoglobin ions studied by infrared multiphoton dissociation spectroscopy and Fourier-transform ion cyclotron resonance mass spectrometry. J Chem Phys 2006; 125:133310. [PMID: 17029463 DOI: 10.1063/1.2221696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Detachment of heme prosthetic groups from gaseous myoglobin ions has been studied by collision-induced dissociation and infrared multiphoton dissociation in combination with Fourier-transform ion cyclotron resonance mass spectrometry. Multiply charged holomyoglobin ions (hMbn+) were generated by electrospray ionization and transferred to an ion cyclotron resonance cell, where the ions of interest were isolated and fragmented by either collision with Ar atoms or irradiation with 3 mum photons, producing apomyoglobin ions (aMbn+). Both charged heme loss (with [Fe(III)-heme]+ and aMb(n-1)+ as the products) and neutral heme loss (with [Fe(II)-heme] and aMbn+ as the products) were detected concurrently for hMbn+ produced from a myoglobin solution pretreated with reducing reagents. By reference to Ea = 0.9 eV determined by blackbody infrared radiative dissociation for charged heme loss of ferric hMbn+, an activation energy of 1.1 eV was deduced for neutral heme loss of ferrous hMbn+ with n = 9 and 10.
Collapse
Affiliation(s)
- Yi-Sheng Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Tu YP. Dissociative Protonation Sites: Reactive Centers in Protonated Molecules Leading to Fragmentation in Mass Spectrometry. J Org Chem 2006; 71:5482-8. [PMID: 16839126 DOI: 10.1021/jo060439v] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is often found in mass spectrometry that when a molecule is protonated at the thermodynamically most favorable site, no fragmentation occurs, but a major reaction is observed when the proton migrates to a different position. For benzophenones, acetophenones, and dibenzyl ether, which are all preferentially protonated at the oxygen, deacylation or dealkylation was observed in the collision-induced dissociation of the protonated molecules. For para-monosubstituted benzophenones, electron-withdrawing substituents favor the formation of RC6H4CO+ (R = substituent), whereas electron-releasing groups favor the competing reaction leading to C6H5CO+. The ln[(RC6H4CO+)/(C6H5CO+)] values are well-correlated with the sigmap+ substituent constants. In the fragmentation of protonated acetophenones, deacetylation proceeds to give an intermediate proton-bound dimeric complex of ketene and benzene. The distribution of the product ions was found to depend on the proton affinities of ketene and substituted benzenes, and the kinetic method was applied in identifying the reaction intermediate. Protonated dibenzyl ether loses formaldehyde upon dealkylation, via an ion-neutral complex of the benzyloxymethyl cation and neutral benzene. These gas-phase retro-Friedel-Crafts reactions occurred as a result of the attack of the proton at the carbon atom to which the carbonyl or the methylene group is attached on the aromatic ring, which is described as the dissociative protonation site.
Collapse
Affiliation(s)
- Ya-Ping Tu
- Drug Metabolism and Pharmacokinetics, Roche Pharmaceuticals, 3431 Hillview Avenue, Palo Alto, California 94304, USA.
| |
Collapse
|
110
|
Gamage CM, Fernández FM, Kuppannan K, Wysocki VH. Submicrosecond surface-induced dissociation of peptide ions in a MALDI TOF MS. Anal Chem 2006; 76:5080-91. [PMID: 15373446 DOI: 10.1021/ac0493121] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface-induced dissociation (SID) has been implemented in a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI TOF MS), allowing production of tandem mass spectrometric information for peptide ions (MALDI TOF SID TOF). The instrument retains the standard operational modes such as the reflectron monitoring of the MALDI-generated intact ions and postsource decay. We show through ion trajectory simulations and experimental results that implementing SID in a commercial MALDI TOF spectrometer is feasible and that the SID products in this instrument fall in an observation time frame that allows the specific detection of fast-fragmentation channels. The instrument design, pulse timing sequence, and high-voltage electronics together with SID spectra of MALDI-generated peptide ions are presented. Standard peptides such as YGGFLR, angiotensin III, fibrinopeptide A, and des-Arg1-bradykinin were dissociated by means of hyperthermal collisions with a gold surface coated with a self-assembled monolayer of 2-(perfluorodecyl)ethanethiol. With the extraction fields and the short observation times used, the spectra obtained show intense low-mass ion signals such as immonium, b2, b3, and y2 ions. TOF data analysis involved matching simulated and experimental flight times and indicates that the observed fragments are produced at approximately 250 ns after the precursor ion collides with the surface. This submicrosecond gas-phase fragmentation time frame is complementary to the observation time frame of existing SID spectrometers, which are on the order of 10 micros for tandem quadrupoles and are larger than a few milliseconds for SID implemented in Fourier transform ion cyclotron resonance spectrometers.
Collapse
Affiliation(s)
- Chaminda M Gamage
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
111
|
Fernandez FM, Wysocki VH, Futrell JH, Laskin J. Protein identification via surface-induced dissociation in an FT-ICR mass spectrometer and a patchwork sequencing approach. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:700-9. [PMID: 16540341 DOI: 10.1016/j.jasms.2006.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/24/2006] [Accepted: 01/27/2006] [Indexed: 05/07/2023]
Abstract
Surface-induced dissociation (SID) and collision-induced dissociation (CID) are ion activation techniques based on energetic collisions with a surface or gas molecule, respectively. One noticeable difference between CID and SID is that SID does not require a collision gas for ion activation and is, therefore, directly compatible with the high vacuum requirement of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Eliminating the introduction of collision gas into the ICR cell for collisional activation dramatically shortens the acquisition time for MS/MS experiments, suggesting that SID could be utilized for high-throughput MS/MS studies in FT-ICR MS. We demonstrate for the first time the utility of SID combined with FT-ICR MS for protein identification. Tryptic digests of standard proteins were analyzed using a hybrid 6-tesla FT-ICR mass spectrometer with SID and CID capabilities. SID spectra of mass-selected singly and doubly charged peptides were obtained using a diamond-coated target mounted at the rear trapping plate of the ICR cell. The broad internal energy distribution deposited into the precursor ion following collision with the diamond surface allowed a variety of fragmentation channels to be accessed by SID. Composition and sequence qualifiers produced by SID of tryptic peptides were used to improve the statistical significance of database searches. Protein identification MASCOT scores obtained using SID were comparable or better than scores obtained using sustained off-resonance irradiation collision-induced dissociation (SORI-CID), the conventional ion activation technique in FT-ICR MS.
Collapse
Affiliation(s)
- Facundo M Fernandez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
112
|
Alvarez J, Futrell JH, Laskin J. Soft-Landing of Peptides onto Self-Assembled Monolayer Surfaces. J Phys Chem A 2005; 110:1678-87. [PMID: 16435832 DOI: 10.1021/jp0555044] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mass-selected peptide ions produced by electrospray ionization were deposited as ions by soft-landing (SL) onto fluorinated and hydrogenated self-assembled monolayer (FSAM and HSAM) surfaces using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying collisions of large ions with surfaces. Analysis of modified surfaces was performed in situ by combining 2 keV Cs(+) secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Similar SIMS spectra obtained following SL at different collision energies indicate that peptide fragmentation occurred in the analysis step (SIMS) rather than during ion deposition. The effect of the surface on SL was studied by comparing the efficiencies of SL on gold, FSAM, HSAM, and COOH-terminated SAM surfaces. It was found that FSAM surfaces are more efficient in retaining ions than their HSAM analogues, consistent with their larger polarizability. The efficiency of soft-landing of different peptides on the FSAM surface increases with the charge state of the ion, also consistent with an ion-polarizable molecule model for the initial stage of soft-landing on SAM surfaces. The gradual decrease of peptide ion deposition efficiency with an increase in collision energy found experimentally was quantitatively rationalized using the hard-cube model.
Collapse
Affiliation(s)
- Jormarie Alvarez
- W.R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | |
Collapse
|
113
|
Martínez-Núñez E, Fernández-Ramos A, Vázquez SA, Marques JMC, Xue M, Hase WL. Quasiclassical dynamics simulation of the collision-induced dissociation of Cr(CO)6+ with Xe. J Chem Phys 2005; 123:154311. [PMID: 16252952 DOI: 10.1063/1.2044687] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Quasiclassical trajectory calculations are employed to investigate the dynamics of collision-induced dissociation (CID) of Cr(CO)6 + with Xe atoms at collision energies ranging from 1.3 to 5.0 eV. The trajectory simulations show that direct elimination of CO ligands, during the collision, becomes increasingly important as the collision energy increases. In a significant number of cases, this shattering mechanism is accompanied with a concomitant formation of a transient Xe-Cr(CO)x +(x<6) complex. The calculated results are in very good agreement with the experimental results presented previously [F. Muntean and P. B. Armentrout, J. Chem. Phys. 115, 1213 (2001)]. In particular, the computed cross sections and scattering maps for the product ions Cr(CO)x +(x=3-5) compare very favorably with the reported experimental data. However, in contrast with the conclusions of the previous study, the present calculations suggest that CID dynamics for this system exhibits a significant impulsive character rather than proceeding via a complex surviving more than a rotational period.
Collapse
Affiliation(s)
- Emilio Martínez-Núñez
- Departamento de Química Física, Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
114
|
Hodyss R, Cox HA, Beauchamp JL. Bioconjugates for Tunable Peptide Fragmentation: Free Radical Initiated Peptide Sequencing (FRIPS). J Am Chem Soc 2005; 127:12436-7. [PMID: 16144360 DOI: 10.1021/ja052042z] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The free radical initiator Vazo 68 is coupled to a peptide and electrosprayed into an ion trap mass spectrometer. On collisional activation, the Vazo 68-peptide conjugate generates a free radical, which can be collisionally activated to cleave the peptide backbone. Mostly z-type fragments are formed, as in CAD of other radical peptides and ECD fragmentation. We present data for the Angiotensin II-Vazo 68 conjugate and discuss possible sites of H atom abstraction from the peptide. This experimental methodology for generating peptide fragments is a useful step toward the development of a completely gas-phase approach to protein sequencing.
Collapse
Affiliation(s)
- Robert Hodyss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
115
|
Laskin J, Futrell JH. Activation of large ions in FT-ICR mass spectrometry. MASS SPECTROMETRY REVIEWS 2005; 24:135-167. [PMID: 15389858 DOI: 10.1002/mas.20012] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has enabled the extension of mass spectrometric methods to large molecules and molecular complexes. This both greatly extends the applications of mass spectrometry and makes the activation and dissociation of complex ions an integral part of these applications. This review emphasizes the most promising methods for activation and dissociation of complex ions and presents this discussion in the context of general knowledge of reaction kinetics and dynamics largely established for small ions. We then introduce the characteristic differences associated with the higher number of internal degrees of freedom and high density of states associated with molecular complexity. This is reflected primarily in the kinetics of unimolecular dissociation of complex ions, particularly their slow decay and the higher energy content required to induce decomposition--the kinetic shift (KS). The longer trapping time of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) significantly reduces the KS, which presents several advantages over other methods for the investigation of dissociation of complex molecules. After discussing general principles of reaction dynamics related to collisional activation of ions, we describe conventional ways to achieve single- and multiple-collision activation in FT-ICR MS. Sustained off-resonance irradiation (SORI)--the simplest and most robust means of introducing the multiple collision activation process--is discussed in greatest detail. Details of implementation of this technique, required control of experimental parameters, limitations, and examples of very successful application of SORI-CID are described. The advantages of high mass resolving power and the ability to carry out several stages of mass selection and activation intrinsic to FT-ICR MS are demonstrated in several examples. Photodissociation of ions from small molecules can be effected using IR or UV/vis lasers and generally requires tuning lasers to specific wavelengths and/or utilizing high flux, multiphoton excitation to match energy levels in the ion. Photodissociation of complex ions is much easier to accomplish from the basic physics perspective. The quasi-continuum of vibrational states at room temperature makes it very easy to pump relatively large amounts of energy into complex ions and infrared multiphoton dissociation (IRMPD) is a powerful technique for characterizing large ions, particularly biologically relevant molecules. Since both SORI-CID and IRMPD are slow activation methods they have many common characteristics. They are also distinctly different because SORI-CID is intrinsically selective (only ions that have a cyclotron frequency close to the frequency of the excitation field are excited), whereas IRMPD is not (all ions that reside on the optical path of the laser are excited). There are advantages and disadvantages to each technique and in many applications they complement each other. In contrast with these slow activation methods, the less widely appreciated activation method of surface induced dissociation (SID) appears to offer unique advantages because excitation in SID occurs on a sub-picosecond time scale, instantaneously relative to the observation time of any mass spectrometer. Internal energy deposition is quite efficient and readily adjusted by altering the kinetic energy of the impacting ion. The shattering transition--instantaneous decomposition of the ion on the surface--observed at high collision energies enables access to dissociation channels that are not accessible using SORI-CID or IRMPD. Finally, we discuss some approaches for tailoring the surface to achieve particular aims in SID.
Collapse
Affiliation(s)
- Julia Laskin
- Fundamental Science Directorate, Pacific Northwest National Laboratory, P.O. Box 999 (K8-88), Richland, Washington 99352, USA.
| | | |
Collapse
|
116
|
Moberg M, Markides KE, Bylund D. Multi-parameter investigation of tandem mass spectrometry in a linear ion trap using response surface modelling. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:317-324. [PMID: 15674864 DOI: 10.1002/jms.787] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The feasibility of experimental design in combination with subsequent response surface modelling was illustrated for the prediction and interpretation of tandem mass spectrometric (MS/MS) fragmentation data using a linear quadrupole ion trap under various experimental conditions. The instrumental parameters included were (i) the pressure of the collision gas, (ii) the collision energy, (iii) the fill time of the linear ion trap and (iv) the scan rate. The spectral intensity and width of five fragment ions of the doubly charged neuro-active peptide bombesin were used for evaluation, and all experiments were performed so as to resemble the results obtained from a liquid chromatographic peak. The reported results show how fairly simple mathematical tools can be utilized successfully to describe fundamental mechanisms associated with multiple collisional activation and collision-induced dissociation processes without an extensively controlled experimental environment. Most beneficial, using the suggested approach, is the ability to study interaction (synergistic) effects between various parameters. As was realized from the results, many interaction effects are indeed significant. For example, the effect on the signal intensity of different collision gas pressure settings is strongly dependent on the settings of the other parameters. The described approach can easily be adopted for optimization purposes of any MS/MS experiment.
Collapse
Affiliation(s)
- My Moberg
- Department of Chemistry, Analytical Chemistry, Uppsala University, P.O. Box 599, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
117
|
Gologan B, Green JR, Alvarez J, Laskin J, Graham Cooks R. Ion/surface reactions and ion soft-landing. Phys Chem Chem Phys 2005; 7:1490-500. [DOI: 10.1039/b418056a] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
118
|
Lioe H, O'Hair RAJ. Neighbouring group processes in the deamination of protonated phenylalanine derivatives. Org Biomol Chem 2005; 3:3618-28. [PMID: 16211098 DOI: 10.1039/b503355a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The gas-phase fragmentation of protonated phenylalanine and a series of its derivatives (tyrosine, 4-methylphenylalanine, 4-aminophenylalanine, 4-methoxyphenylalanine, 4-tert-butylphenylalanine, 4-fluorophenylalanine, 4-chlorophenylalanine, 4-bromophenylalanine, 4-iodophenylalanine, 4-cyanophenylalanine, 4-nitrophenylalanine, 3-fluorophenylalanine, and 3,4-dichlorophenylalanine) were examined using a combination of low energy CID in a quadrupole ion trap mass spectrometer as well as DFT calculations and RRKM modelling. In particular, the relationship between the electron-donating ability of the substituent and the competitive losses of H2O + CO and NH3 were explored through the application of the Hammett equation. It was found that electron-donating substituents promote the loss of NH3, while electron-withdrawing substituents suppress the loss of NH3 and favour the H2O + CO loss fragmentation channel instead. These observations are consistent with a neighbouring group pathway operating for the loss of NH3. Molecular orbital calculation (at the B3LYP/6-31+G(d,p) level of theory) were also performed for a range of derivatives to compare the relative transition state energy barriers for three competing mechanisms: (i) the combined loss of H2O + CO, which is triggered by an initial intramolecular proton transfer from the ammonium group to hydroxyl OH, followed by the combined loss of H2O and CO to form an immonium ion; (ii) loss of NH3 via an aryl assisted neighbouring group pathway to yield a phenonium ion; (iii) loss of NH3 via a 1,2-hydride migration process, which results in the formation of a benzyl cation. The relative energy barriers for H2O + CO loss remain nearly constant, while that for both NH3 pathways increase as the substituent moves from electron-donating to electron-withdrawing. The relative transition state energy for loss of NH3 via the aryl assisted neighbouring group pathway is always lower than that of the 1,2-hydride migration process. RRKM modelling of the DFT predicted barrier heights suggest that the rate constants for H2O + CO loss are insensitive to the substituent on the ring, while the NH3 loss channels are greatly affected by the substituent. These theoretical results are consistent with the experimental observation of the relative yields of the competing fragmentation channels. Finally, comparisons with published gas phase and condensed phase studies on related systems are made.
Collapse
Affiliation(s)
- Hadi Lioe
- School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
119
|
Römpp A, Taban IM, Mihalca R, Duursma MC, Mize TH, McDonnel LA, Heeren RMA. Examples of Fourier transform ion cyclotron resonance mass spectrometry developments: from ion physics to remote access biochemical mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2005; 11:443-56. [PMID: 16322650 DOI: 10.1255/ejms.732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The application of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) for high resolution biomolecular analysis has increased greatly after 30 years of innovation since its conception in 1974. FT- ICR-MS can now routinely be used for the analysis of complex organic mixtures such as biological or petrochemical samples. Many of these new possibilities have been the results of many different instrumental developments. This paper provides a mini review of selected instrumental developments that now allow these measurements. The development of soft ionization techniques such as electrospray ionization and matrix assisted laser desorption and ionisation was crucial for the analysis of biological macromolecules. Improved ion transport optics led to an increase in sensitivity. New ICR cell designs complement the capabilities of FT-ICR-MS by allowing a more thorough study of the mechanism and kinetics of ion reactions in the gas-phase. A selected example of electron capture dissociation (ECD) employs these developments to investigate the role of peptide conformation in ECD. Improved electronics and software allow faster and more flexible experiments. All these improvements led to an increase in speed and sensitivity that are necessary to couple FT-MS to fast separation techniques such as nano-high performance liquid chromatography. The modern FT-ICR-MS instruments can be incorporated in virtual organizations allowing remote access to unique infrastructure. This concept of remote experimentation opens new possibilities for scientific collaborations between expert scientists at different locations and allows the efficient use of this expensive instrumentation.
Collapse
Affiliation(s)
- A Römpp
- FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
120
|
Rakov VS, Borisov OV, Whitehouse CM. Establishing low-energy sequential decomposition pathways of leucine enkephalin and its N- and C-terminus fragments using multiple-resonance CID in quadrupolar ion guide. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1794-1809. [PMID: 15589756 DOI: 10.1016/j.jasms.2004.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 06/24/2004] [Accepted: 06/24/2004] [Indexed: 05/24/2023]
Abstract
The simultaneous resonant low-energy excitation of leucine enkephalin and its fragment ions was demonstrated in a collision cell of the multipole-quadrupole time-of-flight instrument. Using low-amplitude multiple-resonance excitation CID, we were able to show the exclusive sequential fragmentation of N- and C-terminus fragments all the way to the final fragments--immonium ions of phenylalanine or tyrosine. In this CID mode the single-channel dissociation of each new generation of fragments followed the lowest energy decomposition pathways observable on the time scale of our experiment. Up to six generations of sequential dissociation were carried out in multiple-resonance CID experiments. The direct qualitative comparison of fragmentation of axial-acceleration versus resonant (radial) CID was performed in the same instrument. In both activation methods, fragmentation patterns suggested complex decomposition mechanisms attributable to dynamic competition between sequential and parallel dissociation channels.
Collapse
Affiliation(s)
- V Sergey Rakov
- Analytica of Branford, Branford, 29 Business Park Drive, Branford, CT 06405, USA.
| | | | | |
Collapse
|
121
|
Tolmachev AV, Vilkov AN, Bogdanov B, Pasa-Tolić L, Masselon CD, Smith RD. Collisional activation of ions in RF ion traps and ion guides: the effective ion temperature treatment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1616-28. [PMID: 15519229 DOI: 10.1016/j.jasms.2004.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 07/21/2004] [Accepted: 07/22/2004] [Indexed: 05/12/2023]
Abstract
Ion transfer and storage using inhomogeneous radio frequency (RF) electric fields in combination with gas-assisted ion cooling and focusing constitutes one of the basic techniques in mass spectrometry today. The RF motion of ions in the bath gas environment involves a large number of ion-neutral collisions that leads to the internal activation of ions and their effective "heating" (when a thermal distribution of internal energies results). The degree of ion activation required in various applications may range from a minimum level (e.g., slightly raising the average internal energy) to an intense level resulting in ion fragmentation. Several research groups proposed using the effective temperature as a measure of ion activation under conditions of multiple ion-neutral collisions. Here we present approximate relationships for the effective ion temperature relevant to typical operation modes of RF multipole devices. We show that RF ion activation results in near-thermal energies for ions occupying an equilibrium position at the center of an RF trap, whereas increased ion activation can be produced by shifting ions off-center, e.g., by means of an external DC electric field. The ion dissociation in the linear quadrupole ion trap using the dipolar DC ion activation has been observed experimentally and interpreted in terms of the effective ion temperature.
Collapse
|
122
|
Sleno L, Volmer DA. Ion activation methods for tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2004; 39:1091-112. [PMID: 15481084 DOI: 10.1002/jms.703] [Citation(s) in RCA: 319] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This tutorial presents the most common ion activation techniques employed in tandem mass spectrometry. In-source fragmentation and metastable ion decompositions, as well as the general theory of unimolecular dissociations of ions, are initially discussed. This is followed by tandem mass spectrometry, which implies that the activation of ions is distinct from the ionization step, and that the precursor and product ions are both characterized independently by their mass/charge ratios. In collision-induced dissociation (CID), activation of the selected ions occurs by collision(s) with neutral gas molecules in a collision cell. This experiment can be done at high (keV) collision energies, using tandem sector and time-of-flight instruments, or at low (eV range) energies, in tandem quadrupole and ion trapping instruments. It can be performed using either single or multiple collisions with a selected gas and each of these factors influences the distribution of internal energy that the activated ion will possess. While CID remains the most common ion activation technique employed in analytical laboratories today, several new methods have become increasingly useful for specific applications. More recent techniques are examined and their differences, advantages and disadvantages are described in comparison with CID. Collisional activation upon impact of precursor ions on solid surfaces, surface-induced dissociation (SID), is gaining importance as an alternative to gas targets and has been implemented in several different types of mass spectrometers. Furthermore, unique fragmentation mechanisms of multiply-charged species can be studied by electron-capture dissociation (ECD). The ECD technique has been recognized as an efficient means to study non-covalent interactions and to gain sequence information in proteomics applications. Trapping instruments, such as quadrupole ion traps and Fourier transform ion cyclotron resonance instruments, are particularly useful for the photoactivation of ions, specifically for fragmentation of precursor ions by infrared multiphoton dissociation (IRMPD). IRMPD is a non-selective activation method and usually yields rich fragmentation spectra. Lastly, blackbody infrared radiative dissociation is presented with a focus on determining activation energies and other important parameters for the characterization of fragmentation pathways. The individual methods are presented so as to facilitate the understanding of each mechanism of activation and their particular advantages and representative applications.
Collapse
Affiliation(s)
- Lekha Sleno
- National Research Council, Institute for Marine Biosciences, 1411 Oxford Street, Halifax, Nova Scotia, Canada, B3H 3Z1
| | | |
Collapse
|
123
|
Adams CM, Kjeldsen F, Zubarev RA, Budnik BA, Haselmann KF. Electron capture dissociation distinguishes a single D-amino acid in a protein and probes the tertiary structure. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1087-98. [PMID: 15234367 DOI: 10.1016/j.jasms.2004.04.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 04/06/2004] [Accepted: 04/06/2004] [Indexed: 05/11/2023]
Abstract
First results are reported on the application of ECD in analysis of 2+ and 3+ ions of stereoisomers of Trp-cage (NLYIQWLKDGGPSSGRPPPS), the smallest and fastest-folding protein, which exhibits a tightly folded tertiary structure in solution. The chiral recognition based on the ratios of the abundances of z(18) and z(19) fragments in ECD of 2+ ions was excellent even for a single amino acid (Tyr) D-substitution (R(chiral) = 8.6). The chiral effect decreased with an increase of temperature at the electrospray ion source, as well as at a higher degree of ionization, 3+ ions (R(chiral) = 1.5). A general approach is suggested for charge localization in n+ ions by analysis of ECD mass spectra of (n + 1)+ ions. Application of this approach to 3+ Trp-cage ions revealed the protonation probability order in 2+ ions: Arg(16) >> Gln(5) > approximately N-terminus. The ECD results for native form of the 2+ ions favor the preservation of the solution-phase tertiary structure, and chiral recognition through the interaction between the charges and the neutral bond network. Conversely, ECD of 3+ ions supports the dominance of ionic hydrogen bonding which determines a different gas-phase structure than found in solution. Vibrational activation of 2+ ions indicated greater stability of the native form, but the fragmentation patterns did not provide stereoisomer differentiation, thus underlying the special position of ECD among other MS/MS fragmentation techniques. Further ECD studies should yield more structural information as well as quantitative single-amino acid D/L content measurements in proteins.
Collapse
Affiliation(s)
- Christopher M Adams
- Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
124
|
Laskin J. Energetics and dynamics of peptide fragmentation from multiple-collision activation and surface-induced dissociation studies. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2004; 10:259-267. [PMID: 15103103 DOI: 10.1255/ejms.641] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This account summarizes the energetics and dynamics of peptide fragmentation obtained using a new approach recently developed in our laboratory. The approach involves RRKM modeling of time- and energy- resolved tandem mass spectrometry (MS/MS) data obtained using collisional activation. We demonstrate that surface-induced dissociation (SID) on a long time-scale of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is perfectly suited for studying the energetics and dynamics of peptide fragmentation. The advantages provided by SID include very fast ion activation, which eliminates possible discrimination against higher-energy dissociation pathways, and efficient "amplification" of small changes in dissociation parameters. We present a summary of results obtained for small alanine-containing peptides as well as larger peptides including angiotensin analogs and a series of peptides containing the LDIFSDF motif.
Collapse
Affiliation(s)
- Julia Laskin
- Fundamental Science Directorate, Pacific Northwest National Laboratory, PO Box 999 (K8-88), Richland, WA 99352, USA.
| |
Collapse
|
125
|
Laskin J, Beck KM, Hache JJ, Futrell JH. Surface-Induced Dissociation of Ions Produced by Matrix-Assisted Laser Desorption/Ionization in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Anal Chem 2003; 76:351-6. [PMID: 14719882 DOI: 10.1021/ac0351116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intermediate pressure matrix-assisted laser desorption/ionization (MALDI) source was constructed and interfaced with a 6-T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially configured for surface-induced dissociation (SID) studies. First MALDI-SID results in FT-ICR are presented, demonstrating unique advantages of SID over conventional FT-ICR MS ion activation techniques for structural characterization of singly protonated peptide ions. Specifically, we demonstrate that SID on a diamond surface results in a significantly better sequence coverage for singly protonated peptides than SORI-CID. A combination of two effects contributes to the improved sequence coverage: shattering of peptide ions on surfaces opens up a variety of dissociation channels at collision energies above 40 eV, and second, wide internal energy distribution deposited by collision with a stiff diamond surface provides an efficient mixing between the primary reaction channels that are dominant at low internal energies and extensive fragmentation at high internal excitation that results from shattering. Activation of MALDI-generated ions by collisions with surfaces in FT-ICR MS is a new powerful method for characterization and identification of biomolecules
Collapse
Affiliation(s)
- Julia Laskin
- Fundamental Science Directorate, Pacific Northwest National Laboratory, PO Box 999 (K8-88), Richland, Washington 99352, USA.
| | | | | | | |
Collapse
|
126
|
Laskin J, Futrell JH. Surface-induced dissociation of peptide ions: kinetics and dynamics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:1340-1347. [PMID: 14652183 DOI: 10.1016/j.jasms.2003.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Kinetics and dynamics studies have been carried out for the surface-induced dissociation (SID) of a set of model peptides utilizing a specially designed electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometer in which mass-selected and vibrationally relaxed ions are collided on a orthogonally-mounted fluorinated self-assembled monolayer on Au [111] crystal. The sampling time in this apparatus can be varied from hundreds of microseconds to tens of seconds, enabling the investigation of kinetics of ion decomposition over an extended range of decomposition rates. RRKM-based modeling of these reactions for a set of polyalanines demonstrates that SID kinetics of these simple peptides is very similar to slow, multiple-collision activation and that the distribution of internal energies following collisional activation is indistinguishable from a thermal distribution. For more complex peptides comprised of several amino acids and with internal degrees of freedom (DOF) of the order of 350 there is a dramatic change in kinetics in which RRKM kinetics is no longer capable of describing the decomposition of these complex ions. A combination of RRKM kinetics and the "sudden death" approximation, according to which decomposition occurs instantaneously, is a satisfactory description. This implies that a population of ions-which is dependant on the nature of the peptide, kinetic energy and sampling time-decomposes on or very near the surface. The shattering transition is described quantitatively for the limited set of molecules examined to date.
Collapse
Affiliation(s)
- Julia Laskin
- Fundamental Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | |
Collapse
|
127
|
Laskin J, Futrell JH. Energy transfer in collisions of peptide ions with surfaces. J Chem Phys 2003. [DOI: 10.1063/1.1589739] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|