101
|
|
102
|
Nonenzymatic gluconeogenesis-like formation of fructose 1,6-bisphosphate in ice. Proc Natl Acad Sci U S A 2017; 114:7403-7407. [PMID: 28652321 DOI: 10.1073/pnas.1702274114] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The evolutionary origins of metabolism, in particular the emergence of the sugar phosphates that constitute glycolysis, the pentose phosphate pathway, and the RNA and DNA backbone, are largely unknown. In cells, a major source of glucose and the large sugar phosphates is gluconeogenesis. This ancient anabolic pathway (re-)builds carbon bonds as cleaved in glycolysis in an aldol condensation of the unstable catabolites glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, forming the much more stable fructose 1,6-bisphosphate. We here report the discovery of a nonenzymatic counterpart to this reaction. The in-ice nonenzymatic aldol addition leads to the continuous accumulation of fructose 1,6-bisphosphate in a permanently frozen solution as followed over months. Moreover, the in-ice reaction is accelerated by simple amino acids, in particular glycine and lysine. Revealing that gluconeogenesis may be of nonenzymatic origin, our results shed light on how glucose anabolism could have emerged in early life forms. Furthermore, the amino acid acceleration of a key cellular anabolic reaction may indicate a link between prebiotic chemistry and the nature of the first metabolic enzymes.
Collapse
|
103
|
Has Inositol Played Any Role in the Origin of Life? Life (Basel) 2017; 7:life7020024. [PMID: 28587245 PMCID: PMC5492146 DOI: 10.3390/life7020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
Phosphorus, as phosphate, plays a paramount role in biology. Since phosphate transfer reactions are an integral part of contemporary life, phosphate may have been incorporated into the initial molecules at the very beginning. To facilitate the studies into early phosphate utilization, we should look retrospectively to phosphate-rich molecules present in today’s cells. Overlooked by origin of life studies until now, inositol and the inositol phosphates, of which some species possess more phosphate groups that carbon atoms, represent ideal molecules to consider in this context. The current sophisticated association of inositol with phosphate, and the roles that some inositol phosphates play in regulating cellular phosphate homeostasis, intriguingly suggest that inositol might have played some role in the prebiotic process of phosphate exploitation. Inositol can be synthesized abiotically and, unlike glucose or ribose, is chemically stable. This stability makes inositol the ideal candidate for the earliest organophosphate molecules, as primitive inositol phosphates. I also present arguments suggesting roles for some inositol phosphates in early chemical evolution events. Finally, the possible prebiotic synthesis of inositol pyrophosphates could have generated high-energy molecules to be utilized in primitive trans-phosphorylating processes.
Collapse
|
104
|
Güell O, Sagués F, Serrano MÁ. Detecting the Significant Flux Backbone of Escherichia coli metabolism. FEBS Lett 2017; 591:1437-1451. [PMID: 28391640 DOI: 10.1002/1873-3468.12650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/20/2017] [Accepted: 04/01/2017] [Indexed: 01/25/2023]
Abstract
The heterogeneity of computationally predicted reaction fluxes in metabolic networks within a single flux state can be exploited to detect their significant flux backbone. Here, we disclose the backbone of Escherichia coli, and compare it with the backbones of other bacteria. We find that, in general, the core of the backbones is mainly composed of reactions in energy metabolism corresponding to ancient pathways. In E. coli, the synthesis of nucleotides and the metabolism of lipids form smaller cores which rely critically on energy metabolism. Moreover, the consideration of different media leads to the identification of pathways sensitive to environmental changes. The metabolic backbone of an organism is thus useful to trace simultaneously both its evolution and adaptation fingerprints.
Collapse
Affiliation(s)
- Oriol Güell
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona, Spain
| | - Francesc Sagués
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona, Spain
| | - M Ángeles Serrano
- Department de Física de la Matèria Condensada, Universitat de Barcelona, Spain.,University of Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
105
|
Feng W, Wei Z, Song J, Qin Q, Yu K, Li G, Zhang J, Wu W, Yan Y. Hydrolysis of nicosulfuron under acidic environment caused by oxalate secretion of a novel Penicillium oxalicum strain YC-WM1. Sci Rep 2017; 7:647. [PMID: 28381881 PMCID: PMC5428040 DOI: 10.1038/s41598-017-00228-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 02/15/2017] [Indexed: 11/09/2022] Open
Abstract
A novel Penicillium oxalicum strain YC-WM1, isolated from activated sludge, was found to be capable of completely degrading 100 mg/L of nicosulfuron within six days when incubated in GSM at 33 °C. Nicosulfuron degradation rates were affected by GSM initial pH, nicosulfuron initial concentration, glucose initial concentration, and carbon source. After inoculation, the medium pH was decreased from 7.0 to 4.5 within one day and remained at around 3.5 during the next few days, in which nicosulfuron degraded quickly. Besides, 100 mg/L of nicosulfuron were completely degraded in GSM medium at pH of 3.5 without incubation after 4 days. So, nicosulfuron degradation by YC-WM1 may be acidolysis. Based on HPLC analysis, GSM medium acidification was due to oxalate accumulation instead of lactic acid and oxalate, which was influenced by different carbon sources and had no relationship to nicosulfuron initial concentration. Furthermore, nicosulfuron broke into aminopyrimidine and pyridylsulfonamide as final products and could not be used as nitrogen source and mycelium didn’t increase in GSM medium. Metabolomics results further showed that nicosulfuron degradation was not detected in intracellular. Therefore, oxalate secretion in GSM medium by strain YC-WM1 led to nicosulfuron acidolysis.
Collapse
Affiliation(s)
- Weimin Feng
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheng Wei
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Insitute of Crop Science/Natonal Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Jinlong Song
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Chinese Academy of fishery sciences, Beijing, 100141, China
| | - Qiao Qin
- Insitute of Crop Science/Natonal Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Kaimin Yu
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guochao Li
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiayu Zhang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Wu
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanchun Yan
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
106
|
Keller MA, Kampjut D, Harrison SA, Ralser M. Sulfate radicals enable a non-enzymatic Krebs cycle precursor. Nat Ecol Evol 2017; 1:83. [PMID: 28584880 PMCID: PMC5455955 DOI: 10.1038/s41559-017-0083] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/13/2017] [Indexed: 11/09/2022]
Abstract
The evolutionary origins of the tricarboxylic acid cycle (TCA), or Krebs cycle, are so far unclear. Despite a few years ago, the existence of a simple non-enzymatic Krebs-cycle catalyst has been dismissed 'as an appeal to magic', citrate and other intermediates have meanwhile been discovered on a carbonaceous meteorite and do interconvert non-enzymatically. To identify the non-enzymatic Krebs cycle catalyst, we used combinatorial, quantitative high-throughput metabolomics to systematically screen iron and sulfate reaction milieus that orient on Archean sediment constituents. TCA cycle intermediates are found stable in water and in the presence of most iron and sulfate species, including simple iron-sulfate minerals. However, we report that TCA intermediates undergo 24 interconversion reactions in the presence of sulfate radicals that form from peroxydisulfate. The non-enzymatic reactions critically cover a topology as present in the Krebs cycle, the glyoxylate shunt and the succinic semialdehyde pathways. Assembled in a chemical network, the reactions achieve more than ninety percent carbon recovery. Our results show that a non-enzymatic precursor for the Krebs cycle is biologically sensible, efficient, and forms spontaneously in the presence of sulfate radicals.
Collapse
Affiliation(s)
- Markus A. Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Domen Kampjut
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | - Stuart A. Harrison
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, UK
| |
Collapse
|
107
|
Abstract
Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.
Collapse
Affiliation(s)
- Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128 Gothenburg, Sweden; .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark.,Science for Life Laboratory, Royal Institute of Technology, SE17121 Stockholm, Sweden
| |
Collapse
|
108
|
Remnants of an Ancient Metabolism without Phosphate. Cell 2017; 168:1126-1134.e9. [PMID: 28262353 DOI: 10.1016/j.cell.2017.02.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 01/31/2017] [Indexed: 11/23/2022]
Abstract
Phosphate is essential for all living systems, serving as a building block of genetic and metabolic machinery. However, it is unclear how phosphate could have assumed these central roles on primordial Earth, given its poor geochemical accessibility. We used systems biology approaches to explore the alternative hypothesis that a protometabolism could have emerged prior to the incorporation of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism producible from simple prebiotic compounds. This network is predicted to support the biosynthesis of a broad category of key biomolecules. Its enrichment for enzymes utilizing iron-sulfur clusters, and the fact that thermodynamic bottlenecks are more readily overcome by thioester rather than phosphate couplings, suggest that this network may constitute a "metabolic fossil" of an early phosphate-free nonenzymatic biochemistry. Our results corroborate and expand previous proposals that a putative thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system. PAPERCLIP.
Collapse
|
109
|
Timm KN, Hu DE, Williams M, Wright AJ, Kettunen MI, Kennedy BWC, Larkin TJ, Dzien P, Marco-Rius I, Bohndiek SE, Brindle KM. Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy. J Biol Chem 2017; 292:1737-1748. [PMID: 27994059 PMCID: PMC5290948 DOI: 10.1074/jbc.m116.761536] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-13C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive 13C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-13C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using 13C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-13C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic.
Collapse
Affiliation(s)
- Kerstin N Timm
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - De-En Hu
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Michael Williams
- the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Alan J Wright
- the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Mikko I Kettunen
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Brett W C Kennedy
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Timothy J Larkin
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Piotr Dzien
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Irene Marco-Rius
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Sarah E Bohndiek
- the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Department of Physics, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Kevin M Brindle
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom.
| |
Collapse
|
110
|
Laurino P, Tawfik DS. Spontaneous Emergence of
S
‐Adenosylmethionine and the Evolution of Methylation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Paola Laurino
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot 76100 Israel
| | - Dan S. Tawfik
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
111
|
Laurino P, Tawfik DS. Spontaneous Emergence of S-Adenosylmethionine and the Evolution of Methylation. Angew Chem Int Ed Engl 2016; 56:343-345. [PMID: 27901309 DOI: 10.1002/anie.201609615] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 12/28/2022]
Abstract
S-Adenosylmethionine (SAM) is an essential methylation cofactor. The origins of SAM methylation are complex, seemingly demanding the simultaneous emergence of an enzyme that makes SAM and enzyme(s) that utilize it. We report that both ATP and adenosine spontaneously react with methionine to yield SAM, thus suggesting that SAM could have emerged by chance. SAM methylation thus exemplifies how metabolites and pathways can co-emerge through the gradual recruitment of individual enzymes in reverse order.
Collapse
Affiliation(s)
- Paola Laurino
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
112
|
Yang HC, Wu YH, Liu HY, Stern A, Chiu DTY. What has passed is prolog: new cellular and physiological roles of G6PD. Free Radic Res 2016; 50:1047-1064. [PMID: 27684214 DOI: 10.1080/10715762.2016.1223296] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
G6PD deficiency has been the most pervasive inherited disorder in the world since having been discovered. G6PD has an antioxidant role by functioning as a major nicotinamide adenine dinucleotide phosphate (NADPH) provider to reduce excessive oxidative stress. NADPH can produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) mediated by NADPH oxidase (NOX) and nitric oxide synthase (NOS), respectively. Hence, G6PD also has a pro-oxidant role. Research in the past has focused on the enhanced susceptibility of G6PD-deficient cells or individuals to oxidative challenge. The cytoregulatory role of G6PD has largely been overlooked. By using a metabolomic approach, it is noted that upon oxidant challenge, G6PD-deficient cells will reprogram the GSH metabolism from regeneration to synthesis with exhaustive energy consumption. Recently, new cellular/physiologic roles of G6PD have been discovered. By using a proteomic approach, it has been found that G6PD plays a regulatory role in xenobiotic metabolism possibly via NOX and the redox-sensitive Nrf2-signaling pathway to modulate the expression of xenobiotic-metabolizing enzymes. Since G6PD is a key regulator responsible for intracellular redox homeostasis, G6PD deficiency can alter redox balance leading to many abnormal cellular effects such as the cellular inflammatory and immune response against viral infection. G6PD may play an important role in embryogenesis as G6PD-knockdown mouse cannot produce offspring and G6PD-deficient C. elegans with defective egg production and hatching. This array of findings indicates that the cellular and physiologic roles of G6PD, other than the classical role as an antioxidant enzyme, deserve further attention.
Collapse
Affiliation(s)
- Hung-Chi Yang
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Yi-Hsuan Wu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Hui-Ya Liu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Arnold Stern
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Daniel Tsun-Yee Chiu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,d Department of Pediatric Hematology/Oncology , Chang Gung Memorial Hospital , Linkou , Taiwan
| |
Collapse
|
113
|
Coggins AJ, Powner MW. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis. Nat Chem 2016; 9:310-317. [PMID: 28338685 DOI: 10.1038/nchem.2624] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023]
Abstract
Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions.
Collapse
Affiliation(s)
- Adam J Coggins
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Matthew W Powner
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| |
Collapse
|
114
|
Abstract
Several theories for the origin of life have gained widespread acceptance, led by primordial soup, chemical evolution, metabolism first, and the RNA world. However, while new and existing theories often address a key step, there is less focus on a comprehensive abiogenic continuum leading to the last universal common ancestor. Herein, I present the "minimotif synthesis" hypothesis unifying select origin of life theories with new and revised steps. The hypothesis is based on first principles, on the concept of selection over long time scales, and on a stepwise progression toward complexity. The major steps are the thermodynamically-driven origination of extant molecular specificity emerging from primordial soup leading to the rise of peptide catalysts, and a cyclic feed-forward catalytic diversification of compound and peptides in the primordial soup. This is followed by degenerate, semi-partially conservative peptide replication to pass on catalytic knowledge to progeny protocells. At some point during this progression, the emergence of RNA and selection could drive the separation of catalytic and genetic functions, allowing peptides and proteins to permeate the catalytic space, and RNA to encode higher fidelity information transfer. Translation may have emerged from RNA template driven organization and successive ligation of activated amino acids as a predecessor to translation.
Collapse
Affiliation(s)
- Martin R Schiller
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| |
Collapse
|
115
|
Gill KS, Fernandes P, O'Donovan TR, McKenna SL, Doddakula KK, Power DG, Soden DM, Forde PF. Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response. Biochim Biophys Acta Rev Cancer 2016; 1866:87-105. [PMID: 27373814 DOI: 10.1016/j.bbcan.2016.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
Abstract
Increased glycolysis is the main source of energy supply in cancer cells that use this metabolic pathway for ATP generation. Altered energy metabolism is a biochemical fingerprint of cancer cells that represents one of the "hallmarks of cancer". The immune system can prevent tumour growth by eliminating cancer cells but this editing process ultimately results in poorly immunogenic cells remaining allowing for unchallenged tumour growth. In this review we look at the glycolysis pathway as a target for cancer treatments. We also examine the interplay between the glycolysis modulation and the immune response as an anti-cancer therapy.
Collapse
Affiliation(s)
- Kheshwant S Gill
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland; Cardiothoracic Surgery Department, Cork University Hospital, Cork, Ireland
| | - Philana Fernandes
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | - Tracey R O'Donovan
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | - Sharon L McKenna
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | | | - Derek G Power
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland; Department of Medical Oncology, Mercy University Hospital, Grenville Place, Cork, Ireland
| | - Declan M Soden
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | - Patrick F Forde
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
116
|
Ahn WS, Crown SB, Antoniewicz MR. Evidence for transketolase-like TKTL1 flux in CHO cells based on parallel labeling experiments and (13)C-metabolic flux analysis. Metab Eng 2016; 37:72-78. [PMID: 27174718 DOI: 10.1016/j.ymben.2016.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/07/2016] [Accepted: 05/05/2016] [Indexed: 01/09/2023]
Abstract
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. It provides precursors for the biosynthesis of nucleotides and contributes to the production of reducing power in the form of NADPH. It has been hypothesized that mammalian cells may contain a hidden reaction in PPP catalyzed by transketolase-like protein 1 (TKTL1) that is closely related to the classical transketolase enzyme; however, until now there has been no direct experimental evidence for this reaction. In this work, we have applied state-of-the-art techniques in (13)C metabolic flux analysis ((13)C-MFA) based on parallel labeling experiments and integrated flux fitting to estimate the TKTL1 flux in CHO cells. We identified a set of three parallel labeling experiments with [1-(13)C]glucose+[4,5,6-(13)C]glucose, [2-(13)C]glucose+[4,5,6-(13)C]glucose, and [3-(13)C]glucose+[4,5,6-(13)C]glucose and developed a new method to measure (13)C-labeling of fructose 6-phosphate by GC-MS that allows intuitive interpretation of mass isotopomer distributions to determine key fluxes in the model, including glycolysis, oxidative PPP, non-oxidative PPP, and the TKTL1 flux. Using these tracers we detected a significant TKTL1 flux in CHO cells at the stationary phase. The flux results suggest that the main function of oxidative PPP in CHO cells at the stationary phase is to fuel the TKTL1 reaction. Overall, this study demonstrates for the first time that carbon atoms can be lost in the PPP, by means other than the oxidative PPP, and that this loss of carbon atoms is consistent with the hypothesized TKTL1 reaction in mammalian cells.
Collapse
Affiliation(s)
- Woo Suk Ahn
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Scott B Crown
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
117
|
Campbell K, Vowinckel J, Keller MA, Ralser M. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway. Antioxid Redox Signal 2016; 24:543-7. [PMID: 26596469 PMCID: PMC4827311 DOI: 10.1089/ars.2015.6516] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 01/17/2023]
Abstract
Nutrient uptake and metabolism have a significant impact on the way cells respond to stress. The amino acid methionine is, in particular, a key player in the oxidative stress response, and acting as a reactive oxygen species scavenger, methionine is implicated in caloric restriction phenotypes and aging. We here provide evidence that some effects of methionine in stress situations are indirect and caused by altered activity of the nicotinamide adenine dinucleotide phosphate (NADPH) producing oxidative part of the pentose phosphate pathway (PPP). In Saccharomyces cerevisiae, both methionine prototrophic (MET15) and auxotrophic (met15Δ) cells supplemented with methionine showed an increase in PPP metabolite concentrations downstream of the NADPH producing enzyme, 6-phosphogluconate dehydrogenase. Proteomics revealed this enzyme to also increase in expression compared to methionine self-synthesizing cells. Oxidant tolerance was increased in cells preincubated with methionine; however, this effect was abolished when flux through the oxidative PPP was prevented by deletion of its rate limiting enzyme, ZWF1. Stress resistance phenotypes that follow methionine supplementation hence involve the oxidative PPP. Effects of methionine on oxidative metabolism, stress signaling, and aging have thus to be seen in the context of an altered activity of this NADP reducing pathway.
Collapse
Affiliation(s)
- Kate Campbell
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jakob Vowinckel
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Markus A. Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- The Francis Crick Institute Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
118
|
tRNA Core Hypothesis for the Transition from the RNA World to the Ribonucleoprotein World. Life (Basel) 2016; 6:life6020015. [PMID: 27023615 PMCID: PMC4931452 DOI: 10.3390/life6020015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/29/2016] [Accepted: 03/18/2016] [Indexed: 01/10/2023] Open
Abstract
Herein we present the tRNA core hypothesis, which emphasizes the central role of tRNAs molecules in the origin and evolution of fundamental biological processes. tRNAs gave origin to the first genes (mRNA) and the peptidyl transferase center (rRNA), proto-tRNAs were at the core of a proto-translation system, and the anticodon and operational codes then arose in tRNAs molecules. Metabolic pathways emerged from evolutionary pressures of the decoding systems. The transitions from the RNA world to the ribonucleoprotein world to modern biological systems were driven by three kinds of tRNAs transitions, to wit, tRNAs leading to both mRNA and rRNA.
Collapse
|
119
|
Hibbs JB, Vavrin Z, Cox JE. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose. Redox Biol 2016; 8:271-84. [PMID: 26895212 PMCID: PMC4761651 DOI: 10.1016/j.redox.2016.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 01/05/2023] Open
Abstract
Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. Extracellular metabolism occurs in dilute human leukocyte cytosolic protein solution. Extracellular metabolism is activated by acid phosphatases. Ribose5P salvage from purine nucleotides and its metabolism produces NADPH. Extracellular NADPH generating metabolism influences the redox environment. Extracellular metabolism could be a component of inflammation and wound healing.
Collapse
Affiliation(s)
- John B Hibbs
- Emeritus, Department of Internal Medicine, Division of Infectious Diseases, University of Utah Health Science Center, Salt Lake City, UT, United States; VA Medical Center, Salt Lake City, UT, United States.
| | - Zdenek Vavrin
- VA Medical Center, Salt Lake City, UT, United States
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States; Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
120
|
Sojo V, Herschy B, Whicher A, Camprubí E, Lane N. The Origin of Life in Alkaline Hydrothermal Vents. ASTROBIOLOGY 2016; 16:181-97. [PMID: 26841066 DOI: 10.1089/ast.2015.1406] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.
Collapse
Affiliation(s)
- Victor Sojo
- 1 Department of Genetics, Evolution and Environment, University College London , London, UK
- 2 CoMPLEX, University College London , London, UK
| | - Barry Herschy
- 1 Department of Genetics, Evolution and Environment, University College London , London, UK
| | - Alexandra Whicher
- 1 Department of Genetics, Evolution and Environment, University College London , London, UK
| | - Eloi Camprubí
- 1 Department of Genetics, Evolution and Environment, University College London , London, UK
| | - Nick Lane
- 1 Department of Genetics, Evolution and Environment, University College London , London, UK
- 2 CoMPLEX, University College London , London, UK
| |
Collapse
|
121
|
Schönheit P, Buckel W, Martin WF. On the Origin of Heterotrophy. Trends Microbiol 2016; 24:12-25. [DOI: 10.1016/j.tim.2015.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/28/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
122
|
Keller MA, Zylstra A, Castro C, Turchyn AV, Griffin JL, Ralser M. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. SCIENCE ADVANCES 2016; 2:e1501235. [PMID: 26824074 PMCID: PMC4730858 DOI: 10.1126/sciadv.1501235] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.
Collapse
Affiliation(s)
- Markus A. Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Andre Zylstra
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Cecilia Castro
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Alexandra V. Turchyn
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
123
|
Timm KN, Hartl J, Keller MA, Hu DE, Kettunen MI, Rodrigues TB, Ralser M, Brindle KM. Hyperpolarized [U-(2) H, U-(13) C]Glucose reports on glycolytic and pentose phosphate pathway activity in EL4 tumors and glycolytic activity in yeast cells. Magn Reson Med 2015; 74:1543-7. [PMID: 25522215 DOI: 10.1002/mrm.25561] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/29/2014] [Accepted: 11/12/2014] [Indexed: 02/11/2024]
Abstract
PURPOSE A resonance at ∼181 ppm in the (13) C spectra of tumors injected with hyperpolarized [U-(2) H, U-(13) C]glucose was assigned to 6-phosphogluconate (6PG), as in previous studies in yeast, whereas in breast cancer cells in vitro this resonance was assigned to 3-phosphoglycerate (3PG). These peak assignments were investigated here using measurements of 6PG and 3PG (13) C-labeling using liquid chromatography tandem mass spectrometry (LC-MS/MS) METHODS: Tumor-bearing mice were injected with (13) C6 glucose and the (13) C-labeled and total 6PG and 3PG concentrations measured. (13) C MR spectra of glucose-6-phosphate dehydrogenase deficient (zwf1Δ) and wild-type yeast were acquired following addition of hyperpolarized [U-(2) H, U-(13) C]glucose and again (13) C-labeled and total 6PG and 3PG were measured by LC-MS/MS RESULTS: Tumor (13) C-6PG was more abundant than (13) C-2PG/3PG and the resonance at ∼181 ppm matched more closely that of 6PG. (13) C MR spectra of wild-type and zwf1Δ yeast cells showed a resonance at ∼181 ppm after labeling with hyperpolarized [U-(2) H, U-(13) C]glucose, however, there was no 6PG in zwf1Δ cells. In the wild-type cells 3PG was approximately four-fold more abundant than 6PG CONCLUSION: The resonance at ∼181 ppm in (13) C MR spectra following injection of hyperpolarized [U-(2) H, U-(13) C]glucose originates predominantly from 6PG in EL4 tumors and 3PG in yeast cells.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Johannes Hartl
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - De-En Hu
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mikko I Kettunen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Tiago B Rodrigues
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
124
|
Liu H, Zhao X, Guo M, Liu H, Zheng Z. Growth and metabolism of Beauveria bassiana spores and mycelia. BMC Microbiol 2015; 15:267. [PMID: 26581712 PMCID: PMC4652391 DOI: 10.1186/s12866-015-0592-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 10/28/2015] [Indexed: 11/19/2022] Open
Abstract
Background Fungi are ubiquitous in nature and have evolved over time to colonize a wide range of ecosystems including pest control. To date, most research has focused on the hypocrealean genera Beauveria bassiana, which is a typical filamentous fungus with a high potential for insect control. The morphology and components of fungi are important during the spores germination and outgrow to mycelia. However, to the best of our knowledge, there is no report on the morphology and components of B. bassiana spores and mycelia. In the work, the growth and metabolism of Beauveria bassiana spores and mycelia were studied. High performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to study the metabolism of B. bassiana spores and mycelia. Principal component analysis (PCA) based on HPLC-MS was conducted to study the different components of the spores and mycelia of the fungus. Metabolic network was established based on HPLC-MS and KEGG database. Results Through Gompertz model based on macroscopic and microscopic techniques, spore elongation length was found to increase exponentially until approximately 23.1 h after cultivation, and then growth became linear. In the metabolic network, the decrease of glyoxylate, pyruvate, fumarate, alanine, succinate, oxaloacetate, dihydrothymine, ribulose, acetylcarnitine, fructose-1, 6-bisphosphate, mycosporin glutamicol, and the increase of betaine, carnitine, ergothioneine, sphingosine, dimethyl guanosine, glycerophospholipids, and in spores indicated that the change of the metabolin can keep spores in inactive conditions, protect spores against harmful effects and survive longer. Conclusions Analysis of the metabolic pathway in which these components participate can reveal the metabolic difference between spores and mycelia, which provide the tools for understand and control the process of of spores germination and outgrow to mycelia.
Collapse
Affiliation(s)
- Hongxia Liu
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, 471000, Luoyang, P. R. China.
| | - Xusheng Zhao
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, 471000, Luoyang, P. R. China.
| | - Mingxin Guo
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, 471000, Luoyang, P. R. China.
| | - Hui Liu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui, 230031, P. R. China.
| | - Zhiming Zheng
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui, 230031, P. R. China.
| |
Collapse
|
125
|
Liu H, Zhao X, Guo M, Liu H, Zheng Z. Growth and metabolism of Beauveria bassiana spores and mycelia. BMC Microbiol 2015. [PMID: 26581712 DOI: 10.1186/s12866-015-0592-594?] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Fungi are ubiquitous in nature and have evolved over time to colonize a wide range of ecosystems including pest control. To date, most research has focused on the hypocrealean genera Beauveria bassiana, which is a typical filamentous fungus with a high potential for insect control. The morphology and components of fungi are important during the spores germination and outgrow to mycelia. However, to the best of our knowledge, there is no report on the morphology and components of B. bassiana spores and mycelia. In the work, the growth and metabolism of Beauveria bassiana spores and mycelia were studied. High performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to study the metabolism of B. bassiana spores and mycelia. Principal component analysis (PCA) based on HPLC-MS was conducted to study the different components of the spores and mycelia of the fungus. Metabolic network was established based on HPLC-MS and KEGG database. RESULTS Through Gompertz model based on macroscopic and microscopic techniques, spore elongation length was found to increase exponentially until approximately 23.1 h after cultivation, and then growth became linear. In the metabolic network, the decrease of glyoxylate, pyruvate, fumarate, alanine, succinate, oxaloacetate, dihydrothymine, ribulose, acetylcarnitine, fructose-1, 6-bisphosphate, mycosporin glutamicol, and the increase of betaine, carnitine, ergothioneine, sphingosine, dimethyl guanosine, glycerophospholipids, and in spores indicated that the change of the metabolin can keep spores in inactive conditions, protect spores against harmful effects and survive longer. CONCLUSIONS Analysis of the metabolic pathway in which these components participate can reveal the metabolic difference between spores and mycelia, which provide the tools for understand and control the process of of spores germination and outgrow to mycelia.
Collapse
Affiliation(s)
- Hongxia Liu
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, 471000, Luoyang, P. R. China.
| | - Xusheng Zhao
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, 471000, Luoyang, P. R. China.
| | - Mingxin Guo
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, 471000, Luoyang, P. R. China.
| | - Hui Liu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui, 230031, P. R. China.
| | - Zhiming Zheng
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui, 230031, P. R. China.
| |
Collapse
|
126
|
Piedrafita G, Keller MA, Ralser M. The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions. Biomolecules 2015; 5:2101-22. [PMID: 26378592 PMCID: PMC4598790 DOI: 10.3390/biom5032101] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
Cellular metabolism assembles in a structurally highly conserved, but functionally dynamic system, known as the metabolic network. This network involves highly active, enzyme-catalyzed metabolic pathways that provide the building blocks for cell growth. In parallel, however, chemical reactivity of metabolites and unspecific enzyme function give rise to a number of side products that are not part of canonical metabolic pathways. It is increasingly acknowledged that these molecules are important for the evolution of metabolism, affect metabolic efficiency, and that they play a potential role in human disease—age-related disorders and cancer in particular. In this review we discuss the impact of oxidative and other cellular stressors on the formation of metabolic side products, which originate as a consequence of: (i) chemical reactivity or modification of regular metabolites; (ii) through modifications in substrate specificity of damaged enzymes; and (iii) through altered metabolic flux that protects cells in stress conditions. In particular, oxidative and heat stress conditions are causative of metabolite and enzymatic damage and thus promote the non-canonical metabolic activity of the cells through an increased repertoire of side products. On the basis of selected examples, we discuss the consequences of non-canonical metabolic reactivity on evolution, function and repair of the metabolic network.
Collapse
Affiliation(s)
- Gabriel Piedrafita
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK.
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK.
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK.
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW1 7AA, UK.
| |
Collapse
|
127
|
Gil A, Siegel D, Permentier H, Reijngoud DJ, Dekker F, Bischoff R. Stability of energy metabolites-An often overlooked issue in metabolomics studies: A review. Electrophoresis 2015; 36:2156-2169. [PMID: 25959207 DOI: 10.1002/elps.201500031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/19/2015] [Accepted: 04/19/2015] [Indexed: 11/08/2022]
Abstract
Recent advances in analytical chemistry have set the stage for metabolite profiling to help understand complex molecular processes in physiology. Despite ongoing efforts, there are concerns regarding metabolomics workflows, since it has been shown that internal (enzyme activity, blood contamination, and the dynamic nature of metabolite concentrations) as well as external factors (storage, handling, and analysis method) may affect the metabolome profile. Many metabolites are intrinsically instable, particularly some of those associated with central carbon metabolism. While enzymatic conversions have been studied in great detail, nonenzymatic, chemical conversions received comparatively little attention. This review aims to give an in-depth overview of nonenzymatic energy metabolite degradation/interconversion chemistry focusing on a selected range of metabolites. Special attention will be given to qualitative (degradation pathways) as well as quantitative aspects, that may affect the acquisition of accurate data in the context of metabolomics studies. Problems related to the use of isotopically labeled internal standards hindering the quantitative analysis of common metabolites will be presented with an experimental example. Finally, general conclusions and perspectives are given.
Collapse
Affiliation(s)
- Andres Gil
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - David Siegel
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Hjalmar Permentier
- Department of Pharmacy, Interfaculty Mass Spectrometry Center, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frank Dekker
- Department of Pharmacy, Pharmaceutical Gene Modulation, University of Groningen, Groningen, The Netherlands
| | - Rainer Bischoff
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
128
|
Marakushev SA, Belonogova OV. The chemical potentials of hydrothermal systems and the formation of coupled modular metabolic pathways. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915040168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
129
|
Burcar BT, Barge LM, Trail D, Watson EB, Russell MJ, McGown LB. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems. ASTROBIOLOGY 2015; 15:509-522. [PMID: 26154881 DOI: 10.1089/ast.2014.1280] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and ribonucleotides in the presence of lipids. Additionally, mineral surfaces such as borates, apatite, and calcite have been shown to catalyze the formation of small organic compounds from inorganic precursors (Cleaves, 2008 ), pointing to possible geological sites for the origins of life. Indeed, the catalytic properties of these particular minerals provide compelling evidence for alkaline hydrothermal vents as a potential site for the origins of life since, at these vents, large metal-rich chimney structures can form that have been shown to be energetically favorable to diverse forms of life. Here, we test the ability of iron- and sulfur-rich chimneys to support RNA oligomerization reactions using imidazole-activated and non-activated ribonucleotides. The chimneys were synthesized in the laboratory in aqueous "ocean" solutions under conditions consistent with current understanding of early Earth. Effects of elemental composition, pH, inclusion of catalytic montmorillonite clay, doping of chimneys with small organic compounds, and in situ ribonucleotide activation on RNA polymerization were investigated. These experiments, under certain conditions, showed successful dimerization by using unmodified ribonucleotides, with the generation of RNA oligomers up to 4 units in length when imidazole-activated ribonucleotides were used instead. Elemental analysis of the chimney precipitates and the reaction solutions showed that most of the metal cations that were determined were preferentially partitioned into the chimneys.
Collapse
Affiliation(s)
- Bradley T Burcar
- 1 New York Center for Astrobiology, Rensselaer Polytechnic Institute , Troy, New York
- 2 Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| | - Laura M Barge
- 3 NASA Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
- 4 NASA Astrobiology Institute , Icy Worlds
| | - Dustin Trail
- 1 New York Center for Astrobiology, Rensselaer Polytechnic Institute , Troy, New York
- 5 Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute School of Science , Troy, New York
| | - E Bruce Watson
- 1 New York Center for Astrobiology, Rensselaer Polytechnic Institute , Troy, New York
- 5 Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute School of Science , Troy, New York
| | - Michael J Russell
- 3 NASA Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
- 4 NASA Astrobiology Institute , Icy Worlds
| | - Linda B McGown
- 1 New York Center for Astrobiology, Rensselaer Polytechnic Institute , Troy, New York
- 2 Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
130
|
Matros A, Peshev D, Peukert M, Mock HP, Van den Ende W. Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:822-39. [PMID: 25891826 DOI: 10.1111/tpj.12853] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 05/25/2023]
Abstract
Substantial formation of reactive oxygen species (ROS) is inevitable in aerobic life forms. Due to their extremely high reactivity and short lifetime, hydroxyl radicals are a special case, because cells have not developed enzymes to detoxify these most dangerous ROS. Thus, scavenging of hydroxyl radicals may only occur by accumulation of higher levels of simple organic compounds. Previous studies have demonstrated that plant-derived sugars show hydroxyl radical scavenging capabilities during Fenton reactions with Fe(2+) and hydrogen peroxide in vitro, leading to formation of less detrimental sugar radicals that may be subject of regeneration to non-radical carbohydrates in vivo. Here, we provide further evidence for the occurrence of such radical reactions with sugars in planta, by following the fate of sucralose, an artificial analog of sucrose, in Arabidopsis tissues. The expected sucralose recombination and degradation products were detected in both normal and stressed plant tissues. Oxidation products of endogenous sugars were also assessed in planta for Arabidopsis and barley, and were shown to increase in abundance relative to the non-oxidized precursor during oxidative stress conditions. We concluded that such non-enzymatic reactions with hydroxyl radicals form an integral part of plant antioxidant mechanisms contributing to cellular ROS homeostasis, and may be more important than generally assumed. This is discussed in relation to the recently proposed roles for Fe(2+) and hydrogen peroxide in processes leading to the origin of metabolism and the origin of life.
Collapse
Affiliation(s)
- Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Darin Peshev
- Laboratory of Molecular Plant Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Belgium
| | - Manuela Peukert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Belgium
| |
Collapse
|
131
|
Martínez Cuesta S, Rahman SA, Furnham N, Thornton JM. The Classification and Evolution of Enzyme Function. Biophys J 2015; 109:1082-6. [PMID: 25986631 DOI: 10.1016/j.bpj.2015.04.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/30/2022] Open
Abstract
Enzymes are the proteins responsible for the catalysis of life. Enzymes sharing a common ancestor as defined by sequence and structure similarity are grouped into families and superfamilies. The molecular function of enzymes is defined as their ability to catalyze biochemical reactions; it is manually classified by the Enzyme Commission and robust approaches to quantitatively compare catalytic reactions are just beginning to appear. Here, we present an overview of studies at the interface of the evolution and function of enzymes.
Collapse
Affiliation(s)
- Sergio Martínez Cuesta
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Syed Asad Rahman
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| |
Collapse
|
132
|
Abstract
An RNA world has been placed centre stage for explaining the origin of life. Indeed, RNA is the most plausible molecule able to form both a (self)-replicator and to inherit information, necessities for initiating genetics. However, in parallel with self-replication, the proto-organism had to obtain the ability to catalyse supply of its chemical constituents, including the ribonucleotide metabolites required to replicate RNA. Although the possibility of an RNA-catalysed metabolic network has been considered, it is to be questioned whether RNA molecules, at least on their own, possess the required catalytic capacities. An alternative scenario for the origin of metabolism involves chemical reactions that are based on environmental catalysts. Recently, we described a non-enzymatic glycolysis and pentose phosphate pathway-like reactions catalysed by metal ions [mainly Fe(II)] and phosphate, simple inorganic molecules abundantly found in Archaean sediments. While the RNA world can serve to explain the origin of genetics, the origin of the metabolic network might thus date back to constraints of environmental chemistry. Interestingly, considering a metal-catalysed origin of metabolism gives rise to an attractive hypothesis about how the first enzymes could have formed: simple RNA or (poly)peptide molecules could have bound the metal ions, and thus increased their solubility, concentration and accessibility. In a second step, this would have allowed substrate specificity to evolve.
Collapse
|
133
|
Nontemplate-driven polymers: clues to a minimal form of organization closure at the early stages of living systems. Theory Biosci 2015; 134:47-64. [DOI: 10.1007/s12064-015-0209-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/16/2015] [Indexed: 12/27/2022]
|
134
|
Wallace S, Schultz EE, Balskus EP. Using non-enzymatic chemistry to influence microbial metabolism. Curr Opin Chem Biol 2015; 25:71-9. [PMID: 25579453 PMCID: PMC4380663 DOI: 10.1016/j.cbpa.2014.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023]
Abstract
The structural manipulation of small molecule metabolites occurs in all organisms and plays a fundamental role in essentially all biological processes. Despite an increasing interest in developing new, non-enzymatic chemical reactions capable of functioning in the presence of living organisms, the ability of such transformations to interface with cellular metabolism and influence biological function is a comparatively underexplored area of research. This review will discuss efforts to combine non-enzymatic chemistry with microbial metabolism. We will highlight recent and historical uses of non-biological reactions to study microbial growth and function, the use of non-enzymatic transformations to rescue auxotrophic microorganisms, and the combination of engineered microbial metabolism and biocompatible chemical reactions for organic synthesis.
Collapse
Affiliation(s)
- Stephen Wallace
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States
| | - Erica E Schultz
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States
| | - Emily P Balskus
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States.
| |
Collapse
|
135
|
Michel S, Keller MA, Wamelink MMC, Ralser M. A haploproficient interaction of the transaldolase paralogue NQM1 with the transcription factor VHR1 affects stationary phase survival and oxidative stress resistance. BMC Genet 2015; 16:13. [PMID: 25887987 PMCID: PMC4331311 DOI: 10.1186/s12863-015-0171-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/21/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Studying the survival of yeast in stationary phase, known as chronological lifespan, led to the identification of molecular ageing factors conserved from yeast to higher organisms. To identify functional interactions among yeast chronological ageing genes, we conducted a haploproficiency screen on the basis of previously identified long-living mutants. For this, we created a library of heterozygous Saccharomyces cerevisiae double deletion strains and aged them in a competitive manner. RESULTS Stationary phase survival was prolonged in a double heterozygous mutant of the metabolic enzyme non-quiescent mutant 1 (NQM1), a paralogue to the pentose phosphate pathway enzyme transaldolase (TAL1), and the transcription factor vitamin H response transcription factor 1 (VHR1). We find that cells deleted for the two genes possess increased clonogenicity at late stages of stationary phase survival, but find no indication that the mutations delay initial mortality upon reaching stationary phase, canonically defined as an extension of chronological lifespan. We show that both genes influence the concentration of metabolites of glycolysis and the pentose phosphate pathway, central metabolic players in the ageing process, and affect osmolality of growth media in stationary phase cultures. Moreover, NQM1 is glucose repressed and induced in a VHR1 dependent manner upon caloric restriction, on non-fermentable carbon sources, as well as under osmotic and oxidative stress. Finally, deletion of NQM1 is shown to confer resistance to oxidizing substances. CONCLUSIONS The transaldolase paralogue NQM1 and the transcription factor VHR1 interact haploproficiently and affect yeast stationary phase survival. The glucose repressed NQM1 gene is induced under various stress conditions, affects stress resistance and this process is dependent on VHR1. While NQM1 appears not to function in the pentose phosphate pathway, the interplay of NQM1 with VHR1 influences the yeast metabolic homeostasis and stress tolerance during stationary phase, processes associated with yeast ageing.
Collapse
Affiliation(s)
- Steve Michel
- Max Planck Institute for Molecular Genetics, Ihnestr 73, Berlin, 14195, Germany.
| | - Markus A Keller
- Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, 80, Tennis, Court Road, Cambridge, CB2 1GA, UK.
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, Amsterdam, The Netherlands.
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, 80, Tennis, Court Road, Cambridge, CB2 1GA, UK.
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK.
| |
Collapse
|
136
|
Keller MA, Piedrafita G, Ralser M. The widespread role of non-enzymatic reactions in cellular metabolism. Curr Opin Biotechnol 2015; 34:153-61. [PMID: 25617827 PMCID: PMC4728180 DOI: 10.1016/j.copbio.2014.12.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022]
Abstract
Non-enzymatic reactions are widespread and integral part of metabolism. Non-enzymatic metabolic reactions occur either spontaneously or small molecule catalyzed. They subdivide between broad/unspecific, and specific reactions that contribute to metabolism. Specific reactions occur both, exclusively non-enzymatically or parallel to enzymes. Non-enzymatic reactions affect drug design and network reconstruction.
Enzymes shape cellular metabolism, are regulated, fast, and for most cases specific. Enzymes do not however prevent the parallel occurrence of non-enzymatic reactions. Non-enzymatic reactions were important for the evolution of metabolic pathways, but are retained as part of the modern metabolic network. They divide into unspecific chemical reactivity and specific reactions that occur either exclusively non-enzymatically as part of the metabolic network, or in parallel to existing enzyme functions. Non-enzymatic reactions resemble catalytic mechanisms as found in all major enzyme classes and occur spontaneously, small molecule (e.g. metal-) catalyzed or light-induced. The frequent occurrence of non-enzymatic reactions impacts on stability and metabolic network structure, and has thus to be considered in the context of metabolic disease, network modeling, biotechnology and drug design.
Collapse
Affiliation(s)
- Markus A Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK
| | - Gabriel Piedrafita
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK; MRC National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA, London, UK.
| |
Collapse
|
137
|
The place of RNA in the origin and early evolution of the genetic machinery. Life (Basel) 2014; 4:1050-91. [PMID: 25532530 PMCID: PMC4284482 DOI: 10.3390/life4041050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 11/17/2022] Open
Abstract
The extant genetic machinery revolves around three interrelated polymers: RNA, DNA and proteins. Two evolutionary views approach this vital connection from opposite perspectives. The RNA World theory posits that life began in a cold prebiotic broth of monomers with the de novo emergence of replicating RNA as functionally self-contained polymer and that subsequent evolution is characterized by RNA → DNA memory takeover and ribozyme → enzyme catalyst takeover. The FeS World theory posits that life began as an autotrophic metabolism in hot volcanic-hydrothermal fluids and evolved with organic products turning into ligands for transition metal catalysts thereby eliciting feedback and feed-forward effects. In this latter context it is posited that the three polymers of the genetic machinery essentially coevolved from monomers through oligomers to polymers, operating functionally first as ligands for ligand-accelerated transition metal catalysis with later addition of base stacking and base pairing, whereby the functional dichotomy between hereditary DNA with stability on geologic time scales and transient, catalytic RNA with stability on metabolic time scales existed since the dawn of the genetic machinery. Both approaches are assessed comparatively for chemical soundness.
Collapse
|
138
|
van Heerden JH, Bruggeman FJ, Teusink B. Multi-tasking of biosynthetic and energetic functions of glycolysis explained by supply and demand logic. Bioessays 2014; 37:34-45. [PMID: 25350875 DOI: 10.1002/bies.201400108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
After more than a century of research on glycolysis, we have detailed descriptions of its molecular organization, but despite this wealth of knowledge, linking the enzyme properties to metabolic pathway behavior remains challenging. These challenges arise from multi-layered regulation and the context and time dependence of component functions. However, when viewed as a system that functions according to the principles of supply and demand, a simplifying theoretical framework can be applied to study its regulation logic and to assess the coherence of experimental interpretations. These principles are universally applicable, as they emphasize the common metabolic tasks of glycolysis: the provision of free-energy carriers, and precursors for biosynthesis and stress-related compounds. Here we will review the regulation of multi-tasking by glycolysis and consider how an understanding of this central metabolic pathway can be pursued using general principles, rather than focusing on the biochemical details of constituent components.
Collapse
Affiliation(s)
- Johan H van Heerden
- Systems Bioinformatics, AIMMS, NISB, VU University, Amsterdam, The Netherlands; Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
139
|
The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon? BIOLOGY 2014; 3:623-44. [PMID: 25247275 PMCID: PMC4192631 DOI: 10.3390/biology3030623] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Abstract
Metabolism sustains life through enzyme-catalyzed chemical reactions within the cells of all organisms. The coupling of catalytic function to the structural organization of enzymes contributes to the kinetic optimization important to tissue-specific and whole-body function. This coupling is of paramount importance in the role that muscle plays in the success of Animalia. The structure and function of glycolytic enzyme complexes in anaerobic metabolism have long been regarded as a major regulatory element necessary for muscle activity and whole-body homeostasis. While the details of this complex remain to be elucidated through in vivo studies, this review will touch on recent studies that suggest the existence of such a complex and its structure. A potential model for glycolytic complexes and related subcomplexes is introduced.
Collapse
|
140
|
Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 2014; 90:927-63. [PMID: 25243985 PMCID: PMC4470864 DOI: 10.1111/brv.12140] [Citation(s) in RCA: 836] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism.
Collapse
Affiliation(s)
- Anna Stincone
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Alessandro Prigione
- Max Delbrueck Centre for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Thorsten Cramer
- Department of Gastroenterology and Hepatology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, De Boelelaaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Eric Cheung
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow G61 1BD, U.K
| | - Viridiana Olin-Sandoval
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Nana-Maria Grüning
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Antje Krüger
- Max Planck Institute for Molecular Genetics, Ihnestr 73, 14195 Berlin, Germany
| | - Mohammad Tauqeer Alam
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Michael Breitenbach
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cancer Research UK Cambridge Research Institute (CRI), Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Joshua D Rabinowitz
- Department of Chemistry, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, 08544 NJ, U.S.A
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Division of Physiology and Metabolism, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7, U.K
| |
Collapse
|
141
|
Bernhardt HS, Sandwick RK. Purine biosynthetic intermediate-containing ribose-phosphate polymers as evolutionary precursors to RNA. J Mol Evol 2014; 79:91-104. [PMID: 25179142 DOI: 10.1007/s00239-014-9640-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022]
Abstract
The RNA world hypothesis proposes that RNA once functioned as the principal genetic material and biological catalyst. However, RNA is a complex molecule made up of phosphate, ribose, and nucleobase moieties, and its evolution is unclear. Yakhnin has proposed a period of prebiotic chemical evolution prior to the advent of replication and Darwinian evolution, in which macromolecules containing polyols joined by phosphodiester linkages underwent spontaneous transesterification reactions with selection for stability. Although he proposes that the nucleobases were obtained during this stage from less stable macromolecules, the ultimate source of the nucleobases is not addressed. We propose that the purine nucleobases arose in situ from simpler precursors attached to a ribose-phosphate backbone, and that the weaker and less specific intra- and interstrand interactions between these precursors were the forerunners to the base pairing and base stacking interactions of the modern RNA nucleobases. Further, in line with Granick's hypothesis of biosynthetic pathways recapitulating evolution, we propose that these simpler precursors were the same or similar to intermediates of the modern de novo purine biosynthetic pathway. We propose that successive nucleobase precursors formed progressively stronger interactions that stabilized the ribose-phosphate polymer, and that the increased stability of the parent polymer drove the selection and further chemical evolution of the purine nucleobases. Such interactions may have included hydrogen bonding between ribose hydroxyls, hydrogen bonding between carbonyl oxygens and protonated amine side groups, the intra- and interstrand coordination of metal cations, and the stacking of imidazole rings. Five of the eleven steps of the modern de novo purine biosynthetic pathway have previously been shown to have alternative nonenzymatic syntheses, while a sixth step has also been proposed to occur nonenzymatically, supporting a prebiotic origin for the pathway.
Collapse
Affiliation(s)
- Harold S Bernhardt
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand,
| | | |
Collapse
|
142
|
Abstract
A prebiotic origin of metabolism has been proposed as one of several scenarios for the origin of life. In their recent work, Ralser and colleagues (Keller et al, 2014) observe an enzyme‐free, metabolism‐like reaction network under conditions reproducing a possible prebiotic environment.
Collapse
|
143
|
Keller MA, Turchyn AV, Ralser M. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol Syst Biol 2014; 10:725. [PMID: 24771084 PMCID: PMC4023395 DOI: 10.1002/msb.20145228] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/11/2014] [Accepted: 03/18/2014] [Indexed: 11/30/2022] Open
Abstract
The reaction sequences of central metabolism, glycolysis and the pentose phosphate pathway provide essential precursors for nucleic acids, amino acids and lipids. However, their evolutionary origins are not yet understood. Here, we provide evidence that their structure could have been fundamentally shaped by the general chemical environments in earth's earliest oceans. We reconstructed potential scenarios for oceans of the prebiotic Archean based on the composition of early sediments. We report that the resultant reaction milieu catalyses the interconversion of metabolites that in modern organisms constitute glycolysis and the pentose phosphate pathway. The 29 observed reactions include the formation and/or interconversion of glucose, pyruvate, the nucleic acid precursor ribose-5-phosphate and the amino acid precursor erythrose-4-phosphate, antedating reactions sequences similar to that used by the metabolic pathways. Moreover, the Archean ocean mimetic increased the stability of the phosphorylated intermediates and accelerated the rate of intermediate reactions and pyruvate production. The catalytic capacity of the reconstructed ocean milieu was attributable to its metal content. The reactions were particularly sensitive to ferrous iron Fe(II), which is understood to have had high concentrations in the Archean oceans. These observations reveal that reaction sequences that constitute central carbon metabolism could have been constrained by the iron-rich oceanic environment of the early Archean. The origin of metabolism could thus date back to the prebiotic world.
Collapse
Affiliation(s)
- Markus A Keller
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
| | | | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
- Division of Physiology and MetabolismMRC National Institute for Medical ResearchMill HillLondonUK
| |
Collapse
|