101
|
Rynders CA, Thomas EA, Zaman A, Pan Z, Catenacci VA, Melanson EL. Effectiveness of Intermittent Fasting and Time-Restricted Feeding Compared to Continuous Energy Restriction for Weight Loss. Nutrients 2019; 11:nu11102442. [PMID: 31614992 PMCID: PMC6836017 DOI: 10.3390/nu11102442] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/27/2019] [Accepted: 10/05/2019] [Indexed: 12/22/2022] Open
Abstract
The current obesity epidemic is staggering in terms of its magnitude and public health impact. Current guidelines recommend continuous energy restriction (CER) along with a comprehensive lifestyle intervention as the cornerstone of obesity treatment, yet this approach produces modest weight loss on average. Recently, there has been increased interest in identifying alternative dietary weight loss strategies that involve restricting energy intake to certain periods of the day or prolonging the fasting interval between meals (i.e., intermittent energy restriction, IER). These strategies include intermittent fasting (IMF; >60% energy restriction on 2-3 days per week, or on alternate days) and time-restricted feeding (TRF; limiting the daily period of food intake to 8-10 h or less on most days of the week). Here, we summarize the current evidence for IER regimens as treatments for overweight and obesity. Specifically, we review randomized trials of ≥8 weeks in duration performed in adults with overweight or obesity (BMI ≥ 25 kg/m2) in which an IER paradigm (IMF or TRF) was compared to CER, with the primary outcome being weight loss. Overall, the available evidence suggests that IER paradigms produce equivalent weight loss when compared to CER, with 9 out of 11 studies reviewed showing no differences between groups in weight or body fat loss.
Collapse
Affiliation(s)
- Corey A Rynders
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Denver, CO 80045, USA.
| | - Elizabeth A Thomas
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Department of Medicine, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Adnin Zaman
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Zhaoxing Pan
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Victoria A Catenacci
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Department of Medicine, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Edward L Melanson
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Denver, CO 80045, USA.
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
102
|
Liu B, Page AJ, Hutchison AT, Wittert GA, Heilbronn LK. Intermittent fasting increases energy expenditure and promotes adipose tissue browning in mice. Nutrition 2019; 66:38-43. [DOI: 10.1016/j.nut.2019.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 12/14/2022]
|
103
|
Abstract
Various forms of fasting improve health and longevity in preclinical models. However, safety, outcomes, and the molecular changes underpinning human fasting are unclear. Stekovic et al. (2019) report improved markers of health for up to 6 months and associated metabolic changes among healthy adults who followed alternate-day fasting.
Collapse
Affiliation(s)
- Leonie K Heilbronn
- Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia; Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Satchidananda Panda
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
104
|
Harney DJ, Hutchison AT, Su Z, Hatchwell L, Heilbronn LK, Hocking S, James DE, Larance M. Small-protein Enrichment Assay Enables the Rapid, Unbiased Analysis of Over 100 Low Abundance Factors from Human Plasma. Mol Cell Proteomics 2019; 18:1899-1915. [PMID: 31308252 PMCID: PMC6731089 DOI: 10.1074/mcp.tir119.001562] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Unbiased and sensitive quantification of low abundance small proteins in human plasma (e.g. hormones, immune factors, metabolic regulators) remains an unmet need. These small protein factors are typically analyzed individually and using antibodies that can lack specificity. Mass spectrometry (MS)-based proteomics has the potential to address these problems, however the analysis of plasma by MS is plagued by the extremely large dynamic range of this body fluid, with protein abundances spanning at least 13 orders of magnitude. Here we describe an enrichment assay (SPEA), that greatly simplifies the plasma dynamic range problem by enriching small-proteins of 2-10 kDa, enabling the rapid, specific and sensitive quantification of >100 small-protein factors in a single untargeted LC-MS/MS acquisition. Applying this method to perform deep-proteome profiling of human plasma we identify C5ORF46 as a previously uncharacterized human plasma protein. We further demonstrate the reproducibility of our workflow for low abundance protein analysis using a stable-isotope labeled protein standard of insulin spiked into human plasma. SPEA provides the ability to study numerous important hormones in a single rapid assay, which we applied to study the intermittent fasting response and observed several unexpected changes including decreased plasma abundance of the iron homeostasis regulator hepcidin.
Collapse
Affiliation(s)
- Dylan J Harney
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Amy T Hutchison
- ¶Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Zhiduan Su
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Luke Hatchwell
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Samantha Hocking
- §Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - David E James
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Mark Larance
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia.
| |
Collapse
|
105
|
Gabel K, Kroeger CM, Trepanowski JF, Hoddy KK, Cienfuegos S, Kalam F, Varady KA. Differential Effects of Alternate-Day Fasting Versus Daily Calorie Restriction on Insulin Resistance. Obesity (Silver Spring) 2019; 27:1443-1450. [PMID: 31328895 PMCID: PMC7138754 DOI: 10.1002/oby.22564] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/22/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study compared the effects of alternate-day fasting (ADF) with those of daily calorie restriction (CR) on body weight and glucoregulatory factors in adults with overweight or obesity and insulin resistance. METHODS This secondary analysis examined the data of insulin-resistant individuals (n = 43) who participated in a 12-month study that compared ADF (25% energy needs on "fast days"; 125% energy needs on alternating "feast days") with CR (75% energy needs every day) and a control group regimen. RESULTS In insulin-resistant participants, weight loss was not different between ADF (-8% ± 2%) and CR (-6% ± 1%) by month 12, relative to controls (P < 0.0001). Fat mass and BMI decreased (P < 0.05) similarly from ADF and CR. ADF produced greater decreases (P < 0.05) in fasting insulin (-52% ± 9%) and insulin resistance (-53% ± 9%) compared with CR (-14% ± 9%; -17% ± 11%) and the control regimen by month 12. Lean mass, visceral fat mass, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, blood pressure, C-reactive protein, tumor necrosis factor α, and interleukin 6 values remained unchanged. CONCLUSIONS These findings suggest that ADF may produce greater reductions in fasting insulin and insulin resistance compared with CR in insulin-resistant participants despite similar decreases in body weight.
Collapse
Affiliation(s)
- Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cynthia M Kroeger
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales, Australia
| | - John F Trepanowski
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kristin K Hoddy
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sofia Cienfuegos
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Faiza Kalam
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Krista A Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
106
|
Liu B, Hutchison AT, Thompson CH, Lange K, Heilbronn LK. Markers of adipose tissue inflammation are transiently elevated during intermittent fasting in women who are overweight or obese. Obes Res Clin Pract 2019; 13:408-415. [PMID: 31302012 DOI: 10.1016/j.orcp.2019.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This study compared the effects of daily calorie restriction (DR) versus intermittent fasting (IF) on markers of inflammation and extracellular matrix deposition in adipose tissue and skeletal muscle in a controlled feeding trial in women with overweight or obesity. METHODS Women (N = 76) were randomised to one of three diets and provided with all foods at 100% (IF100) or 70% (IF70 and DR70) of calculated energy requirements for 8 weeks. IF groups ate breakfast prior to fasting for 24-h on 3 non-consecutive days/week. Weight, body composition, serum non-esterified fatty acids (NEFA), tumour necrosis factor-alpha (TNFα), interleukin-6 (IL-6), interleukin-10 (IL-10), M1- and M2-macrophage markers by qPCR and immunohistochemistry in adipose tissue and skeletal muscle were measured following a 12-h overnight fast (fed day, all groups) and a 24-h fast (IF groups only). RESULTS IF70 resulted in greater weight and fat losses and reductions in serum NEFA versus DR70 and IF100 (P < 0.05) after fed days. Markers of inflammation in serum (TNFα, IL6 and IL10), subcutaneous adipose tissue and skeletal muscle (CD68, CD40 and CD163) were unchanged by DR or IF after fed days. After fasting, NEFA, M1-macrophages (CD40+) in adipose tissue, and M2-macrophages (CD163+) in muscle were increased in IF70 and IF100 (all P < 0.05) and the changes in NEFA and mRNA of pan-macrophage marker CD68 in adipose tissue were positively correlated (r = 0.56, P = 0.002). CONCLUSIONS Unlike caloric restriction, IF transiently elevated markers of macrophage infiltration in adipose tissue and skeletal muscle, possibly in response to marked increases in adipose tissue lipolysis.
Collapse
Affiliation(s)
- Bo Liu
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia; Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Amy T Hutchison
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia; Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Campbell H Thompson
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Kylie Lange
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Leonie K Heilbronn
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia; Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
107
|
Harney DJ, Hutchison AT, Hatchwell L, Humphrey SJ, James DE, Hocking S, Heilbronn LK, Larance M. Proteomic Analysis of Human Plasma during Intermittent Fasting. J Proteome Res 2019; 18:2228-2240. [PMID: 30892045 PMCID: PMC6503536 DOI: 10.1021/acs.jproteome.9b00090] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intermittent fasting (IF) increases lifespan and decreases metabolic disease phenotypes and cancer risk in model organisms, but the health benefits of IF in humans are less clear. Human plasma derived from clinical trials is one of the most difficult sample sets to analyze using mass spectrometry-based proteomics due to the extensive sample preparation required and the need to process many samples to achieve statistical significance. Here, we describe an optimized and accessible device (Spin96) to accommodate up to 96 StageTips, a widely used sample preparation medium enabling efficient and consistent processing of samples prior to LC-MS/MS. We have applied this device to the analysis of human plasma from a clinical trial of IF. In this longitudinal study employing 8-weeks IF, we identified significant abundance differences induced by the IF intervention, including increased apolipoprotein A4 (APOA4) and decreased apolipoprotein C2 (APOC2) and C3 (APOC3). These changes correlated with a significant decrease in plasma triglycerides after the IF intervention. Given that these proteins have a role in regulating apolipoprotein particle metabolism, we propose that IF had a positive effect on lipid metabolism through modulation of HDL particle size and function. In addition, we applied a novel human protein variant database to detect common protein variants across the participants. We show that consistent detection of clinically relevant peptides derived from both alleles of many proteins is possible, including some that are associated with human metabolic phenotypes. Together, these findings illustrate the power of accessible workflows for proteomics analysis of clinical samples to yield significant biological insight.
Collapse
Affiliation(s)
- Dylan J Harney
- Charles Perkins Centre, School of Life and Environmental Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Amy T Hutchison
- Discipline of Medicine , University of Adelaide , Adelaide , SA 5005 , Australia
| | - Luke Hatchwell
- Charles Perkins Centre, School of Life and Environmental Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Samantha Hocking
- Central Clinical School, Faculty of Medicine and Health , University of Sydney , Sydney , NSW 2006 , Australia
| | - Leonie K Heilbronn
- Discipline of Medicine , University of Adelaide , Adelaide , SA 5005 , Australia
| | - Mark Larance
- Charles Perkins Centre, School of Life and Environmental Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| |
Collapse
|
108
|
Peterson CM. Intermittent Fasting Induces Weight Loss, but the Effects on Cardiometabolic Health are Modulated by Energy Balance. Obesity (Silver Spring) 2019; 27:11. [PMID: 30569643 PMCID: PMC6464115 DOI: 10.1002/oby.22384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Courtney M Peterson
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|