101
|
Terra Md SBSP, Xie Md PhD H, Boland Md JM, Mansfield Md AS, Molina Md PhD JR, Roden Md AC. Loss of ATRX expression predicts worse prognosis in pulmonary carcinoid tumors. Hum Pathol 2019; 94:78-85. [PMID: 31499081 DOI: 10.1016/j.humpath.2019.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/14/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
Loss of alpha thalassemia/mental retardation syndrome X-linked (ATRX), a chromatin regulator, is associated with worse prognosis in pancreatic neuroendocrine tumors. We investigated ATRX expression in pulmonary carcinoid tumors (PCT) and its diagnostic and prognostic role in these patients. Resected PCTs (1997-2017) were reviewed. Tumors were staged according to 8th UICC/AJCC system. ATRX nuclear expression was recorded independently by 2 reviewers. A cutoff of ≤5% of nuclear ATRX expression was statistically established as loss of expression. One-hundred-fifteen patients (72 women [63%]; median age of 60.5 years [interquartile range, 50.8-71.5]) harbored 69 (60%) typical and 46 (40%) atypical PCTs. Median tumor size was 2.3 cm (interquartile range, 1.6-3.8 cm). Loss of ATRX expression was associated with atypical PCTs (OR 7.4 [95% CI, 2.6-23, P < .001]), when adjusted for lymphovascular invasion and perineural invasion. ATRX expression predicted atypical PCT with sensitivity of 37% (95% CI, 24%-52%), specificity of 92% (95% CI, 86%-98%), AUC of 0.62 (95% CI, 0.52-0.72). Loss of ATRX expression was associated with shorter disease-specific survival (HR = 11, 95% CI, 1.8-68, P = .01), after adjusting for lymphovascular invasion and presence of metastatic disease at time of diagnosis. Interobserver agreement on ATRX expression by two reviewers was substantial (κ = 0.72 [95% CI, 0.60-0.80]). ATRX expression is more commonly lost in atypical than in typical PCT, and is associated with more aggressive tumor characteristics and shorter disease-specific survival.
Collapse
Affiliation(s)
| | - Hao Xie Md PhD
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer M Boland Md
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Aaron S Mansfield Md
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Anja C Roden Md
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
102
|
Sun W, Hu S, Zu Y, Deng Y. KLF3 is a crucial regulator of metastasis by controlling STAT3 expression in lung cancer. Mol Carcinog 2019; 58:1933-1945. [PMID: 31486564 PMCID: PMC6852579 DOI: 10.1002/mc.23072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
Lung cancer is one of the most common causes of cancer‐related mortality worldwide, which is partially due to its metastasis. However, the mechanism underlying its metastasis remains elusive. In this study, we showed that a low Krüppel‐like factor 3 (KLF3) expression level is correlated with a poor prognosis and TNM stages in clinical patients with lung cancer and further demonstrated that KLF3 expression is downregulated in lung cancer tissues compared with adjacent normal samples. In addition, bioinformatics analysis results showed that KLF3 expression is related to lung cancer epithelial‐mesenchymal transition (EMT). In vitro and in vivo experiments also showed that KLF3 silencing promotes lung cancer EMT and enhances lung cancer metastasis. More importantly, bioinformatics analysis and in vitro experiments indicated that the role of KLF3 in lung cancer metastasis is dependent on the STAT3 signaling pathway. Overall, our data indicated the crucial function of KLF3 in lung cancer metastasis and suggested opportunities to improve the therapy of patients with lung cancer.
Collapse
Affiliation(s)
- Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Hu
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zu
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
103
|
The Role of Histologic Grading and Ki-67 Index in Predicting Outcomes in Pulmonary Carcinoid Tumors. Am J Surg Pathol 2019; 44:224-231. [DOI: 10.1097/pas.0000000000001358] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
104
|
Simbolo M, Barbi S, Fassan M, Mafficini A, Ali G, Vicentini C, Sperandio N, Corbo V, Rusev B, Mastracci L, Grillo F, Pilotto S, Pelosi G, Pelliccioni S, Lawlor RT, Tortora G, Fontanini G, Volante M, Scarpa A, Bria E. Gene Expression Profiling of Lung Atypical Carcinoids and Large Cell Neuroendocrine Carcinomas Identifies Three Transcriptomic Subtypes with Specific Genomic Alterations. J Thorac Oncol 2019; 14:1651-1661. [PMID: 31085341 DOI: 10.1016/j.jtho.2019.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/25/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
|
105
|
Krencz I, Sebestyen A, Papay J, Lou Y, Lutz GF, Majewicz TL, Khoor A. Correlation between immunohistochemistry and RICTOR fluorescence in situ hybridization amplification in small cell lung carcinoma. Hum Pathol 2019; 93:74-80. [PMID: 31454632 DOI: 10.1016/j.humpath.2019.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/23/2022]
Abstract
Small cell lung carcinoma (SCLC) accounts for approximately 15% of all lung cancers and remains a challenging disease, with no significant improvement in the field of targeted therapies. The RICTOR gene (rapamycin-insensitive companion of mTOR [mammalian target of rapamycin]), which encodes a key structural (scaffold) protein of mTOR complex 2), has recently been identified as one of the most frequently amplified genes and a potential therapeutic target in SCLC. The aim of this study was to compare immunohistochemical (IHC) expression of Rictor and phospho-Akt (a downstream target of mTOR complex 2) with RICTOR amplification as detected by fluorescence in situ hybridization (FISH) in SCLC. RICTOR FISH and Rictor and phospho-Akt IHC staining were performed on 100 formalin-fixed, paraffin-embedded SCLC samples. RICTOR amplification was detected in 15 samples (15%). IHC positivity for Rictor and phospho-Akt was observed in 37 (37%) and 42 (42%) samples, respectively. Considering FISH as the diagnostic standard, the sensitivity and specificity of Rictor IHC were 93% and 73%, whereas the sensitivity and specificity of phospho-Akt IHC were 80% and 65%, respectively. Rictor expression was higher in distant metastases than in primary tumor samples and lymph node metastases. There was no association between RICTOR amplification and clinical outcome. However, high expression of either Rictor or phospho-Akt was associated with significantly decreased overall survival. In conclusion, IHC expression of Rictor correlates highly with RICTOR amplification. Therefore, Rictor IHC can be used as a cost-effective method to select patients for RICTOR FISH and, potentially, for mTORC1/2 inhibitor therapy.
Collapse
Affiliation(s)
- Ildiko Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary H-1085
| | - Anna Sebestyen
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary H-1085
| | - Judit Papay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary H-1085
| | - Yanyan Lou
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL 32224
| | - Gabrielle F Lutz
- Clinical Research Internship Study Program, Mayo Clinic, Jacksonville, FL 32224
| | - Tracy L Majewicz
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Jacksonville, FL 32224
| | - Andras Khoor
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Jacksonville, FL 32224.
| |
Collapse
|
106
|
Alcala N, Leblay N, Gabriel AAG, Mangiante L, Hervas D, Giffon T, Sertier AS, Ferrari A, Derks J, Ghantous A, Delhomme TM, Chabrier A, Cuenin C, Abedi-Ardekani B, Boland A, Olaso R, Meyer V, Altmuller J, Le Calvez-Kelm F, Durand G, Voegele C, Boyault S, Moonen L, Lemaitre N, Lorimier P, Toffart AC, Soltermann A, Clement JH, Saenger J, Field JK, Brevet M, Blanc-Fournier C, Galateau-Salle F, Le Stang N, Russell PA, Wright G, Sozzi G, Pastorino U, Lacomme S, Vignaud JM, Hofman V, Hofman P, Brustugun OT, Lund-Iversen M, Thomas de Montpreville V, Muscarella LA, Graziano P, Popper H, Stojsic J, Deleuze JF, Herceg Z, Viari A, Nuernberg P, Pelosi G, Dingemans AMC, Milione M, Roz L, Brcic L, Volante M, Papotti MG, Caux C, Sandoval J, Hernandez-Vargas H, Brambilla E, Speel EJM, Girard N, Lantuejoul S, McKay JD, Foll M, Fernandez-Cuesta L. Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids. Nat Commun 2019; 10:3407. [PMID: 31431620 PMCID: PMC6702229 DOI: 10.1038/s41467-019-11276-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide incidence of pulmonary carcinoids is increasing, but little is known about their molecular characteristics. Through machine learning and multi-omics factor analysis, we compare and contrast the genomic profiles of 116 pulmonary carcinoids (including 35 atypical), 75 large-cell neuroendocrine carcinomas (LCNEC), and 66 small-cell lung cancers. Here we report that the integrative analyses on 257 lung neuroendocrine neoplasms stratify atypical carcinoids into two prognostic groups with a 10-year overall survival of 88% and 27%, respectively. We identify therapeutically relevant molecular groups of pulmonary carcinoids, suggesting DLL3 and the immune system as candidate therapeutic targets; we confirm the value of OTP expression levels for the prognosis and diagnosis of these diseases, and we unveil the group of supra-carcinoids. This group comprises samples with carcinoid-like morphology yet the molecular and clinical features of the deadly LCNEC, further supporting the previously proposed molecular link between the low- and high-grade lung neuroendocrine neoplasms.
Collapse
Affiliation(s)
- N Alcala
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - N Leblay
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - A A G Gabriel
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - L Mangiante
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - D Hervas
- Health Research Institute La Fe, Avenida Fernando Abril Martorell, Torre 106 A 7planta, 46026, Valencia, Spain
| | - T Giffon
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - A S Sertier
- Synergie Lyon Cancer, Centre Léon Bérard, 28 Rue Laennec, 69008, Lyon, France
| | - A Ferrari
- Synergie Lyon Cancer, Centre Léon Bérard, 28 Rue Laennec, 69008, Lyon, France
| | - J Derks
- Maastricht University Medical Centre (MUMC), GROW School for Oncology and Developmental Biology, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - A Ghantous
- International Agency for Research on Cancer (IARC/WHO), Section of Mechanisms of Carcinogenesis, 150 Cours Albert Thomas, 69008, Lyon, France
| | - T M Delhomme
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - A Chabrier
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - C Cuenin
- International Agency for Research on Cancer (IARC/WHO), Section of Mechanisms of Carcinogenesis, 150 Cours Albert Thomas, 69008, Lyon, France
| | - B Abedi-Ardekani
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - A Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 2 rue Gaston Crémieux, CP 5706, 91057, Evry Cedex, France
| | - R Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 2 rue Gaston Crémieux, CP 5706, 91057, Evry Cedex, France
| | - V Meyer
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 2 rue Gaston Crémieux, CP 5706, 91057, Evry Cedex, France
| | - J Altmuller
- Cologne Centre for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Weyertal 115, 50931, Cologne, Germany
| | - F Le Calvez-Kelm
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - G Durand
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - C Voegele
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - S Boyault
- Translational Research and Innovation Department, Cancer Genomic Platform, 28 Rue Laennec, 69008, Lyon, France
| | - L Moonen
- Maastricht University Medical Centre (MUMC), GROW School for Oncology and Developmental Biology, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - N Lemaitre
- Institute for Advanced Biosciences, Site Santé, Allée des Alpes, 38700, La Tronche, Grenoble, France
| | - P Lorimier
- Institute for Advanced Biosciences, Site Santé, Allée des Alpes, 38700, La Tronche, Grenoble, France
| | - A C Toffart
- Pulmonology-Physiology Unit, Grenoble Alpes University Hospital, 38700, La Tronche, France
| | - A Soltermann
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - J H Clement
- Department Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - J Saenger
- Bad Berka Institute of Pathology, Robert-Koch-Allee 9, 99438, Bad Berka, Germany
| | - J K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6 West Derby Street, L7 8TX, Liverpool, UK
| | - M Brevet
- Pathology Institute, Hospices Civils de Lyon, University Claude Bernard Lyon 1, 59 Boulevard Pinel, 69677, BRON Cedex, France
| | - C Blanc-Fournier
- CLCC François Baclesse, 3 avenue du Général Harris, 14076, Caen Cedex 5, France
| | - F Galateau-Salle
- Department of Pathology, Centre Léon Bérard, 28, rue Laennec, 69373, Lyon Cedex 8, France
| | - N Le Stang
- Department of Pathology, Centre Léon Bérard, 28, rue Laennec, 69373, Lyon Cedex 8, France
| | - P A Russell
- St. Vincent's Hospital and University of Melbourne, Victoria Parade, Fitzroy, Melbourne, VIC, 3065, Australia
| | - G Wright
- St. Vincent's Hospital and University of Melbourne, Victoria Parade, Fitzroy, Melbourne, VIC, 3065, Australia
| | - G Sozzi
- Pathology Division Fondazione, IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - U Pastorino
- Pathology Division Fondazione, IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - S Lacomme
- Nancy Regional University Hospital, CHRU, CRB BB-0033-00035, INSERM U1256, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy Cedex, France
| | - J M Vignaud
- Nancy Regional University Hospital, CHRU, CRB BB-0033-00035, INSERM U1256, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy Cedex, France
| | - V Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Nice Hospital, Biobank BB-0033-00025, IRCAN Inserm U1081 CNRS 7284, University Côte d'Azur, 30 avenue de la voie Romaine, CS, 51069-06001, Nice Cedex 1, France
| | - P Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Nice Hospital, Biobank BB-0033-00025, IRCAN Inserm U1081 CNRS 7284, University Côte d'Azur, 30 avenue de la voie Romaine, CS, 51069-06001, Nice Cedex 1, France
| | - O T Brustugun
- Drammen Hospital, Vestre Viken Health Trust, Vestre Viken HF, Postboks 800, 3004, Drammen, Norway
- Institute of Cancer Research, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway
| | - M Lund-Iversen
- Institute of Cancer Research, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway
| | | | - L A Muscarella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013, San Giovanni Rotondo FG, Italy
| | - P Graziano
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013, San Giovanni Rotondo FG, Italy
| | - H Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - J Stojsic
- Department of Thoracopulmonary Pathology, Service of Pathology, Clinical Center of Serbia, Pasterova 2, Belgrade, 11000, Serbia
| | - J F Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 2 rue Gaston Crémieux, CP 5706, 91057, Evry Cedex, France
| | - Z Herceg
- International Agency for Research on Cancer (IARC/WHO), Section of Mechanisms of Carcinogenesis, 150 Cours Albert Thomas, 69008, Lyon, France
| | - A Viari
- Synergie Lyon Cancer, Centre Léon Bérard, 28 Rue Laennec, 69008, Lyon, France
| | - P Nuernberg
- Cologne Centre for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Weyertal 115, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - G Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, and Inter-Hospital Pathology Division, IRCCS Multimedica, Via Gaudenzio Fantoli, 16/15, 20138, Milan, Italy
| | - A M C Dingemans
- Maastricht University Medical Centre (MUMC), GROW School for Oncology and Developmental Biology, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - M Milione
- Pathology Division Fondazione, IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - L Roz
- Pathology Division Fondazione, IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - L Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - M Volante
- Department of Oncology, University of Turin, Pathology Division, Via Santena 7, 10126, Torino, Italy
| | - M G Papotti
- Department of Oncology, University of Turin, Pathology Division, Via Santena 7, 10126, Torino, Italy
| | - C Caux
- Department of Immunity, Virus, and Inflammation, Cancer Research Centre of Lyon (CRCL), 28 Rue Laennec, 69008, Lyon, France
| | - J Sandoval
- Health Research Institute La Fe, Avenida Fernando Abril Martorell, Torre 106 A 7planta, 46026, Valencia, Spain
| | - H Hernandez-Vargas
- Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 28 Rue Laennec, 69008, Lyon, France
| | - E Brambilla
- Institute for Advanced Biosciences, Site Santé, Allée des Alpes, 38700, La Tronche, Grenoble, France
| | - E J M Speel
- Maastricht University Medical Centre (MUMC), GROW School for Oncology and Developmental Biology, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - N Girard
- Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
- European Reference Network (ERN-EURACAN), 28 rue Laennec, 69008, Lyon, France
| | - S Lantuejoul
- Synergie Lyon Cancer, Centre Léon Bérard, 28 Rue Laennec, 69008, Lyon, France
- Translational Research and Innovation Department, Cancer Genomic Platform, 28 Rue Laennec, 69008, Lyon, France
- Department of Pathology, Centre Léon Bérard, 28, rue Laennec, 69373, Lyon Cedex 8, France
| | - J D McKay
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - M Foll
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - L Fernandez-Cuesta
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France.
| |
Collapse
|
107
|
Li SS, Jiang WL, Xiao WQ, Li K, Zhang YF, Guo XY, Dai YQ, Zhao QY, Jiang MJ, Lu ZJ, Wan R. KMT2D deficiency enhances the anti-cancer activity of L48H37 in pancreatic ductal adenocarcinoma. World J Gastrointest Oncol 2019; 11:599-621. [PMID: 31435462 PMCID: PMC6700028 DOI: 10.4251/wjgo.v11.i8.599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/23/2019] [Accepted: 02/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Novel therapeutic strategies are urgently needed for patients with a delayed diagnosis of pancreatic ductal adenocarcinoma (PDAC) in order to improve their chances of survival. Recent studies have shown potent anti-neoplastic effects of curcumin and its analogues. In addition, the role of histone methyltransferases on cancer therapeutics has also been elucidated. However, the relationship between these two factors in the treatment of pancreatic cancer remains unknown. Our working hypothesis was that L48H37, a novel curcumin analog, has better efficacy in pancreatic cancer cell growth inhibition in the absence of histone-lysine N-methyltransferase 2D (KMT2D).
AIM To determine the anti-cancer effects of L48H37 in PDAC, and the role of KMT2D on its therapeutic efficacy.
METHODS The viability and proliferation of primary (PANC-1 and MIA PaCa-2) and metastatic (SW1990 and ASPC-1) PDAC cell lines treated with L48H37 was determined by CCK8 and colony formation assay. Apoptosis, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) levels, and cell cycle profile were determined by staining the cells with Annexin-V/7-AAD, JC-1, DCFH-DA, and PI respectively, as well as flow cytometric acquisition. In vitro migration was assessed by the wound healing assay. The protein and mRNA levels of relevant factors were analyzed using Western blotting, immunofluorescence and real time-quantitative PCR. The in situ expression of KMT2D in both human PDAC and paired adjacent normal tissues was determined by immunohistochemistry. In vivo tumor xenografts were established by injecting nude mice with PDAC cells. Bioinformatics analyses were also conducted using gene expression databases and TCGA.
RESULTS L48H37 inhibited the proliferation and induced apoptosis in SW1990 and ASPC-1 cells in a dose- and time-dependent manner, while also reducing MMP, increasing ROS levels, arresting cell cycle at the G2/M stages and activating the endoplasmic reticulum (ER) stress-associated protein kinase RNA-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/activating transcription factor 4 (ATF4)/CHOP signaling pathway. Knocking down ATF4 significantly upregulated KMT2D in PDAC cells, and also decreased L48H37-induced apoptosis. Furthermore, silencing KMT2D in L48H37-treated cells significantly augmented apoptosis and the ER stress pathway, indicating that KMT2D depletion is essential for the anti-neoplastic effects of L48H37. Administering L48H37 to mice bearing tumors derived from control or KMT2D-knockdown PDAC cells significantly decreased the tumor burden. We also identified several differentially expressed genes in PDAC cell lines expressing very low levels of KMT2D that were functionally categorized into the extrinsic apoptotic signaling pathway. The KMT2D high- and low-expressing PDAC patients from the TCGA database showed similar survival rates,but higher KMT2D expression was associated with poor tumor grade in clinical and pathological analyses.
CONCLUSION L48H37 exerts a potent anti-cancer effect in PDAC, which is augmented by KMT2D deficiency.
Collapse
Affiliation(s)
- Si-Si Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Wei-Liang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Wen-Qin Xiao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Kai Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ye-Fei Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xing-Ya Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yi-Qi Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qiu-Yan Zhao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ming-Jie Jiang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhan-Jun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
108
|
Vesterinen T, Kuopio T, Ahtiainen M, Knuuttila A, Mustonen H, Salmenkivi K, Arola J, Haglund C. PD-1 and PD-L1 expression in pulmonary carcinoid tumors and their association to tumor spread. Endocr Connect 2019; 8:1168-1175. [PMID: 31299636 PMCID: PMC6686949 DOI: 10.1530/ec-19-0308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Pulmonary carcinoid (PC) tumors are rare tumors that account for approximately 1% of all lung cancers. The primary treatment option is surgery, while there is no standard treatment for metastatic disease. As the number of PCs diagnosed yearly is increasing, there is a need to establish novel therapeutic options. This study aimed to investigate programmed death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) expression in PC tumors since blocking of the PD-1/PD-L1 pathway is a promising therapeutic option in various other malignancies. A total of 168 PC patients treated between 1990 and 2013 were collected from the Finnish biobanks. After re-evaluation of the tumors, 131 (78%) were classified as typical carcinoid (TC) and 37 (22%) as atypical carcinoid (AC) tumors. Primary tumor samples were immunohistochemically labeled for PD-1, PD-L1 and CD8. High PD-1 expression was detected in 16% of the tumors. PD-L1 expression was detected in 7% of TC tumors; all AC tumors were PD-L1 negative. PD-L1 expression was associated with mediastinal lymph-node metastasis at the time of diagnosis (P = 0.021) as well as overall metastatic potential of the tumor (P = 0.010). Neither PD-1 expression, PD-L1 expression nor CD8+ T cell density was associated with survival. In conclusion, PD-1 and PD-L1 were expressed in a small proportion of PC tumors and PD-L1 expression was associated with metastatic disease. Targeting of the PD-1/PD-L1 pathway with immune checkpoint inhibitors may thus offer a treatment option for a subset of PC patients.
Collapse
Affiliation(s)
- Tiina Vesterinen
- HUSLAB, Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Teijo Kuopio
- Department of Biological and Environmental Science, University of Jyväskylä and Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland
| | - Maarit Ahtiainen
- Department of Education and Research, Central Finland Central Hospital, Jyväskylä, Finland
| | - Aija Knuuttila
- Department of Pulmonary Medicine, Heart and Lung Center, and Cancer Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kaisa Salmenkivi
- HUSLAB, Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Arola
- HUSLAB, Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
109
|
Brunetti O, Luchini C, Argentiero A, Tommasi S, Mangia A, Aprile G, Marchetti P, Vasile E, Casadei Gardini A, Scartozzi M, Barni S, Delfanti S, De Vita F, Di Costanzo F, Milella M, Cella CA, Berardi R, Cataldo I, Santini D, Doglioni C, Maiello E, Lawlor RT, Mazzaferro V, Lonardi S, Giuliante F, Brandi G, Scarpa A, Cascinu S, Silvestris N. The Italian Rare Pancreatic Exocrine Cancer Initiative. TUMORI JOURNAL 2019; 105:353-358. [PMID: 30967031 DOI: 10.1177/0300891619839461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Exocrine pancreatic cancers include common type pancreatic ductal adenocarcinoma and cystic neoplasms, which account for 85% and 10% of cases, respectively. The remaining 5% are rare histotypes, comprising adenosquamous carcinoma, acinar cell carcinoma, signet ring cell carcinoma, medullary carcinoma, pancreatoblastoma, hepatoid carcinoma, undifferentiated carcinoma and its variant with osteoclast-like giant cells, solid pseudopapillary carcinoma, and carcinosarcoma. Due to their low incidence, little knowledge is available on their clinical and molecular features as well as on treatment choices. The national initiative presented here aims at the molecular characterization of series of rare histotypes for which therapeutic and follow-up data are available. METHODS A nationwide Italian Rare Pancreatic Cancer (IRaPaCa) task force whose first initiative is a multicentric retrospective study involving 21 Italian cancer centers to retrieve histologic material and clinical and treatment data of at least 100 patients with rare exocrine pancreatic cancers has been created. After histologic revision by a panel of expert pathologists, DNA and RNA from paraffin tissues will be investigated by next-generation sequencing using molecular pathway-oriented and immune-oriented mutational and expression profiling panels constructed availing of the information from the International Cancer Genome Consortium. Bioinformatic analysis of data will drive validation studies by immunohistochemistry and in situ hybridization, as well as nanostring assays. CONCLUSIONS We expect to gather novel data on rare pancreatic cancer types that will be useful to inform the design of therapeutic choices.
Collapse
Affiliation(s)
- Oronzo Brunetti
- 1 Medical Oncology Unit, IRCCS Cancer Institute "Giovanni Paolo II" of Bari, Bari, Italy
| | - Claudio Luchini
- 2 Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Antonella Argentiero
- 1 Medical Oncology Unit, IRCCS Cancer Institute "Giovanni Paolo II" of Bari, Bari, Italy
| | - Stefania Tommasi
- 3 Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Anita Mangia
- 4 Functional Biomorphology Laboratory, IRCCS-Istituto Tumori, Bari, Italy
| | - Giuseppe Aprile
- 5 Medical Oncology Unit, Hospital of Vicenza, Vicenza, Italy
| | - Paolo Marchetti
- 6 Medical Oncology Unit, Sant'Andrea Hospital, University of Rome La Sapienza, Rome, Italy
| | - Enrico Vasile
- 7 Medical Oncology Unit, University Hospital of Pisa, Pisa, Italy
| | - Andrea Casadei Gardini
- 8 Medical Oncology Unit, Scientific Institute of Romagna for the Study and Treatment of Cancer (IRST), Meldola, Italy
| | - Mario Scartozzi
- 9 Medical Oncology Unit, University of Cagliari, Cagliari, Italy
| | - Sandro Barni
- 10 Medical Oncology Unit, ASST Bergamo Ovest, Treviglio, Italy
| | - Sara Delfanti
- 11 Medical Oncology Unit, IRCCS Foundation Polyclinic San Matteo, Pavia, Italy
| | - Fernando De Vita
- 12 Medical Oncology Unit, II University of Naples, Naples, Italy
| | | | - Michele Milella
- 14 Medical Oncology Unit, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Chiara Alessandra Cella
- 15 Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology (IEO), Milan, Italy
| | - Rossana Berardi
- 16 Medical Oncology Unit, Polytechnic University of the Marche, "Ospedali Riuniti Ancona," Ancona, Italy
| | - Ivana Cataldo
- 17 Department of Pathology and Diagnostics, University of Verona Hospital Trust, Policlinico GB Rossi, Verona, Italy
| | - Daniele Santini
- 18 Medical Oncology Unit, University Campus Biomedico, Rome, Italy
| | - Claudio Doglioni
- 19 Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Evaristo Maiello
- 20 Medical Oncology Unit, IRCCS "Casa Sollievo della Sofferenza" Foundation, San Giovanni Rotondo, Italy
| | - Rita T Lawlor
- 21 Arc-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Mazzaferro
- 22 Hepato-Biliary-Pancreatic Surgery, University of Milan, Istituto Nazionale Tumori, Fondazione IRCCS, Milan, Italy
| | - Sara Lonardi
- 23 Medical Oncology Unit, IRCCS Veneto Institute of Oncology (IOV), Padua, Italy
| | - Felice Giuliante
- 24 Hepatobiliary Surgery Unit, IRCCS A. Gemelli Polyclinic Foundation, Catholic University of the Sacred Heart, Rome, Italy
| | - Giovanni Brandi
- 25 Oncology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Aldo Scarpa
- 2 Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- 21 Arc-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Stefano Cascinu
- 26 Medical Oncology Unit, Modena Cancer Center, University Hospital of Modena, Modena, Italy
| | - Nicola Silvestris
- 1 Medical Oncology Unit, IRCCS Cancer Institute "Giovanni Paolo II" of Bari, Bari, Italy
- 27 Scientific Direction, IRCCS Cancer Institute "Giovanni Paolo II" of Bari, Bari, Italy
| |
Collapse
|
110
|
Dinter H, Bohnenberger H, Beck J, Bornemann-Kolatzki K, Schütz E, Küffer S, Klein L, Franks TJ, Roden A, Emmert A, Hinterthaner M, Marino M, Brcic L, Popper H, Weis CA, Pelosi G, Marx A, Ströbel P. Molecular Classification of Neuroendocrine Tumors of the Thymus. J Thorac Oncol 2019; 14:1472-1483. [DOI: 10.1016/j.jtho.2019.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022]
|
111
|
Torniai M, Scortichini L, Tronconi F, Rubini C, Morgese F, Rinaldi S, Mazzanti P, Berardi R. Systemic treatment for lung carcinoids: from bench to bedside. Clin Transl Med 2019; 8:22. [PMID: 31273555 PMCID: PMC6609661 DOI: 10.1186/s40169-019-0238-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
In the huge spectrum of lung neuroendocrine neoplasms, typical and atypical carcinoids should be considered as a separate biological entity from poorly differentiated forms, harboring peculiar molecular alterations. Despite their indolent behavior, lung carcinoids correlate with a worse survival. To date, only limited therapeutic options are available and novel drugs are strongly needed. In this work, we extensively reviewed scientific literature exploring available therapeutic options, new molecular targets and future perspectives in the management of well differentiated neoplasms of bronchopulmonary tree. Systemic therapy represents the main option in advanced and unresectable disease; accepted choices are somatostatin analogs, peptide receptor radionuclide therapy, everolimus and chemotherapy. To date, an univocal treatment strategy has not been identified yet, thus tailored therapeutic algorithms should consider treatment efficacy as well as safety profiles. Several molecular alterations found in carcinoid tumors might act as molecular targets leading to development of new therapeutic options. Further studies are necessary to identify new potential “druggable” molecular targets in the selected subset of low-grade lung carcinoids. Furthermore, evaluating the available therapies in more homogeneous population might improve their efficacy through a perfect tailoring of treatment options.
Collapse
Affiliation(s)
- Mariangela Torniai
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy
| | - Laura Scortichini
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy
| | - Francesca Tronconi
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy
| | - Corrado Rubini
- Section of Pathological Anatomy and Histopathology, Department of Neuroscience, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Ancona, Italy
| | - Francesca Morgese
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy
| | - Silvia Rinaldi
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy
| | - Paola Mazzanti
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy
| | - Rossana Berardi
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy.
| |
Collapse
|
112
|
Pivovarcikova K, Agaimy A, Martinek P, Alaghehbandan R, Perez‐Montiel D, Alvarado‐Cabrero I, Rogala J, Kuroda N, Rychly B, Gasparov S, Michalova K, Michal M, Hora M, Pitra T, Tuckova I, Laciok S, Mareckova J, Hes O. Primary renal well‐differentiated neuroendocrine tumour (carcinoid): next‐generation sequencing study of 11 cases. Histopathology 2019; 75:104-117. [DOI: 10.1111/his.13856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/06/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kristyna Pivovarcikova
- Department of Pathology, Faculty of Medicine in Plzen Charles University in Prague Pilsen Czech Republic
| | - Abbas Agaimy
- Department of Pathology University of Erlangen Erlangen Germany
| | - Petr Martinek
- Department of Pathology, Faculty of Medicine in Plzen Charles University in Prague Pilsen Czech Republic
| | - Reza Alaghehbandan
- Department of Pathology, Faculty of Medicine University of British Columbia, Royal Columbian Hospital Vancouver British Columbia Canada
| | | | | | - Joanna Rogala
- Department of Pathology Wojewódzki Szpital Specjalistyczny Wroclaw Poland
| | - Naoto Kuroda
- Department of Diagnostic Pathology Kochi Red Cross Hospital Kochi Japan
| | - Boris Rychly
- Department of Pathology Cytopathos Bratislava Slovakia
| | | | - Kvetoslava Michalova
- Department of Pathology, Faculty of Medicine in Plzen Charles University in Prague Pilsen Czech Republic
| | - Michal Michal
- Department of Pathology, Faculty of Medicine in Plzen Charles University in Prague Pilsen Czech Republic
| | - Milan Hora
- Department of Urology, Faculty of Medicine in Plzeň Charles University in Prague Pilsen Czech Republic
| | - Tomas Pitra
- Department of Urology, Faculty of Medicine in Plzeň Charles University in Prague Pilsen Czech Republic
| | - Inna Tuckova
- Department of Pathology Central Military Hospital Prague Prague Czech Republic
| | - Simon Laciok
- Department of Pathology Regional Hospital Havirov Havirov Czech Republic
| | - Jana Mareckova
- Department of Pathology, Faculty of Medicine in Plzen Charles University in Prague Pilsen Czech Republic
| | - Ondrej Hes
- Department of Pathology, Faculty of Medicine in Plzen Charles University in Prague Pilsen Czech Republic
| |
Collapse
|
113
|
Zito Marino F, Bianco R, Accardo M, Ronchi A, Cozzolino I, Morgillo F, Rossi G, Franco R. Molecular heterogeneity in lung cancer: from mechanisms of origin to clinical implications. Int J Med Sci 2019; 16:981-989. [PMID: 31341411 PMCID: PMC6643125 DOI: 10.7150/ijms.34739] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022] Open
Abstract
Molecular heterogeneity is a frequent event in cancer responsible of several critical issues in diagnosis and treatment of oncologic patients. Lung tumours are characterized by high degree of molecular heterogeneity associated to different mechanisms of origin including genetic, epigenetic and non-genetic source. In this review, we provide an overview of recognized mechanisms underlying molecular heterogeneity in lung cancer, including epigenetic mechanisms, mutant allele specific imbalance, genomic instability, chromosomal aberrations, tumor mutational burden, somatic mutations. We focus on the role of spatial and temporal molecular heterogeneity involved in therapeutic implications in lung cancer patients.
Collapse
Affiliation(s)
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, Oncology Division, University of Naples Federico II, Naples, Italy
| | - Marina Accardo
- Pathology Unit, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Andrea Ronchi
- Pathology Unit, University of Campania “L. Vanvitelli”, Naples, Italy
| | | | - Floriana Morgillo
- Medical Oncology, Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Giulio Rossi
- Pathology Unit, Hospital S. Maria delle Croci, Azienda Romagna, Ravenna, Italy
| | - Renato Franco
- Pathology Unit, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
114
|
Effects of KEAP1 Silencing on the Regulation of NRF2 Activity in Neuroendocrine Lung Tumors. Int J Mol Sci 2019; 20:ijms20102531. [PMID: 31126053 PMCID: PMC6566555 DOI: 10.3390/ijms20102531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/09/2023] Open
Abstract
Background. The KEAP1/NRF2 pathway has been widely investigated in tumors since it was implicated in cancer cells survival and therapies resistance. In lung tumors the deregulation of this pathway is mainly related to point mutations of KEAP1 and NFE2L2 genes and KEAP1 promoter hypermethylation, but these two genes have been rarely investigated in low/intermediate grade neuroendocrine tumors of the lung. Methods. The effects of KEAP1 silencing on NRF2 activity was investigated in H720 and H727 carcinoid cell lines and results were compared with those obtained by molecular profiling of KEAP1 and NFE2L2 in a collection of 47 lung carcinoids. The correlation between methylation and transcript levels was assessed by 5-aza-dC treatment. Results. We demonstrated that in carcinoid cell lines, the KEAP1 silencing induces an upregulation of NRF2 and some of its targets and that there is a direct correlation between KEAP1 methylation and its mRNA levels. A KEAP1 hypermethylation and Loss of Heterozygosity at KEAP1 gene locus was also observed in nearly half of lung carcinoids. Conclusions. This is the first study that has described the effects of KEAP1 silencing on the regulation of NRF2 activity in lung carcinoids cells. The epigenetic deregulation of the KEAP1/NRF2 by a KEAP1 promoter hypermethylation system appears to be a frequent event in lung carcinoids.
Collapse
|
115
|
Fagan RJ, Dingwall AK. COMPASS Ascending: Emerging clues regarding the roles of MLL3/KMT2C and MLL2/KMT2D proteins in cancer. Cancer Lett 2019; 458:56-65. [PMID: 31128216 DOI: 10.1016/j.canlet.2019.05.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022]
Abstract
The KMT2 (lysine methyltransferase) family of histone modifying proteins play essential roles in regulating developmental pathways, and mutations in the genes encoding these proteins have been strongly linked to many blood and solid tumor cancers. The KMT2A-D proteins are histone 3 lysine 4 (H3K4) methyltransferases embedded in large COMPASS-like complexes important for RNA Polymerase II-dependent transcription. KMT2 mutations were initially associated with pediatric Mixed Lineage Leukemias (MLL) and found to be the result of rearrangements of the MLL1/KMT2A gene at 11q23. Over the past several years, large-scale tumor DNA sequencing studies have revealed the potential involvement of other KMT2 family genes, including heterozygous somatic mutations in the paralogous MLL3/KMT2C and MLL2(4)/KMT2D genes that are now among the most frequently associated with human cancer. Recent studies have provided a better understanding of the potential roles of disrupted KMT2C and KMT2D family proteins in cell growth aberrancy. These findings, together with an examination of cancer genomics databases provide new insights into the contribution of KMT2C/D proteins in epigenetic gene regulation and links to carcinogenesis.
Collapse
Affiliation(s)
- Richard J Fagan
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60521, USA
| | - Andrew K Dingwall
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60521, USA; Department of Cancer Biology and Pathology & Laboratory Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60521, USA.
| |
Collapse
|
116
|
Simbolo M, Di Noia V, D’Argento E, Milella M, Scarpa A, Tortora G, Bria E, Pilotto S. Exploring the molecular and biological background of lung neuroendocrine tumours. J Thorac Dis 2019; 11:S1194-S1198. [PMID: 31245083 PMCID: PMC6560549 DOI: 10.21037/jtd.2019.03.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Michele Simbolo
- Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, Verona, Italy
| | | | - Ettore D’Argento
- Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Roma, Italy
| | - Michele Milella
- Department of Medicine, Section of Medical Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giampaolo Tortora
- Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Roma, Italy
| | - Emilio Bria
- Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Roma, Italy
| | - Sara Pilotto
- Department of Medicine, Section of Medical Oncology, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
117
|
Pisapia P, Malapelle U, Roma G, Saddar S, Zheng Q, Pepe F, Bruzzese D, Vigliar E, Bellevicine C, Luthra R, Nikiforov YE, Mayo-de-Las-Casas C, Molina-Vila MA, Rosell R, Bihl M, Savic S, Bubendorf L, de Biase D, Tallini G, Hwang DH, Sholl LM, Vander Borght S, Weynand B, Stieber D, Vielh P, Rappa A, Barberis M, Fassan M, Rugge M, De Andrea CE, Lozano MD, Lupi C, Fontanini G, Schmitt F, Dumur CI, Bisig B, Bongiovanni M, Merkelbach-Bruse S, Büttner R, Nikiforova MN, Roy-Chowdhuri S, Troncone G. Consistency and reproducibility of next-generation sequencing in cytopathology: A second worldwide ring trial study on improved cytological molecular reference specimens. Cancer Cytopathol 2019; 127:285-296. [PMID: 31021538 DOI: 10.1002/cncy.22134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/05/2019] [Accepted: 04/02/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Artificial genomic reference standards in a cytocentrifuge/cytospin format with well-annotated genomic data are useful for validating next-generation sequencing (NGS) on routine cytopreparations. Here, reference standards were optimized to be stained by different laboratories before DNA extraction and to contain a lower number of cells (2 × 105 ). This was done to better reflect the clinical challenge of working with insufficient cytological material. METHODS A total of 17 worldwide laboratories analyzed customized reference standard slides (slides A-D). Each laboratory applied its standard workflow. The sample slides were engineered to harbor epidermal growth factor receptor (EGFR) c.2235_2249del15 p.E746_A750delELREA, EGFR c.2369C>T p.T790M, Kirsten rat sarcoma viral oncogene homolog (KRAS) c.38G>A p.G13D, and B-Raf proto-oncogene, serine/threonine kinase (BRAF) c.1798_1799GT>AA p.V600K mutations at various allele frequencies (AFs). RESULTS EGFR and KRAS mutation detection showed excellent interlaboratory reproducibility, especially on slides A and B (10% and 5% AFs). On slide C (1% AF), either the EGFR mutation or the KRAS mutation was undetected by 10 of the 17 laboratories (58.82%). A reassessment of the raw data in a second-look analysis highlighted the mutations (n = 10) that had been missed in the first-look analysis. BRAF c.1798_1799GT>AA p.V600K showed a lower concordance rate for mutation detection and AF quantification. CONCLUSIONS The data show that the detection of low-abundance mutations is still clinically challenging and may require a visual inspection of sequencing reads to detect. Genomic reference standards in a cytocentrifuge/cytospin format are a valid tool for regular quality assessment of laboratories performing molecular studies on cytology with low-AF mutations.
Collapse
Affiliation(s)
- Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Roma
- AccuRef Diagnostics, Applied Stem Cell, Inc, Milpitas, California
| | - Sonika Saddar
- AccuRef Diagnostics, Applied Stem Cell, Inc, Milpitas, California
| | - Qi Zheng
- AccuRef Diagnostics, Applied Stem Cell, Inc, Milpitas, California
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Dario Bruzzese
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Rajyalakshmi Luthra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuri E Nikiforov
- Department of Pathology and Laboratory Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | - Rafael Rosell
- Catalan Institute of Oncology, Badalona, Spain
- Rosell Cancer Institute, Quiròn-Dexeus University Institute, Barcelona, Spain
| | - Michel Bihl
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Spasenija Savic
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giovanni Tallini
- Anatomic Pathology, University of Bologna Medical Center, Bologna, Italy
| | - David H Hwang
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Birgit Weynand
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Alessandra Rappa
- Division of Pathology, European Institute of Oncology, Milan, Italy
| | - Massimo Barberis
- Division of Pathology, European Institute of Oncology, Milan, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Massimo Rugge
- Surgical Pathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | | | - Maria D Lozano
- Department of Pathology, University Clinic of Navarra, Pamplona, Spain
| | - Cristiana Lupi
- Department of Surgical, Medical, and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical, and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Fernando Schmitt
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Pathology, Medical Faculty, Porto University, Porto, Portugal
| | - Catherine I Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Bettina Bisig
- Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Sabine Merkelbach-Bruse
- Institute of Pathology and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Marina N Nikiforova
- Department of Pathology and Laboratory Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sinchita Roy-Chowdhuri
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
118
|
Kashima J, Kitadai R, Okuma Y. Molecular and Morphological Profiling of Lung Cancer: A Foundation for "Next-Generation" Pathologists and Oncologists. Cancers (Basel) 2019; 11:E599. [PMID: 31035693 PMCID: PMC6562944 DOI: 10.3390/cancers11050599] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
The pathological diagnosis of lung cancer has largely been based on the morphological features observed microscopically. Recent innovations in molecular and genetic technology enable us to compare conventional histological classifications, protein expression status, and gene abnormalities. The introduction of The Cancer Genome Atlas (TCGA) project along with the widespread use of the next-generation sequencer (NGS) have facilitated access to enormous data regarding the molecular profiles of lung cancer. The World Health Organization classification of lung cancer, which was revised in 2015, is based on this progress in molecular pathology; moreover, immunohistochemistry has come to play a larger role in diagnosis. In this article, we focused on genetic and epigenetic abnormalities in non-small cell carcinoma (adenocarcinoma and squamous cell carcinoma), neuroendocrine tumor (including carcinoids, small cell carcinoma, and large cell neuroendocrine carcinoma), and carcinoma with rare histological subtypes. In addition, we summarize the therapeutic targeted reagents that are currently available and undergoing clinical trials. A good understanding of the morphological and molecular profiles will be necessary in routine practice when the NGS platform is widely used.
Collapse
Affiliation(s)
- Jumpei Kashima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo 113-8677, Japan.
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Rui Kitadai
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan.
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan.
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan.
| |
Collapse
|
119
|
Pelosi G, Bianchi F, Hofman P, Pattini L, Ströbel P, Calabrese F, Naheed S, Holden C, Cave J, Bohnenberger H, Dinter H, Harari S, Albini A, Sonzogni A, Papotti M, Volante M, Ottensmeier CH. Recent advances in the molecular landscape of lung neuroendocrine tumors. Expert Rev Mol Diagn 2019; 19:281-297. [PMID: 30900485 DOI: 10.1080/14737159.2019.1595593] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Neuroendocrine tumors of the lung (Lung-NETs) make up a heterogenous family of neoplasms showing neuroendocrine differentiation and encompass carcinoids and neuroendocrine carcinomas. On molecular grounds, they considered two completely distinct and separate tumor groups with no overlap of molecular alterations nor common developmental mechanisms. Areas covered: Two perspectives were evaluated based on an extensive review and rethinking of literature: (1) the current classification as an instrument to obtaining clinical and molecular insights into the context of Lung-NETs; and (2) an alternative and innovative interpretation of these tumors, proposing a tripartite separation into early aggressive primary high-grade neuroendocrine tumors (HGNET), differentiating or secondary HGNET, and indolent NET. Expert opinion: We herein provide an alternative outlook on Lung-NETs, which is a paradigm shift to current pathogenesis models and expands the understanding of these tumors.
Collapse
Affiliation(s)
- Giuseppe Pelosi
- a Department of Oncology and Hemato-Oncology , University or Milan , Milan , Italy
- b Inter-hospital Pathology Division , Institute for Research and Care-IRCCS MultiMedica , Milan , Italy
| | - Fabrizio Bianchi
- c Cancer Biomarkers Unit, Foundation for Research and Care-IRCCS "Casa Sollievo della Sofferenza" , Foggia , Italy
| | - Paul Hofman
- d Laboratory of Clinical and Experimental Pathology , FHU OncoAge, Nice Hospital, Biobank BB-0033-00025, IRCAN, Inserm U1081 CNRS 7284, University Côte d'Azur , Nice , France
| | - Linda Pattini
- e Department of Electronics , Information and Bioengineering, Polytechnic of Milan , Milan , Italy
| | - Philipp Ströbel
- f Institute of Pathology , University Medical Center Göttingen , Göttingen , Germany
| | - Fiorella Calabrese
- g Department of Cardiac, Thoracic and Vascular Sciences , University of Padua , Padua , Italy
| | - Salma Naheed
- h Cancer Sciences Unit, Faculty of Medicine , University of Southampton , Southampton , UK
| | - Chloe Holden
- i Department of Medical Oncology , Royal Bournemouth and Christchurch Hospitals NHS Trust , Bournemouth , UK
| | - Judith Cave
- j Department of Medical Oncology , University Hospital Southampton NHS FT , Southampton , UK
| | - Hanibal Bohnenberger
- f Institute of Pathology , University Medical Center Göttingen , Göttingen , Germany
| | - Helen Dinter
- f Institute of Pathology , University Medical Center Göttingen , Göttingen , Germany
| | - Sergio Harari
- k Department of Medical Sciences and Division of Pneumology, San Giuseppe Hospital , Institute for Research and Care-IRCCS MultiMedica , Milan , Italy
| | - Adriana Albini
- l Laboratory of Vascular Biology and Angiogenesis , Institute for Research and Care-IRCCS MultiMedica , Milan , Italy
| | - Angelica Sonzogni
- m Department of Pathology and Laboratory Medicine , Foundation for Research and Care-IRCCS National Cancer Institute , Milan , Italy
| | - Mauro Papotti
- n Department of Oncology , University of Turin , Turin , Italy
| | - Marco Volante
- o Department of Oncology , University of Turin and Pathology Unit San Luigi Hospital , Turin , Italy
| | - Christian H Ottensmeier
- p Christian CRUK and NIHR Southamtpon Experimental Cancer Medicine Centre, Faculty of Medicine , University of Southampton , Southampton , UK
| |
Collapse
|
120
|
Zhou Z, Zhu L, Niu X, Shen S, Zhao Y, Zhang J, Ye J, Han-Zhang H, Liu J, Liu C, Lu S. Comparison of genomic landscapes of large cell neuroendocrine carcinoma, small cell lung carcinoma, and large cell carcinoma. Thorac Cancer 2019; 10:839-847. [PMID: 30793508 PMCID: PMC6449265 DOI: 10.1111/1759-7714.13011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 12/20/2022] Open
Abstract
Background The classification of large cell neuroendocrine carcinoma (LCNEC) has generated considerable debate and has been revised since its recognition as a separate entity. Although it shares clinical features with small cell lung carcinoma (SCLC) and was classified with SCLC in the 2015 World Health Organization classification system, numerous studies have revealed inferior treatment outcomes of LCNEC when it was treated as SCLC. Because the incidence of LCNEC is rare, its mutational landscape has not been comprehensively interrogated. Methods We performed capture‐based ultra‐deep targeted sequencing on tumor samples of LCNEC, large cell carcinoma (LCC), and SCLC to elucidate its biological relationship with these subtypes and to identify potentially targetable molecular alterations. Results Our data revealed a molecular signature, consisting of RUNX1, ERBB4, BRCA1, and EPHA3, that is distinctively mutated in LCNEC. A majority (60%) of LCNEC patients harbored copy number variations (CNVs). Interestingly, there were no common CNVs shared among the three subtypes: NFкBIA amplification was shared between LCNEC and LCC, while AKT2 amplification was shared between LCNEC and SCLC. Furthermore, genetic alterations in the PI3K/AKT/mTOR pathway were enriched in all three subtypes. Conclusion Despite the histological and/or morphological similarities among LCNEC, LCC, and SCLC, our data revealed a molecular signature, consisting of RUNX1, ERBB4, BRCA1, and EPHA3, that is distinctively mutated in LCNEC, which has the potential to be used as a panel of biomarkers to distinguish LCNEC from a molecular perspective. Furthermore, the molecular distinction among the three subtypes can also be reflected from CNV events.
Collapse
Affiliation(s)
- Zhen Zhou
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lei Zhu
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaomin Niu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shengping Shen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi Zhao
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Zhang
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Junyi Ye
- Burning Rock Biotech, Guangzhou, China
| | | | | | | | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
121
|
Baudin E, Hayes AR, Scoazec JY, Filosso PL, Lim E, Kaltsas G, Frilling A, Chen J, Kos-Kudła B, Gorbunova V, Wiedenmann B, Nieveen van Dijkum E, Ćwikła JB, Falkerby J, Valle JW, Kulke MH, Caplin ME. Unmet Medical Needs in Pulmonary Neuroendocrine (Carcinoid) Neoplasms. Neuroendocrinology 2019; 108:7-17. [PMID: 30248673 DOI: 10.1159/000493980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/16/2018] [Indexed: 11/19/2022]
Abstract
Pulmonary carcinoids (PCs) display the common features of all well-differentiated neuroendocrine neoplasms (NEN) and are classified as low- and intermediate-grade malignant tumours (i.e., typical and atypical carcinoid, respectively). There is a paucity of randomised studies dedicated to advanced PCs and management principles are drawn from the larger gastroenteropancreatic NEN experience. There is growing evidence that NEN anatomic subgroups have different biology and different responses to treatment and, therefore, should be investigated as separate entities in clinical trials. In this review, we discuss the existing evidence and limitations of tumour classification, diagnostics and staging, prognostication, and treatment in the setting of PC, with focus on unmet medical needs and directions for the future.
Collapse
Affiliation(s)
- Eric Baudin
- Oncologie Endocrinienne et Médecine Nucléaire, Institut Gustave Roussy, Villejuif, France
| | - Aimee R Hayes
- Neuroendocrine Tumour Unit, Royal Free Hospital, London, United Kingdom
| | | | | | - Eric Lim
- Department of Thoracic Surgery, Royal Brompton Hospital, London, United Kingdom
| | - Gregory Kaltsas
- Department of Pathophysiology, Division of Endocrinology, National University of Athens, Athens, Greece
| | - Andrea Frilling
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Beata Kos-Kudła
- Slaska Akademia Medyczna Klinika Endokrynologii, Zabrze, Poland
| | - Vera Gorbunova
- FSBI "N.N Blokhin Russian Cancer Research Centre," Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Jaroslaw B Ćwikła
- Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Jenny Falkerby
- Department of Endocrine Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, University of Manchester/Institute of Cancer Sciences, Manchester, United Kingdom
| | - Matthew H Kulke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Martyn E Caplin
- Neuroendocrine Tumour Unit, Royal Free Hospital, London, United
| |
Collapse
|
122
|
Kasajima A, Konukiewitz B, Oka N, Suzuki H, Sakurada A, Okada Y, Kameya T, Ishikawa Y, Sasano H, Weichert W, Klöppel G. Clinicopathological Profiling of Lung Carcinoids with a Ki67 Index > 20. Neuroendocrinology 2019; 108:109-120. [PMID: 30485860 DOI: 10.1159/000495806] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/25/2018] [Indexed: 11/19/2022]
Abstract
The clinicopathological features of lung neuroendocrine neoplasms (NEN) with a high proliferative index at the border area between atypical carcinoid and neuroendocrine carcinoma have not been investigated so far. The aim of this study was, therefore, to search for lung NENs which are well differentiated but show Ki67 values that overlap with those of poorly differentiated (PD)-NENs. Resected lung NENs from 244 Japanese patients were reviewed, and Ki67 indices were assessed in all tumors. The data were then correlated to clinicopathological parameters and patient outcome. Among 59 (24%) well-differentiated (WD)-NENs and 185 (76%) lung PD-NENs, 7 were defined as WD-NENs with Ki67 indices > 20%. The Ki67 indices of these tumors (mean 29%, range 24-36) were significantly lower than those of PD-NENs (mean 74%, range 34-99). All WD-NENs with Ki67 > 20% lacked abnormal p53 and loss of retinoblastoma 1 (Rb1) expression. In contrast, many PD-NENs expressed p53 (48%) and showed loss of Rb1 (86%). The 2- and 5-year disease-free survival rates in WD-NEN patients with Ki67 > 20% were lower than those of WD-NEN patients with Ki67 ≤20% (p < 0.01 for disease-free and overall survival). No statistical differences were detected between outcome of WD-NEN patients with Ki67 > 20% and those of PD-NEN. It is concluded that WD-NEN patients with Ki67 > 20% share the morphological and immunohistochemical features of WD-NEN patients with Ki67 ≤20%, but they have a worse prognosis, suggesting that this tumor group requires particular attention in future classifications and probably new therapeutic regimes.
Collapse
Affiliation(s)
- Atsuko Kasajima
- Department of Pathology, Technical University Munich, Munich, Germany,
- German Cancer Consortium (DKTK), Heidelberg, Germany,
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan,
| | - Björn Konukiewitz
- Department of Pathology, Technical University Munich, Munich, Germany
| | - Naomi Oka
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- National Hospital Organization, Sendai Medical Center, Sendai, Japan
| | - Hiroyoshi Suzuki
- National Hospital Organization, Sendai Medical Center, Sendai, Japan
| | - Akira Sakurada
- Department of Thoracic Surgery, Institute of Development, Aging, and Cancer, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging, and Cancer, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Kameya
- Division of Pathology, Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| | - Yuichi Ishikawa
- Department of Pathology, The Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Wilko Weichert
- Department of Pathology, Technical University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Günter Klöppel
- Department of Pathology, Technical University Munich, Munich, Germany
| |
Collapse
|
123
|
Rindi G, Klimstra DS, Abedi-Ardekani B, Asa SL, Bosman FT, Brambilla E, Busam KJ, de Krijger RR, Dietel M, El-Naggar AK, Fernandez-Cuesta L, Klöppel G, McCluggage WG, Moch H, Ohgaki H, Rakha EA, Reed NS, Rous BA, Sasano H, Scarpa A, Scoazec JY, Travis WD, Tallini G, Trouillas J, van Krieken JH, Cree IA. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol 2018; 31:1770-1786. [PMID: 30140036 PMCID: PMC6265262 DOI: 10.1038/s41379-018-0110-y] [Citation(s) in RCA: 639] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/08/2023]
Abstract
The classification of neuroendocrine neoplasms (NENs) differs between organ systems and currently causes considerable confusion. A uniform classification framework for NENs at any anatomical location may reduce inconsistencies and contradictions among the various systems currently in use. The classification suggested here is intended to allow pathologists and clinicians to manage their patients with NENs consistently, while acknowledging organ-specific differences in classification criteria, tumor biology, and prognostic factors. The classification suggested is based on a consensus conference held at the International Agency for Research on Cancer (IARC) in November 2017 and subsequent discussion with additional experts. The key feature of the new classification is a distinction between differentiated neuroendocrine tumors (NETs), also designated carcinoid tumors in some systems, and poorly differentiated NECs, as they both share common expression of neuroendocrine markers. This dichotomous morphological subdivision into NETs and NECs is supported by genetic evidence at specific anatomic sites as well as clinical, epidemiologic, histologic, and prognostic differences. In many organ systems, NETs are graded as G1, G2, or G3 based on mitotic count and/or Ki-67 labeling index, and/or the presence of necrosis; NECs are considered high grade by definition. We believe this conceptual approach can form the basis for the next generation of NEN classifications and will allow more consistent taxonomy to understand how neoplasms from different organ systems inter-relate clinically and genetically.
Collapse
Affiliation(s)
- Guido Rindi
- Istituto di Anatomia Patologica, Università Cattolica-Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - David S Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Behnoush Abedi-Ardekani
- International Agency for Research on Cancer (IARC), World Health Organization (WHO), Lyon, France
| | - Sylvia L Asa
- University Health Network, University of Toronto, Toronto, ON, Canada
| | | | - Elisabeth Brambilla
- CHUGA, UniversitéUGA, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Klaus J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center Utrecht and Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | | | | | - Günter Klöppel
- Department of Pathology, Technical University of München, München, Germany
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, UK
| | - Holger Moch
- University Hospital Zurich, Zurich, Switzerland
| | - Hiroko Ohgaki
- International Agency for Research on Cancer (IARC), World Health Organization (WHO), Lyon, France
| | | | | | - Brian A Rous
- National Cancer Registration and Analysis Service, Fulbourn, UK
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Aldo Scarpa
- Section of Pathology, ARC-Net Research Center and Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Jean-Yves Scoazec
- Departement of Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanni Tallini
- University Medical Center, University of Bologna, Bologna, Italy
| | | | - J Han van Krieken
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Ian A Cree
- International Agency for Research on Cancer (IARC), World Health Organization (WHO), Lyon, France.
| |
Collapse
|
124
|
Neuroendocrine tumors of the lung: A five-year retrospective experience of Egyptian NCI (2010-2014). J Egypt Natl Canc Inst 2018; 30:151-158. [PMID: 30470605 DOI: 10.1016/j.jnci.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The spectrum of lung neuroendocrine tumors (NETs) encompasses low grade typical carcinoid (TC), intermediate grade atypical carcionid (AC) and high grade, both large cell neuroendocrine carcinoma (LCNEC) and small cell lung cancer (SCLC), with extreme differences in management and survival. OBJECTIVE To study clinicopathologic and prognostic factors affecting survival of lung NETs. PATIENTS AND METHODS This is a retrospective study evaluating 35 patients with primary lung NETs treated at National Cancer Institute of Egypt (NCI-E) between January 2010 and December 2014. Pathological diagnosis depended on definite morphology and positivity to at least one of the neuroendocrine markers by immunohistochemistry. RESULTS The mean age of the patients was 53 ± 11.2 years with male predominance. Performance status (PS) I was encountered in 48.6%. SCLC was the prevalent histology in 68.6%, followed by LCNEC & TC in 20 & 11.4%, respectively. Curative surgery was employed in 100 & 57% of TC & LCNEC patients, respectively. Stage IV was anticipated in 87.5 & 43% of SCLC & LCNEC, respectively. For the entire cohort, the median event-free survival (EFS) and overall survival (OS) were 8.0 and 13.7 months, respectively, whereas the 3-year EFS and OS were 17.8 & 20%, respectively. SCLC patients showed significantly the worst OS compared to other NETs (p = 0.001). Patients who presented with stage IV and PS > I demonstrated significantly shorter OS than those with locoregional and PS I (p = 0.00001 &p = 0.002, respectively). CONCLUSIONS SCLC subtype, stage IV and initial PS > I are poor prognostic factors for lung NETs associated with shorter survival. This conclusion needs to be confirmed by larger studies.
Collapse
|
125
|
Sigal DS, Bhangoo MS, Hermel JA, Pavlick DC, Frampton G, Miller VA, Ross JS, Ali SM. Comprehensive genomic profiling identifies novel NTRK fusions in neuroendocrine tumors. Oncotarget 2018; 9:35809-35812. [PMID: 30533196 PMCID: PMC6254675 DOI: 10.18632/oncotarget.26260] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/06/2018] [Indexed: 12/20/2022] Open
Abstract
CGP results from >60,000 cases were screened to identify NTRK fusion events from cases of neuroendocrine tumors. 2417 NET patients from diverse anatomic sites were identified. From this dataset, six cases harbored NTRK fusions which included intra- and inter-chromosomal translocations. A NTRK fusion frequency of approximately 0.3% was found across all subtypes of NETs. Three cases involved translocations of NTRK1 with unique fusion partners (GPATCH4, PIP5K1A, CCDC19). Co-occurring alterations occurred in five cases. NTRK alterations were identified in nearly the full spectrum of NETs, including from the small intestine, pancreas, lung, and others. With the late stage clinical development of NTRK TKIs (including entrectinib and larotrectinib), these findings may further inform targeted approaches to therapy in NET.
Collapse
Affiliation(s)
- Darren S. Sigal
- Division of Hematology/Oncology, Scripps Clinic Medical Group, La Jolla, CA, USA
| | - Munveer S. Bhangoo
- Division of Hematology/Oncology, Scripps Clinic Medical Group, La Jolla, CA, USA
| | - Jonathan A. Hermel
- Department of Graduate Medical Education, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
126
|
Abstract
Carcinoids of the lung and thymus are rare thoracic cancers. In general, lung carcinoid tumors have a favorable prognosis, particularly when diagnosed at an early stage and treated with surgical resection. Thymic neuroendocrine tumors may be associated with multiple endocrine neoplasia-1 syndrome, tend to have a more aggressive natural history, and relatively frequently secrete ectopic adrenocorticotropic hormone.
Collapse
Affiliation(s)
- Christine L Hann
- Upper Aerodigestive Cancer Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Patrick M Forde
- Upper Aerodigestive Cancer Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
127
|
Xiong W, Deng Z, Tang Y, Deng Z, Li M. Downregulation of KMT2D suppresses proliferation and induces apoptosis of gastric cancer. Biochem Biophys Res Commun 2018; 504:129-136. [PMID: 30177394 DOI: 10.1016/j.bbrc.2018.08.143] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/03/2023]
Abstract
PURPOSE Histone lysine methyltransferase 2D (KMT2D/MLL2) is a known cancer-related protein; however, its function in gastric cancer (GC) remains uncharacterized. The present study sought to investigate the expression pattern and the role of KMT2D in GC. METHODS The expression of KMT2D were evaluated at mRNA and protein levels, while its clinico-pathological value were further explored. GC cells were transfected with KMT2D knockdown siRNAs or lentiviruses, and then detected by cell counting kit-8, plate clone formation, cell apoptosis, cycle, migration, invasion, and tumorigenesis assays. RESULTS Overexpression of KMT2D was observed in GC samples, and was strongly associated with poor survival. Depletion of KMT2D suppressed cell proliferation and induced apoptosis. CONCLUSION Our study demonstrated the upregulation of KMT2D in GC tissue, and KMT2D modulates proliferation and apoptosis in GC. Therefore, KMT2D might represent a novel oncogene for prognosis and optimal treatment of GC patients.
Collapse
Affiliation(s)
- Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, China
| | - Zhenxuan Deng
- Department of Digestive System, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuxin Tang
- Department of General Surgery, Dongguan People's Hospital, Dongguan, 523000, China
| | - Zhenwei Deng
- Department of General Surgery, Dongguan People's Hospital, Dongguan, 523000, China.
| | - Mingsong Li
- Department of Digestive System, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
128
|
Moris D, Ntanasis-Stathopoulos I, Tsilimigras DI, Adam MA, Yang CFJ, Harpole D, Theocharis S. Insights into Novel Prognostic and Possible Predictive Biomarkers of Lung Neuroendocrine Tumors. Cancer Genomics Proteomics 2018; 15:153-163. [PMID: 29496694 DOI: 10.21873/cgp.20073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023] Open
Abstract
Primary lung neuroendocrine tumors (NETs) consist of typical and atypical carcinoids, large-cell neuroendocrine carcinomas and small-cell lung carcinomas. NETs are highly heterogeneous in histological characteristics, clinical presentation and natural history. While there are morphological and immunohistochemical criteria to establish diagnosis, there is a lack of universal consensus for prognostic factors or therapeutic targets for personalized treatment of the disease. Thus, identifying potential markers of neuroendocrine differentiation and prognostic factors remains of high importance. This review provides an insight into promising molecules and genes that are implicated in NET carcinogenesis, cell-cycle regulation, chromatin remodeling, apoptosis, intracellular cascades and cell-cell interactions. Additionally it supports a basis for classifying these tumors into categories that distinct molecular characteristics and disease natural history, which may have a direct impact on treatment options. In light of the recent approval of everolimus, mammalian target of rapamycin pathway inhibition and related biomarkers may play a central role in the treatment of pulmonary NETs. Future clinical trials that integrate molecular profiling are deemed necessary in order to treat patients with NET on a personalized basis.
Collapse
Affiliation(s)
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Diamantis I Tsilimigras
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | - Mohamad A Adam
- Department of Surgery, Duke University, Durham, NC, U.S.A
| | | | - David Harpole
- Department of Surgery, Duke University, Durham, NC, U.S.A
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
129
|
An integrative transcriptome analysis reveals a functional role for thyroid transcription factor-1 in small cell lung cancer. J Pathol 2018; 246:154-165. [DOI: 10.1002/path.5109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 12/31/2022]
|
130
|
Giordano TJ. 65 YEARS OF THE DOUBLE HELIX: Classification of endocrine tumors in the age of integrated genomics. Endocr Relat Cancer 2018; 25:T171-T187. [PMID: 29980645 DOI: 10.1530/erc-18-0116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 12/26/2022]
Abstract
The classification of human cancers represents one of the cornerstones of modern pathology. Over the last century, surgical pathologists established the current taxonomy of neoplasia using traditional histopathological parameters, which include tumor architecture, cytological features and cellular proliferation. This morphological classification is efficient and robust with high reproducibility and has served patients and health care providers well. The most recent decade has witnessed an explosion of genome-wide molecular genetic and epigenetic data for most cancers, including tumors of endocrine organs. The availability of this expansive multi-dimensional genomic data, collectively termed the cancer genome, has catalyzed a re-examination of the classification of endocrine tumors. Here, recent cancer genome studies of various endocrine tumors, including those of the thyroid, pituitary and adrenal glands, pancreas, small bowel, lung and skin, are presented with special emphasis on how genomic insights are impacting endocrine tumor classification.
Collapse
Affiliation(s)
- Thomas J Giordano
- Divisions of Anatomic Pathology and Molecular & Genomic PathologyDepartments of Pathology and Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
131
|
Testa U, Castelli G, Pelosi E. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers (Basel) 2018; 10:E248. [PMID: 30060526 PMCID: PMC6116004 DOI: 10.3390/cancers10080248] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer causes the largest number of cancer-related deaths in the world. Most (85%) of lung cancers are classified as non-small-cell lung cancer (NSCLC) and small-cell lung cancer (15%) (SCLC). The 5-year survival rate for NSCLC patients remains very low (about 16% at 5 years). The two predominant NSCLC histological phenotypes are adenocarcinoma (ADC) and squamous cell carcinoma (LSQCC). ADCs display several recurrent genetic alterations, including: KRAS, BRAF and EGFR mutations; recurrent mutations and amplifications of several oncogenes, including ERBB2, MET, FGFR1 and FGFR2; fusion oncogenes involving ALK, ROS1, Neuregulin1 (NRG1) and RET. In LSQCC recurrent mutations of TP53, FGFR1, FGFR2, FGFR3, DDR2 and genes of the PI3K pathway have been detected, quantitative gene abnormalities of PTEN and CDKN2A. Developments in the characterization of lung cancer molecular abnormalities provided a strong rationale for new therapeutic options and for understanding the mechanisms of drug resistance. However, the complexity of lung cancer genomes is particularly high, as shown by deep-sequencing studies supporting the heterogeneity of lung tumors at cellular level, with sub-clones exhibiting different combinations of mutations. Molecular studies performed on lung tumors during treatment have shown the phenomenon of clonal evolution, thus supporting the occurrence of a temporal tumor heterogeneity.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
132
|
Iyer S, Agarwal SK. Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. J Mol Endocrinol 2018; 61:R13-R24. [PMID: 29615472 PMCID: PMC5966343 DOI: 10.1530/jme-18-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation is emerging as a key feature in the molecular characteristics of various human diseases. Epigenetic aberrations can occur from mutations in genes associated with epigenetic regulation, improper deposition, removal or reading of histone modifications, DNA methylation/demethylation and impaired non-coding RNA interactions in chromatin. Menin, the protein product of the gene causative for the multiple endocrine neoplasia type 1 (MEN1) syndrome, interacts with chromatin-associated protein complexes and also regulates some non-coding RNAs, thus participating in epigenetic control mechanisms. Germline inactivating mutations in the MEN1 gene that encodes menin predispose patients to develop endocrine tumors of the parathyroids, anterior pituitary and the duodenopancreatic neuroendocrine tissues. Therefore, functional loss of menin in the various MEN1-associated endocrine cell types can result in epigenetic changes that promote tumorigenesis. Because epigenetic changes are reversible, they can be targeted to develop therapeutics for restoring the tumor epigenome to the normal state. Irrespective of whether epigenetic alterations are the cause or consequence of the tumorigenesis process, targeting the endocrine tumor-associated epigenome offers opportunities for exploring therapeutic options. This review presents epigenetic control mechanisms relevant to the interactions and targets of menin, and the contribution of epigenetics in the tumorigenesis of endocrine cell types from menin loss.
Collapse
Affiliation(s)
- Sucharitha Iyer
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
133
|
Rapa I, Votta A, Gatti G, Izzo S, Buono NL, Giorgio E, Vatrano S, Napoli F, Scarpa A, Scagliotti G, Papotti M, Volante M. High miR-100 expression is associated with aggressive features and modulates TORC1 complex activation in lung carcinoids. Oncotarget 2018; 9:27535-27546. [PMID: 29938004 PMCID: PMC6007959 DOI: 10.18632/oncotarget.25541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Mammalian target of rapamycin (mTOR) is a promising therapeutic target in advanced lung carcinoid patients. However, the mechanisms of mTOR modulation and of responsiveness to mTOR inhibitors are largely unclear. Our aim was to analyze the expression and functional role of specific miRNAs in lung carcinoids as an alternative mechanism targeting mTOR pathway. EXPERIMENTAL DESIGN Seven miRNAs, selected by bioinformatic tools and literature search, were analyzed in 142 lung neuroendocrine neoplasms (92 carcinoids and a control group of 50 high grade neuroendocrine carcinomas), and compared with mTOR mRNA expression and clinical/pathological parameters. Tissue results were validated in vitro in two lung carcinoid cell lines by specific RNA interference and biological/pharmacological tests. RESULTS Tissutal expression of five miRNAs (miR-99b, miR-100, miR-155, miR-193a-3p, miR-193a-5p) was inversely correlated with mTOR mRNA expression, supporting their role in the negative regulation of mTOR transcription. High expression of miR-100, miR-193a-3p and miR-193a-5p was associated with aggressive features and, for the former two, with shorter time to progression. In H727 and UMC11 lung carcinoid cells, miR-100 modulated mTOR RNA and TORC1 complex protein expression, positively promoted cell migration and negatively influenced cell proliferation. Moreover, miR-100 directly influenced responsiveness of H727 and UMC11 cells to rapamycin. CONCLUSIONS MiR-100 actively participates to the regulation of mTOR expression in lung carcinoids and represents a novel candidate prognostic biomarker for this tumor type; moreover, inhibition of its expression is associated to increased responsiveness to mTOR inhibitors and might represent a novel strategy to sensitize lung carcinoids to these target agents.
Collapse
Affiliation(s)
- Ida Rapa
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Arianna Votta
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Gaia Gatti
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Stefania Izzo
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Nicola Lo Buono
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simona Vatrano
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Francesca Napoli
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Aldo Scarpa
- ARC-NET Applied Research on Cancer Centre at Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Giorgio Scagliotti
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Mauro Papotti
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Marco Volante
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| |
Collapse
|
134
|
Uccella S, La Rosa S, Volante M, Papotti M. Immunohistochemical Biomarkers of Gastrointestinal, Pancreatic, Pulmonary, and Thymic Neuroendocrine Neoplasms. Endocr Pathol 2018. [PMID: 29520563 DOI: 10.1007/s12022-018-9522-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of epithelial neoplastic proliferations that irrespective of their primary site share features of neural and endocrine differentiation including the presence of secretory granules, synaptic-like vesicles, and the ability to produce amine and/or peptide hormones. NENs encompass a wide spectrum of neoplasms ranging from well-differentiated indolent tumors to highly aggressive poorly differentiated neuroendocrine carcinomas. Most cases arise in the digestive system and in thoracic organs, i.e., the lung and thymus. A correct diagnostic approach is crucial for the management of patients with both digestive and thoracic NENs, because their high clinical and biological heterogeneity is related to their prognosis and response to therapy. In this context, immunohistochemistry represents an indispensable diagnostic tool that pathologists need to use for the correct diagnosis and classification of such neoplasms. In addition, immunohistochemistry is also useful in identifying prognostic and theranostic markers. In the present article, the authors will review the role of immunohistochemistry in the routine workup of digestive and thoracic NENs.
Collapse
Affiliation(s)
- Silvia Uccella
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Stefano La Rosa
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland.
- Institut Universitaire de Pathologie, CHUV, 25 rue du Bugnon, 1011, Lausanne, Switzerland.
| | - Marco Volante
- Department of Oncology, San Luigi Hospital, University of Turin, Orbassano, Italy
| | - Mauro Papotti
- Department of Oncology, City of Health and Science, University of Turin, Turin, Italy
| |
Collapse
|
135
|
Derks JL, Leblay N, Lantuejoul S, Dingemans AMC, Speel EJM, Fernandez-Cuesta L. New Insights into the Molecular Characteristics of Pulmonary Carcinoids and Large Cell Neuroendocrine Carcinomas, and the Impact on Their Clinical Management. J Thorac Oncol 2018; 13:752-766. [PMID: 29454048 DOI: 10.1016/j.jtho.2018.02.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Carcinoids and large cell neuroendocrine carcinomas (LCNECs) are rare neuroendocrine lung tumors. Here we provide an overview of the most updated data on the molecular characteristics of these diseases. Recent genomic studies showed that carcinoids generally contain a low mutational burden and few recurrently mutated genes. Most of the reported mutations occur in chromatin-remodeling genes (e.g., menin 1 gene [MEN1]), and few affect genes of the phosphoinositide 3-kinase (PI3K)-AKT-mechanistic target of rapamycin gene pathway. Aggressive disease has been related to chromothripsis, DNA-repair gene mutations, loss of orthopedia homeobox/CD44, and upregulation of ret proto-oncogene gene (RET) gene expression. In the case of LCNECs, which present with a high mutation burden, two major molecular subtypes have been identified: one with biallelic inactivation of tumor protein p53 gene (TP53) and retinoblastoma gene (RB1), a hallmark of SCLC; and the other one with biallelic inactivation of TP53 and serine/threonine kinase 11 gene (STK11)/kelch like ECH associated protein 1 gene (KEAP1), genes that are frequently mutated in NSCLC. These data, together with the identification of common mutations in the different components of combined LCNEC tumors, provide further evidence of the close molecular relation of LCNEC with other lung tumor types. In terms of therapeutic options, future studies should explore the association between mechanistic target of rapamycin pathway mutations and response to mechanistic target of rapamycin inhibitors in carcinoids. For LCNEC, preliminary data suggest that the two molecular subtypes might have a predictive value for chemotherapy response, but this observation needs to be validated in randomized prospective clinical trials. Finally, delta like Notch canonical ligand 3 inhibitors and immunotherapy may provide alternative options for patient-tailored therapy in LCNEC.
Collapse
Affiliation(s)
- Jules L Derks
- Department of Pulmonary Diseases, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Noémie Leblay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, IARC-WHO, Lyon, France
| | - Sylvie Lantuejoul
- Department of Biopathology, Centre Léon Bérard UNICANCER, Lyon, France; Grenoble Alpes University INSERM U1209/CNRS 5309, Institute for Advanced Biosciences, La Tronche, France
| | - Anne-Marie C Dingemans
- Department of Pulmonary Diseases, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ernst-Jan M Speel
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lynnette Fernandez-Cuesta
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, IARC-WHO, Lyon, France.
| |
Collapse
|
136
|
Genetic alterations analysis in prognostic stratified groups identified TP53 and ARID1A as poor clinical performance markers in intrahepatic cholangiocarcinoma. Sci Rep 2018; 8:7119. [PMID: 29740198 PMCID: PMC5940669 DOI: 10.1038/s41598-018-25669-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
The incidence and mortality rates of intrahepatic cholangiocarcinoma have been rising worldwide. Few patients present an early-stage disease that is amenable to curative surgery and after resection, high recurrence rates persist. To identify new independent marker related to aggressive behaviour, two prognostic groups of patient were selected and divided according to prognostic performance. All patients alive at 36 months were included in good prognostic performers, while all patients died due to disease within 36 months in poor prognostic performers. Using high-coverage target sequencing we analysed principal genetic alterations in two groups and compared results to clinical data. In the 33 cases included in poor prognosis group, TP53 was most mutated gene (p = 0.011) and exclusively present in these cases. Similarly, ARID1A was exclusive of this group (p = 0.024). TP53 and ARID1A are mutually exclusive in this study. Statistical analysis showed mutations in TP53 and ARID1A genes and amplification of MET gene as independent predictors of poor prognosis (TP53, p = 0.0031, ARID1A, p = 0.0007, MET, p = 0.0003 in Cox analysis). LOH in PTEN was also identified as marker of disease recurrence (p = 0.04) in univariate analysis. This work improves our understanding of aggressiveness related to this tumour type and has identified novel prognostic markers of clinical outcome.
Collapse
|
137
|
Diffuse Idiopathic Pulmonary Neuroendocrine Cell Hyperplasia (DIPNECH) Syndrome and Carcinoid Tumors With/Without NECH. Am J Surg Pathol 2018; 42:646-655. [PMID: 29438170 DOI: 10.1097/pas.0000000000001033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
138
|
Ardeshir-Larijani F, Bhateja P, Lipka MB, Sharma N, Fu P, Dowlati A. KMT2D Mutation Is Associated With Poor Prognosis in Non-Small-Cell Lung Cancer. Clin Lung Cancer 2018; 19:e489-e501. [PMID: 29627316 DOI: 10.1016/j.cllc.2018.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/05/2018] [Accepted: 03/10/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mixed-lineage leukemia protein 2 (MLL2 or KMT2D) is a histone methyltransferase whose mutation has been associated with a poor prognosis in cancer. We compared the characteristics and significance of KMT2D alterations in non-small-cell lung cancer (NSCLC) with those in small cell lung cancer (SCLC). PATIENTS AND METHODS Tumors from 194 NSCLC patients with locally advanced or advanced disease and 64 SCLC patients underwent targeted-exome sequencing. The association of KMT2D mutation with overall survival (OS) and progression-free survival (PFS) was measured using Kaplan-Meier methods and further evaluated using multivariable Cox proportional hazards regression model adjusting for known clinical prognostic features. RESULTS The KMT2D mutation rate was 17.5% (34 of 194) in NSCLC. Patients with mutant KMT2D had significantly lower median OS (9.97 vs. 30.2 months; P < .0001) and median PFS (8.46 vs. 24.1 months; P = .0004) compared with patients with wild-type KMT2D. The KMT2D mutation was significantly more common in females (P = .017). Using a multivariate Cox regression model, KMT2D mutation was one of the most significant prognostic factors in NSCLC: hazard ratio (HR) for OS, 2.79 (95% confidence interval [CI], 1.8-4.33; P < .0001) and HR for PFS, 1.99 (95% CI, 1.32-3.01; P = .001). In contrast, the KMT2D mutation rate in SCLC was 32.8% (21 of 64) and showed no sex bias (P = .874). No significant change was found in survival in association with the KMT2D mutation in SCLC (OS, P = .952; PFS, P = .744). CONCLUSION The KMT2D mutation was associated with reduced survival in NSCLC but not in SCLC.
Collapse
Affiliation(s)
| | - Priyanka Bhateja
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH
| | - Mary Beth Lipka
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH
| | - Neelesh Sharma
- Division of Hematology and Oncology, Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, OH
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Afshin Dowlati
- Division of Hematology and Oncology, Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, OH.
| |
Collapse
|
139
|
Mafficini A, Scarpa A. Genomic landscape of pancreatic neuroendocrine tumours: the International Cancer Genome Consortium. J Endocrinol 2018; 236:R161-R167. [PMID: 29321190 PMCID: PMC5811627 DOI: 10.1530/joe-17-0560] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Neuroendocrine tumours (NETs) may arise throughout the body and are a highly heterogeneous, relatively rare class of neoplasms difficult to study also for the lack of disease models. Despite this, knowledge on their molecular alterations has expanded in the latest years, also building from genetic syndromes causing their onset. Pancreatic NETs (PanNETs) have been among the most studied, and research so far has outlined a series of recurring features, as inactivation of MEN1, VHL, TSC1/2 genes and hyperactivation of the PI3K/mTOR pathway. Next-generation sequencing has added new information by showing the key role of alternative lengthening of telomeres, driven in a fraction of PanNETs by inactivation of ATRX/DAXX. Despite this accumulation of knowledge, single studies often relied on few cases or were limited to the DNA, RNA, protein or epigenetic level with lack of integrative analysis. The International Cancer Genome Consortium aimed at removing these barriers through a strict process of data and samples collection, to produce whole-genome integrated analyses for many tumour types. The results of this effort on PanNETs have been recently published and, while confirming previous observations provide a first snapshot of how heterogeneous is the combination of genetic alterations that drive this tumour type, yet converging into four pathways whose alteration has been enriched by newly discovered mechanisms. While calling for further integration of genetic and epigenetic analyses, these data allow to reconcile previous findings in a defined frame and may provide clinical research with markers for patients stratification and to guide targeted therapy decisions.
Collapse
Affiliation(s)
- Andrea Mafficini
- ARC-Net Centre for Applied Research on CancerUniversity and Hospital Trust of Verona, Verona, Italy
- Department of Diagnostics and Public HealthSection of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on CancerUniversity and Hospital Trust of Verona, Verona, Italy
- Department of Diagnostics and Public HealthSection of Pathology, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
140
|
Kasajima A, Ishikawa Y, Iwata A, Steiger K, Oka N, Ishida H, Sakurada A, Suzuki H, Kameya T, Konukiewitz B, Klöppel G, Okada Y, Sasano H, Weichert W. Inflammation and PD-L1 expression in pulmonary neuroendocrine tumors. Endocr Relat Cancer 2018; 25:339-350. [PMID: 29326364 DOI: 10.1530/erc-17-0427] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 12/19/2022]
Abstract
In the light of novel cancer immune therapies, the status of antitumor inflammatory response and its regulation has gained much attention in patients with lung cancer. Ample datasets exist for non-small-cell lung cancer, but those for pulmonary neuroendocrine tumors are scarce and controversial. Here, tumor-associated inflammation, CD8+ cell infiltration and PD-L1 status were evaluated in a cohort of 57 resected carcinoids and 185 resected neuroendocrine carcinomas of the lung (58 large cell carcinomas and 127 small cell carcinomas). Data were correlated with clinicopathological factors and survival. Moderate or high tumor-associated inflammation was detected in 4 carcinoids (7%) and in 37 neuroendocrine carcinomas (20%). PD-L1 immunoreactivity was seen in immune cells of 73 (39%) neuroendocrine carcinomas, while tumor cells were labeled in 21 (11%) cases. Inflammatory cells and tumor cells in carcinoids lacked any PD-L1 expression. In neuroendocrine carcinomas, PD-L1 positivity in immune cells, but not in tumor cells, was associated with intratumoral CD8+ cell infiltration (P < 0.001), as well as with the severity of tumor-associated inflammation (P < 0.001). In neuroendocrine carcinomas, tumor-associated inflammation and PD-L1 positivity in immune cells correlated with prolonged survival and the latter factor was also an independent prognosticator (P < 0.01, hazard ratio 0.4 for overall survival, P < 0.001 hazard ratio 0.4 for disease-free survival). Taken together, in neuroendocrine tumors, antitumor inflammatory response and PD-L1 expression are largely restricted to neuroendocrine carcinomas, and in this tumor entity, PD-L1 expression in inflammatory cells is positively correlated to patient survival.
Collapse
Affiliation(s)
- Atsuko Kasajima
- Department of PathologyTechnical University Munich, Munich, Germany
- Department of PathologyTohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichi Ishikawa
- Pathology DepartmentThe Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Ayaka Iwata
- Department of PathologyTohoku University Graduate School of Medicine, Sendai, Japan
| | - Katja Steiger
- Department of PathologyTechnical University Munich, Munich, Germany
| | - Naomi Oka
- Department of PathologyTohoku University Graduate School of Medicine, Sendai, Japan
- National Hospital OrganizationSendai Medical Center, Sendai, Japan
| | - Hirotaka Ishida
- Department of PathologyTohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Sakurada
- Department of Thoracic SurgeryInstitute of Development, Aging and Cancer, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyoshi Suzuki
- National Hospital OrganizationSendai Medical Center, Sendai, Japan
| | - Toru Kameya
- Division of PathologyShizuoka Cancer Center Hospital and Research Institute, Sizuoka, Japan
| | | | - Günter Klöppel
- Department of PathologyTechnical University Munich, Munich, Germany
| | - Yoshinori Okada
- Department of Thoracic SurgeryInstitute of Development, Aging and Cancer, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of PathologyTohoku University Graduate School of Medicine, Sendai, Japan
| | - Wilko Weichert
- Department of PathologyTechnical University Munich, Munich, Germany
- Member of the German Cancer Consortium (DKTK)
| |
Collapse
|
141
|
Pelosi G, Bianchi F, Dama E, Simbolo M, Mafficini A, Sonzogni A, Pilotto S, Harari S, Papotti M, Volante M, Fontanini G, Mastracci L, Albini A, Bria E, Calabrese F, Scarpa A. Most high-grade neuroendocrine tumours of the lung are likely to secondarily develop from pre-existing carcinoids: innovative findings skipping the current pathogenesis paradigm. Virchows Arch 2018; 472:567-577. [PMID: 29388013 DOI: 10.1007/s00428-018-2307-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/30/2017] [Accepted: 01/21/2018] [Indexed: 12/16/2022]
|
142
|
Rekhtman N, Pietanza CM, Sabari J, Montecalvo J, Wang H, Habeeb O, Kadota K, Adusumilli P, Rudin CM, Ladanyi M, Travis WD, Joubert P. Pulmonary large cell neuroendocrine carcinoma with adenocarcinoma-like features: napsin A expression and genomic alterations. Mod Pathol 2018; 31:111-121. [PMID: 28884744 PMCID: PMC5937126 DOI: 10.1038/modpathol.2017.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/31/2022]
Abstract
Pulmonary large cell neuroendocrine carcinoma (LCNEC) is a highly aggressive malignancy, which was recently found to comprise three major genomic subsets: small cell carcinoma-like, non-small cell carcinoma (predominantly adenocarcinoma)-like, and carcinoid-like. To further characterize adenocarcinoma-like subset, here we analyzed the expression of exocrine marker napsin A, along with TTF-1, in a large series of LCNECs (n=112), and performed detailed clinicopathologic and genomic analysis of napsin A-positive cases. For comparison, we analyzed napsin A expression in other lung neuroendocrine neoplasms (177 carcinoids, 37 small cell carcinomas) and 60 lung adenocarcinomas. We found that napsin A was expressed in 15% of LCNEC (17/112), whereas all carcinoids and small cell carcinomas were consistently negative. Napsin A reactivity in LCNEC was focal in 12/17 cases, and weak or moderate in intensity in all cases, which was significantly lower in the extent and intensity than seen in adenocarcinomas (P<0.0001). The combination of TTF-1-diffuse/napsin A-negative or focal was typical of LCNEC but was rare in adenocarcinoma, and could thus serve as a helpful diagnostic clue. The diagnosis of napsin A-positive LCNECs was confirmed by classic morphology, diffuse labeling for at least one neuroendocrine marker, most consistently synaptophysin, and the lack of distinct adenocarcinoma component. Genomic analysis of 14 napsin A-positive LCNECs revealed the presence of mutations typical of lung adenocarcinoma (KRAS and/or STK11) in 11 cases. In conclusion, LCNECs are unique among lung neuroendocrine neoplasms in that some of these tumors exhibit low-level expression of exocrine marker napsin A, and harbor genomic alterations typical of adenocarcinoma. Despite the apparent close biological relationship, designation of adeno-like LCNEC as a separate entity from adenocarcinoma is supported by their distinctive morphology, typically diffuse expression of neuroendocrine marker(s) and aggressive behavior. Further studies are warranted to assess the clinical utility and optimal method of identifying adenocarcinoma-like and other subsets of LCNEC in routine practice.
Collapse
Affiliation(s)
- Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Catherine M. Pietanza
- Thoracic Oncology Service, Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joshua Sabari
- Thoracic Oncology Service, Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joseph Montecalvo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hangjun Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Omar Habeeb
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kyuichi Kadota
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Prasad Adusumilli
- Department of Thoracic Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Charles M. Rudin
- Thoracic Oncology Service, Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William D. Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Philippe Joubert
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
143
|
Derks JL, Leblay N, Thunnissen E, van Suylen RJ, den Bakker M, Groen HJM, Smit EF, Damhuis R, van den Broek EC, Charbrier A, Foll M, McKay JD, Fernandez-Cuesta L, Speel EJM, Dingemans AMC. Molecular Subtypes of Pulmonary Large-cell Neuroendocrine Carcinoma Predict Chemotherapy Treatment Outcome. Clin Cancer Res 2018; 24:33-42. [PMID: 29066508 DOI: 10.1158/1078-0432.ccr-17-1921] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/12/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Purpose: Previous genomic studies have identified two mutually exclusive molecular subtypes of large-cell neuroendocrine carcinoma (LCNEC): the RB1 mutated (mostly comutated with TP53) and the RB1 wild-type groups. We assessed whether these subtypes have a predictive value on chemotherapy outcome.Experimental Design: Clinical data and tumor specimens were retrospectively obtained from the Netherlands Cancer Registry and Pathology Registry. Panel-consensus pathology revision confirmed the diagnosis of LCNEC in 148 of 232 cases. Next-generation sequencing (NGS) for TP53, RB1, STK11, and KEAP1 genes, as well as IHC for RB1 and P16 was performed on 79 and 109 cases, respectively, and correlated with overall survival (OS) and progression-free survival (PFS), stratifying for non-small cell lung cancer type chemotherapy including platinum + gemcitabine or taxanes (NSCLC-GEM/TAX) and platinum-etoposide (SCLC-PE).Results:RB1 mutation and protein loss were detected in 47% (n = 37) and 72% (n = 78) of the cases, respectively. Patients with RB1 wild-type LCNEC treated with NSCLC-GEM/TAX had a significantly longer OS [9.6; 95% confidence interval (CI), 7.7-11.6 months] than those treated with SCLC-PE [5.8 (5.5-6.1); P = 0.026]. Similar results were obtained for patients expressing RB1 in their tumors (P = 0.001). RB1 staining or P16 loss showed similar results. The same outcome for chemotherapy treatment was observed in LCNEC tumors harboring an RB1 mutation or lost RB1 protein.Conclusions: Patients with LCNEC tumors that carry a wild-type RB1 gene or express the RB1 protein do better with NSCLC-GEM/TAX treatment than with SCLC-PE chemotherapy. However, no difference was observed for RB1 mutated or with lost protein expression. Clin Cancer Res; 24(1); 33-42. ©2017 AACR.
Collapse
Affiliation(s)
- Jules L Derks
- Department of Pulmonary Diseases, GROW School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Noémie Leblay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Erik Thunnissen
- Department of Pathology, VU University Medical Centre, Amsterdam, the Netherlands
| | | | | | - Harry J M Groen
- Department of Pulmonary Diseases, University of Groningen and University Medical Centre, Groningen, the Netherlands
| | - Egbert F Smit
- Department of Pulmonary Diseases, VU medical centre, Amsterdam, the Netherlands
| | - Ronald Damhuis
- Department Research, Comprehensive Cancer Association, Utrecht, the Netherlands
| | | | - Amélie Charbrier
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Matthieu Foll
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | | | - Lynnette Fernandez-Cuesta
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France.
| | - Ernst-Jan M Speel
- Department of Pathology, GROW school for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Anne-Marie C Dingemans
- Department of Pulmonary Diseases, GROW School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.
| |
Collapse
|
144
|
Comprehensive clinical and molecular analyses of neuroendocrine carcinomas of the breast. Mod Pathol 2018; 31:68-82. [PMID: 28884749 DOI: 10.1038/modpathol.2017.107] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 07/22/2017] [Accepted: 07/23/2017] [Indexed: 12/20/2022]
Abstract
Neuroendocrine breast carcinomas represent a rare subtype of breast cancer. Their definition, prevalence, and prognosis remain controversial in the literature. The 2012 WHO classification of breast cancer categorizes neuroendocrine carcinomas into three morphologically distinct subtypes: well-differentiated neuroendocrine tumors, poorly differentiated neuroendocrine carcinomas, and invasive breast carcinomas with neuroendocrine differentiation. We aimed to gain insight into the clinical, morphologic, phenotypic, and molecular features of 47 neuroendocrine breast carcinomas. Targeted next-generation sequencing by an AmpliSeq 22 cancer gene hotspot panel and the Prosigna assay were performed on 42/47 and 35/47 cases, respectively. Average age at diagnosis was 69 years. All tumors were estrogen receptor-positive and the large majority expressed progesterone receptor (89%), GATA3 (98%), FOXA1 (96%), and CK8/18 (98%). There was an almost equal distribution of luminal A (52%) and B (48%) carcinomas. Almost half of the cohort (49%) displayed a high risk of recurrence score with the Prosigna test. Patients with a neuroendocrine carcinoma had a shorter disease-free survival compared with those affected by carcinomas of no special type matched for age, size, grade, and estrogen receptor status. No significant differences were observed in terms of overall survival. Stratification of neuroendocrine carcinomas using the 2012 WHO criteria did not reveal statistically significant differences among the distinct categories (well-differentiated neuroendocrine tumors, poorly differentiated neuroendocrine carcinomas, and invasive breast carcinomas with neuroendocrine differentiation), in terms of either progression-free or overall survival. Our targeted sequencing analysis found three cases (7%) harboring a PIK3CA mutation, and in three other cases (7%) TP53 mutations were detected. This study showed that neuroendocrine breast carcinoma is a distinct subtype of luminal carcinoma with a low rate of PIK3CA mutations and with an aggressive clinical behavior. An accurate identification of neuroendocrine differentiation may be useful to better tailor patient adjuvant therapy within luminal carcinomas.
Collapse
|
145
|
Rossi G, Bertero L, Marchiò C, Papotti M. Molecular alterations of neuroendocrine tumours of the lung. Histopathology 2017; 72:142-152. [DOI: 10.1111/his.13394] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Giulio Rossi
- Pathology Unit; Azienda USL Valle d'Aosta; Regional Hospital ‘Parini’; Aosta Italy
| | - Luca Bertero
- Department of Oncology; University of Turin and Pathology Unit; AOU Città della Salute e della Scienza; Torino Italy
| | - Caterina Marchiò
- Department of Medical Sciences; University of Turin and Pathology Unit; AOU Città della Salute e della Scienza; Torino Italy
| | - Mauro Papotti
- Department of Oncology; University of Turin and Pathology Unit; AOU Città della Salute e della Scienza; Torino Italy
| |
Collapse
|
146
|
Olofson AM, Tafe LJ. A case of a primary lung cancer comprised of adenocarcinoma and atypical carcinoid tumor with both components harboring BRAF p.V600E mutation. Exp Mol Pathol 2017; 104:26-28. [PMID: 29248665 DOI: 10.1016/j.yexmp.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023]
Abstract
Mixed morphology lung tumors are rare; this is the second report of a combined NSCLC and atypical carcinoid tumor. Next generation sequencing was performed on both histologically distinct patterns which identified that both components harbored a BRAF p.V600E mutation. Molecular studies inform our knowledge of the biology and aid in treatment decisions for mixed morphology lung cancers.
Collapse
Affiliation(s)
- Andrea M Olofson
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, NH, Lebanon
| | - Laura J Tafe
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, NH, Lebanon.
| |
Collapse
|
147
|
Scoazec JY, Couvelard A. [Classification of pancreatic neuroendocrine tumours: Changes made in the 2017 WHO classification of tumours of endocrine organs and perspectives for the future]. Ann Pathol 2017; 37:444-456. [PMID: 29169836 DOI: 10.1016/j.annpat.2017.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/08/2017] [Indexed: 02/01/2023]
Abstract
The WHO classification of the tumors of endocrine organs, published in July 2017, has introduced significant changes in the classification of pancreatic neuroendocrine tumors, the previous version of which has appeared in 2010, within the WHO classification of the tumors of the digestive system. The main change is the introduction of a new category of well-differentiated neoplasms, neuroendocrine tumors G3, in addition to the previous categories of neuroendocrine tumors G1 and G2. The differential diagnosis between neuroendocrine tumors G3 (well-differentiated) and neuroendocrine carcinomas (poorly-differentiated) might be difficult; the authors of the WHO classification therefore suggest the use of a number of immunohistochemical markers to facilitate the distinction between the two entities. The other changes are: (a) the modification of the threshold between neuroendocrine tumors G1 and G2, now set at 3%; (b) the terminology used for mixed tumors: the previous term mixed adeno-neuroendocrine carcinoma (MANEC) is substituted by the term mixed neuroendocrine-non neuroendocrine neoplasm (MiNEN). Finally, the recommendations for Ki-67 index evaluation are actualized. Even if these changes only concern, stricto sensu, the neuroendocrine tumors of pancreatic location, they will probably be applied, de facto, for all digestive neuroendocrine tumors. The revision of the histological classification of pancreatic neuroendocrine tumors coincides with the revision of their UICC TNM staging; significant changes have been made in the criteria for T3 and T4 stages. Our professional practices have to take into account all these modifications.
Collapse
Affiliation(s)
- Jean-Yves Scoazec
- Département de biologie et pathologie médicales, Gustave-Roussy Cancer Campus, 114, rue Edouard-Vaillant, 94805 Villejuif cedex, France; Faculté de médecine de Bicêtre, université Paris Sud, 94270 Le Kremlin-Bicêtre, France.
| | - Anne Couvelard
- DHU Unity, département de pathologie, hôpital Bichat, Assistance publique-Hôpitaux de Paris, 75018 Paris, France; Faculté de médecine Bichat, université Paris Diderot, 75018 Paris, France
| | | |
Collapse
|
148
|
Pelosi G, Sonzogni A, Harari S, Albini A, Bresaola E, Marchiò C, Massa F, Righi L, Gatti G, Papanikolaou N, Vijayvergia N, Calabrese F, Papotti M. Classification of pulmonary neuroendocrine tumors: new insights. Transl Lung Cancer Res 2017; 6:513-529. [PMID: 29114468 PMCID: PMC5653522 DOI: 10.21037/tlcr.2017.09.04] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022]
Abstract
Neuroendocrine tumors of the lung (Lu-NETs) embrace a heterogeneous family of neoplasms classified into four histological variants, namely typical carcinoid (TC), atypical carcinoid (AC), large cell neuroendocrine carcinoma (LCNEC) and small cell lung carcinoma (SCLC). Defining criteria on resection specimens include mitotic count in 2 mm2 and the presence or absence of necrosis, alongside a constellation of cytological and histological traits including cell size and shape, nuclear features and overall architecture. Clinically, TC are low-grade malignant tumors, AC intermediate-grade malignant tumors and SCLC/LCNEC high-grade malignant full-blown carcinomas with no significant differences in survival between them. Homologous tumors arise in the thymus that occasionally have some difficulties in differentiating from the lung counterparts when presented with large unresectable or metastatic lesions. Immunohistochemistry (IHC) helps refine NE diagnosis at various anatomical sites, particularly on small-sized tissue material, in which only TC and small cell carcinoma categories can be recognized easily on hematoxylin & eosin stain, while AC and LCNEC can only be suggested on such material. The Ki-67 labeling index effectively separates carcinoids from small cell carcinoma and may prove useful for the clinical management of a metastatic disease to help the therapeutic decision-making process. Although carcinoids and high-grade neuroendocrine carcinomas in the lung and elsewhere make up separate tumor categories on molecular grounds, emerging data supports the concept of secondary high-grade NETs arising in the preexisting carcinoids, whose clinical and biological relevance will have to be placed into the proper context for the optimal management of these patients. In this review, we will discuss the selected, recent literature with a focus on current issues regarding Lu-NET nosology, i.e., classification, derivation and tumor evolution.
Collapse
Affiliation(s)
- Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Inter-hospital Pathology Division, Science & Technology Park, IRCCS MultiMedica Group, Milan, Italy
| | - Angelica Sonzogni
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Sergio Harari
- Department of Medical Sciences and Division of Pneumology, San Giuseppe Hospital, Science & Technology Park, IRCCS MultiMedica Group, Milan, Italy
| | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, Science & Technology Park, IRCCS MultiMedica Group, Milan, Italy
| | - Enrica Bresaola
- Department of Pathology and Laboratory Medicine, European Institute of Oncology, Milan, Italy
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, and Pathology Division, AOU Città della Salute e della Scienza, Turin, Italy
| | - Federica Massa
- Department of Oncology, University of Turin, and Pathology Division, AOU Città della Salute e della Scienza, Turin, Italy
| | - Luisella Righi
- Department of Oncology, University of Turin, Pathology Division, San Luigi Hospital, University of Turin, Turin, Italy
| | - Gaia Gatti
- Department of Oncology, University of Turin, Pathology Division, San Luigi Hospital, University of Turin, Turin, Italy
| | - Nikolaos Papanikolaou
- Inter-hospital Pathology Division, Science & Technology Park, IRCCS MultiMedica Group, Milan, Italy
| | - Namrata Vijayvergia
- Department of Hematology and Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padova, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin, and Pathology Division, AOU Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|
149
|
Marchiò C, Gatti G, Massa F, Bertero L, Filosso P, Pelosi G, Cassoni P, Volante M, Papotti M. Distinctive pathological and clinical features of lung carcinoids with high proliferation index. Virchows Arch 2017. [PMID: 28631159 PMCID: PMC5711990 DOI: 10.1007/s00428-017-2177-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Typical (TCs) and atypical carcinoids (ACs) are defined based on morphological criteria, and no grading system is currently accepted to further stratify these entities. The 2015 WHO classification restricts the Ki-67 role to biopsy or cytology samples, rather than for prognostic prediction. We aimed to investigate whether values and patterns of Ki-67 alone would allow for a clinically meaningful stratification of lung carcinoids, regardless of histological typing. Ki-67 proliferation index and pattern (homogeneous versus heterogeneous expression) were assessed in a cohort of 171 TCs and 68 ACs. Cases were subdivided into three Ki-67 ranges (<4/4–9/≥10%). Correlations with clinicopathological data, univariate and multivariate survival analyses were performed. The majority of cases (61.5%) belonged to the <4% Ki-67 range; 25.1 and 13.4% had a proliferation index of 4–9% and ≥10%, respectively. The <4% Ki-67 subgroup was significantly enriched for TCs (83%, p < 0.0001); ACs were more frequent in the subgroup showing Ki-67 ≥ 10% (75%, p < 0.0001). A heterogeneous Ki-67 pattern was preferentially seen in carcinoids with a Ki-67 ≥10% (38%, p < 0.02). Mean Ki-67 values ≥4 and ≥10% identified categories of poor prognosis both in terms of disease-free and overall survival (p = 0.003 and <0.0001). At multivariate analysis, the two thresholds did not retain statistical significance; however, a Ki-67 ≥ 10% identified a subgroup of dismal prognosis even within ACs (p = 0.03) at univariate analysis. Here, we describe a subgroup of lung carcinoids showing brisk proliferation activity within the necrosis and/or mitotic count-based categories. These patients were associated with specific clinicopathological characteristics, to some extent regardless of histological subtyping.
Collapse
Affiliation(s)
- Caterina Marchiò
- Department of Medical Sciences, University of Turin, Via Giuseppe Verdi, 8, 10124, Turin, Italy.
- Pathology Division, AOU Città della Salute e della Scienza di Torino, Via Santena 7, 10126, Turin, Italy.
| | - Gaia Gatti
- Pathology Division, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Federica Massa
- Pathology Division, AOU Città della Salute e della Scienza di Torino, Via Santena 7, 10126, Turin, Italy
| | - Luca Bertero
- Department of Medical Sciences, University of Turin, Via Giuseppe Verdi, 8, 10124, Turin, Italy
- Pathology Division, AOU Città della Salute e della Scienza di Torino, Via Santena 7, 10126, Turin, Italy
| | - Pierluigi Filosso
- Department of Surgical Sciences, University of Turin, Via Giuseppe Verdi, 8, 10124, Turin, Italy
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono, 7, I-20122, Milan, Italy
- Inter-hospital Pathology Division, Science & Technology Park, IRCCS MultiMedica Group, Milan, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin, Via Giuseppe Verdi, 8, 10124, Turin, Italy
- Pathology Division, AOU Città della Salute e della Scienza di Torino, Via Santena 7, 10126, Turin, Italy
| | - Marco Volante
- Pathology Division, San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Italy
- Department of Oncology, University of Turin, Via Giuseppe Verdi, 8, 10124, Turin, Italy
| | - Mauro Papotti
- Pathology Division, AOU Città della Salute e della Scienza di Torino, Via Santena 7, 10126, Turin, Italy
- Department of Oncology, University of Turin, Via Giuseppe Verdi, 8, 10124, Turin, Italy
| |
Collapse
|
150
|
Weiss GJ, Byron SA, Aldrich J, Sangal A, Barilla H, Kiefer JA, Carpten JD, Craig DW, Whitsett TG. A prospective pilot study of genome-wide exome and transcriptome profiling in patients with small cell lung cancer progressing after first-line therapy. PLoS One 2017; 12:e0179170. [PMID: 28586388 PMCID: PMC5460863 DOI: 10.1371/journal.pone.0179170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/19/2017] [Indexed: 11/19/2022] Open
Abstract
Background Small cell lung cancer (SCLC) that has progressed after first-line therapy is an aggressive disease with few effective therapeutic strategies. In this prospective study, we employed next-generation sequencing (NGS) to identify therapeutically actionable alterations to guide treatment for advanced SCLC patients. Methods Twelve patients with SCLC were enrolled after failing platinum-based chemotherapy. Following informed consent, genome-wide exome and RNA-sequencing was performed in a CLIA-certified, CAP-accredited environment. Actionable targets were identified and therapeutic recommendations made from a pharmacopeia of FDA-approved drugs. Clinical response to genomically-guided treatment was evaluated by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. Results The study completed its accrual goal of 12 evaluable patients. The minimum tumor content for successful NGS was 20%, with a median turnaround time from sample collection to genomics-based treatment recommendation of 27 days. At least two clinically actionable targets were identified in each patient, and six patients (50%) received treatment identified by NGS. Two had partial responses by RECIST 1.1 on a clinical trial involving a PD-1 inhibitor + irinotecan (indicated by MLH1 alteration). The remaining patients had clinical deterioration before NGS recommended therapy could be initiated. Conclusions Comprehensive genomic profiling using NGS identified clinically-actionable alterations in SCLC patients who progressed on initial therapy. Recommended PD-1 therapy generated partial responses in two patients. Earlier access to NGS guided therapy, along with improved understanding of those SCLC patients likely to respond to immune-based therapies, should help to extend survival in these cases with poor outcomes.
Collapse
Affiliation(s)
- Glen J. Weiss
- Western Regional Medical Center, Cancer Treatment Centers of America, Goodyear, Arizona, United States of America
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
- * E-mail:
| | - Sara A. Byron
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Jessica Aldrich
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Ashish Sangal
- Western Regional Medical Center, Cancer Treatment Centers of America, Goodyear, Arizona, United States of America
| | - Heather Barilla
- Western Regional Medical Center, Cancer Treatment Centers of America, Goodyear, Arizona, United States of America
| | - Jeffrey A. Kiefer
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - John D. Carpten
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - David W. Craig
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Timothy G. Whitsett
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|