101
|
Kaczorowska A, Miękus N, Stefanowicz J, Adamkiewicz-Drożyńska E. Selected Matrix Metalloproteinases (MMP-2, MMP-7) and Their Inhibitor (TIMP-2) in Adult and Pediatric Cancer. Diagnostics (Basel) 2020; 10:diagnostics10080547. [PMID: 32751899 PMCID: PMC7460349 DOI: 10.3390/diagnostics10080547] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) consists of numerous biologically relevant elements. One of the most important components of the TME is the extracellular matrix (ECM). The compounds of the ECM create a network that provides structural and biochemical support to surrounding cells. The most important substances involved in the regulation of the ECM degradation process are matrix metalloproteinases (MMPs) and their endogenous inhibitors (tissue inhibitors of metalloproteinases, TIMPs). The disruption of the physiological balance between MMP activation and deactivation could lead to progression of various diseases such as cardiovascular disease, cancer, fibrosis arthritis, chronic tissue ulcers, pathologies of the nervous system (such as stroke and Alzheimer's disease), periodontitis, and atheroma. MMP-TIMP imbalance results in matrix proteolysis associated with various pathological processes such as tumor invasion. The present review discusses the involvement of two MMPs, MMP-2 and MMP-7, in cancer pathogenesis. These two MMPs have been proven in several studies, conducted mostly on adults, to make an important contribution to cancer development and progression. In the current review, several studies that indicate the importance of MMP-TIMP balance determination for the pediatric population are also highlighted. The authors of this review believe that carrying out biochemical and clinical studies focused on metalloproteinases and their inhibitors in tumors in children will be of great relevance for future patient diagnosis, determination of a prognosis, and monitoring of therapy.
Collapse
Affiliation(s)
- Aleksandra Kaczorowska
- Department of Pediatrics, Hematology and Oncology, Faculty of Medicine, Medical University of Gdańsk, 7 Dębinki Street, 80-952 Gdańsk, Poland; (A.K.); (E.A.-D.)
- University Clinical Centre, 7 Debinki Street, 80-952 Gdansk, Poland
| | - Natalia Miękus
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Joanna Stefanowicz
- Department of Pediatrics, Hematology and Oncology, Faculty of Medicine, Medical University of Gdańsk, 7 Dębinki Street, 80-952 Gdańsk, Poland; (A.K.); (E.A.-D.)
- University Clinical Centre, 7 Debinki Street, 80-952 Gdansk, Poland
- Faculty of Health Sciences, Medical University of Gdańsk, Maria Sklodowska-Curie Street 3a, 80-210 Gdańsk, Poland
- Correspondence: ; Tel.: +48-58-349-28-08
| | - Elżbieta Adamkiewicz-Drożyńska
- Department of Pediatrics, Hematology and Oncology, Faculty of Medicine, Medical University of Gdańsk, 7 Dębinki Street, 80-952 Gdańsk, Poland; (A.K.); (E.A.-D.)
- University Clinical Centre, 7 Debinki Street, 80-952 Gdansk, Poland
| |
Collapse
|
102
|
Zhou H, Xiang Q, Hu C, Zhang J, Zhang Q, Zhang R. Identification of MMP1 as a potential gene conferring erlotinib resistance in non-small cell lung cancer based on bioinformatics analyses. Hereditas 2020; 157:32. [PMID: 32703314 PMCID: PMC7379796 DOI: 10.1186/s41065-020-00145-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the major type of lung cancer with high morbidity and poor prognosis. Erlotinib, an inhibitor of epidermal growth factor receptor (EGFR), has been clinically applied for NSCLC treatment. Nevertheless, the erlotinib acquired resistance of NSCLC occurs inevitably in recent years. METHODS Through analyzing two microarray datasets, erlotinib resistant NSCLC cells microarray (GSE80344) and NSCLC tissue microarray (GSE19188), the differentially expressed genes (DEGs) were screened via R language. DEGs were then functionally annotated by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, which up-regulated more than 2-folds in both datasets were further functionally analyzed by Oncomine, GeneMANIA, R2, Coremine, and FunRich. RESULTS We found that matrix metalloproteinase 1 (MMP1) may confer the erlotinib therapeutic resistance in NSCLC. MMP1 highly expressed in erlotinib-resistant cells and NSCLC tissues, and it associated with poor overall survival. In addition, MMP1 may be associated with COPS5 and be involve in an increasing transcription factors HOXA9 and PBX1 in erlotinib resistance. CONCLUSIONS Generally, these results demonstrated that MMP1 may play a crucial role in erlotinib resistance in NSCLC, and MMP1 could be a prognostic biomarker for erlotinib treatment.
Collapse
Affiliation(s)
- Huyue Zhou
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China
| | - Qiumei Xiang
- Maternity service center of Beijing Fengtai District Maternal and Child health care hospital, Beijing, 100067, China
| | - Changpeng Hu
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China
| | - Jing Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China
| | - Qian Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China.
| | - Rong Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China.
| |
Collapse
|
103
|
Fonta CM, Arnoldini S, Jaramillo D, Moscaroli A, Oxenius A, Behe M, Vogel V. Fibronectin fibers are highly tensed in healthy organs in contrast to tumors and virus-infected lymph nodes. Matrix Biol Plus 2020; 8:100046. [PMID: 33543039 PMCID: PMC7852196 DOI: 10.1016/j.mbplus.2020.100046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) acts as reservoir for a plethora of growth factors and cytokines some of which are hypothesized to be regulated by ECM fiber tension. Yet, ECM fiber tension has never been mapped in healthy versus diseased organs. Using our recently developed tension nanoprobe derived from the bacterial adhesin FnBPA5, which preferentially binds to structurally relaxed fibronectin fibers, we discovered here that fibronectin fibers are kept under high tension in selected healthy mouse organs. In contrast, tumor tissues and virus-infected lymph nodes exhibited a significantly higher content of relaxed or proteolytically cleaved fibronectin fibers. This demonstrates for the first time that the tension of ECM fibers is significantly reduced upon pathological tissue transformations. This has wide implications, as the active stretching of fibronectin fibers adjusts critical cellular niche parameters and thereby tunes the reciprocal cell-ECM crosstalk. Mapping the tensional state of fibronectin fibers opens novel and unexpected diagnostic opportunities. Mechanobiology of extracellular matrix changes upon pathological transformations. Fibronectin is significantly more relaxed in tumors than in healthy organs. Relaxed fibronectin is found close to myofibroblasts and dense collagen fibers. Viral infection reduces fibronectin fiber tension in lymph nodes. Use of a tension-sensitive adhesin to probe fibronectin fiber tension in tissues
Collapse
Key Words
- CAFs, cancer associated fibroblasts
- CLEC-2, C-type Lectin Receptor
- Cancer
- DCs, dendritic cells
- ECM, extracellular matrix
- Extracellular matrix
- FRCs, fibroblastic reticular cells
- Fibronectin
- IHC, immunohistochemistry
- IL-7, Interleukin 7
- LCMV, lymphocytic choriomeningitis virus
- Lymph node
- MMPs, matrix metalloproteinases
- Mechanobiology
- PDPN, podoplanin
- SHG, second harmonic generation
- TGF-β, Transforming Growth Factor-beta
- Virus infection
- α-SMA, alpha smooth muscle actin
Collapse
Affiliation(s)
- Charlotte M Fonta
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Simon Arnoldini
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | - Alessandra Moscaroli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
104
|
Hsu CC, Su YF, Tsai KY, Kuo FC, Chiang CF, Chien CY, Chen YC, Lee CH, Wu YC, Wang K, Liu SY, Shieh YS. Gamma synuclein is a novel nicotine responsive protein in oral cancer malignancy. Cancer Cell Int 2020; 20:300. [PMID: 32669976 PMCID: PMC7350738 DOI: 10.1186/s12935-020-01401-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Background The mechanisms of neuronal protein γ-synuclein (SNCG) in the malignancy of oral squamous cell carcinoma (OSCC) are not clear. This study tested the hypothesis that SNCG is involved in nicotine-induced malignant behaviors of OSCC. The effect of nicotine on SNCG expression and epithelial-to-mesenchymal transition (EMT) markers were examined. Methods Short hairpin RNA (shRNA) and an antagonist specific for α7-nicotine acetylcholine receptors (α7-nAChRs) were used to examine the role of α7-nAChRs in mediating the effects of nicotine. Knockdown of SNCG in nicotine-treated cells was performed to investigate the role of SNCG in cancer malignancy. The in vivo effect of nicotine was examined using a nude mouse xenotransplantation model. Results Nicotine increased SNCG expression in a time- and dose-dependent manner. Nicotine treatment also increased E-cadherin and ZO-1 and decreased fibronectin and vimentin expression. After specific knockdown of α7-nAChRs and inhibition of the PI3/AKT signal, the effect of nicotine on SNCG expression was attenuated. Silencing of SNCG abolished nicotine-induced invasion and migration of OSCC cells. The xenotransplantation model revealed that nicotine augmented tumor growth and SNCG expression. Conclusion Nicotine upregulated SNCG expression by activating the α7-nAChRs/PI3/AKT signaling that are participated in nicotine-induced oral cancer malignancy.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114 Taiwan
| | - Yu-Fu Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114 Taiwan.,Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan
| | - Kuo-Yang Tsai
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua, 500 Taiwan.,College of Nursing and Health Science, Da-Yeh University, Changhua, 515 Taiwan
| | - Feng-Chih Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan
| | - Chi-Fu Chiang
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, No.161, Sec.6, Min-Chuan East Rd., Nei-Hu, Taipei, 114 Taiwan
| | - Chu-Yen Chien
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114 Taiwan
| | - Ying-Chen Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114 Taiwan
| | - Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan
| | - Yu-Chiao Wu
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, No.161, Sec.6, Min-Chuan East Rd., Nei-Hu, Taipei, 114 Taiwan
| | - Kun Wang
- Department of Internal Medicine, Cardinal Tien Hospital and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shyun-Yeu Liu
- Department of Oral and Maxillofacial Surgery, Chi Mei Medical Center, Tainan, 710 Taiwan
| | - Yi-Shing Shieh
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, No.161, Sec.6, Min-Chuan East Rd., Nei-Hu, Taipei, 114 Taiwan.,Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, 114 Taiwan
| |
Collapse
|
105
|
Song H, Zhou Y, Peng A, Liu J, Wu X, Chen W, Liu Z. Aurora-B Promotes Osteosarcoma Cell Growth and Metastasis Through Activation of the NPM1/ERK/NF-κβ/MMPs Axis. Cancer Manag Res 2020; 12:4817-4827. [PMID: 32606971 PMCID: PMC7320907 DOI: 10.2147/cmar.s252847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/10/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Osteosarcoma (OS) is the most common primary malignant tumor of the bone in young adolescents and children. We explored the underlying mechanism of Aurora-B in promoting OS cell proliferation and metastasis. Patient and Methods Bioinformatics was employed to predict the substrate of Aurora-B. IHC and Western blot were used to confirm the correlation between Aurora-B and NPM1. ERK/NF-κβ pathway-related proteins were detected by Western blot and immunofluorescence (IF). CCK8, wound healing, transwell, and Tunel assays were used to identify the cell proliferation, migration and apoptosis potential. Spontaneous metastasis xenografts were established to confirm the role of Aurora-B and NPM1. Results Aurora-B promotes NPM1 phosphorylation on Ser125. The phosphorylation of NPM1Ser125 induced by Aurora-B activates the ERK/NF-κβ signaling. Further study revealed that Aurora-B promotes proliferation, migration and inhibits apoptosis via phosphorylating NPM1 in vitro and in vivo. Conclusion Aurora-B promotes OS malignancy via phosphorylating NPM1Ser125 and activating ERK/NF-κβ signaling.
Collapse
Affiliation(s)
- Honghai Song
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.,Institute of Spinal and Spinal Cord Diseases, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yang Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Aifen Peng
- College of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, People's Republic of China
| | - Jiaming Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.,Institute of Spinal and Spinal Cord Diseases, Nanchang University, Nanchang 330031, People's Republic of China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Xin Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Wenzhao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Zhili Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.,Institute of Spinal and Spinal Cord Diseases, Nanchang University, Nanchang 330031, People's Republic of China.,Division of Science and Technology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
106
|
Altamura G, Martano M, Licenziato L, Maiolino P, Borzacchiello G. Telomerase Reverse Transcriptase (TERT) Expression, Telomerase Activity, and Expression of Matrix Metalloproteinases (MMP)-1/-2/-9 in Feline Oral Squamous Cell Carcinoma Cell Lines Associated With Felis catus Papillomavirus Type-2 Infection. Front Vet Sci 2020; 7:148. [PMID: 32292795 PMCID: PMC7118734 DOI: 10.3389/fvets.2020.00148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Telomerase activity contributes to cell immortalization by avoiding telomere shortening at each cell division; indeed, its catalytic subunit telomerase reverse transcriptase (TERT) is overexpressed in many tumors, including human oral squamous cell carcinoma (hOSCC). In these tumors, matrix metalloproteinases (MMPs), a group of zinc-dependent endopeptidases involved in cell migration, contribute to invasive potential of cancer cells. A proportion of hOSCC is associated with infection by high-risk human papillomavirus (HR-HPVs), whose E6 oncogene enhances TERT and MMPs expression, thus promoting cancer progression. Feline oral squamous cell carcinoma (FOSCC) is a malignant tumor with highly invasive phenotype; however, studies on telomerase activity, TERT, and MMPs expression are scarce. In this study, we demonstrate telomerase activity, expression of TERT, and its transcriptional activator cMyc along with expression of MMP-1, -2, and -9 in FOSCC-derived cell lines SCCF2 and SCCF3, suggesting a contribution by these pathways in cell immortalization and invasion in these tumors. Recent studies suggest that a sub-group of FOSCC as well as SCCF2 and SCCF3 are associated with Felis catus PV type-2 (FcaPV-2) infection. However, in this work, FcaPV-2 E6 gene knock-down caused no shift in either TERT, cMyc, or MMPs levels, suggesting that, unlike its human counterpart, the viral oncogene plays no role in their regulation.
Collapse
Affiliation(s)
- Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Manuela Martano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luca Licenziato
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
107
|
Tang L, Chen Y, Chen H, Jiang P, Yan L, Mo D, Tang X, Yan F. DCST1-AS1 Promotes TGF-β-Induced Epithelial-Mesenchymal Transition and Enhances Chemoresistance in Triple-Negative Breast Cancer Cells via ANXA1. Front Oncol 2020; 10:280. [PMID: 32226772 PMCID: PMC7080863 DOI: 10.3389/fonc.2020.00280] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/18/2020] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic breast cancer subtype, and the primary systemic treatment strategy involves conventional chemotherapy. DC-STAMP domain containing 1-antisense 1 (DCST1-AS1) is a long non-coding RNA that promotes TNBC migration and invasion. Studying the role of DCST1-AS1 in promoting epithelial–mesenchymal transition (EMT) and chemoresistance will provide a new strategy for TNBC therapy. In the present study, we found that DCST1-AS1 regulates the expression or secretion of EMT-related proteins E-cadherin, snail family zinc finger 1 (SNAI1), vimentin, matrix metallopeptidase 2 (MMP2), and matrix metallopeptidase 9 (MMP9). Interference with DCST1-AS1 impaired TGF-β-induced TNBC cell invasion and migration. DCST1-AS1 directly binds to ANXA1 in BT-549 cells and affects the expression of ANXA1. DCST1-AS1 enhances TGF-β/Smad signaling in BT-549 cells through ANXA1 to promote EMT. The combination of DCST1-AS1 and ANXA1 also contributes to enhancement of the resistance of BT-549 cells to doxorubicin and paclitaxel. In conclusion, DCST1-AS1 promotes TGF-β-induced EMT and enhances chemoresistance in TNBC cells through ANXA1, and therefore represents a potentially promising target for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Li Tang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuli Chen
- Department of Clinical Laboratory, Nanjing Qixia District Hospital, Nanjing, China
| | - Huanhuan Chen
- The Fourth Clinical Medical School, Nanjing Medical University, Nanjing, China
| | - Pan Jiang
- The Fourth Clinical Medical School, Nanjing Medical University, Nanjing, China
| | - Linping Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Dongping Mo
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xun Tang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
108
|
Weidle UH, Birzele F, Nopora A. Pancreatic Ductal Adenocarcinoma: MicroRNAs Affecting Tumor Growth and Metastasis in Preclinical In Vivo Models. Cancer Genomics Proteomics 2020; 16:451-464. [PMID: 31659100 DOI: 10.21873/cgp.20149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023] Open
Abstract
Patients with pancreatic ductal adenocarcinoma have a dismall prognosis because at the time of diagnosis, in the vast majority of patients the tumor has already disseminated to distant organs and the therapeutic benefit of approved agents such as gemcitabine is limited. Therefore, the identification and preclinical and clinical validation of therapeutic agents covering new targets is of paramount importance. In this review we have summarized microRNAs and corresponding targets which affect growth and metastasis of pancreatic tumors in preclinical mouse in vivo models. We identified four up-regulated and 16 down-regulated miRs in PDAC in comparison to corresponding normal tissues. Three sub-categories of miRs have emerged: miRs affecting tumor growth and miRs with an impact on both, tumor growth and metastasis or metastasis only. Finally, we discuss technical and therapeutic aspects of miR-related therapeutic agents for the treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Adam Nopora
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
109
|
Mitschke J, Burk UC, Reinheckel T. The role of proteases in epithelial-to-mesenchymal cell transitions in cancer. Cancer Metastasis Rev 2020; 38:431-444. [PMID: 31482486 DOI: 10.1007/s10555-019-09808-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changing the characteristics of cells from epithelial states to mesenchymal properties is a key process involved in developmental and physiological processes as well as in many diseases with cancer as the most prominent example. Nowadays, a great deal of work and literature concerns the understanding of the process of epithelial-to-mesenchymal transition (EMT) in terms of its molecular regulation and its implications for cancer. Similar statements can certainly be made regarding the investigation of the more than 500 proteases typically encoded by a mammalian genome. Specifically, the impact of proteases on tumor biology has been a long-standing topic of interest. However, although EMT actively regulates expression of many proteases and proteolytic enzymes are clearly involved in survival, division, differentiation, and movements of cells, information on the diverse roles of proteases in EMT has been rarely compiled. Here we aim to conceptually connect the scientific areas of "EMT" and "protease" research by describing how several important classes of proteolytic enzymes are regulated by EMT and how they are involved in initiation and execution of the EMT program. To do so, we briefly introduce the evolving key features of EMT and its regulation followed by discussion of protease involvement in this process.
Collapse
Affiliation(s)
- Julia Mitschke
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany
| | - Ulrike C Burk
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, partner site Freiburg, 79106, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
110
|
Roehlen N, Roca Suarez AA, El Saghire H, Saviano A, Schuster C, Lupberger J, Baumert TF. Tight Junction Proteins and the Biology of Hepatobiliary Disease. Int J Mol Sci 2020; 21:ijms21030825. [PMID: 32012812 PMCID: PMC7038100 DOI: 10.3390/ijms21030825] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis. At non-junctional localizations, TJ proteins are involved in key regulatory cell functions such as differentiation, proliferation, and migration by recruiting signaling proteins in response to extracellular stimuli. Moreover, TJ proteins are hepatocyte entry factors for the hepatitis C virus (HCV)—a major cause of liver disease and cancer worldwide. Perturbation of TJ protein expression has been reported in chronic HCV infection, cholestatic liver diseases as well as hepatobiliary carcinoma. Here we review the physiological function of TJ proteins in the liver and their implications in hepatobiliary diseases.
Collapse
Affiliation(s)
- Natascha Roehlen
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Antonio Saviano
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Catherine Schuster
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3688-53703
| |
Collapse
|
111
|
Feng Z, Yu Q, Zhang T, Tie W, Li J, Zhou X. Updates on mechanistic insights and targeting of tumour metastasis. J Cell Mol Med 2020; 24:2076-2086. [PMID: 31957271 PMCID: PMC7011147 DOI: 10.1111/jcmm.14931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/15/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023] Open
Abstract
Malignant tumours are one of the major diseases that seriously endanger human health. The characteristics of their invasion and metastasis are one of the main causes of death in cancer patients, and these features cannot be separated from the participation of various molecules-related cells living in the tumour microenvironment and specific structures. Tumour invasion can approximately be divided into several specific steps according to the movement of tumour cells. In each step, there are different actions in the tumour microenvironment that mediate the interactions among substances. Researchers are attempting to clarify every mechanism of the tumour dissemination. However, there is still a long way to the final determination. Here, we review these interactions in tumour invasion and metastasis at the structural, molecular and cellular levels. We also discuss the ongoing studies and the promise of targeting metastasis in tumour therapy.
Collapse
Affiliation(s)
- Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Qiuxuan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Ting Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Wanpeng Tie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
112
|
Duan F, Peng Z, Yin J, Yang Z, Shang J. Expression of MMP-14 and prognosis in digestive system carcinoma: a meta-analysis and databases validation. J Cancer 2020; 11:1141-1150. [PMID: 31956360 PMCID: PMC6959085 DOI: 10.7150/jca.36469] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Background: The Matrix metalloproteinase-14 (MMP-14) expression has been shown to be overexpressed in different cancers. However, there is no comprehensive quantitative evaluation of the MMP-14 prognostic value in digestive system carcinoma (DSC). The aim of this study is to explore the correlation between the MMP-14 expression and DSC prognosis. Methods: We conducted a meta-analysis to estimate the association strength between MMP-14 expression and prognosis. GEPIA and Kaplan Meier plotters were used to assess overall survival (OS), disease-free survival (DFS)/progression-free survival (PFS) in DSC patients and the differential expression of MMP-14 in DSC tissues and adjacent tissues. Results: A total of 20 studies including 2,519 patients with OS and 438 patients with DFS/PFS data were analyzed in evidence synthesis. Overall, the combined hazard ratio (HR) with 95% confidence interval (95% CI) was 1.98 (95%Cl: 1.77-2.22, P<0.001) for OS and 3.61 (95%Cl: 2.39-5.43, P<0.001) for DFS/PFS. For subgroup analyses, significant correlations were revealed between increased MMP-14 expression and poor OS in patients with gastric cancer (HR=2.21, 95%CI: 1.76-2.77, P<0.001), esophageal carcinoma (HR=2.01, 95%CI: 1.58-2.57, P<0.001), oral cancer (HR = 1.69, 95% CI: 1.30-2.20, P < 0.001) (HR=2.14, 95%CI 1.35-2.19, P<0.001) and hepatocarcinoma. In database verification analyses, the MMP-14 expression levels in normal tissues were significantly higher than that in DSC tissues, and significant associations were observed between high MMP-14 expression levels and poor prognosis. Conclusions: The high expression levels of MMP-14 might predict poor prognosis in DSC. Larger prospective clinical cohort studies are required to validate the prognostic role.
Collapse
Affiliation(s)
- Fujiao Duan
- Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhen Peng
- Department of Infectious Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Jingjing Yin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhongyu Yang
- College of Art and Science, The Ohio State University, Columbus, Ohio, US
| | - Jia Shang
- Department of Infectious Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
113
|
Herrington CS, Poulsom R, Coates PJ. Recent Advances in Pathology: the 2019 Annual Review Issue of The Journal of Pathology. J Pathol 2019; 247:535-538. [PMID: 30734304 DOI: 10.1002/path.5255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 01/11/2023]
Abstract
In this Annual Review Issue of The Journal of Pathology, we present 15 invited reviews on topical aspects of pathology, ranging from the impacts of the microbiome in human disease through mechanisms of cell death and autophagy to recent advances in immunity and the uses of genomics for understanding, classifying and treating human cancers. Each of the reviews is authored by experts in their fields and our intention is to provide comprehensive updates in specific areas of pathology in which there has been considerable recent progress. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- C Simon Herrington
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
114
|
Shi L, Liu H, Wang Y, Chong Y, Wang J, Liu G, Zhang X, Chen X, Li H, Niu M, Liang J, Yu R, Liu X. SWAP-70 promotes glioblastoma cellular migration and invasion by regulating the expression of CD44s. Cancer Cell Int 2019; 19:305. [PMID: 31832018 PMCID: PMC6873484 DOI: 10.1186/s12935-019-1035-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Switch-associated protein 70 (SWAP-70) is a guanine nucleotide exchange factor that is involved in cytoskeletal rearrangement and regulation of migration and invasion of malignant tumors. However, the mechanism by which SWAP-70 regulates the migration and invasion of glioblastoma (GB) cells has not been fully elucidated. METHODS This study used an online database to analyze the relationship between SWAP-70 expression and prognosis in GB patients. The in vitro wound healing assay and transwell invasion assay were used to determine the role of SWAP-70 in GB cell migration and invasion as well as the underlying mechanism. RESULTS We found that patients with high SWAP-70 expression in the GB had a poor prognosis. Downregulation of SWAP-70 inhibited GB cell migration and invasion, whereas SWAP-70 overexpression had an opposite effect. Interestingly, SWAP-70 expression was positively correlated with the expression of the standard form of CD44 (CD44s) in GB tissues. Downregulation of SWAP-70 also reduced CD44s protein expression, whereas SWAP-70 overexpression enhanced CD44s protein expression. However, downregulation of SWAP-70 expression did not affect the mRNA expression of CD44s. Reversal experiments showed that overexpressing CD44s in cell lines with downregulated SWAP-70 partially abolished the inhibitory effects of downregulated SWAP-70 on GB cell migration and invasion. CONCLUSIONS These results suggest that SWAP-70 may promote GB cell migration and invasion by regulating the expression of CD44s. SWAP-70 may serve as a new biomarker and a potential therapeutic target for GB.
Collapse
Affiliation(s)
- Lin Shi
- Institute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Huize Liu
- Institute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Yifeng Wang
- Institute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Yulong Chong
- Institute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
- Nanjing Durm Tower Hospital Group, Suqian City People’s Hospital, Suqian, Jiangsu China
| | - Jie Wang
- Institute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Guanzheng Liu
- Institute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Xu Zhang
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Xiangyu Chen
- Institute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Huan Li
- Institute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Mingshan Niu
- Institute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Jun Liang
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Rutong Yu
- Institute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Xuejiao Liu
- Institute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| |
Collapse
|
115
|
Yu S, Yan C, Wu W, He S, Liu M, Liu J, Yang X, Ma J, Lu Y, Jia L. RU486 Metabolite Inhibits CCN1/Cyr61 Secretion by MDA-MB-231-Endothelial Adhesion. Front Pharmacol 2019; 10:1296. [PMID: 31824306 PMCID: PMC6880622 DOI: 10.3389/fphar.2019.01296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Successful adhesion of circulating tumor cells (CTCs) to microvascular endothelium of distant metastatic tissue is the key starting step of metastatic cascade that could be effectively chemoprevented as we demonstrated previously. Here, we hypothesize that the hetero-adhesion may produce secretory biomarkers that may be important for both premetastatic diagnosis and chemoprevention. We show that co-incubation of triple-negative breast cancer (TNBC) cell line MDA-MB-231 with human pulmonary microvascular endothelial monolayers (HPMEC) secretes Cyr61 (CCN1), primarily from MDA-MB-231. However, addition of metapristone (RU486 metabolite) to the co-incubation system inhibits Cyr61 secretion probably via the Cyr61/integrin αvβ1 signaling pathway without significant cytotoxicity on both MDA-MB-231 and HPMEC. Transfection of MDA-MB-231 with Cyr61-related recombinant plasmid or siRNA enhances or reduces Cyr61 expression, accordingly. The transfection significantly changes hetero-adhesion and migration of MDA-MB-231, and the changed bioactivities by overexpressed CYR61 could be antagonized by metapristone in vitro. Moreover, the circulating MDA-MB-231 develops lung metastasis in mice, which could be effectively prevented by oral metapristone without significant toxicity. The present study, for the first time, demonstrates that co-incubation of MDA-MB-231 with HPMEC secrets CYR61 probably via the CYR61/integrin αvβ1 signaling pathway to promote adhesion-invasion of TNBC (early metastatic step). Metapristone, by interfering the adhesion-invasion process, prevents metastasis from happening.
Collapse
Affiliation(s)
- Suhong Yu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, China
| | - Cuicui Yan
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, China
| | - Wenjing Wu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, China
| | - Sudan He
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, China
| | - Min Liu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, China
| | - Xingtian Yang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, China
| | - Ji Ma
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, China
| | - Yusheng Lu
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, China.,Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
116
|
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CP, Vasconcelos MH. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 2019; 46:100645. [DOI: 10.1016/j.drup.2019.100645] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
|
117
|
Alexander ET, Mariner K, Borodyanskaya Y, Minton A, Gilmour SK. Polyamine-stimulation of arsenic-transformed keratinocytes. Carcinogenesis 2019; 40:1042-1051. [PMID: 31190067 PMCID: PMC6735862 DOI: 10.1093/carcin/bgz115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
Tumor promotion is strongly associated with inflammation and increased polyamine levels. Our understanding of relevant mechanisms responsible for arsenic-induced cancer remains limited. Previous studies suggest that arsenic targets and dysregulates stem cell populations that remain dormant in the skin until promoted to be recruited out of the bulge stem cell region, thus giving rise to skin tumors. In this study, we explored a possible mechanism by which increased keratinocyte polyamine biosynthesis promotes tumorsphere formation and invasiveness of arsenic-transformed HaCaT keratinocytes (As-HaCaT). Unlike parental HaCaT cells, As-HaCaT cells were tumorigenic in athymic nude mice, and the CD45negative epithelial tumor cells had enriched expression of Toll-Like Receptor 4 (TLR4), CD34 and CXCR4 as did As-HaCaT tumorsphere cultures compared to As-HaCaT monolayer cultures. Ornithine decarboxylase (ODC) overexpressing keratinocytes (Ker/ODC) release increased levels of the alarmin high mobility group box 1 (HMGB1). Ker/ODC conditioned medium (CM) stimulated As-HaCaT but not parental HaCaT tumorsphere formation, and this was inhibited by glycyrrhizin, an inhibitor of HMGB1, and by TAK242, an inhibitor of the HMGB1 receptor TLR4. Compared to parental HaCaT cells, As-HaCaT cells demonstrated greater invasiveness across a Matrigel-coated filter using either fibroblast CM or SDF-1α as chemoattractants. Addition of Ker/ODC CM or HMGB1 dramatically increased As-HaCaT invasiveness. Glycyrrhizin and TAK242 inhibited this Ker/ODC CM-stimulated invasion of As-HaCaT cells but not HaCaT cells. These results show that polyamine-dependent release of HMGB1 promotes the expansion of stem cell-like subpopulations in arsenic-transformed keratinocytes while also increasing their invasiveness, suggesting that polyamines may be a potential therapeutic target for the prevention and treatment of arsenic-initiated skin cancers.
Collapse
Affiliation(s)
- Eric T Alexander
- Department of Molecular Carcinogenesis, Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | - Kelsey Mariner
- Department of Molecular Carcinogenesis, Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | - Yelizaveta Borodyanskaya
- Department of Molecular Carcinogenesis, Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | - Allyson Minton
- Department of Molecular Carcinogenesis, Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | - Susan K Gilmour
- Department of Molecular Carcinogenesis, Lankenau Institute for Medical Research, Wynnewood, PA, USA
| |
Collapse
|
118
|
Fersing C, Bouhlel A, Cantelli C, Garrigue P, Lisowski V, Guillet B. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [ 18F]fluoride: Will [ 18F]AlF Replace 68Ga for Metal Chelate Labeling? Molecules 2019; 24:E2866. [PMID: 31394799 PMCID: PMC6719958 DOI: 10.3390/molecules24162866] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Due to its ideal physical properties, fluorine-18 turns out to be a key radionuclide for positron emission tomography (PET) imaging, for both preclinical and clinical applications. However, usual biomolecules radiofluorination procedures require the formation of covalent bonds with fluorinated prosthetic groups. This drawback makes radiofluorination impractical for routine radiolabeling, gallium-68 appearing to be much more convenient for the labeling of chelator-bearing PET probes. In response to this limitation, a recent expansion of the 18F chemical toolbox gave aluminum [18F]fluoride chemistry a real prominence since the late 2000s. This approach is based on the formation of an [18F][AlF]2+ cation, complexed with a 9-membered cyclic chelator such as NOTA, NODA or their analogs. Allowing a one-step radiofluorination in an aqueous medium, this technique combines fluorine-18 and non-covalent radiolabeling with the advantage of being very easy to implement. Since its first reports, [18F]AlF radiolabeling approach has been applied to a wide variety of potential PET imaging vectors, whether of peptidic, proteic, or small molecule structure. Most of these [18F]AlF-labeled tracers showed promising preclinical results and have reached the clinical evaluation stage for some of them. The aim of this report is to provide a comprehensive overview of [18F]AlF labeling applications through a description of the various [18F]AlF-labeled conjugates, from their radiosynthesis to their evaluation as PET imaging agents.
Collapse
Affiliation(s)
- Cyril Fersing
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France.
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298 Montpellier CEDEX 5, France.
| | - Ahlem Bouhlel
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
| | - Christophe Cantelli
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Philippe Garrigue
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Benjamin Guillet
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| |
Collapse
|
119
|
HMGA1 exacerbates tumor progression by activating miR-222 through PI3K/Akt/MMP-9 signaling pathway in uveal melanoma. Cell Signal 2019; 63:109386. [PMID: 31394192 DOI: 10.1016/j.cellsig.2019.109386] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 12/26/2022]
Abstract
High-mobility group A1 (HMGA1), an architectural transcription factor, participates in different human tumors' biological progression. HMGA1 overexpression is associated with malignant cellular behavior in a wide range of cancers but the underlying mechanism remains poorly illuminated. In this study, we showed PI3K/Akt/MMP9 pathway activity could be positively regulated by HMGA1 using western blotting, real-time polymerase chain reaction (RT-PCR) and immunochemistry both in vitro (C918 and MUM-2B cell lines) and in vivo (xenograft mouse model). Later, MiRTarBase was used to identify the relationship between HMGA1 and miR-222-3p, we found miR-222 is positively regulated by HMGA1. Moreover, the proliferation and migration of UM cells significantly increased in the miR-222 mimics group and decreased in the miR-222 inhibitor group detected by the Annexin V-FITC apoptosis detection kit, CCK-8 and scratch wound-healing. The p-PI3K, p-Akt and MMP9 expressions were elevated in UM cells transfected with miR-222 mimics, and suppressed in the miR-222 inhibitor group. Together, our study highlights that HMGA1 acts as a pivotal regulator in UM tumor growth, proposing a critical viewpoint that HMGA1 expedites progression through the PI3K/Akt/MMP9 pathway and oncogenic miR-222 in UM.
Collapse
|
120
|
Wechselberger C, Doppler C, Bernhard D. An Inexpensive Staining Alternative for Gelatin Zymography Gels. Methods Protoc 2019; 2:E61. [PMID: 31344964 PMCID: PMC6789862 DOI: 10.3390/mps2030061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022] Open
Abstract
Zymography is a widely used electrophoretic method to determine proteolytic activities in samples from various sources. The method is based on copolymerizing a suitable protein substrate within a sodium dodecyl sulfate-polyacrylamide gel. Following electrophoretic separation of the protease containing samples and a suitable incubation period, degradation of the substrate can be visualized through staining with Coomassie blue. Sites of proteolysis become visible as white bands on a dark blue background. However, this staining protocol requires considerable amounts of ethanol and acetic acid to remove unbound dye molecules. In this report, we describe a new staining protocol using Ponceau S which offers substantial advantages in terms of assay usability and cost reduction, especially when performing large quantities of zymograms or in resource-limited settings. Fast and reproducible staining of zymograms with our protocol is demonstrated, and reliable quantitation of proteolytic activity in comparison to the standard Coomassie staining procedure is shown.
Collapse
Affiliation(s)
- Christian Wechselberger
- Center for Medical Research, Medical Faculty, Johannes Kepler University, 4020 Linz, Austria.
| | - Christian Doppler
- Center for Medical Research, Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
| | - David Bernhard
- Center for Medical Research, Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
| |
Collapse
|
121
|
Gao Y, Nan X, Shi X, Mu X, Liu B, Zhu H, Yao B, Liu X, Yang T, Hu Y, Liu S. SREBP1 promotes the invasion of colorectal cancer accompanied upregulation of MMP7 expression and NF-κB pathway activation. BMC Cancer 2019; 19:685. [PMID: 31299935 PMCID: PMC6626379 DOI: 10.1186/s12885-019-5904-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/02/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sterol-regulatory element binding protein 1 (SREBP1), an intracellular cholesterol sensor located in the endoplasmic reticulum, regulates the intracellular cholesterol by the Insig-Srebp-Scap pathway. Over-expression of SREBP1 can cause dyslipidemia. SREBP1 can regulate the metabolic pathway, and then promote the proliferation of tumor cells. However, there is no relevant research of metastasis and invasion in the field of colorectal cancer (CRC). METHODS Expression of SREBP1 was manipulated in CRC cell lines with low and high level SREBP1 expression by transfectiong with plasmids containing the SREBP1 gene, or by shRNA. The effect of SREBP1 on cell migration was assayed. The expression of SREBP1, p65 and MMP7 were detected by western blot. Human umbilical vein endothelial cell was used for detection of angiogenesis by adding the culture supernatant from HT29 and SW620. The level of reactive oxygen species (ROS) was detected by Dihydroethidium (DHE) staining. NF-κB inhibitor SN50 was used to test the relationship of SREBP1, NF-κB pathway and MMP7. RESULTS We found that the expression of SREBP1 in colon adenocarcinoma was significantly higher than that in noncancerous tissues, especially in the invasive tumor front including tumor budding. In vitro, SREBP1 over-expressed in colon cancer cell lines HT29 promoted angiogenesis in endothelial cells, increased ROS levels, phosphorylation of NF-κB-p65 and increases MMP7 expression. The effect of SREBP1 on expression of MMP7 was lost following treatment with the NF-κB inhibitor SN50. CONCLUSION Our results suggest that SREBP1 can promote the invasion and metastasis of CRC cells by means of promoting the expression of MMP7 related to phosphorylation of p65.
Collapse
Affiliation(s)
- Yuyan Gao
- The Department of Radiotherapy, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
- The Department of Radiotherapy, Cancer Hospital, Harbin Medical University, Harbin, China.
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China.
| | - Xianxiu Nan
- The Department of Radiotherapy, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xinjue Shi
- The Department of Radiotherapy, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaoqin Mu
- Systemomics Center, College of Pharmacy, and Genomics Research Center, Harbin Medical University, Harbin, China.
| | - Binbin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center, Harbin Medical University, Harbin, China
| | - Huifen Zhu
- Systemomics Center, College of Pharmacy, and Genomics Research Center, Harbin Medical University, Harbin, China
| | - Bingqing Yao
- Systemomics Center, College of Pharmacy, and Genomics Research Center, Harbin Medical University, Harbin, China
| | - Xinyi Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center, Harbin Medical University, Harbin, China
| | - Tianyue Yang
- Systemomics Center, College of Pharmacy, and Genomics Research Center, Harbin Medical University, Harbin, China
| | - Yiting Hu
- Systemomics Center, College of Pharmacy, and Genomics Research Center, Harbin Medical University, Harbin, China
| | - Shulin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center, Harbin Medical University, Harbin, China
| |
Collapse
|
122
|
Li J, Chen L, Yan L, Gu Z, Chen Z, Zhang A, Zhao F. A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C 82(OH) 22. Molecules 2019; 24:molecules24132387. [PMID: 31252662 PMCID: PMC6650816 DOI: 10.3390/molecules24132387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022] Open
Abstract
Cancer remains a major threat to human health worldwide. Cytotoxicity has imposed restrictions on the conventional cytotoxic drug-based chemotherapy. The rapidly-developing nanomedicine has shown great promise in revolutionizing chemotherapy with improved efficiency and reduced toxicity. Gd@C82(OH)22, a novel endohedral metallofullerenol, was first reported by our research group to suppress tumor growth and metastasis efficiently without obvious toxicity. Gd@C82(OH)22 imprisons tumors by facilitating the formation of surrounding fibrous layers which is different from chemotherapeutics that poison tumor cells. In this review, the authors first reported the antineoplastic activity of metallofullerenol Gd@C82(OH)22 followed by further discussions on its new anti-cancer molecular mechanism—tumor encaging. On this basis, the unparalleled advantages of nanomedicine in the future drug design are discussed. The unique interaction modes of Gd@C82(OH)22 with specific targeted biomolecules may shed light on a new avenue for drug design. Depending on the surface characteristics of target biomolecules, nanomedicine, just like a transformable and dynamic key, can self-assemble into suitable shapes to match several locks for the thermodynamic stability, suggesting the target-tailoring ability of nanomedicine.
Collapse
Affiliation(s)
- Jinxia Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Linlin Chen
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Zhaofang Chen
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Aiping Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|
123
|
Pore-Forming Proteins from Cnidarians and Arachnids as Potential Biotechnological Tools. Toxins (Basel) 2019; 11:toxins11060370. [PMID: 31242582 PMCID: PMC6628452 DOI: 10.3390/toxins11060370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Animal venoms are complex mixtures of highly specialized toxic molecules. Cnidarians and arachnids produce pore-forming proteins (PFPs) directed against the plasma membrane of their target cells. Among PFPs from cnidarians, actinoporins stand out for their small size and molecular simplicity. While native actinoporins require only sphingomyelin for membrane binding, engineered chimeras containing a recognition antibody-derived domain fused to an actinoporin isoform can nonetheless serve as highly specific immunotoxins. Examples of such constructs targeted against malignant cells have been already reported. However, PFPs from arachnid venoms are less well-studied from a structural and functional point of view. Spiders from the Latrodectus genus are professional insect hunters that, as part of their toxic arsenal, produce large PFPs known as latrotoxins. Interestingly, some latrotoxins have been identified as potent and highly-specific insecticides. Given the proteinaceous nature of these toxins, their promising future use as efficient bioinsecticides is discussed throughout this Perspective. Protein engineering and large-scale recombinant production are critical steps for the use of these PFPs as tools to control agriculturally important insect pests. In summary, both families of PFPs, from Cnidaria and Arachnida, appear to be molecules with promising biotechnological applications.
Collapse
|
124
|
Chhetri A, Chittiboyina S, Atrian F, Bai Y, Delisi DA, Rahimi R, Garner J, Efremov Y, Park K, Talhouk R, Lelièvre SA. Cell Culture and Coculture for Oncological Research in Appropriate Microenvironments. ACTA ACUST UNITED AC 2019; 11:e65. [PMID: 31166658 DOI: 10.1002/cpch.65] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the increase in knowledge on the importance of the tumor microenvironment, cell culture models of cancers can be adapted to better recapitulate physiologically relevant situations. Three main microenvironmental factors influence tumor phenotype: the biochemical components that stimulate cells, the fibrous molecules that influence the stiffness of the extracellular matrix, and noncancerous cells like epithelial cells, fibroblasts, endothelial cells, and immune cells. Here we present methods for the culture of carcinomas in the presence of a matrix of specific stiffness, and for the coculture of tumors and fibroblasts as well as epithelial cells in the presence of matrix. Information is provided to help with choice and assessment of the matrix support and in working with serum-free medium. Using the example of a tissue chip recapitulating the environmental geometry of carcinomas, we also highlight the development of engineered platforms that provide exquisite control of cell culture parameters necessary in research and development. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Apekshya Chhetri
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| | - Shirisha Chittiboyina
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana.,3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, Indiana
| | - Farzaneh Atrian
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| | - Yunfeng Bai
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| | - Davide A Delisi
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| | - Rahim Rahimi
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana.,Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, Indiana
| | | | - Yuri Efremov
- Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, Indiana.,School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Kinam Park
- Akina, Inc., West Lafayette, Indiana.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Rabih Talhouk
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana.,3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, Indiana.,Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|