101
|
Furletov A, Apyari V, Garshev A, Dmitrienko S. A Comparative Study on the Oxidation of Label-Free Silver Triangular Nanoplates by Peroxides: Main Effects and Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20174832. [PMID: 32867039 PMCID: PMC7506893 DOI: 10.3390/s20174832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, analytical systems based on silver triangular nanoplates (AgTNPs) have been shown as good prospects for chemical sensing. However, they still remain relatively poorly studied as colorimetric probes for sensing various classes of compounds. This study shows that these nanoparticles are capable of being oxidized by peroxides, including both hydrogen peroxide and its organic derivatives. The oxidation was found to result in a decrease in the AgTNPs' local surface plasmon resonance band intensity at 620 nm. This was proposed for peroxide-sensitive spectrophotometric determination. Five peroxides differing in their structure and number of functional groups were tested. Three of them easily oxidized AgTNPs. The effects of a structure of analytes and main exterior factors on the oxidation are discussed. The detection limits of peroxides in the selected conditions increased in the series peracetic acid < hydrogen peroxide < tert-butyl hydroperoxide, coming to 0.08, 1.6 and 24 μmol L-1, respectively. tert-Butyl peroxybenzoate and di-tert-butyl peroxide were found to have no effect on the spectral characteristics of AgTNPs. By the example of hydrogen peroxide, it was found that the determination does not interfere with 100-4000-fold quantities of common inorganic ions. The proposed approach was successfully applied to the analysis of drugs, cosmetics and model mixtures.
Collapse
Affiliation(s)
- Aleksei Furletov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; (V.A.); (A.G.); (S.D.)
| | - Vladimir Apyari
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; (V.A.); (A.G.); (S.D.)
| | - Alexey Garshev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; (V.A.); (A.G.); (S.D.)
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Stanislava Dmitrienko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; (V.A.); (A.G.); (S.D.)
| |
Collapse
|
102
|
Musino D, Rivard C, Novales B, Landrot G, Capron I. Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H 2O 2 Redox Post-Treatment: The Role of the H 2O 2/AgNP Ratio. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1559. [PMID: 32784401 PMCID: PMC7466478 DOI: 10.3390/nano10081559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
Hybrid nanoparticles involving 10-nm silver nanoparticles (AgNPs) nucleated on unmodified rod-like cellulose nanocrystals (CNCs) were prepared by chemical reduction. H2O2 used as a post-treatment induced a size-shape transition following a redox mechanism, passing from 10-nm spherical AgNPs to 300-nm triangular or prismatic NPs (AgNPrisms), where CNCs are the only stabilizers for AgNPs and AgNPrisms. We investigated the role of the H2O2/AgNP mass ratio (α) on AgNPs. At α values above 0.20, the large amount of H2O2 led to extensive oxidation that produced numerous nucleation points for AgNPrisms on CNCs. On the contrary, for α below 0.20, primary AgNPs are only partially oxidized, releasing a reduced amount of Ag+ ions and thus preventing the formation of AgNPrisms and reforming spherical AgNPs. While XRD and EXAFS reveal that the AgNP fcc crystal structure is unaffected by the H2O2 treatment, the XANES spectra proved that the AgNP-AgNPrism transition is always associated with an increase in the metallic Ag fraction (Ag0). In contrast, the formation of new 15-nm spherical AgNPs keeps the initial Ag0/Ag+ ratio unmodified. For the first time, we introduce a complete guide map for the fully-controlled preparation of aqueous dispersed AgNPs using CNC as a template.
Collapse
Affiliation(s)
- Dafne Musino
- INRAE, BIA, 44316 Nantes, France; (D.M.); (B.N.)
| | - Camille Rivard
- SOLEIL Synchrotron, L’Orme des Merisiers, Gif-sur-Yvette, 91192 Saint-Aubin, France; (C.R.); (G.L.)
- INRAE, TRANSFORM, 44316 Nantes, France
| | | | - Gautier Landrot
- SOLEIL Synchrotron, L’Orme des Merisiers, Gif-sur-Yvette, 91192 Saint-Aubin, France; (C.R.); (G.L.)
| | | |
Collapse
|
103
|
Yuan W, Weng GM, Lipton J, Li CM, Van Tassel PR, Taylor AD. Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications. Adv Colloid Interface Sci 2020; 282:102200. [PMID: 32585489 DOI: 10.1016/j.cis.2020.102200] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Layer-by-layer (LbL) assembly is a nanoscale technique with great versatility, simplicity and molecular-level processing of various nanoscopic materials. Weak polyelectrolytes have been used as major building blocks for LbL assembly providing a fundamental and versatile tool to study the underlying mechanisms and practical applications of LbL assembly due to its pH-responsive charge density and molecular conformation. Because of high-density uncompensated charges and high-chain mobility, weak polyelectrolyte exponential multilayer growth is considered one of the fastest developing areas for organized molecular films. In this article, we systematically review the current status and developments of weak polyelectrolyte-based multilayers including all-weak-polyelectrolyte multilayers, weak polyelectrolytes/other components (e.g. strong polyelectrolytes, neutral polymers, and nanoparticles) multilayers, and exponentially grown weak polyelectrolyte multilayers. Several key aspects of weak polyelectrolytes are highlighted including the pH-controllable properties, the responsiveness to environmental pH, and synergetic functions obtained from weak polyelectrolyte/other component multilayers. Throughout this review, useful applications of weak polyelectrolyte-based multilayers in drug delivery, tunable biointerfaces, nanoreactors for synthesis of nanostructures, solid state electrolytes, membrane separation, and sensors are highlighted, and promising future directions in the area of weak polyelectrolyte-based multilayer assembly such as fabrication of multi-responsive materials, adoption of unique building blocks, investigation of internal molecular-level structure and mechanism of exponentially grown multilayers, and exploration of novel biomedical and energy applications are proposed.
Collapse
|
104
|
|
105
|
Ding X, Li D, Jiang J. Gold-based Inorganic Nanohybrids for Nanomedicine Applications. Theranostics 2020; 10:8061-8079. [PMID: 32724458 PMCID: PMC7381751 DOI: 10.7150/thno.42284] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Noble metal Au nanoparticles have attracted extensive interests in the past decades, due to their size and morphology dependent localized surface plasmon resonances. Their unique optical property, high chemical stability, good biocompatibility, and easy functionalization make them promising candidates for a variety of biomedical applications, including bioimaging, biosensing, and cancer therapy. With the intention of enhancing their optical response in the near infrared window and endowing them with additional magnetic properties, Au nanoparticles have been integrated with other functional nanomaterials that possess complementary attributes, such as copper chalcogenides and magnetic metal oxides. The as constructed hybrid nanostructures are expected to exhibit unconventional properties compared to their separate building units, due to nanoscale interactions between materials with different physicochemical properties, thus broadening the application scope and enhancing the overall performance of the hybrid nanostructures. In this review, we summarize some recent progresses in the design and synthesis of noble metal Au-based hybrid inorganic nanostructures for nanomedicine applications, and the potential and challenges for their clinical translations.
Collapse
|
106
|
Robatjazi H, Lou M, Clark BD, Jacobson CR, Swearer DF, Nordlander P, Halas NJ. Site-Selective Nanoreactor Deposition on Photocatalytic Al Nanocubes. NANO LETTERS 2020; 20:4550-4557. [PMID: 32379463 DOI: 10.1021/acs.nanolett.0c01405] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Photoactivation of catalytic materials through plasmon-coupled energy transfer has created new possibilities for expanding the scope of light-driven heterogeneous catalysis. Here we present a nanoengineered plasmonic photocatalyst consisting of catalytic Pd islands preferentially grown on vertices of Al nanocubes. The regioselective Pd deposition on Al nanocubes does not rely on complex surface ligands, in contrast to site-specific transition-metal deposition on gold nanoparticles. We show that the strong local field enhancement on the sharp nanocube vertices provides a mechanism for efficient coupling of the plasmonic Al antenna to adjacent Pd nanoparticles. A substantial increase in photocatalytic H2 dissociation on Pd-bound Al nanocubes relative to pristine Al nanocubes can be observed, incentivizing further engineering of heterometallic antenna-reactor photocatalysts. Controlled growth of catalytic materials on plasmonic hot spots can result in more efficient use of the localized surface plasmon energy for photocatalysis, while minimizing the amount and cost of precious transition-metal catalysts.
Collapse
Affiliation(s)
- Hossein Robatjazi
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | | | | | | | - Dayne F Swearer
- Department of Material Science and Engineering, Stanford University, Stanford, California 94305, United States
| | | | | |
Collapse
|
107
|
Firdhouse MJ, Lalitha P. Facile synthesis of anisotropic gold nanoparticles and its synergistic effect on breast cancer cell lines. IET Nanobiotechnol 2020; 14:224-229. [PMID: 32338631 PMCID: PMC8676130 DOI: 10.1049/iet-nbt.2019.0279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/24/2019] [Accepted: 01/31/2020] [Indexed: 11/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) possess colourful light-scattering properties due to different composition, size and shape. Their unique physical, optical and chemical properties coupled with advantages, have increased the scope of anisotropic AuNPs in various fields. This study reports a green methodology developed for the synthesis of anisotropic AuNPs. The aqueous extracts of Alternanthera sessilis (PGK), Portulaca oleracea (PAK) and Sterculia foetida (SF) with gold ions produced violet, purple and pink coloured AuNPs, respectively, under sonication and room temperature methods revealing the formation of different shapes of AuNPs. The results of TEM analysis of AuNPs confirmed the formation of triangular plate AuNPs of the size 35 nm for PAK extract. Spherical-shaped AuNPs (10-20 nm) were obtained using an extract of PGK. SF extract produced rod, hexagon, pentagon-shaped AuNPs and nanorice gold particles. The cell viability studies of the PGK, PAK and SF-mediated AuNPs on MCF-7 cell lines by MTT assay revealed the cytotoxic activity of AuNPs to depend on the size, shape and the nature of capping agents. The synthesised AuNPs significantly inhibited the growth of cancer cells (MCF-7) in a concentration-dependent manner. The size and shape of these anisotropic AuNPs also reveal its potency to be used as sensors, catalysis, photothermal and therapeutic agents.
Collapse
Affiliation(s)
| | - Pottail Lalitha
- Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, TN 641043, India
| |
Collapse
|
108
|
Rostami S, Mehdinia A, Niroumand R, Jabbari A. Enhanced LSPR performance of graphene nanoribbons-silver nanoparticles hybrid as a colorimetric sensor for sequential detection of dopamine and glutathione. Anal Chim Acta 2020; 1120:11-23. [PMID: 32475387 DOI: 10.1016/j.aca.2020.04.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/31/2020] [Accepted: 04/25/2020] [Indexed: 01/17/2023]
Abstract
In the present study, a novel plasmonic sensing platform was proposed for sequential colorimetric detection of dopamine (DA) and glutathione (GSH) in human serum sample by taking advantage of plasmon hybridization in graphene nanoribbons/sliver nanoparticles (GNR/Ag NPs) hybrid. DA was detected based on etching strategy and morphology transition of label-free Ag NPs hybridized with GNR. As a result of the etching process, hexagonal Ag NPs were changed to smaller corner-truncated nanoparticles and a blue shift was observed in its plasmonic band, accompanied by the color change from green to red. Sequentially, GSH induced aggregation of Ag NPs which resulted in a decrease in absorption intensity of Ag NPs plasmonic band and a color change from red to gray. By employing GNR/Ag NPs hybrid as a sensitive colorimetric sensor, DA and GSH were successfully detected in low concentrations of 0.04 μM and 0.23 μM, respectively. The same experiment was carried out in the absence of GNR and the detection limits were obtained 0.46 and 1.2 μM for DA and GSH, respectively. These results confirmed the effective role of GNR on the sensitivity improvement of GNR/Ag NPs hybrid. The proposed simple and sensitive sensing approach offered a beneficial and promising platform for sequential detection of DA and GSH in the biological samples.
Collapse
Affiliation(s)
- Simindokht Rostami
- Department of Analytical Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Ali Mehdinia
- Department of Marine Living Science, Ocean Sciences Research Center, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran.
| | - Ramin Niroumand
- Department of Analytical Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Ali Jabbari
- Department of Analytical Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
109
|
Silver Nanoprism Enhanced Colorimetry for Precise Detection of Dissolved Oxygen. MICROMACHINES 2020; 11:mi11040383. [PMID: 32260450 PMCID: PMC7230719 DOI: 10.3390/mi11040383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
Dissolved oxygen (DO) content is an essential indicator for evaluating the quality of the water body and the main parameter for water quality monitoring. The development of high-precision DO detection methods is of great significance. This paper reports an integrated optofluidic device for the high precision measurement of dissolved oxygen based on the characteristics of silver nanoprisms. Metal nanoparticles, especially silver nanoprisms, are extremely sensitive to their surroundings. In glucose and glucose oxidase systems, dissolved oxygen will be transformed into H2O2, which affects the oxidation and erosion process of nanoprisms, then influences the optical properties of nanoparticles. By detecting the shift in the plasma resonance peak of the silver nanoparticles, the dissolved oxygen (DO) content can be determined accurately. Great reconfigurability is one of the most significant advantages of the optofluidic device. By simply adjusting the flow rate ratio between the silver nanoprisms flow and the water sample flow, real-time continuous adjustment of the detection ranges of DO from 0 to 16 mg/L can be realized dynamically. The detection limit of this device is as low as 0.11 µM (3.52 µg/L) for DO measurement. Thus, the present optofluidic system has a wide range of potential applications in fields of biomedical analyses and water sensing.
Collapse
|
110
|
Sriram P, Manikandan A, Chuang FC, Chueh YL. Hybridizing Plasmonic Materials with 2D-Transition Metal Dichalcogenides toward Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904271. [PMID: 32196957 DOI: 10.1002/smll.201904271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Recently, 2D transition metal dichalcogenides (TMDs) have become intriguing materials in the versatile field of photonics and optoelectronics because of their strong light-matter interaction that stems from the atomic layer thickness, broadband optical response, controllable optoelectronic properties, and high nonlinearity, as well as compatibility. Nevertheless, the low optical cross-section of 2D-TMDs inhibits the light-matter interaction, resulting in lower quantum yield. Therefore, hybridizing the 2D-TMDs with plasmonic nanomaterials has become one of the promising strategies to boost the optical absorption of thin 2D-TMDs. The appeal of plasmonics is based on their capability to localize and enhance the electromagnetic field and increase the optical path length of light by scattering and injecting hot electrons to TMDs. In this regard, recent achievements with respect to hybridization of the plasmonic effect in 2D-TMDs systems and its augmented optical and optoelectronic properties are reviewed. The phenomenon of plasmon-enhanced interaction in 2D-TMDs is briefly described and state-of-the-art hybrid device applications are comprehensively discussed. Finally, an outlook on future applications of these hybrid devices is provided.
Collapse
Affiliation(s)
- Pavithra Sriram
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Arumugam Manikandan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Feng-Chuan Chuang
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Physics Division, The National Center for Theoretical Science, Hsinchu, 30013, Taiwan
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
111
|
Zeng X, Yan S, Di C, Lei M, Chen P, Du W, Jin Y, Liu BF. "All-in-One" Silver Nanoprism Platform for Targeted Tumor Theranostics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11329-11340. [PMID: 32072808 DOI: 10.1021/acsami.9b21166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing a multifunctional theranostic nanoplatform with optional therapeutic strategies is highly desirable to select the most suitable therapeutic manners for the patient's cancer treatment. Among all shapes of silver materials, a silver nanoprism was reported to have great potential in photothermal therapy (PTT) owing to its strong surface plasmon resonance band in the near-infrared region. However, its instability in physicochemical environments and its severe toxicity confined its further application. To overcome this, herein, we demonstrated a silver prism-polydopamine (PDA) hybrid nanoplatform for tumor treatment with three therapeutic strategies. Specifically, the PDA coating endows the silver prism with excellent stability, high photothermal conversion, long-term in vivo biocompatibility, ease of decorating targeting ligands, and drug delivery. Upon near-infrared laser irradiation (808 nm, 1 W/cm2), tumors can be eradicated by the as-prepared nanoparticle through monomodal PTT. Besides, when combined with a chemical drug, this nanoparticle is able to inhibit tumor growth via combined photochemotherapy under a lower laser treatment (0.7 W/cm2). Furthermore, by supplementing with an immune checkpoint blockade, the realized synergistic photochemoimmunotherapy exhibits high efficacy to inhibit tumor relapse and metastasis. Moreover, owing to the high photothermal conversion efficiency and great X-ray attenuation ability of the silver nanoprism, our designed nanoplatform can be used in photoacoustic, computed tomography, and infrared thermal multimodal imaging. Our study provides a multifunctional nanoparticle for tumor theranostics, and this therapeutic strategy-optional nanoplatform shows promise in future biomedicine.
Collapse
Affiliation(s)
- Xuemei Zeng
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology - Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuangqian Yan
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology - Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Di
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology - Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengcheng Lei
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology - Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology - Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology - Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Jin
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology - Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology - Key Laboratory of Pulmonary Diseases of Health Ministry, Department of Respiratory and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
112
|
Takeshima N, Sugawa K, Noguchi M, Tahara H, Jin S, Takase K, Otsuki J, Tamada K. Synthesis of Ag Nanoprisms with Precisely-tuned Localized Surface Plasmon Wavelengths by Sequential Irradiation of Light of Two Different Wavelengths. CHEM LETT 2020. [DOI: 10.1246/cl.190888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Naoto Takeshima
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Kosuke Sugawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Masaki Noguchi
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Hironobu Tahara
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Shota Jin
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Kouichi Takase
- Department of Physics, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Joe Otsuki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Kaoru Tamada
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
113
|
Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Martí C, Simon A, Rapacioli M. Density-functional tight-binding: basic concepts and applications to molecules and clusters. ADVANCES IN PHYSICS: X 2020; 5:1710252. [PMID: 33154977 PMCID: PMC7116320 DOI: 10.1080/23746149.2019.1710252] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023] Open
Abstract
The scope of this article is to present an overview of the Density Functional based Tight Binding (DFTB) method and its applications. The paper introduces the basics of DFTB and its standard formulation up to second order. It also addresses methodological developments such as third order expansion, inclusion of non-covalent interactions, schemes to solve the self-interaction error, implementation of long-range short-range separation, treatment of excited states via the time-dependent DFTB scheme, inclusion of DFTB in hybrid high-level/low level schemes (DFT/DFTB or DFTB/MM), fragment decomposition of large systems, large scale potential energy landscape exploration with molecular dynamics in ground or excited states, non-adiabatic dynamics. A number of applications are reviewed, focusing on -(i)- the variety of systems that have been studied such as small molecules, large molecules and biomolecules, bare orfunctionalized clusters, supported or embedded systems, and -(ii)- properties and processes, such as vibrational spectroscopy, collisions, fragmentation, thermodynamics or non-adiabatic dynamics. Finally outlines and perspectives are given.
Collapse
Affiliation(s)
- Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Nathalie Tarrat
- CEMES, Université de Toulouse (UPS), CNRS, UPR8011, Toulouse, Toulouse, France
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Leo Dontot
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Evgeny Posenitskiy
- Laboratoire Collisions Agrégats et Réactivité LCAR/IRSAMC, UMR5589, Université de Toulouse (UPS) and CNRS, Toulouse, France
| | - Carles Martí
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
- Laboratoire de Chimie, UMR5182, Ecole Normale Supérieure de Lyon, Université de Lyon and CNRS, Lyon, France
| | - Aude Simon
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| |
Collapse
|
114
|
Wang N, Cheng K, Xu ZF, Li P, Geng G, Chen C, Wang D, Chen P, Liu M. High-performance natural-sunlight-driven Ag/AgCl photocatalysts with a cube-like morphology and blunt edges via a bola-type surfactant-assisted synthesis. Phys Chem Chem Phys 2020; 22:3940-3952. [PMID: 32016244 DOI: 10.1039/c9cp05273a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ag/AgCl-based structures have recently been receiving considerable attention as visible-light-driven plasmonic photocatalysts, wherein the fabrication of Ag/AgCl species shaped with an anisotropic morphology is considered to be an efficient way to enhance their performances. While the past decade has witnessed great progress in this direction, it is still strongly desired to initiate a green and low-cost protocol for the synthesis of Ag/AgCl based structures with high catalytic activity. Using a surfactant-assisted synthesis protocol, wherein a cationic bola-type surfactant of chloride counteranions serves both as a reactant (namely, source of chlorine) for the generation of AgCl structures and as a directing template to assist the formation of anisotropic structures, we herein report that cube-like Ag/AgCl with blunt edges could be fabricated simply by dropping an aqueous solution of silver nitrate into an ethanol solution of the hexane-1,6-bis(trimethylammonium chloride) surfactant. Importantly, compared to the sphere-like counterparts manufactured using a conventional tadpole surfactant, the as-fabricated cube-like structures exhibit substantially improved catalytic performances under visible-light or natural-sunlight irradiation. It has been revealed that photogenerated holes might serve as the main active species during the catalytic process. Meanwhile, our results have disclosed that in contrast to the sphere-like Ag/AgCl structures, the as-constructed cube-like structures are relatively enriched with high-index AgCl facets of smaller hole effective mass, which promote a faster carrier transfer, facilitate the migration of the photogenerated holes to the surface to be involved in photocatalytic reactions, and suppress carrier recombination, leading to their enhanced photocatalytic performances. Considering the tremendous diversity of surfactants (bola-, gemini-, polymeric surfactants etc.) with various halide counteranions and their sophisticated template effects, our new strategy might open up new opportunities for silver/silver halide (Ag/AgX, X = Cl, Br, and I)-based plasmonic structures with various morphologies and with superior light-to-chemical energy conversion capability.
Collapse
Affiliation(s)
- Nannan Wang
- Beijing National Laboratory for Molecular Science, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Bayat F, Tajalli H. Nanosphere lithography: the effect of chemical etching and annealing sequence on the shape and spectrum of nano-metal arrays. Heliyon 2020; 6:e03382. [PMID: 32072062 PMCID: PMC7016265 DOI: 10.1016/j.heliyon.2020.e03382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/12/2020] [Accepted: 02/04/2020] [Indexed: 11/21/2022] Open
Abstract
In this paper, it is shown that the sequence of chemical etching of the template and annealing has a significant effect on the shape and spectrum of the nano-metal arrays fabricated by nanosphere lithography (NSL). Higher nanoparticles with sharp edges are fabricated as a consequence of annealing the metal coated template, which is a 2d colloidal crystal, before chemical etching. Consequently, the absorption spectra of the fabricated sample become much sharper, in comparison with the one that is fabricated with the reversed order and also a shift is observed in the peak wavelength. The achieved result has practical importance for the applications of these nano-metal arrays in localized surface plasmon resonance (LSPR) based sensors.
Collapse
Affiliation(s)
- Farzaneh Bayat
- Department of Physics, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Habib Tajalli
- Photonics Group, Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
- Biophotonics Research Center, Islamic Azad University of Tabriz, Tabriz, Iran
| |
Collapse
|
116
|
Colorimetric captopril assay based on oxidative etching-directed morphology control of silver nanoprisms. Mikrochim Acta 2020; 187:107. [DOI: 10.1007/s00604-019-4071-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023]
|
117
|
Zhang Q, Long L, Zhang G, Li ZY, Zheng Y. Seeded growth of silver nanoplates with rough edges and their applications for SERS. CrystEngComm 2020. [DOI: 10.1039/c9ce01451a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silver nanoplates with rough edges have been successfully fabricated via seeded growth by manipulating surface diffusion and kinetics-controlled growth.
Collapse
Affiliation(s)
- Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Li Long
- School of Physics and Optoelectronics
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Gongguo Zhang
- Department of Chemistry and Chemical Engineering
- Jining University
- Jining 237000
- P. R. China
| | - Zhi-Yuan Li
- School of Physics and Optoelectronics
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Yiqun Zheng
- Department of Chemistry and Chemical Engineering
- Jining University
- Jining 237000
- P. R. China
| |
Collapse
|
118
|
Zhang Z, Yu J, Zhang J, Lian Y, Shi Z, Cheng Z, Gu M. pH-controlled growth of triangular silver nanoprisms on a large scale. NANOSCALE ADVANCES 2019; 1:4904-4908. [PMID: 36133112 PMCID: PMC9417681 DOI: 10.1039/c9na00635d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/04/2019] [Indexed: 06/16/2023]
Abstract
A simple, mild, and reproducible one-pot approach was developed to synthesize triangular silver nanoprisms (TSNPRs) on a large scale. The TSNPR size was tailored from 30 to 100 nm by varying the dosage of a sodium hydroxide pentanol solution in the water/polyvinylpyrrolidone/n-pentanol ternary system. The use of the sodium hydroxide pentanol solution modified the initial pH of the water/polyvinylpyrrolidone/n-pentanol system and made the synthesis of TSNPRs highly reproducible and independent of the polyvinylpyrrolidone pH. N,N-dimethyl formamide and formamide were used to control the system pH and improved the resultant TSNPRs in both syntheses repeatedly to have a well-defined shape. The extinction bands of the TSNPRs were relatively narrow, which makes them promising for chemical and biological applications.
Collapse
Affiliation(s)
- Zhishan Zhang
- National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
| | - Ji Yu
- National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
| | - Jianhui Zhang
- National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
| | - Yadong Lian
- National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
| | - Zeyu Shi
- National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
| | - Zimo Cheng
- National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
| | - Min Gu
- National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
119
|
Cai Z, Dai Q, Guo Y, Wei Y, Wu M, Zhang H. Glycyrrhiza polysaccharide-mediated synthesis of silver nanoparticles and their use for the preparation of nanocomposite curdlan antibacterial film. Int J Biol Macromol 2019; 141:422-430. [DOI: 10.1016/j.ijbiomac.2019.09.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
|
120
|
|
121
|
Xie S, Fu T, He L, Qiu L, Liu H, Tan W. DNA-Capped Silver Nanoflakes as Fluorescent Nanosensor for Highly Sensitive Imaging of Endogenous H2S in Cell Division Cycles. Anal Chem 2019; 91:15404-15410. [DOI: 10.1021/acs.analchem.9b02527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sitao Xie
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Lei He
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Honglin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- School of Food and Biological Engineering, Hefei University of Technology, Anhui 230009, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
122
|
Controlled Synthesis of Triangular Silver Nanoplates by Gelatin–Chitosan Mixture and the Influence of Their Shape on Antibacterial Activity. Processes (Basel) 2019. [DOI: 10.3390/pr7120873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Triangular silver nanoplates were prepared by using the seeding growth approach with the presence of citrate-stabilized silver seeds and a mixture of gelatin–chitosan as the protecting agent. By understanding the critical role of reaction components, the synthesis process was improved to prepare the triangular nanoplates with high yield and efficiency. Different morphologies of silver nanostructures, such as triangular nanoplates, hexagonal nanoprisms, or nanodisks, can be obtained by changing experimental parameters, including precursor AgNO3 volume, gelatin–chitosan concentration ratios, and the pH conditions. The edge lengths of triangular silver nanoplates were successfully controlled, primarily through the addition of silver nitrate under appropriate condition. As-prepared triangular silver nanoplates were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-Vis, Fourier transform infrared spectroscopy (FT-IR), and X-Ray diffraction (XRD). Silver nanoplates had an average edge length of 65–80 nm depending on experimental conditions and exhibited a surface plasma resonance absorbance peak at 340, 450, and 700 nm. The specific interactions of gelatin and chitosan with triangular AgNPs were demonstrated by FT-IR. Based on the characterization, the growth mechanism of triangular silver nanoplates was theoretically proposed regarding the twinned crystal of the initial nanoparticle seeds and the crystal face-blocking role of the gelatin–chitosan mixture. Moreover, the antibacterial activity of triangular silver nanoplates was considerably improved in comparison with that of spherical shape when tested against Gram-positive and Gram-negative bacteria species, with 6.0 ug/mL of triangular silver nanoplates as the MBC (Minimum bactericidal concentration) for Escherichia coli and Vibrio cholera, and 8.0 ug/mL as the MBC for Staphylococcus aureus and Pseudomonas aeruginosa. The MIC (Minimum inhibitory concentration) of triangular Ag nanoplates was 4.0 ug/mL for E. coli, V. cholera, S. aureus, and P. aeruginosa.
Collapse
|
123
|
Lee J, Ha JW. Single-particle Correlation Study: Polarization-dependent Differential Interference Contrast Imaging of Two-dimensional Gold Nanoplates. ANAL SCI 2019; 35:1237-1241. [PMID: 31353337 DOI: 10.2116/analsci.19p187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Questions surrounding the optical properties of two-dimensional (2D) triangular single gold nanoplates (AuNPs) remain largely unanswered. Herein, a scanning-electron microscopy-correlated single-particle study was conducted to identify polarization-dependent optical properties of AuNPs under dark-field (DF) and differential interference contrast (DIC) microscopy. AuNPs with an aspect ratio of ∼3 showed a single broad DF scattering spectrum without separation of the two dipole and quadrupole resonance modes present in 2D AuNPs. Polarization-sensitive interference properties of the individual AuNPs were revealed through periodic changes in the intensities and types of DIC images obtained. A dipole resonance mode was found to mainly contribute to the polarization-sensitive interference properties of AuNPs. Furthermore, DIC polarization anisotropy allowed us to track the real-time orientation of a dipole resonance mode of a AuNP rotating on a live cell membrane.
Collapse
Affiliation(s)
- Junho Lee
- Advanced Nano Bio Imaging and Spectroscopy Laboratory, Department of Chemistry, University of Ulsan
| | - Ji Won Ha
- Advanced Nano Bio Imaging and Spectroscopy Laboratory, Department of Chemistry, University of Ulsan
| |
Collapse
|
124
|
Wang R, Kurouski D. Thermal Reshaping of Gold Microplates: Three Possible Routes and Their Transformation Mechanisms. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41813-41820. [PMID: 31613582 DOI: 10.1021/acsami.9b15600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The thermal stability of Au micro/nanomaterials (AuMNLs) has always been a hot topic because their physicochemical properties, like surface plasmon resonance and catalytic activity, are closely related to their morphology or exposed crystal planes which are heat-sensitive. In this study, we made careful and systematic investigation of thermal deformation and reshaping of individual Au microplates (AuMPs) using atomic force microscopy. We found that AuMPs could transform into walled AuMPs (WAuMPs) and concave AuMPs (CAuMPs) at just 300 °C, which are thermodynamically and kinetically favorable products, respectively. A small fraction of AuMPs, named invariable AuMPs (IAuMPs), remained intact. However, both CAuMPs and IAuMPs can be converted to WAuMPs if the temperature is further increased. We also showed that melting of AuMPs begins from vertices and the boundaries between the top and side plane, rather than only side crystal planes as envisaged before. Finally, we performed a series of electrochemical studies showing that WAuMPs exhibited substantially higher electrocatalytic conversion of methanol at lower formal potential compared to intact AuMPs. This work shows that thermal reshaping of Au is far more complicated as was expected before. It also demonstrates how thermal reshaping can be used to improve electrocatalytic performance of Au and potentially other MNLs.
Collapse
|
125
|
Sharifi M, Attar F, Saboury AA, Akhtari K, Hooshmand N, Hasan A, El-Sayed MA, Falahati M. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. J Control Release 2019; 311-312:170-189. [PMID: 31472191 DOI: 10.1016/j.jconrel.2019.08.032] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Over the past two decades, the development of plasmonic nanoparticle (NPs), especially gold (Au) NPs, is being pursued more seriously in the medical fields such as imaging, drug delivery, and theranostic systems. However, there is no comprehensive review on the effect of the physical and chemical parameters of AuNPs on their plasmonic properties as well as the use of these unique characteristic in medical activities such as imaging and therapeutics. Therefore, in this literature the surface plasmon resonance (SPR) modeling of AuNPs was accurately captured toward precision medicine. Indeed, we investigated the importance of plasmonic properties of AuNPs in optical manipulation, imaging, drug delivery, and photothermal therapy (PTT) of cancerous cells based on their physicochemical properties. Finally, some challenges regarding the commercialization of AuNPs in future medicine such as, cytotoxicity, lack of standards for medical applications, high cost, and time-consuming process were discussed.
Collapse
Affiliation(s)
- Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute, Karaj, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Mostafa A El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
126
|
Golze SD, Hughes RA, Rouvimov S, Neal RD, Demille TB, Neretina S. Plasmon-Mediated Synthesis of Periodic Arrays of Gold Nanoplates Using Substrate-Immobilized Seeds Lined with Planar Defects. NANO LETTERS 2019; 19:5653-5660. [PMID: 31365267 DOI: 10.1021/acs.nanolett.9b02215] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The seed-mediated growth of noble metal nanostructures with planar geometries requires the use of seeds lined with parallel stacking faults so as to provide a break in symmetry in an otherwise isotropic metal. Although such seeds are now routinely synthesized using colloidal pathways, equivalent pathways have not yet been reported for the fabrication of substrate-based seeds with the same internal defect structures. The challenge is not merely to form seeds with planar defects but to do so in a deterministic manner so as to have stacking faults that only run parallel to the substrate surface while still allowing for the lithographic processes needed to regulate the placement of seeds. Here, we demonstrate substrate-imposed epitaxy as a viable synthetic control able to induce planar defects in Au seeds while simultaneously dictating nanostructure in-plane alignment and crystallographic orientation. The seeds, which are formed in periodic arrays using nanoimprint lithography in combination with a vapor-phase assembly process, are subjected to a liquid-phase plasmon-mediated synthesis that uses light as an external stimuli to drive a reaction yielding periodic arrays of hexagonal Au nanoplates. These achievements not only represent the first of their kind demonstrations but also advance the possibility of integrating wafer-based technologies with a rich and exciting nanoplate colloidal chemistry.
Collapse
|
127
|
Requejo KI, Liopo AV, Derry PJ, Zubarev ER. Improving the Shape Yield and Long-Term Stability of Gold Nanoprisms with Poly(vinylpyrrolidone). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9777-9784. [PMID: 31290673 DOI: 10.1021/acs.langmuir.9b00794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanoprisms (AuNPRs) are anisotropic nanostructures that have gained great attention in recent years because of their interesting and unique optical properties that can be tailored for biomedical, energy, and sensing applications. At present, several protocols have reported the high yield synthesis of AuNPRs of different dimensions using a seed-mediated approach. However, there is a need to develop reproducible and scalable methods with the goal of a controllable synthesis. Here, we report an improved seed-mediated synthesis of small monodisperse AuNPRs of distinct sizes in high yield using poly(vinylpyrrolidone) (PVP) as an additive in nanomolar concentrations. We show optimal synthetic parameters for a blue-shifting of the surface plasmon resonance band which correlates with the reduction in the edge length (L) of AuNPRs from 75 to 35 nm. Using measured extinction coefficients for AuNPRs of different sizes, a linear equation is proposed to estimate the concentration of unknown samples by using Beer's law. Interestingly, the use of nanomolar amounts of PVP during the growth of AuNPRs significantly improves the shape yield. The surface chemistry properties of AuNPRs were measured by X-ray photoelectron spectroscopy and attenuated total reflectance infrared spectroscopy and revealed that PVP chains interact with AuNPRs through the carbonyl oxygen. This method is reproducible and scalable and enables the synthesis of AuNPRs with long-term shape stability (1 year) in aqueous solution.
Collapse
Affiliation(s)
- Katherinne I Requejo
- Department of Chemistry , Rice University , 6100 S Main Street Houston , Texas 77005 , United States
| | - Anton V Liopo
- Department of Chemistry , Rice University , 6100 S Main Street Houston , Texas 77005 , United States
| | - Paul J Derry
- Department of Chemistry , Rice University , 6100 S Main Street Houston , Texas 77005 , United States
| | - Eugene R Zubarev
- Department of Chemistry , Rice University , 6100 S Main Street Houston , Texas 77005 , United States
| |
Collapse
|
128
|
Moreau LM, Jones MR, Roth EW, Wu J, Kewalramani S, O'Brien MN, Chen BR, Mirkin CA, Bedzyk MJ. The role of trace Ag in the synthesis of Au nanorods. NANOSCALE 2019; 11:11744-11754. [PMID: 31183478 DOI: 10.1039/c9nr03246k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the more useful syntheses of single crystalline, uniform Au nanorods from Au spherical seeds relies on the addition of trace Ag ions, yet the role that Ag+ plays has remained both elusive and controversial, due in part to lack of knowledge of how the Ag distribution in the nanorod evolves over time. In this work, we fill in this knowledge gap by correlating the spatial distribution of Ag within Au nanorods with nanorod anisotropic growth through time-course X-ray absorption spectroscopy (XAFS)-derived atomic-level elemental coordination paired with electron microscopy for nanoscale morphological analysis. Using this method, a plausible pathway for the conversion of spherical seeds into Au nanorods is proposed. Evidence shows that the nanorod anisotropic growth is directly related to the Ag surface coverage. Anisotropy is induced early in the reaction when Ag first deposits onto the nanoparticle surface, but growth occurs more isotropically as the reaction progresses and Ag diffuses into the nanorod bulk. The results of this investigation and methods employed should be extendable to many anisotropic nanoparticle syntheses that make use of trace elemental species as shape-control additives.
Collapse
Affiliation(s)
- Liane M Moreau
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Ye Z, Wei L, Xiao L, Wang J. Laser illumination-induced dramatic catalytic activity change on Au nanospheres. Chem Sci 2019; 10:5793-5800. [PMID: 31293767 PMCID: PMC6568046 DOI: 10.1039/c9sc01666j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding morphology dependent catalytic kinetics from a single nanoparticle plays a significant role in the development of robust nano-catalysts with high efficiency. Unfortunately, detailed knowledge of the morphology dependent catalytic properties of single nanoparticles after shape transitions is lacking. In this work, the distinct catalytic properties of a single gold nanoparticle (GNP) after symmetry breaking were disclosed at the single-particle level for the first time. The morphology of the spherical GNP was elongated into a rod shape (i.e., gold nanorod, GNR) with a tightly focused Gaussian laser beam based on the photothermal effect. By using the fluorogenic oxidation reaction (i.e., amplex red to resorufin) as a model reaction, noticeable variation in catalytic efficiency after the shape modulation process was found at the single-particle level. The GNP displays noticeably higher catalytic efficiency which might be ascribed to the heterogeneous lattice structure on the particle surface as confirmed by transmission electron microscopy (TEM) characterization. Rearrangement of surface atoms after shape modulation normally generates a more ordered crystal structure, resulting in a lower surface energy for catalytic reaction. However, both of these nanoparticles still exhibit dynamic activity fluctuation in a temporal dependent route, indicating a distinct spontaneous dynamic surface restructuring process. These kinetic evidences might facilitate the development nanoparticle-based heterogeneous catalysts, particularly based on the morphology effect.
Collapse
Affiliation(s)
- Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , College of Chemistry , Nankai University , Tianjin , 300071 , China . ; http://www.xiaolhlab.cn
| | - Lin Wei
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research , Key Laboratory of Phytochemical R&D of Hunan Province , College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , 410082 , China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , College of Chemistry , Nankai University , Tianjin , 300071 , China . ; http://www.xiaolhlab.cn
| | - Jianfang Wang
- Department of Physics , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| |
Collapse
|
130
|
Loiseau A, Asila V, Boitel-Aullen G, Lam M, Salmain M, Boujday S. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. BIOSENSORS-BASEL 2019; 9:bios9020078. [PMID: 31185689 PMCID: PMC6627098 DOI: 10.3390/bios9020078] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
The localized surface plasmon resonance (LSPR) property of metallic nanoparticles is widely exploited for chemical and biological sensing. Selective biosensing of molecules using functionalized nanoparticles has become a major research interdisciplinary area between chemistry, biology and material science. Noble metals, especially gold (Au) and silver (Ag) nanoparticles, exhibit unique and tunable plasmonic properties; the control over these metal nanostructures size and shape allows manipulating their LSPR and their response to the local environment. In this review, we will focus on Ag-based nanoparticles, a metal that has probably played the most important role in the development of the latest plasmonic applications, owing to its unique properties. We will first browse the methods for AgNPs synthesis allowing for controlled size, uniformity and shape. Ag-based biosensing is often performed with coated particles; therefore, in a second part, we will explore various coating strategies (organics, polymers, and inorganics) and their influence on coated-AgNPs properties. The third part will be devoted to the combination of gold and silver for plasmonic biosensing, in particular the use of mixed Ag and AuNPs, i.e., AgAu alloys or Ag-Au core@shell nanoparticles will be outlined. In the last part, selected examples of Ag and AgAu-based plasmonic biosensors will be presented.
Collapse
Affiliation(s)
- Alexis Loiseau
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 place Jussieu, F-75005 Paris, France.
| | - Victoire Asila
- Sorbonne Université, Faculté des Sciences et Ingénierie, Master de Chimie, Profil MatNanoBio, 4 place Jussieu, F-75005 Paris, France.
| | - Gabriel Boitel-Aullen
- Sorbonne Université, Faculté des Sciences et Ingénierie, Master de Chimie, Profil MatNanoBio, 4 place Jussieu, F-75005 Paris, France.
| | - Mylan Lam
- Sorbonne Université, Faculté des Sciences et Ingénierie, Master de Chimie, Profil MatNanoBio, 4 place Jussieu, F-75005 Paris, France.
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 place Jussieu, F-75005 Paris, France.
| | - Souhir Boujday
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 place Jussieu, F-75005 Paris, France.
| |
Collapse
|
131
|
Ogundare SA, van Zyl WE. Amplification of SERS “hot spots” by silica clustering in a silver-nanoparticle/nanocrystalline-cellulose sensor applied in malachite green detection. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
132
|
Szustakiewicz P, González‐Rubio G, Scarabelli L, Lewandowski W. Robust Synthesis of Gold Nanotriangles and their Self-Assembly into Vertical Arrays. ChemistryOpen 2019; 8:705-711. [PMID: 31205847 PMCID: PMC6559201 DOI: 10.1002/open.201900082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/11/2019] [Indexed: 12/26/2022] Open
Abstract
We report an efficient, seed-mediated method for the synthesis of gold nanotriangles (NTs) which can be used for controlled self-assembly. The main advantage of the proposed synthetic protocol is that it relies on using stable (over the course of several days) intermediate seeds. This stability translates into increasing time efficiency of the synthesis and makes the protocol experimentally less demanding ('fast addition' not required, tap water can be used in the final steps) as compared to previously reported procedures, without compromising the size and shape monodispersity of the product. We demonstrate high reproducibility of the protocol in the hands of different researchers and in different laboratories. Additionally, this modified seed-mediated method can be used to produce NTs with edge lengths between ca. 45 and 150 nm. Finally, the high 'quality' of NTs allows the preparation of long-range ordered assemblies with vertically oriented building blocks, which makes them promising candidates for future optoelectronic technologies.
Collapse
Affiliation(s)
- Piotr Szustakiewicz
- Faculty of ChemistryUniversity of WarsawPasteura 1 st.Warsaw02-093Poland
- CICbiomaGUNEPaseo de Miramón 182Donostia-San Sebastián20014Spain
| | | | - Leonardo Scarabelli
- CICbiomaGUNEPaseo de Miramón 182Donostia-San Sebastián20014Spain
- California NanoSystems InstituteUniversity of California, Los AngelesLos Angeles90095 CaliforniaUSA
| | - Wiktor Lewandowski
- Faculty of ChemistryUniversity of WarsawPasteura 1 st.Warsaw02-093Poland
- CICbiomaGUNEPaseo de Miramón 182Donostia-San Sebastián20014Spain
| |
Collapse
|
133
|
Cai L, Dong J, Wang Y, Chen X. A review of developments and applications of thin-film microextraction coupled to surface-enhanced Raman scattering. Electrophoresis 2019; 40:2041-2049. [PMID: 31127635 DOI: 10.1002/elps.201800531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/21/2019] [Accepted: 05/18/2019] [Indexed: 11/10/2022]
Abstract
Surface-enhanced Raman scattering (SERS) greatly expands the applications of Raman spectroscopy and is a promising technique for food safety, environmental analysis, and public safety. Thin-film microextraction (TFME) provides an efficient sample preparation method for SERS to improve its selectivity and detection efficiency. This review comprehensively describes the development and applications of SERS and TFME, including the history, mechanisim, and active substrate of SERS and the theory, device, forms, and practical applications of TFME. The applications of TFME-SERS in food safety and environment monitoring are discussed, which could improve their advantages. TFME extracts and enriches the target analytes to eliminate the interfering substance, providing a facial way for SERS to analyze the target analytes in complex matrices. The development of TFME-SERS technology not only expands the application range of TFME, but greatly improves the anti-interference ability and detection sensitivity of SERS. Thus, the established methods are fast, convenient, and highly sensitive. This technology is potential to be applied in the on-site and real-time detection.
Collapse
Affiliation(s)
- Lemei Cai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Jing Dong
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Yiru Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, P. R. China
| |
Collapse
|
134
|
Bahlol HS, Foda MF, Ma J, Han H. Robust Synthesis of Size-Dispersal Triangular Silver Nanoprisms via Chemical Reduction Route and Their Cytotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E674. [PMID: 31052386 PMCID: PMC6567258 DOI: 10.3390/nano9050674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 11/17/2022]
Abstract
Triangular silver nanocrystals, well-known as nanoprisms (Ag-NPrs), were successfully developed via a robust and straightforward direct chemical reduction synthetic approach, producing desirable tiny and well-controlled Ag-NPrs. This procedure was accomplished by fabricating a mixture of di-sodium succinate hexa-hydrate (DSSH) and tri-sodium citrate di-hydrate (TSCD) as capping agents at optimal synthetic conditions and under an open-air condition, which proved to be an enormous challenge. Additionally, the Ag-NPrs were fully characterized by UV-vis spectra, X-ray diffraction (XRD), scanning electron microscope (SEM), and dynamic light scattering (DLS). Likewise, the formation stages from spherical silver nanoparticles (Ag-NPs) to triangular Ag-NPrs were also captured simultaneously via transmission electron microscope (TEM) and high-resolution transmission electron microscope (HR-TEM) images. More interestingly, an active thin silica-shell was efficiently applied on the Ag-NPrs outer-layer to increase their functionality. Furthermore, to confirm their biocompatibility, we also carried out cell viability assays for the Ag-NPs, Ag-NPrs, and Ag-NPrs@SiO2 with different concentrations at 62.5, 125, and 250 µg/mL after 12, 24, and 48 h of exposure time, respectively, on a regular African green monkey kidney cell line. The cell viability test results exemplified that the three silver nanostructures were toxic-free and suitable for further potential biological applications in the near future.
Collapse
Affiliation(s)
- Hagar S Bahlol
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt.
| | - Mohamed F Foda
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt.
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing Ma
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
135
|
Li B, Lane LA. Probing the biological obstacles of nanomedicine with gold nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1542. [PMID: 30084539 PMCID: PMC6585966 DOI: 10.1002/wnan.1542] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Despite massive growth in nanomedicine research to date, the field still lacks fundamental understanding of how certain physical and chemical features of a nanoparticle affect its ability to overcome biological obstacles in vivo and reach its intended target. To gain fundamental understanding of how physical and chemical parameters affect the biological outcomes of administered nanoparticles, model systems that can systematically manipulate a single parameter with minimal influence on others are needed. Gold nanoparticles are particularly good model systems in this case as one can synthetically control the physical dimensions and surface chemistry of the particles independently and with great precision. Additionally, the chemical and physical properties of gold allow particles to be detected and quantified in tissues and cells with high sensitivity. Through systematic biological studies using gold nanoparticles, insights toward rationally designed nanomedicine for in vivo imaging and therapy can be obtained. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Bin Li
- Department of Biomedical Engineering, College of Engineering and Applied SciencesNanjing UniversityNanjingJiangsuChina
| | - Lucas A. Lane
- Department of Biomedical Engineering, College of Engineering and Applied SciencesNanjing UniversityNanjingJiangsuChina
| |
Collapse
|
136
|
Liu J, Wang S, Cai K, Li Y, Liu Z, Liu L, Han Y, Wang H, Han H, Chen H. A New Type of Capping Agent in Nanoscience: Metal Cations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900444. [PMID: 30946534 DOI: 10.1002/smll.201900444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Capping agents are the essential factor in nanoscience and nanotechnology. However, the types of capping agents are greatly limited. Defying conventional beliefs, here is shown that metal cations can also be considered as capping agents for oxide nanoparticles, particularly in maintaining their colloidal stability and controlling their facets. Here the general stabilizing effects of multivalent cations for oxide nanoparticles, and the facet controlling role of Al3+ ions in the growth and ripening of Cu2 O octahedra, are demonstrated. This discovery broadens the view of capping agent and opens doors for nanosynthesis, surface treatment, and beyond.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Engineering, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shaoyan Wang
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, 637371, Singapore
| | - Kai Cai
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Engineering, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yefei Li
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Zhipan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Lingmei Liu
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hong Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Engineering, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Hongyu Chen
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, 637371, Singapore
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
137
|
Osonga F, Kariuki VM, Wambua VM, Kalra S, Nweke B, Miller RM, Çeşme M, Sadik OA. Photochemical Synthesis and Catalytic Applications of Gold Nanoplates Fabricated Using Quercetin Diphosphate Macromolecules. ACS OMEGA 2019; 4:6511-6520. [PMID: 31179406 PMCID: PMC6547623 DOI: 10.1021/acsomega.8b02389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
The demand for safer design and synthesis of gold nanoparticles (AuNPs) is on the increase with the ultimate goal of producing clean nanomaterials for biological applications. We hereby present a rapid, greener, and photochemical synthesis of gold nanoplates with sizes ranging from 10 to 200 nm using water-soluble quercetin diphosphate (QDP) macromolecules. The synthesis was achieved in water without the use of surfactants, reducing agents, or polymers. The edge length of the triangular nanoplates ranged from 50 to 1200 nm. Furthermore, the reduction of methylene blue was used to investigate the catalytic activity of AuNPs. The catalytic activity of triangular AuNPs was three times higher than that of the spherical AuNPs based on kinetic rate constants (k). The rate constants were 3.44 × 10-2 and 1.11 × 10-2 s-1 for triangular and spherical AuNPs, respectively. The X-ray diffraction data of gold nanoplates synthesized by this method exhibited that the nanocrystals were mainly dominated by (111) facets which are in agreement to the nanoplates synthesized by using thermal and chemical approaches. The calculated relative diffraction peak intensity of (200), (220), and (311) in comparison with (111) was found to be 0.35, 0.17, and 0.15, respectively, which were lower than the corresponding standard values (JCPDS 04-0784). For example, (200)/(111) = 0.35 compared to 0.52 obtained from the standard (JCPDS 04-0784), indicating that the gold nanoplates are dominated by (111) facets. The calculated lattice from selected area electron diffraction data of the as-synthesized and after 1 year nanoplates was 4.060 and 4.088 Å, respectively. Our calculations were found to be in agreement with 4.078 Å for face-centered cubic gold (JCPDS 04-0784) and literature values of 4.07 Å. The computed QDP-Au complex demonstrated that the reduction process took place in the B ring of QDP. This approach contributes immensely to promoting the ideals of sustainable nanotechnology by eradicating the use of hazardous and toxic organic solvents.
Collapse
|
138
|
Khan AU, Guo Y, Chen X, Liu G. Spectral-Selective Plasmonic Polymer Nanocomposites Across the Visible and Near-Infrared. ACS NANO 2019; 13:4255-4266. [PMID: 30908010 DOI: 10.1021/acsnano.8b09386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
State-of-the-art commercial light-reflecting glass is coated with a metalized film to decrease the transmittance of electromagnetic waves. In addition to the cost of the metalized film, one major limitation of such light-reflecting glass is the lack of spectral selectivity over the entire visible and near-infrared (NIR) spectrum. To address this challenge, we herein effectively harness the transmittance, reflectance, and filtration of any wavelength across the visible and NIR, by judiciously controlling the planar orientation of two-dimensional plasmonic silver nanoplates (AgNPs) in polymer nanocomposites. In contrast to conventional bulk polymer nanocomposites where plasmonic nanoparticles are randomly mixed within a polymer matrix, our thin-film polymer nanocomposites comprise a single layer, or any desired number of multiple layers, of planarly oriented AgNPs separated by tunable spacings. This design employs a minimal amount of metal and yet efficiently manages light across the visible and NIR. The thin-film plasmonic polymer nanocomposites are expected to have a significant impact on spectral-selective light modulation, sensing, optics, optoelectronics, and photonics.
Collapse
|
139
|
LERTVACHIRAPAIBOON C, MARUYAMA T, BABA A, EKGASIT S, SHINBO K, KATO K. Optical Sensing Platform for the Colorimetric Determination of Silver Nanoprisms and Its Application for Hydrogen Peroxide and Glucose Detections Using a Mobile Device Camera. ANAL SCI 2019; 35:271-276. [DOI: 10.2116/analsci.18p412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Takuya MARUYAMA
- Graduate School of Science and Technology, Niigata University
| | - Akira BABA
- Graduate School of Science and Technology, Niigata University
| | - Sanong EKGASIT
- Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University
| | - Kazunari SHINBO
- Graduate School of Science and Technology, Niigata University
| | - Keizo KATO
- Graduate School of Science and Technology, Niigata University
| |
Collapse
|
140
|
Lertvachirapaiboon C, Kiyokawa I, Baba A, Shinbo K, Kato K. Colorimetric Determination Of Hydrogen Peroxide Based on Localized Surface Plasmon Resonance of Silver Nanoprisms Using a Microchannel Chip. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1586913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Itaru Kiyokawa
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| | - Akira Baba
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| | - Kazunari Shinbo
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| | - Keizo Kato
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| |
Collapse
|
141
|
Amjadi M, Hallaj T, Salari R. A sensitive colorimetric probe for detection of 6-thioguanine based on its protective effect on the silver nanoprisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:30-35. [PMID: 30428429 DOI: 10.1016/j.saa.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
In this work a non-aggregated colorimetric probe for detection of chemotherapeutic drug, 6-thioguanine (6-TG), is introduced. It is based on the protective effect of 6-TG on silver nanoprisms (AgNPRs) against the iodide-induced etching reaction. Iodide ions can attack the corners of AgNPRs and etch them, leading to the morphological transition from nanoprisms to nanodiscs. As a consequence, the solution color changes from blue to pink. However, in the presence of 6-TG, due to its protective effect on the corners of AgNPRs, I- ions cannot etch the prisms and the blue color of solution remains unchanged. Using this effect, selective sensor was designed for detection of 6-TG in the range of 2.5-500 μg L-1, with a detection limit of 0.95 μg L-1. Since with varying the concentration of 6-TG in this range, the color variation from pink to blue can be easily observed, the designed sensing scheme can be used as a colorimetric probe. The method was used for analysis of human plasma samples.
Collapse
Affiliation(s)
- Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| | - Tooba Hallaj
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Rana Salari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
142
|
Guterman T, Ing NL, Fleischer S, Rehak P, Basavalingappa V, Hunashal Y, Dongre R, Raghothama S, Král P, Dvir T, Hochbaum AI, Gazit E. Electrical Conductivity, Selective Adhesion, and Biocompatibility in Bacteria-Inspired Peptide-Metal Self-Supporting Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807285. [PMID: 30644148 PMCID: PMC7616941 DOI: 10.1002/adma.201807285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Bacterial type IV pili (T4P) are polymeric protein nanofibers that have diverse biological roles. Their unique physicochemical properties mark them as a candidate biomaterial for various applications, yet difficulties in producing native T4P hinder their utilization. Recent effort to mimic the T4P of the metal-reducing Geobacter sulfurreducens bacterium led to the design of synthetic peptide building blocks, which self-assemble into T4P-like nanofibers. Here, it is reported that the T4P-like peptide nanofibers efficiently bind metal oxide particles and reduce Au ions analogously to their native counterparts, and thus give rise to versatile and multifunctional peptide-metal nanocomposites. Focusing on the interaction with Au ions, a combination of experimental and computational methods provides mechanistic insight into the formation of an exceptionally dense Au nanoparticle (AuNP) decoration of the nanofibers. Characterization of the thus-formed peptide-AuNPs nanocomposite reveals enhanced thermal stability, electrical conductivity from the single-fiber level up, and substrate-selective adhesion. Exploring its potential applications, it is demonstrated that the peptide-AuNPs nanocomposite can act as a reusable catalytic coating or form self-supporting immersible films of desired shapes. The films scaffold the assembly of cardiac cells into synchronized patches, and present static charge detection capabilities at the macroscale. The study presents a novel T4P-inspired biometallic material.
Collapse
Affiliation(s)
- Tom Guterman
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology Tel Aviv University Tel Aviv 6997801, Israel
| | - Nicole L. Ing
- Department of Chemical Engineering and Materials Science University of California, Irvine Irvine, CA 92697, USA
| | - Sharon Fleischer
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology Tel Aviv University Tel Aviv 6997801, Israel
| | - Pavel Rehak
- Department of Chemistry University of Illinois at Chicago Chicago, IL 60607, USA
| | - Vasantha Basavalingappa
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology Tel Aviv University Tel Aviv 6997801, Israel
| | | | | | | | - Petr Král
- Department of Chemistry University of Illinois at Chicago Chicago, IL 60607, USA; Department of Physics and Department of Biopharmaceutical Sciences University of Illinois at Chicago Chicago, IL 60607, USA
| | - Tal Dvir
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology Tel Aviv University Tel Aviv 6997801, Israel; Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering, and Sagol Center for Regenerative Biotechnology Tel Aviv University Tel Aviv 69978, Israel
| | - Allon I. Hochbaum
- Department of Chemical Engineering and Materials Science University of California, Irvine Irvine, CA 92697, USA; Department of Chemistry University of California, Irvine Irvine, CA 92697, USA
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology Tel Aviv University Tel Aviv 6997801, Israel; Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering Tel Aviv University Tel Aviv 6997801, Israel
| |
Collapse
|
143
|
Djafari J, Fernández-Lodeiro C, Fernández-Lodeiro A, Silva V, Poeta P, Igrejas G, Lodeiro C, Capelo JL, Fernández-Lodeiro J. Exploring the Control in Antibacterial Activity of Silver Triangular Nanoplates by Surface Coating Modulation. Front Chem 2019; 6:677. [PMID: 30805328 PMCID: PMC6370693 DOI: 10.3389/fchem.2018.00677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/31/2018] [Indexed: 11/13/2022] Open
Abstract
In the present work, the synthesis and characterization of silver triangular nanoplates (AgNTs) and their silica coating composites are reported. Engineering control on the surface coating has demonstrated the possibility to modulate the antibacterial effect. Several AgNT-coated nanomaterials, such as PVP (Polyvinylpyrrolidone) and MHA (16-mercaptohexadecanoic acid) as a stable organic coating system as well as uniform silica coating (≈5 nm) of AgNTs, have been prepared and fully characterized. The antibacterial properties of the systems reported, organic (MHA) and inorganic (amine and carboxylic terminated SiO2) coating nanocomposites, have been tested on Gram-positive and Gram-negative bacteria strains. We observed that the AgNTs' organic coating improved antimicrobial properties when compared to other spherical silver colloids found in the literature. We have also found that thick inorganic silica coating decreases the antimicrobial effect, but does not cancel it. In addition, the effect of surface charge in AgNTs@Si seems to play a crucial role toward S. aureus ATCC 25923 bacteria, obtaining MIC/MBC values compared to the AgNTs with an organic coating.
Collapse
Affiliation(s)
- Jamila Djafari
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica, Portugal.,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| | - Carlos Fernández-Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica, Portugal
| | - Adrián Fernández-Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica, Portugal.,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| | - Vanessa Silva
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Patrícia Poeta
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica, Portugal.,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| | - José Luis Capelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica, Portugal.,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| | - Javier Fernández-Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica, Portugal.,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| |
Collapse
|
144
|
Lee SH, Jun BH. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci 2019; 20:ijms20040865. [PMID: 30781560 PMCID: PMC6412188 DOI: 10.3390/ijms20040865] [Citation(s) in RCA: 602] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
Over the past few decades, metal nanoparticles less than 100 nm in diameter have made a substantial impact across diverse biomedical applications, such as diagnostic and medical devices, for personalized healthcare practice. In particular, silver nanoparticles (AgNPs) have great potential in a broad range of applications as antimicrobial agents, biomedical device coatings, drug-delivery carriers, imaging probes, and diagnostic and optoelectronic platforms, since they have discrete physical and optical properties and biochemical functionality tailored by diverse size- and shape-controlled AgNPs. In this review, we aimed to present major routes of synthesis of AgNPs, including physical, chemical, and biological synthesis processes, along with discrete physiochemical characteristics of AgNPs. We also discuss the underlying intricate molecular mechanisms behind their plasmonic properties on mono/bimetallic structures, potential cellular/microbial cytotoxicity, and optoelectronic property. Lastly, we conclude this review with a summary of current applications of AgNPs in nanoscience and nanomedicine and discuss their future perspectives in these areas.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwanjin-gu, Seoul 143-701, Korea.
| |
Collapse
|
145
|
Dynamic gas extraction of iodine in combination with a silver triangular nanoplate-modified paper strip for colorimetric determination of iodine and of iodine-interacting compounds. Mikrochim Acta 2019; 186:188. [DOI: 10.1007/s00604-019-3300-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 12/22/2022]
|
146
|
Hao N, Nie Y, Xu Z, Zhang JXJ. Ultrafast microfluidic synthesis of hierarchical triangular silver core-silica shell nanoplatelet toward enhanced cellular internalization. J Colloid Interface Sci 2019; 542:370-378. [PMID: 30771632 DOI: 10.1016/j.jcis.2019.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/20/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Microfluidic reactors represent a new frontier in the rational design and controllable synthesis of functional micro-/nanomaterials. Herein, we develop a continuous and ultrafast flow synthesis method to obtain triangular silver (tAg) nanoplatelet using a short range two-loop spiral-shaped laminar flow microfluidic reactor, with one inlet flow containing AgNO3, trisodium citrate, and H2O2 and the other NaBH4. The effect of the reactant concentration and flow rate on the structural changes of tAg is examined. Through the same miniaturized microreactor, hierarchical core-shell Ag@SiO2 can be produced with tunable silica shell thickness using one inlet flow containing the as-synthesized Ag nanoparticles together with tetraethyl orthosilicate and the other ammonia. The enhanced cellular internalization efficiency of triangular nanoplatelets by PANC-1 and MCF-7 cells is further confirmed in comparison with the spherical ones. These results not only bring new insights for engineering nanomaterials from microreactors but also facilitate the rational design of functional nanostructures for enhancing their biological performance.
Collapse
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - Zhe Xu
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States.
| |
Collapse
|
147
|
Mabey T, Andrea Cristaldi D, Oyston P, Lymer KP, Stulz E, Wilks S, William Keevil C, Zhang X. Bacteria and nanosilver: the quest for optimal production. Crit Rev Biotechnol 2019; 39:272-287. [DOI: 10.1080/07388551.2018.1555130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Thomas Mabey
- School of Engineering & Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Domenico Andrea Cristaldi
- School of Engineering & Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Chemistry & Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Petra Oyston
- Chemical, Biological and Radiological Division, Dstl Porton Down, Salisbury, UK
| | - Karl P. Lymer
- Platform Systems Division, Dstl Porton Down, Salisbury, UK
| | - Eugen Stulz
- School of Chemistry & Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Sandra Wilks
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Charles William Keevil
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Xunli Zhang
- School of Engineering & Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
148
|
Requejo KI, Liopo AV, Zubarev ER. High yield synthesis and surface chemistry exchange of small gold hexagonal nanoprisms. Chem Commun (Camb) 2019; 55:11422-11425. [DOI: 10.1039/c9cc04534a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new seed-mediated synthesis of AuHNPs in high yield is described using hydroquinone as a weak reductant and poly(vinylpyrrolidone) as a shape-directing additive.
Collapse
Affiliation(s)
| | - Anton V. Liopo
- Department of Chemistry
- Rice University
- Houston
- USA
- Texas A&M Health Science Center
| | | |
Collapse
|
149
|
Mikhailov OV. Elemental silver nano-sized crystals: various geometric forms and their specific growth parameters. CRYSTALLOGR REV 2018. [DOI: 10.1080/0889311x.2018.1553165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Oleg V. Mikhailov
- Analytical Chemistry, Certification and Quality Management Department, Kazan National Research Technological University, Kazan, Russia
| |
Collapse
|
150
|
Carnovale C, Bryant G, Shukla R, Bansal V. Impact of nanogold morphology on interactions with human serum. Phys Chem Chem Phys 2018; 20:29558-29565. [PMID: 30457613 DOI: 10.1039/c8cp05938a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gold nanoparticles (AuNPs) of differing shapes are of great interest to researchers due to their unique optical properties, making them potentially powerful theranostic tools. The synthesis of AuNPs is performed frequently, however the assessment of biological activity for each nanoparticle is not always commonplace. While it is thought that physicochemical parameters such as shape may play an important role in dictating the outcomes of interactions which take place at the nano-bio interface, a systematic approach to the assessment of nanomaterials has not been widely adopted. In this study, the interaction between human serum albumin (HSA) and four similar sized but different shaped AuNPs (spherical, rod shaped, prismatic and cubic) synthesised using a common chemical surfactant (CTAB), is presented. Using fluorescence spectroscopy it is shown that all AuNPs exhibit static binding with HSA, however the shape affects both the affinity and strength of the binding. Rod shaped nanoparticles were found to have the highest binding strength and affinity. Conversely, shapes with large flat planar surfaces such as prisms and cubes were shown to have reduced accessibility to the site of the fluorophore within the structure of HSA. The differences observed help to provide a better understanding of the effect of shape on AuNP-protein interactions - knowledge which may be applied to the development of AuNPs for future biological applications.
Collapse
Affiliation(s)
- C Carnovale
- Ian Potter NanoBioSensing Facility, School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia.
| | | | | | | |
Collapse
|