101
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
102
|
Wang J, He M, Du M, Zhu C, Jiang Y, Zhuang Y, Qi L, Liu Z, Li Y, Liu L, Feng G, Wang D, Zhang L. Three‐dimensional printing
hydrogel scaffold with bioactivity and shape‐adaptability for potential application in irregular bone defect regeneration. J Appl Polym Sci 2022. [DOI: 10.1002/app.52831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jing Wang
- Analytical and Testing Center Sichuan University Chengdu China
| | - Meiling He
- Analytical and Testing Center Sichuan University Chengdu China
| | - Meixuan Du
- Analytical and Testing Center Sichuan University Chengdu China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute West China Hospital, Sichuan University Chengdu China
| | - Yuling Jiang
- Analytical and Testing Center Sichuan University Chengdu China
| | - Yi Zhuang
- Analytical and Testing Center Sichuan University Chengdu China
| | - Lin Qi
- Analytical and Testing Center Sichuan University Chengdu China
| | - Zheng Liu
- Analytical and Testing Center Sichuan University Chengdu China
| | - Yubao Li
- Analytical and Testing Center Sichuan University Chengdu China
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute West China Hospital, Sichuan University Chengdu China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute West China Hospital, Sichuan University Chengdu China
| | - Danqing Wang
- Department of Obstetrics and Gynecology West China Second University Hospital, Sichuan University Chengdu China
| | - Li Zhang
- Analytical and Testing Center Sichuan University Chengdu China
| |
Collapse
|
103
|
Yan X, Yao H, Luo J, Li Z, Wei J. Functionalization of Electrospun Nanofiber for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14142940. [PMID: 35890716 PMCID: PMC9318783 DOI: 10.3390/polym14142940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Bone-tissue engineering is an alternative treatment for bone defects with great potential in which scaffold is a critical factor to determine the effect of bone regeneration. Electrospun nanofibers are widely used as scaffolds in the biomedical field for their similarity with the structure of the extracellular matrix (ECM). Their unique characteristics are: larger surface areas, porosity and processability; these make them ideal candidates for bone-tissue engineering. This review briefly introduces bone-tissue engineering and summarizes the materials and methods for electrospining. More importantly, how to functionalize electrospun nanofibers to make them more conducive for bone regeneration is highlighted. Finally, the existing deficiencies of functionalized electrospun nanofibers for promoting osteogenesis are proposed. Such a summary can lay the foundation for the clinical practice of functionalized electrospun nanofibers.
Collapse
Affiliation(s)
- Xuan Yan
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
| | - Haiyan Yao
- School of Chemistry, Nanchang University, Nanchang 330031, China;
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Correspondence: (J.L.); (J.W.)
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
- School of Chemistry, Nanchang University, Nanchang 330031, China;
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Correspondence: (J.L.); (J.W.)
| |
Collapse
|
104
|
Rezapourian M, Kamboj N, Jasiuk I, Hussainova I. Biomimetic design of implants for long bone critical-sized defects. J Mech Behav Biomed Mater 2022; 134:105370. [PMID: 35872461 DOI: 10.1016/j.jmbbm.2022.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022]
Abstract
This computational study addresses new biomimetic load-bearing implants designed to treat long bone critical-sized defects in a proximal diaphysis region. The design encompasses two strategies: a Haversian bone-mimicking approach for cortical bone and lattices based on triply periodic minimal surfaces (TPMS) for trabecular bone. Compression tests are modeled computationally via a non-linear finite element analysis with Ti6Al4V alloy as a base material. Nine topologies resembling cortical bone are generated as hollow cylinders with different channel arrangements simulating Haversian (longitudinal) and Volkmann (transverse) canals to achieve properties like those of a human cortical bone (Strategy I). Then, the selected optimal structure from Strategy I is merged with the trabecular bone part represented by four types of TPMS-based lattices (Diamond, Primitive, Split-P, and Gyroid) with the same relative density to imitate the whole bone structure. The Strategy I resulted in finding a hollow cylinder including Haversian and Volkmann canals, optimized in canals number, shape, and orientation to achieve mechanical behavior close to human cortical bone. The surface area and volume created by such canals have the maximum values among all studied combinations of transverse and longitudinal channels. Strategy II reveals the effect of interior design on the load-bearing capacity of the whole component. Between four types of selected TPMS, Diamond-based lattice and Split-P have more uniform stress distribution, resulting in a superior load-bearing efficiency than Gyroid and Primitive-based design showing less uniformity. This work offers a new design of the bone-mimicking implant, with cortical and trabecular bone components, to repair long bone critical-sized defects.
Collapse
Affiliation(s)
- Mansoureh Rezapourian
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia
| | - Nikhil Kamboj
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia; Turku Clinical Biomaterials Center-TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014, Turku, Finland
| | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
105
|
Ma J, Wu S, Liu J, Liu C, Ni S, Dai T, Wu X, Zhang Z, Qu J, Zhao H, Zhou D, Zhao X. Synergistic effects of nanoattapulgite and hydroxyapatite on vascularization and bone formation in a rabbit tibia bone defect model. Biomater Sci 2022; 10:4635-4655. [PMID: 35796642 DOI: 10.1039/d2bm00547f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) is a promising scaffold material for the treatment of bone defects. However, the lack of angiogenic properties and undesirable mechanical properties (such as fragility) limits the application of HA. Nanoattapulgite (ATP) is a nature-derived clay mineral and has been proven to be a promising bioactive material for bone regeneration due to its ability to induce osteogenesis. In this study, polyvinyl alcohol/collagen/ATP/HA (PVA/COL/ATP/HA) scaffolds were printed. Mouse bone marrow mesenchymal stem/stromal cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) were used in vitro to assess the biocompatibility and the osteogenesis and vascularization induction potentials of the scaffolds. Subsequently, in vivo micro-CT and histological staining were carried out to evaluate new bone formation in a rabbit tibial defect model. The in vitro results showed that the incorporation of ATP increased the printing fidelity and mechanical properties, with values of compressive strengths up to 200% over raw PC-H scaffolds. Simultaneously, the expression levels of osteogenic-related genes and vascularization-related genes were significantly increased after the incorporation of ATP. The in vivo results showed that the PVA/COL/ATP/HA scaffolds exhibited synergistic effects on promoting vascularization and bone formation. The combination of ATP and HA provides a promising strategy for vascularized bone tissue engineering.
Collapse
Affiliation(s)
- Jiayi Ma
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China. .,Dalian Medical University, Dalian, 116044, China
| | - Siyu Wu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China. .,Dalian Medical University, Dalian, 116044, China
| | - Jun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China. .,Dalian Medical University, Dalian, 116044, China
| | - Chun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Su Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Ting Dai
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Xiaoyu Wu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Zhenyu Zhang
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Jixin Qu
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Hongbin Zhao
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Dong Zhou
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.,School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
106
|
Synthesis of Antibacterial Hybrid Hydroxyapatite/Collagen/Polysaccharide Bioactive Membranes and Their Effect on Osteoblast Culture. Int J Mol Sci 2022; 23:ijms23137277. [PMID: 35806282 PMCID: PMC9267025 DOI: 10.3390/ijms23137277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Inspired by the composition and confined environment provided by collagen fibrils during bone formation, this study aimed to compare two different strategies to synthesize bioactive hybrid membranes and to assess the role the organic matrix plays as physical confinement during mineral phase deposition. The hybrid membranes were prepared by (1) incorporating calcium phosphate in a biopolymeric membrane for in situ hydroxyapatite (HAp) precipitation in the interstices of the biopolymeric membrane as a confined environment (Methodology 1) or (2) adding synthetic HAp nanoparticles (SHAp) to the freshly prepared biopolymeric membrane (Methodology 2). The biopolymeric membranes were based on hydrolyzed collagen (HC) and chitosan (Cht) or κ-carrageenan (κ-carr). The hybrid membranes presented homogeneous and continuous dispersion of the mineral particles embedded in the biopolymeric membrane interstices and enhanced mechanical properties. The importance of the confined spaces in biomineralization was confirmed by controlled biomimetic HAp precipitation via Methodology 1. HAp precipitation after immersion in simulated body fluid attested that the hybrid membranes were bioactive. Hybrid membranes containing Cht were not toxic to the osteoblasts. Hybrid membranes added with silver nanoparticles (AgNPs) displayed antibacterial action against different clinically important pathogenic microorganisms. Overall, these results open simple and promising pathways to develop a new generation of bioactive hybrid membranes with controllable degradation rates and antimicrobial properties.
Collapse
|
107
|
Lei Z, Zhang Z, Wang J, Xu L, Li J, Zhu Z, Liu Y. New Strategy to Construct Mechanically Strong and Tough Phenolic Networks by Considering the Effect of Curing Reactions and Physical States on the Cross-Linking Density and Cross-Linking Inhomogeneity. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zixuan Lei
- Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Zhongzhou Zhang
- Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Jian Wang
- Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Li Xu
- Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Jian Li
- Xi’an Aerospace Composite Materials Research Institute, Xi’an 710025, Shaanxi, China
| | - Zhichao Zhu
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, Academy of Engineering Physics, Mianyang, 621054, China
| | - Yuhong Liu
- Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| |
Collapse
|
108
|
Zhang J, Griesbach J, Ganeyev M, Zehnder AK, Zeng P, Schädli GN, Leeuw AD, Lai Y, Rubert M, Mueller R. Long-term mechanical loading is required for the formation of 3D bioprinted functional osteocyte bone organoids. Biofabrication 2022; 14. [PMID: 35617929 DOI: 10.1088/1758-5090/ac73b9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/26/2022] [Indexed: 11/11/2022]
Abstract
Mechanical loading has been shown to influence various osteogenic responses of bone-derived cells and bone formation in vivo. However, the influence of mechanical stimulation on the formation of bone organoid in vitro is not clearly understood. Here, 3D bioprinted human mesenchymal stem cells (hMSCs)-laden graphene oxide composite scaffolds were cultured in a novel cyclic-loading bioreactors for up to 56 days. Our results showed that mechanical loading from day 1 (ML01) significantly increased organoid mineral density, organoid stiffness, and osteoblast differentiation compared with non-loading and mechanical loading from day 21. Importantly, ML01 stimulated collagen I maturation, osteocyte differentiation, lacunar-canalicular network formation and YAP expression on day 56. These finding are the first to reveal that long-term mechanical loading is required for the formation of 3D bioprinted functional osteocyte bone organoids. Such 3D bone organoids may serve as a human-specific alternative to animal testing for the study of bone pathophysiology and drug screening.
Collapse
Affiliation(s)
- Jianhua Zhang
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Julia Griesbach
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8093, SWITZERLAND
| | - Marsel Ganeyev
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Anna-Katharina Zehnder
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Peng Zeng
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Gian Nutal Schädli
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Anke de Leeuw
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, Shenzhen, 518055, CHINA
| | - Marina Rubert
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8093, SWITZERLAND
| | - Ralph Mueller
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8093, SWITZERLAND
| |
Collapse
|
109
|
Carotenuto F, Politi S, Ul Haq A, De Matteis F, Tamburri E, Terranova ML, Teodori L, Pasquo A, Di Nardo P. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. MICROMACHINES 2022; 13:mi13050780. [PMID: 35630247 PMCID: PMC9144100 DOI: 10.3390/mi13050780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
Abstract
Failure of tissues and organs resulting from degenerative diseases or trauma has caused huge economic and health concerns around the world. Tissue engineering represents the only possibility to revert this scenario owing to its potential to regenerate or replace damaged tissues and organs. In a regeneration strategy, biomaterials play a key role promoting new tissue formation by providing adequate space for cell accommodation and appropriate biochemical and biophysical cues to support cell proliferation and differentiation. Among other physical cues, the architectural features of the biomaterial as a kind of instructive stimuli can influence cellular behaviors and guide cells towards a specific tissue organization. Thus, the optimization of biomaterial micro/nano architecture, through different manufacturing techniques, is a crucial strategy for a successful regenerative therapy. Over the last decades, many micro/nanostructured biomaterials have been developed to mimic the defined structure of ECM of various soft and hard tissues. This review intends to provide an overview of the relevant studies on micro/nanostructured scaffolds created for soft and hard tissue regeneration and highlights their biological effects, with a particular focus on striated muscle, cartilage, and bone tissue engineering applications.
Collapse
Affiliation(s)
- Felicia Carotenuto
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Correspondence: (F.C.); (P.D.N.)
| | - Sara Politi
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Arsalan Ul Haq
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
| | - Fabio De Matteis
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento Ingegneria Industriale, Università Degli Studi di Roma “Tor Vergata”, Via del Politecnico, 00133 Roma, Italy
| | - Emanuela Tamburri
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Maria Letizia Terranova
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Laura Teodori
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
| | - Alessandra Pasquo
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
| | - Paolo Di Nardo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Correspondence: (F.C.); (P.D.N.)
| |
Collapse
|
110
|
Teng C, Tong Z, He Q, Zhu H, Wang L, Zhang X, Wei W. Mesenchymal Stem Cells–Hydrogel Microspheres System for Bone Regeneration in Calvarial Defects. Gels 2022; 8:gels8050275. [PMID: 35621573 PMCID: PMC9141522 DOI: 10.3390/gels8050275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
The repair of large bone defects in clinic is a challenge and urgently needs to be solved. Tissue engineering is a promising therapeutic strategy for bone defect repair. In this study, hydrogel microspheres (HMs) were fabricated to act as carriers for bone marrow mesenchymal stem cells (BMSCs) to adhere and proliferate. The HMs were produced by a microfluidic system based on light-induced gelatin of gelatin methacrylate (GelMA). The HMs were demonstrated to be biocompatible and non-cytotoxic to stem cells. More importantly, the HMs promoted the osteogenic differentiation of stem cells. In vivo, the ability of bone regeneration was studied by way of implanting a BMSC/HM system in the cranial defect of rats for 8 weeks. The results confirmed that the BMSC/HM system can induce superior bone regeneration compared with both the HMs alone group and the untreated control group. This study provides a simple and effective research idea for bone defect repair, and the subsequent optimization study of HMs will provide a carrier material with application prospects for tissue engineering in the future.
Collapse
Affiliation(s)
- Chong Teng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Zhicheng Tong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Qiulin He
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huangrong Zhu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Lu Wang
- Department of Pathology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China;
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (X.Z.); (W.W.)
| | - Wei Wei
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
- Correspondence: (X.Z.); (W.W.)
| |
Collapse
|
111
|
Dutour Sikirić M. Special Issue: Biomimetic Organic–Inorganic Composites. MATERIALS 2022; 15:ma15093074. [PMID: 35591411 PMCID: PMC9103210 DOI: 10.3390/ma15093074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Maja Dutour Sikirić
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
112
|
Dukle A, Murugan D, Nathanael AJ, Rangasamy L, Oh TH. Can 3D-Printed Bioactive Glasses Be the Future of Bone Tissue Engineering? Polymers (Basel) 2022; 14:1627. [PMID: 35458377 PMCID: PMC9027654 DOI: 10.3390/polym14081627] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
According to the Global Burden of Diseases, Injuries, and Risk Factors Study, cases of bone fracture or injury have increased to 33.4% in the past two decades. Bone-related injuries affect both physical and mental health and increase the morbidity rate. Biopolymers, metals, ceramics, and various biomaterials have been used to synthesize bone implants. Among these, bioactive glasses are one of the most biomimetic materials for human bones. They provide good mechanical properties, biocompatibility, and osteointegrative properties. Owing to these properties, various composites of bioactive glasses have been FDA-approved for diverse bone-related and other applications. However, bone defects and bone injuries require customized designs and replacements. Thus, the three-dimensional (3D) printing of bioactive glass composites has the potential to provide customized bone implants. This review highlights the bottlenecks in 3D printing bioactive glass and provides an overview of different types of 3D printing methods for bioactive glass. Furthermore, this review discusses synthetic and natural bioactive glass composites. This review aims to provide information on bioactive glass biomaterials and their potential in bone tissue engineering.
Collapse
Affiliation(s)
- Amey Dukle
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Dhanashree Murugan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
| | - Loganathan Rangasamy
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
113
|
Xu B, Luo Z, Wang D, Huang Z, Zhou Z, Wang H. In vitro and in vivo Repair Effects of the NCF-Col-NHA Aerogel Scaffold Loaded With SOST Monoclonal Antibody and SDF-1 in Steroid-Induced Osteonecrosis. Front Bioeng Biotechnol 2022; 10:825231. [PMID: 35372296 PMCID: PMC8964358 DOI: 10.3389/fbioe.2022.825231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
In the current study, we synthesized nanocellulose (NCF)-collagen (Col)-nano hydroxyapatite (NHA) organic-inorganic hybrid aerogels loaded with stromal cell derived factor-1 (SDF-1) and sclerostin monoclonal antibody (SOST McAb) and investigated their ability to repair steroid-induced osteonecrosis. Rabbit bone marrow mesenchymal stem cells (BMSCs) and human vascular endothelial cells (HUVECs) were used for the in vitro study. A rabbit steroid-induced osteonecrosis model was used for the in vivo study. The best elastic modulus reached 12.95 ± 4.77 MPa with a mean compressive property of 0.4067 ± 0.084 MPa for the scaffold containing 100% mass fraction. The average pore diameter of the aerogel was 75 ± 18 µm with a porosity of more than 90% (96.4 ± 1.6%). The aerogel-loaded SDF-1 and SOST were released at 40–50% from the material within the initial 3 h and maintained a stable release for more than 21 days. The in vitro study showed osteogenesis and vascularization capabilities of the scaffold. The in vivo study showed that rabbits received implantation of the scaffold with SOST McAb and SDF-1 showed the best osteogenesis of the osteonecrosis zone in the femoral head. Imaging examination revealed that most of the necrotic area of the femoral head was repaired. These results suggest that this hybrid aerogel scaffold could be used for future steroid-induced osteonecrosis repair.
Collapse
Affiliation(s)
- Bing Xu
- Department of Orthopaedic, West China Hospital, Orthopedic Research Institute, Sichuan University, ChengDu, China.,Department of Orthopaedic Surgery, Chengdu Second People's Hospital, ChengDu, China
| | - Zeyu Luo
- Department of Orthopaedic, West China Hospital, Orthopedic Research Institute, Sichuan University, ChengDu, China
| | - Duan Wang
- Department of Orthopaedic, West China Hospital, Orthopedic Research Institute, Sichuan University, ChengDu, China
| | - Zeyu Huang
- Department of Orthopaedic, West China Hospital, Orthopedic Research Institute, Sichuan University, ChengDu, China
| | - Zongke Zhou
- Department of Orthopaedic, West China Hospital, Orthopedic Research Institute, Sichuan University, ChengDu, China
| | - Haoyang Wang
- Department of Orthopaedic, West China Hospital, Orthopedic Research Institute, Sichuan University, ChengDu, China
| |
Collapse
|
114
|
Micheletti C, Hurley A, Gourrier A, Palmquist A, Tang T, Shah FA, Grandfield K. Bone mineral organization at the mesoscale: A review of mineral ellipsoids in bone and at bone interfaces. Acta Biomater 2022; 142:1-13. [PMID: 35202855 DOI: 10.1016/j.actbio.2022.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/14/2022] [Accepted: 02/17/2022] [Indexed: 01/13/2023]
Abstract
Much debate still revolves around bone architecture, especially at the nano- and microscale. Bone is a remarkable material where high strength and toughness coexist thanks to an optimized composition of mineral and protein and their hierarchical organization across several distinct length scales. At the nanoscale, mineralized collagen fibrils act as building block units. Despite their key role in biological and mechanical functions, the mechanisms of collagen mineralization and the precise arrangement of the organic and inorganic constituents in the fibrils remains not fully elucidated. Advances in three-dimensional (3D) characterization of mineralized bone tissue by focused ion beam-scanning electron microscopy (FIB-SEM) revealed mineral-rich regions geometrically approximated as prolate ellipsoids, much larger than single collagen fibrils. These structures have yet to become prominently recognized, studied, or adopted into biomechanical models of bone. However, they closely resemble the circular to elliptical features previously identified by scanning transmission electron microscopy (STEM) in two-dimensions (2D). Herein, we review the presence of mineral ellipsoids in bone as observed with electron-based imaging techniques in both 2D and 3D with particular focus on different species, anatomical locations, and in proximity to natural and synthetic biomaterial interfaces. This review reveals that mineral ellipsoids are a ubiquitous structure in all the bones and bone-implant interfaces analyzed. This largely overlooked hierarchical level is expected to bring different perspectives to our understanding of bone mineralization and mechanical properties, in turn shedding light on structure-function relationships in bone. STATEMENT OF SIGNIFICANCE: In bone, the hierarchical organization of organic (mainly collagen type I) and inorganic (calcium-phosphate mineral) components across several length scales contributes to a unique combination of strength and toughness. However, aspects related to the collagen-mineral organization and to mineralization mechanisms remain unclear. Here, we review the presence of mineral prolate ellipsoids across a variety of species, anatomical locations, and interfaces, both natural and with synthetic biomaterials. These mineral ellipsoids represent a largely unstudied feature in the organization of bone at the mesoscale, i.e., at a level connecting nano- and microscale. Thorough understanding of their origin, development, and structure can provide valuable insights into bone architecture and mineralization, assisting the treatment of bone diseases and the design of bio-inspired materials.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada; Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 46, Sweden
| | - Ariana Hurley
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada; Integrated Biomedical Engineering and Health Sciences, McMaster University, Hamilton L8S 4L7, ON, Canada
| | | | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 46, Sweden
| | - Tengteng Tang
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada
| | - Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 46, Sweden
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada.
| |
Collapse
|
115
|
Abstract
Bone is an outstanding, well-designed composite. It is constituted by a multi-level structure wherein its properties and behavior are dependent on its composition and structural organization at different length scales. The combination of unique mechanical properties with adaptive and self-healing abilities makes bone an innovative model for the future design of synthetic biomimetic composites with improved performance in bone repair and regeneration. However, the relation between structure and properties in bone is very complex. In this review article, we intend to describe the hierarchical organization of bone on progressively greater scales and present the basic concepts that are fundamental to understanding the arrangement-based mechanical properties at each length scale and their influence on bone’s overall structural behavior. The need for a better understanding of bone’s intricate composite structure is also highlighted.
Collapse
|
116
|
Rodrigues LM, Zutin EAL, Sartori EM, Rizzante FAP, Mendonça DBS, Krebsbach P, Jepsen K, Cooper L, de Vasconcellos LMR, Mendonça G. Nanoscale hybrid implant surfaces and Osterix-mediated osseointegration. J Biomed Mater Res A 2022; 110:696-707. [PMID: 34672417 PMCID: PMC8805158 DOI: 10.1002/jbm.a.37323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022]
Abstract
Endosseous implant surface topography directly affects adherent cell responses following implantation. The aim of this study was to examine the impact of nanoscale topographic modification of titanium implants on Osterix gene expression since this gene has been reported as key factor for bone formation. Titanium implants with smooth and nanoscale topographies were implanted in the femurs of Osterix-Cherry mice for 1-21 days. Implant integration was evaluated using scanning electron microscopy (SEM) to evaluate cell adhesion on implant surfaces, histology, and nanotomography (NanoCT) to observe and quantify the formed bone-to-implant interface, flow cytometry to quantify of Osterix expressing cells in adjacent tissues, and real-time PCR (qPCR) to quantify the osteoinductive and osteogenic gene expression of the implant-adherent cells. SEM revealed topography-dependent adhesion of cells at early timepoints. NanoCT demonstrated greater bone formation at nanoscale implants and interfacial osteogenesis was confirmed histologically at 7 and 14 days for both smooth and nanosurface implants. Flow cytometry revealed greater numbers of Osterix positive cells in femurs implanted with nanoscale versus smooth implants. Compared to smooth surface implants, nanoscale surface adherent cells expressed higher levels of Osterix (Osx), Alkaline phosphatase (Alp), Paired related homeobox (Prx1), Dentin matrix protein 1 (Dmp1), Bone sialoprotein (Bsp), and Osteocalcin (Ocn). In conclusion, nanoscale surface implants demonstrated greater bone formation associated with higher levels of Osterix expression over the 21-day healing period with direct evidence of surface-associated gene regulation involving a nanoscale-mediated osteoinductive pathway that utilizes Osterix to direct adherent cell osteoinduction.
Collapse
Affiliation(s)
- Laís Morandini Rodrigues
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos
| | - Elis Andrade Lima Zutin
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos
| | - Elisa Matias Sartori
- Department of Oral Surgery and Integrated Clinics, São Paulo State University (Unesp), School of Dentistry, Araçatuba
| | | | | | - Paul Krebsbach
- Section of Periodontics, University of California, School of Dentistry, Los Angeles, CA
| | - Karl Jepsen
- Department of Orthopedic Surgery, University of Michigan, School of Medicine, Ann Arbor, MI
| | - Lyndon Cooper
- Department of Oral Biology, University of Illinois at Chicago College of Dentistry, Chicago, IL
| | - Luana Marotta Reis de Vasconcellos
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos
| | - Gustavo Mendonça
- Department of Biological and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI
| |
Collapse
|
117
|
Kurian AG, Singh RK, Lee JH, Kim HW. Surface-Engineered Hybrid Gelatin Methacryloyl with Nanoceria as Reactive Oxygen Species Responsive Matrixes for Bone Therapeutics. ACS APPLIED BIO MATERIALS 2022; 5:1130-1138. [PMID: 35193358 DOI: 10.1021/acsabm.1c01189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Designing various transplantable biomaterials, especially nanoscale matrixes for bone regeneration, involves precise tuning of topographical features. The cellular fate on such engineered surfaces is highly influenced by many factors imparted by the surface modification (hydrophilicity, stiffness, porosity, roughness, ROS responsiveness). Herein, hybrid matrixes of gelatin methacryloyl (GelMA) decorated with uniform layers of nanoceria (nCe), called Ce@GelMA, were developed without direct incorporation of nCe into the scaffolds. The fabrication involves a simple base-mediated in situ deposition in which uniform nCe coatings were first made on GelMA hydrogels and then nCe layered GelMA scaffolds were made by cryodesiccation. In this hybrid platform, degradable GelMA biopolymer provides the porous microstructure and nCe provides the nanoscaled biointerface. The surface morphology and elemental composition of the matrixes analyzed by field emission scanning electron microscopy (FE-SEM) and energy-dispersive spectroscopy (EDS) show uniform nCe distribution. The surface nanoroughness and chemistry of the matrixes were also characterized using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The presence of nCe on GelMA enhanced its mechanical properties as confirmed by compressive modulus analysis. Substantial bonelike nanoscale hydroxyapatite formation was observed on scaffolds after simulated body fluid (SBF) immersion, which was confirmed by SEM, X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. Moreover, the developed scaffolds could also be used as an antioxidant matrix owing to the reactive oxygen species (ROS) scavenging property of nCe as assessed by 3,3',5,5'-tetramethylbenzidine (TMB) assay. The enhanced proliferation and viability of rat bone marrow mesenchymal stem cells (rMSCs) on the scaffold surface after 3 days of culture ensures the biocompatibility of the proposed material. Considering all, it is proposed that the micro/nanoscaled matrix could mimic the composition and function of hard tissues and could be utilized as degradable scaffolds in engineering bones.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea.,Cell and Matter Institute, Dankook University, Cheonan 31116, Republic of Korea.,Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea.,Cell and Matter Institute, Dankook University, Cheonan 31116, Republic of Korea.,Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
118
|
Belén F, Gravina AN, Pistonesi MF, Ruso JM, García NA, Prado FD, Messina PV. NIR-Reflective and Hydrophobic Bio-Inspired Nano-Holed Configurations on Titanium Alloy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5843-5855. [PMID: 35048694 DOI: 10.1021/acsami.1c22557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) radiation plays an important role in guided external stimulus therapies; its application in bone-related treatments is becoming more and more frequent. Therefore, metallic biomaterials that exhibit properties activated by NIR are promising for further orthopedic procedures. In this work, we present an adapted electroforming approach to attain a biomorphic nano-holed TiO2 coating on Ti6Al4V alloy. Through a precise control of the anodization conditions, structures revealed the formation of localized nano-pores arranged in a periodic assembly. This specific organization provoked higher stability against thermal oxidation and precise hydrophobic wettability behavior according to Cassie-Baxter's model; both characteristics are a prerequisite to ensure a favorable biological response in an implantable structure for guided bone regeneration. In addition, the periodically arranged sub-wavelength-sized unit cell on the metallic-dielectric structure exhibits a peculiar optical response, which results in higher NIR reflectivity. Accordingly, we have proved that this effect enhances the efficiency of the scattering processes and provokes a significant improvement of light confinement producing a spontaneous NIR fluorescence emission. The combination of the already favorable mechanical and biocompatibility properties of Ti6Al4V, along with suitable thermal stability, wetting, and electro-optical behavior, opens a promising path toward strategic bone therapeutic procedures.
Collapse
Affiliation(s)
- Federico Belén
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - A Noel Gravina
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Marcelo Fabián Pistonesi
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nicolás A García
- IFISUR─CONICET, Department of Physics, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Fernando Daniel Prado
- IFISUR─CONICET, Department of Physics, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Paula V Messina
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| |
Collapse
|
119
|
Alunni Cardinali M, Di Michele A, Mattarelli M, Caponi S, Govoni M, Dallari D, Brogini S, Masia F, Borri P, Langbein W, Palombo F, Morresi A, Fioretto D. Brillouin-Raman microspectroscopy for the morpho-mechanical imaging of human lamellar bone. J R Soc Interface 2022; 19:20210642. [PMID: 35104431 PMCID: PMC8807060 DOI: 10.1098/rsif.2021.0642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Bone has a sophisticated architecture characterized by a hierarchical organization, starting at the sub-micrometre level. Thus, the analysis of the mechanical and structural properties of bone at this scale is essential to understand the relationship between its physiology, physical properties and chemical composition. Here, we unveil the potential of Brillouin-Raman microspectroscopy (BRaMS), an emerging correlative optical approach that can simultaneously assess bone mechanics and chemistry with micrometric resolution. Correlative hyperspectral imaging, performed on a human diaphyseal ring, reveals a complex microarchitecture that is reflected in extremely rich and informative spectra. An innovative method for mechanical properties analysis is proposed, mapping the intermixing of soft and hard tissue areas and revealing the coexistence of regions involved in remodelling processes, nutrient transportation and structural support. The mineralized regions appear elastically inhomogeneous, resembling the pattern of the osteons' lamellae, while Raman and energy-dispersive X-ray images through scanning electron microscopy show an overall uniform distribution of the mineral content, suggesting that other structural factors are responsible for lamellar micromechanical heterogeneity. These results, besides giving an important insight into cortical bone tissue properties, highlight the potential of BRaMS to access the origin of anisotropic mechanical properties, which are almost ubiquitous in other biological tissues.
Collapse
Affiliation(s)
- M. Alunni Cardinali
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - A. Di Michele
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - M. Mattarelli
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - S. Caponi
- Istituto Officina Dei Materiali, National Research Council (IOM-CNR), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - M. Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques – Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, Bologna 40136, Italy
| | - D. Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques – Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, Bologna 40136, Italy
| | - S. Brogini
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, Bologna 40136, Italy
| | - F. Masia
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - P. Borri
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - W. Langbein
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK
| | - F. Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - A. Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - D. Fioretto
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
- CEMIN - Center of Excellence for Innovative Nanostructured Material, Via Elce di Sotto 8, Perugia 06123, Italy
| |
Collapse
|
120
|
Song T, Zhou J, Shi M, Xuan L, Jiang H, Lin Z, Li Y. Osteon-mimetic 3D nanofibrous scaffold enhances stem cell proliferation and osteogenic differentiation for bone regeneration. Biomater Sci 2022; 10:1090-1103. [PMID: 35040827 DOI: 10.1039/d1bm01489g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The scaffold microstructure is important for bone tissue engineering. Failure to synergistically imitate the hierarchical microstructure of the components of bone, such as an osteon with concentric multilayers assembled by nanofibers, hinders the performance for guiding bone regeneration. Here, a 2D bilayer nanofibrous membrane (BLM) containing poly(lactide-co-glycolide) (PLGA)/polycaprolactone (PCL) composite membranes in similar compositions (PCL15 and PCL20), but possessing different degrees of shrinkage, was fabricated via sequential electrospinning. Upon incubation in phosphate buffered saline (PBS) (37 °C), the 2D BLM spontaneously deformed into a 3D shape induced by PCL crystallization within the PLGA matrix, and the PCL15 and PCL20 layer formed a concave and convex surface, respectively. The 3D structure contained curved multilayers with an average diameter of 776 ± 169 μm, and on the concave and convex surface the nanofiber diameters were 792 ± 225 and 881 ± 259 nm, respectively. The initial 2D structure facilitated the even distribution of seeded cells. Adipose-derived stem cells from rats (rADSCs) proliferated faster on a concave surface than on a convex surface. For the 3D BLM, the osteogenic differentiation of rADSCs was significantly higher than that on 2D surfaces, even without osteogenic supplements, which resulted from the stretched cell morphology on the curved sublayer leading to increased expression of lamin-A. After being implanted into cranial defects in Sprague Dawley (SD) rats, 3D BLM significantly accelerated bone formation. In summary, 3D BLM with an osteon-like structure provides a potential strategy to repair bone defects.
Collapse
Affiliation(s)
- Ting Song
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou 510006, China.,School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ming Shi
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou 510006, China
| | - Liuyang Xuan
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou 510006, China
| | - Huamin Jiang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou 510006, China
| | - Zefeng Lin
- Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China.,Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Guangzhou 510010, China
| | - Yan Li
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou 510006, China.,School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
121
|
Zhao T, Zhang J, Gao X, Yuan D, Gu Z, Xu Y. Electrospun Nanofibers for Bone Regeneration: From Biomimetic Composition, Structure to Function. J Mater Chem B 2022; 10:6078-6106. [DOI: 10.1039/d2tb01182d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, a variety of novel materials and processing technologies have been developed to prepare tissue engineering scaffolds for bone defect repair. Among them, nanofibers fabricated via electrospinning technology...
Collapse
|
122
|
Tang S, Dong Z, Ke X, Luo J, Li J. Advances in biomineralization-inspired materials for hard tissue repair. Int J Oral Sci 2021; 13:42. [PMID: 34876550 PMCID: PMC8651686 DOI: 10.1038/s41368-021-00147-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Biomineralization is the process by which organisms form mineralized tissues with hierarchical structures and excellent properties, including the bones and teeth in vertebrates. The underlying mechanisms and pathways of biomineralization provide inspiration for designing and constructing materials to repair hard tissues. In particular, the formation processes of minerals can be partly replicated by utilizing bioinspired artificial materials to mimic the functions of biomolecules or stabilize intermediate mineral phases involved in biomineralization. Here, we review recent advances in biomineralization-inspired materials developed for hard tissue repair. Biomineralization-inspired materials are categorized into different types based on their specific applications, which include bone repair, dentin remineralization, and enamel remineralization. Finally, the advantages and limitations of these materials are summarized, and several perspectives on future directions are discussed.
Collapse
Affiliation(s)
- Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
- Med-X Center for Materials, Sichuan University, Chengdu, PR China.
| |
Collapse
|
123
|
Liang W, Dong Y, Shen H, Shao R, Wu X, Huang X, Sun B, Zeng B, Zhang S, Xu F. Materials science and design principles of therapeutic materials in orthopedic and bone tissue engineering. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Yongqiang Dong
- Department of Orthopedics Xinchang People's Hospital Shaoxing China
| | - Hailiang Shen
- Department of Orthopedics Affiliated Hospital of Shaoxing University Shaoxing China
| | - Ruyi Shao
- Department of Orthopedics Zhuji People's Hospital Shaoxing China
| | - Xudong Wu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Xiaogang Huang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Bin Sun
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Bin Zeng
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Songou Zhang
- College of Medicine Shaoxing University Shaoxing China
| | - Fangming Xu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| |
Collapse
|
124
|
Gili T, Di Carlo G, Capuani S, Auconi P, Caldarelli G, Polimeni A. Complexity and data mining in dental research: A network medicine perspective on interceptive orthodontics. Orthod Craniofac Res 2021; 24 Suppl 2:16-25. [PMID: 34519158 PMCID: PMC9292769 DOI: 10.1111/ocr.12520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Procedures and models of computerized data analysis are becoming researchers' and practitioners' thinking partners by transforming the reasoning underlying biomedicine. Complexity theory, Network analysis and Artificial Intelligence are already approaching this discipline, intending to provide support for patient's diagnosis, prognosis and treatments. At the same time, due to the sparsity, noisiness and time-dependency of medical data, such procedures are raising many unprecedented problems related to the mismatch between the human mind's reasoning and the outputs of computational models. Thanks to these computational, non-anthropocentric models, a patient's clinical situation can be elucidated in the orthodontic discipline, and the growth outcome can be approximated. However, to have confidence in these procedures, orthodontists should be warned of the related benefits and risks. Here we want to present how these innovative approaches can derive better patients' characterization, also offering a different point of view about patient's classification, prognosis and treatment.
Collapse
Affiliation(s)
- Tommaso Gili
- Networks UnitIMT School for Advanced Studies LuccaLuccaItaly
- CNR‐ISC Unità SapienzaRomeItaly
| | - Gabriele Di Carlo
- Department of Oral and Maxillo‐Facial SciencesSapienza University of RomeRomeItaly
| | | | | | - Guido Caldarelli
- CNR‐ISC Unità SapienzaRomeItaly
- Department of Molecular Sciences and NanosystemsCa’Foscari University of VeniceVenezia MestreItaly
| | - Antonella Polimeni
- Department of Oral and Maxillo‐Facial SciencesSapienza University of RomeRomeItaly
| |
Collapse
|
125
|
Liu L, Zhu M, Xu X, Li X, Ma Z, Jiang Z, Pich A, Wang H, Song P. Dynamic Nanoconfinement Enabled Highly Stretchable and Supratough Polymeric Materials with Desirable Healability and Biocompatibility. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105829. [PMID: 34599781 DOI: 10.1002/adma.202105829] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Lightweight polymeric materials are highly attractive platforms for many potential industrial applications in aerospace, soft robots, and biological engineering fields. For these real-world applications, it is vital for them to exhibit a desirable combination of great toughness, large ductility, and high strength together with desired healability and biocompatibility. However, existing material design strategies usually fail to achieve such a performance portfolio owing to their different and even mutually exclusive governing mechanisms. To overcome these hurdles, herein, for the first time a dynamic hydrogen-bonded nanoconfinement concept is proposed, and the design of highly stretchable and supratough biocompatible poly(vinyl alcohol) (PVA) with well-dispersed dynamic nanoconfinement phases induced by hydrogen-bond (H-bond) crosslinking is demonstrated. Because of H-bond crosslinking and dynamic nanoconfinement, the as-prepared PVA nanocomposite film exhibits a world-record toughness of 425 ± 31 MJ m-3 in combination with a tensile strength of 98 MPa and a large break strain of 550%, representing the best of its kind and even outperforming most natural and artificial materials. In addition, the final polymer exhibits a good self-healing ability and biocompatibility. This work affords new opportunities for creating mechanically robust, healable, and biocompatible polymeric materials, which hold great promise for applications, such as soft robots and artificial ligaments.
Collapse
Affiliation(s)
- Lei Liu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Menghe Zhu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Xiaodong Xu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xin Li
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Zhewen Ma
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhen Jiang
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| |
Collapse
|
126
|
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6:4830-4855. [PMID: 34136726 PMCID: PMC8175243 DOI: 10.1016/j.bioactmat.2021.05.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
In spite of the considerable achievements in the field of regenerative medicine in the past several decades, osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition, structure and functions. In order to repair the hierarchical tissue involving different layers of articular cartilage, cartilage-bone interface and subchondral bone, traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling. It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional, structural and functional characteristics to the native osteochondral tissues. Here in this review, some basic knowledge of the osteochondral units including the anatomical structure and composition, the defect classification and clinical treatments will be first introduced. Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design, cell encapsulation and signaling factor incorporation including bioreactor application. Clinical products for osteochondral defect repair will be analyzed and summarized later. Moreover, we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
127
|
Li C, Yan T, Lou Z, Jiang Z, Shi Z, Chen Q, Gong Z, Wang B. Characterization and in vitro assessment of three-dimensional extrusion Mg-Sr codoped SiO 2-complexed porous microhydroxyapatite whisker scaffolds for biomedical engineering. Biomed Eng Online 2021; 20:116. [PMID: 34819108 PMCID: PMC8611959 DOI: 10.1186/s12938-021-00953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large bone defects have always been a great challenge for orthopedic surgeons. The use of a good bone substitute obtained by bone tissue engineering (BTE) may be an effective treatment method. Artificial hydroxyapatite, a commonly used bone defect filler, is the main inorganic component of bones. Because of its high brittleness, fragility, and lack of osteogenic active elements, its application is limited. Therefore, its fragility should be reduced, its osteogenic activity should be improved, and a more suitable scaffold should be constructed. METHODS In this study, a microhydroxyapatite whisker (mHAw) was developed, which was doped with the essential trace active elements Mg2+ and Sr2+ through a low-temperature sintering technique. After being formulated into a slurry, a bionic porous scaffold was manufactured by extrusion molding and freeze drying, and then SiO2 was used to improve the mechanical properties of the scaffold. The hydrophilicity, pore size, surface morphology, surface roughness, mechanical properties, and release rate of the osteogenic elements of the prepared scaffold were detected and analyzed. In in vitro experiments, Sprague-Dawley (SD) rat bone marrow mesenchymal stem cells (rBMSCs) were cultured on the scaffold to evaluate cytotoxicity, cell proliferation, spreading, and osteogenic differentiation. RESULTS Four types of scaffolds were obtained: mHAw-SiO2 (SHA), Mg-doped mHAw-SiO2 (SMHA), Sr-doped mHAw-SiO2 (SSHA), and Mg-Sr codoped mHAw-SiO2 (SMSHA). SHA was the most hydrophilic (WCA 5°), while SMHA was the least (WCA 8°); SMHA had the smallest pore size (247.40 ± 23.66 μm), while SSHA had the largest (286.20 ± 19.04 μm); SHA had the smallest Young's modulus (122.43 ± 28.79 MPa), while SSHA had the largest (188.44 ± 47.89 MPa); and SHA had the smallest compressive strength (1.72 ± 0.29 MPa), while SMHA had the largest (2.47 ± 0.25 MPa). The osteogenic active elements Si, Mg, and Sr were evenly distributed and could be sustainably released from the scaffolds. None of the scaffolds had cytotoxicity. SMSHA had the highest supporting cell proliferation and spreading rate, and its ability to promote osteogenic differentiation of rBMSCs was also the strongest. CONCLUSIONS These composite porous scaffolds not only have acceptable physical and chemical properties suitable for BTE but also have higher osteogenic bioactivity and can possibly serve as potential bone repair materials.
Collapse
Affiliation(s)
- Chengyong Li
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Tingting Yan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Zhenkai Lou
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Zhimin Jiang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Zhi Shi
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Qinghua Chen
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Zhiqiang Gong
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Bing Wang
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
128
|
Nogueira LFB, Maniglia BC, Buchet R, Millán JL, Ciancaglini P, Bottini M, Ramos AP. Three-dimensional cell-laden collagen scaffolds: From biochemistry to bone bioengineering. J Biomed Mater Res B Appl Biomater 2021; 110:967-983. [PMID: 34793621 DOI: 10.1002/jbm.b.34967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/05/2021] [Accepted: 10/30/2021] [Indexed: 12/22/2022]
Abstract
The bones can be viewed as both an organ and a material. As an organ, the bones give structure to the body, facilitate skeletal movement, and provide protection to internal organs. As a material, the bones consist of a hybrid organic/inorganic three-dimensional (3D) matrix, composed mainly of collagen, noncollagenous proteins, and a calcium phosphate mineral phase, which is formed and regulated by the orchestrated action of a complex array of cells including chondrocytes, osteoblasts, osteocytes, and osteoclasts. The interactions between cells, proteins, and minerals are essential for the bone functions under physiological loading conditions, trauma, and fractures. The organization of the bone's organic and inorganic phases stands out for its mechanical and biological properties and has inspired materials research. The objective of this review is to fill the gaps between the physical and biological characteristics that must be achieved to fabricate scaffolds for bone tissue engineering with enhanced performance. We describe the organization of bone tissue highlighting the characteristics that have inspired the development of 3D cell-laden collagenous scaffolds aimed at replicating the mechanical and biological properties of bone after implantation. The role of noncollagenous macromolecules in the organization of the collagenous matrix and mineralization ability of entrapped cells has also been reviewed. Understanding the modulation of cell activity by the extracellular matrix will ultimately help to improve the biological performance of 3D cell-laden collagenous scaffolds used for bone regeneration and repair as well as for in vitro studies aimed at unravelling physiological and pathological processes occurring in the bone.
Collapse
Affiliation(s)
- Lucas Fabricio Bahia Nogueira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil.,Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Bianca C Maniglia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Rene Buchet
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| |
Collapse
|
129
|
Kanemoto Y, Miyaji H, Nishida E, Miyata S, Mayumi K, Yoshino Y, Kato A, Sugaya T, Akasaka T, Nathanael AJ, Santhakumar S, Oyane A. Periodontal tissue engineering using an apatite/collagen scaffold obtained by a plasma- and precursor-assisted biomimetic process. J Periodontal Res 2021; 57:205-218. [PMID: 34786723 DOI: 10.1111/jre.12954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/13/2021] [Accepted: 10/30/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES In the treatment of severe periodontal destruction, there is a strong demand for advanced scaffolds that can regenerate periodontal tissues with adequate quality and quantity. Recently, we developed a plasma- and precursor-assisted biomimetic process by which a porous collagen scaffold (CS) could be coated with low-crystalline apatite. The apatite-coated collagen scaffold (Ap-CS) promotes cellular ingrowth within the scaffold compared to CS in rat subcutaneous tissue. In the present study, the osteogenic activity of Ap-CS was characterized by cell culture and rat skull augmentation tests. In addition, the periodontal tissue reconstruction with Ap-CS in a beagle dog was compared to that with CS. METHODS The plasma- and precursor-assisted biomimetic process was applied to CS to obtain Ap-CS with a low-crystalline apatite coating. The effects of apatite coating on the scaffold characteristics (i.e., surface morphology, water absorption, Ca release, protein adsorption, and enzymatic degradation resistance) were assessed. Cyto-compatibility and the osteogenic properties of Ap-CS and CS were assessed in vitro using preosteoblastic MC3T3-E1 cells. In addition, we performed in vivo studies to evaluate bone augmentation and periodontal tissue reconstruction with Ap-CS and CS in a rat skull and canine furcation lesion, respectively. RESULTS As previously reported, the plasma- and precursor-assisted biomimetic process generated a low-crystalline apatite layer with a nanoporous structure that uniformly covered the Ap-CS surface. Ap-CS showed significantly higher water absorption, Ca release, lysozyme adsorption, and collagenase resistance than CS. Cell culture experiments revealed that Ap-CS was superior to CS in promoting the osteoblastic differentiation of MC3T3-E1 cells while suppressing their proliferation. Additionally, Ap-CS significantly promoted (compared to CS) the augmentation of the rat skull bone and showed the potential to regenerate alveolar bone in a dog furcation defect. CONCLUSION Ap-CS fabricated by the plasma- and precursor-assisted biomimetic process provided superior promotion of osteogenic differentiation and bone neoformation compared to CS.
Collapse
Affiliation(s)
- Yukimi Kanemoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Erika Nishida
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Saori Miyata
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kayoko Mayumi
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuto Yoshino
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihito Kato
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsukasa Akasaka
- Department of Biomedical Materials and Engineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Arputharaj Joseph Nathanael
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Syama Santhakumar
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
130
|
Alunni Cardinali M, Morresi A, Fioretto D, Vivarelli L, Dallari D, Govoni M. Brillouin and Raman Micro-Spectroscopy: A Tool for Micro-Mechanical and Structural Characterization of Cortical and Trabecular Bone Tissues. MATERIALS 2021; 14:ma14226869. [PMID: 34832271 PMCID: PMC8618195 DOI: 10.3390/ma14226869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Human bone is a specialized tissue with unique material properties, providing mechanical support and resistance to the skeleton and simultaneously assuring capability of adaptation and remodelling. Knowing the properties of such a structure down to the micro-scale is of utmost importance, not only for the design of effective biomimetic materials but also to be able to detect pathological alterations in material properties, such as micro-fractures or abnormal tissue remodelling. The Brillouin and Raman micro-spectroscopic (BRmS) approach has the potential to become a first-choice technique, as it is capable of simultaneously investigating samples’ mechanical and structural properties in a non-destructive and label-free way. Here, we perform a mapping of cortical and trabecular bone sections of a femoral epiphysis, demonstrating the capability of the technique for discovering the morpho-mechanics of cells, the extracellular matrix, and marrow constituents. Moreover, the interpretation of Brillouin and Raman spectra merged with an approach of data mining is used to compare the mechanical alterations in specimens excised from distinct anatomical areas and subjected to different sample processing. The results disclose in both cases specific alterations in the morphology and/or in the tissue chemical make-up, which strongly affects bone mechanical properties, providing a method potentially extendable to other important biomedical issues.
Collapse
Affiliation(s)
- Martina Alunni Cardinali
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, I-06123 Perugia, Italy;
- Correspondence:
| | - Assunta Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, I-06123 Perugia, Italy;
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, I-06123 Perugia, Italy;
- CEMIN—Center of Excellence for Innovative Nanostructured Material, I-06123 Perugia, Italy
| | - Leonardo Vivarelli
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy; (L.V.); (D.D.); (M.G.)
| | - Dante Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy; (L.V.); (D.D.); (M.G.)
| | - Marco Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy; (L.V.); (D.D.); (M.G.)
| |
Collapse
|
131
|
Wu Z, Zhong J, Yu Y, Rong M, Yang T. A Rapid and Convenient Approach to Construct Porous Collagen Membranes via Bioskiving and Sonication-Feasible for Mineralization to Induce Bone Regeneration. Front Bioeng Biotechnol 2021; 9:752506. [PMID: 34708027 PMCID: PMC8542776 DOI: 10.3389/fbioe.2021.752506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Porous mineralized collagen membranes efficiently promote bone regeneration. To generate them, we need to fabricate collagen membranes that are porous. However, the current fabrication method is primarily based on a bottom-up strategy, with certain limitations, such as a long manufacturing process, collagen denaturation, and failure to control fibril orientation. Using a top-down approach, we explore a novel method for constructing porous collagen membranes via the combined application of bioskiving and sonication. Numerous collagen membranes with well-aligned fibril structures were rapidly fabricated by bioskiving and then sonicated at 30, 60, 90, and 120 W for 20 min. This treatment allowed us to study the effect of power intensity on the physicochemical traits of collagen membranes. Subsequently, the prepared collagen membranes were immersed in amorphous calcium phosphate to evaluate the feasibility of mineralization. Additionally, the bioactivities of the membranes were assessed using preosteoblast cells. Tuning the power intensity was shown to modulate fibril orientation, and the porous membrane without denatured collagen could be obtained by a 20-min sonication treatment at 90 W. The prepared collagen membrane could also be further mineralized to enhance osteogenesis. Overall, this study offers a rapid and convenient approach for fabricating porous collagen membranes via bioskiving and sonication.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Juan Zhong
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yingjie Yu
- Department of Biomedical Engineering, Tufts University, Boston, MA, United States
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Tao Yang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
132
|
Woo JH, Koo D, Kim NH, Kim H, Song MH, Park H, Kim JY. Amorphous Alumina Film Robust under Cyclic Deformation: a Highly Impermeable and a Highly Flexible Encapsulation Material. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46894-46901. [PMID: 34546696 DOI: 10.1021/acsami.1c15261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lack of highly impermeable and highly flexible encapsulation materials is slowing the development of flexible organic solar cells. Here, a transparent and low-temperature synthetic alumina single layer is suggested as a highly impermeable and a highly flexible encapsulation material for organic solar cells. While the water vapor transmission rate (WVTR) is maintained up to 100,000 bending cycles for a 25 mm bending radius (corresponding to 8.1% of the elastic deformation limit), as measured by in situ tensile testing with free-standing 50 nm-thick alumina films, the WVTR degraded gradually depending on the bending radius and bending cycles for bending radii less than 25 mm. The degradation of the WVTR in cyclic deformation within the elastic deformation limit is investigated, and it is found to be due to the formation of pinholes by a bond-switching mechanism. Also, encapsulated organic solar cells with alumina films are found to maintain 80% of initial efficiency for 2 weeks even after cyclic bending with a 4 mm bending radius.
Collapse
Affiliation(s)
- Jeong-Hyun Woo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Donghwan Koo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Na-Hyang Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hangeul Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Myoung Hoon Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyesung Park
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ju-Young Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
133
|
Kamel R, El-Wakil NA, Elkasabgy NA. Calcium-Enriched Nanofibrillated Cellulose/Poloxamer in-situ Forming Hydrogel Scaffolds as a Controlled Delivery System of Raloxifene HCl for Bone Engineering. Int J Nanomedicine 2021; 16:6807-6824. [PMID: 34675509 PMCID: PMC8502541 DOI: 10.2147/ijn.s323974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/17/2021] [Indexed: 01/16/2023] Open
Abstract
PURPOSE TEMPO-oxidized nanofibrillated cellulose (TONFC) originating from an agricultural waste (sugar cane) was utilized to prepare injectable in-situ forming hydrogel scaffolds (IHS) for regenerative medicine. METHODS TONFC was prepared and characterized for its morphology and chemical structure using TEM and FT-IR, respectively. The cold method was applied to prepare hydrogels. Various concentrations of poloxamer 407 were added to the prepared TONFC (0.5%w/w). Different sources of calcium, Fujicalin® (DCP) or hydroxyapatite (TCP), were used to formulate the aimed calcium-enriched raloxifene hydrochloride-loaded IHS. Gelation temperature, drug content, injectability and in-vitro drug release were evaluated along with the morphological characters. Cytocompatibility studies and tissue regeneration properties were assessed on Saos-2 cells. RESULTS TEM photograph of TONFC showed fibrous nanostructure. The selected formulation "Ca-IHS4" composed of TONFC+15% P407+10% TCP showed the most prolonged release pattern for 12 days with the least burst effect (about 25% within 24 h). SEM micro-photographs of the in-situ formed scaffolds showed a highly porous 3D structure. Cytocompatibility studies of formulation "Ca-IHS4" revealed the biocompatibility as well as improved cell adhesion, alkaline phosphatase enzyme activity and calcium ion deposition. CONCLUSION The outcomes suggest that Ca-IHS4 presents a simple, safe-line and non-invasive strategy for bone regeneration.
Collapse
Affiliation(s)
- Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| | - Nahla A El-Wakil
- Cellulose and Paper Department, National Research Centre, Cairo, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
134
|
Munive-Olarte A, Hidalgo-Moyle JJ, Velasquillo C, Juarez-Moreno K, Mota-Morales JD. Boosting cell proliferation in three-dimensional polyacrylates/nanohydroxyapatite scaffolds synthesized by deep eutectic solvent-based emulsion templating. J Colloid Interface Sci 2021; 607:298-311. [PMID: 34509107 DOI: 10.1016/j.jcis.2021.08.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Among three-dimensional (3D) scaffold fabrication methods, porous polymers templated using high internal phase emulsions (HIPEs) have emerged as an attractive method due to the facile generation of interconnected porosity through a variety of synthetic routes. These include a bottom-up approach to selectively incorporate nanomaterials onto the inner walls in a nonaqueous environment. In this work, novel nonaqueous HIPEs made of different (meth)acrylate monomers and a deep eutectic solvent (DES) were formulated with nonfunctionalized nanohydroxyapatite (NHA), which also played the role of cosurfactant. Free radical polymerization of HIPEs yielded free-standing nanocomposites with 3D interconnected macroporosity and nonfunctionalized NHA selectively decorating the scaffolds' inner surface. The influence of different polymer functionalities, acrylate or methacrylate, their alkyl tail length, and the presence of NHA on MC3T3-E1 preosteoblast cell proliferation in vitro, reactive oxygen species (ROS) production and alkaline phosphatase (ALP) activity were evaluated. All materials presented promising biocompatibility, non-hemolytic activity, negligible inflammatory response along to remarkably enhanced cell proliferation (e.g., up to 160-fold cell proliferation increase compared with polystyrene plate) in vitro, which open the path for the development of scaffolds in regenerative medicine. It is noteworthy that polyHIPEs studied here were obtained using a green synthetic protocol where nonfunctionalized nanoparticles can be selectively incorporated into a scaffolds' inner walls. This versatile technique allows for the simple construction of 3D bioactive nanocomposite scaffolds with varied compositions for cell culture.
Collapse
Affiliation(s)
- Areli Munive-Olarte
- Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada B.C. 22860, Mexico; Posgrado en Nanociencias, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada B.C. 22860, Mexico
| | - Joseline J Hidalgo-Moyle
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CDMX 04510, Mexico
| | - Cristina Velasquillo
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación LGII, Ciudad de México, CDMX 141389, Mexico
| | - Karla Juarez-Moreno
- Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada B.C. 22860, Mexico.
| | - Josué D Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro, QRO 76230, Mexico.
| |
Collapse
|
135
|
Yu D, Wang J, Qian KJ, Yu J, Zhu HY. Effects of nanofibers on mesenchymal stem cells: environmental factors affecting cell adhesion and osteogenic differentiation and their mechanisms. J Zhejiang Univ Sci B 2021; 21:871-884. [PMID: 33150771 DOI: 10.1631/jzus.b2000355] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanofibers can mimic natural tissue structure by creating a more suitable environment for cells to grow, prompting a wide application of nanofiber materials. In this review, we include relevant studies and characterize the effect of nanofibers on mesenchymal stem cells, as well as factors that affect cell adhesion and osteogenic differentiation. We hypothesize that the process of bone regeneration in vitro is similar to bone formation and healing in vivo, and the closer nanofibers or nanofibrous scaffolds are to natural bone tissue, the better the bone regeneration process will be. In general, cells cultured on nanofibers have a similar gene expression pattern and osteogenic behavior as cells induced by osteogenic supplements in vitro. Genes involved in cell adhesion (focal adhesion kinase (FAK)), cytoskeletal organization, and osteogenic pathways (transforming growth factor-β (TGF-β)/bone morphogenic protein (BMP), mitogen-activated protein kinase (MAPK), and Wnt) are upregulated successively. Cell adhesion and osteogenesis may be influenced by several factors. Nanofibers possess certain physical properties including favorable hydrophilicity, porosity, and swelling properties that promote cell adhesion and growth. Moreover, nanofiber stiffness plays a vital role in cell fate, as cell recruitment for osteogenesis tends to be better on stiffer scaffolds, with associated signaling pathways of integrin and Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ). Also, hierarchically aligned nanofibers, as well as their combination with functional additives (growth factors, HA particles, etc.), contribute to osteogenesis and bone regeneration. In summary, previous studies have indicated that upon sensing the stiffness of the nanofibrous environment as well as its other characteristics, stem cells change their shape and tension accordingly, regulating downstream pathways followed by adhesion to nanofibers to contribute to osteogenesis. However, additional experiments are needed to identify major signaling pathways in the bone regeneration process, and also to fully investigate its supportive role in fabricating or designing the optimum tissue-mimicking nanofibrous scaffolds.
Collapse
Affiliation(s)
- Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jin Wang
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ke-Jia Qian
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hui-Yong Zhu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
136
|
Vaissier Welborn V. Environment-controlled water adsorption at hydroxyapatite/collagen interfaces. Phys Chem Chem Phys 2021; 23:13789-13796. [PMID: 33942041 DOI: 10.1039/d1cp01028j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Water contributes to the structure of bone by coupling hydroxyapatite to collagen over the hierarchical levels of tissue organization. Bone water exists in two states, bound or mobile, each accomplishing different roles. Although many experimental studies show that the amount of bound water correlates with bone strength, a molecular understanding of the interactions between hydroxyapatite, collagen and water is missing. In this work, we unveil the water adsorption properties of bone tissues at the nanoscale using advanced density functional theory methods. We demonstrate that environmental factors such as collagen conformation or degree of confinement, rather than the surface itself, dictate the adsorption mode, strength and density of water on hydroxyapatite. While the results derived in this paper come from a simplified model of bone tissues, they are consistent with experimental observations and constitute a reasonable starting point for more realistic models of bone tissues. For example, we show that environmental changes expected in aging bone lead to reduced water adsorption capabilities, which is consistent with weaker bones at the macroscale. Our findings provide a new interpretation of molecular interactions in bone tissues with the potential to impact bone repair strategies.
Collapse
|
137
|
Dadhich P, Srivas PK, Das B, Pal P, Dutta J, Maity P, Guha Ray P, Roy S, Das SK, Dhara S. Direct 3D Printing of Seashell Precursor toward Engineering a Multiphasic Calcium Phosphate Bone Graft. ACS Biomater Sci Eng 2021; 7:3806-3820. [PMID: 34269559 DOI: 10.1021/acsbiomaterials.1c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiphasic calcium phosphate (Ca-P) has widely been explored for bone graft replacement. This study represents a simple method of developing osteoinductive scaffolds by direct printing of seashell resources. The process demonstrates a coagulation-assisted extrusion-based three-dimensional (3D) printing process for rapid fabrication of multiphasic calcium phosphate-incorporated 3D scaffolds. These scaffolds demonstrated an interconnected open porous architecture with improved compressive strength and higher surface area. Multiphasic calcium phosphate (Ca-P) and hydroxyapatite present in the multi-scalar naturally resourced scaffold displayed differential protein adsorption, thus facilitating cell adhesion, migration, and differentiation, resulting in enhanced deposition of the extracellular matrix. The microstructural and physicochemical attributes of the scaffolds also lead to enhanced stem cell differentiation as witnessed from gene and protein expression analysis. Furthermore, the histological study of subcutaneous implantation evidently portrays promising biocompatibility without foreign body reaction. Neo-tissue in-growth was manifested with abundant blood vessels, thus indicative of excellent vascularization. Notably, cartilaginous and proteoglycan-rich tissue deposition indicated ectopic bone formation via an endochondral ossification pathway. The hierarchical interconnected porous architectural tribology accompanied with multiphasic calcium phosphate composition manifests its successful implication in enhancing stem cell differentiation and promoting excellent tissue in-growth, thus making it a plausible alternative in bone tissue engineering applications.
Collapse
Affiliation(s)
- Prabhash Dadhich
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pavan Kumar Srivas
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Bodhisatwa Das
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pallabi Pal
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joy Dutta
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pritiprasanna Maity
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Preetam Guha Ray
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyasachi Roy
- Department of Gynaecology, Midnapore Medical College and Hospital, Midnapore, West Bengal 721101, India
| | - Subrata K Das
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
138
|
Zhou S, Jin K, Buehler MJ. Understanding Plant Biomass via Computational Modeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003206. [PMID: 32945027 DOI: 10.1002/adma.202003206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Plant biomass, especially wood, has been used for structural materials since ancient times. It is also showing great potential for new structural materials and it is the major feedstock for the emerging biorefineries for building a sustainable society. The plant cell wall is a hierarchical matrix of mainly cellulose, hemicellulose, and lignin. Herein, the structure, properties, and reactions of cellulose, lignin, and wood cell walls, studied using density functional theory (DFT) and molecular dynamics (MD), which are the widely used computational modeling approaches, are reviewed. Computational modeling, which has played a crucial role in understanding the structure and properties of plant biomass and its nanomaterials, may serve a leading role on developing new hierarchical materials from biomass in the future.
Collapse
Affiliation(s)
- Shengfei Zhou
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Kai Jin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| |
Collapse
|
139
|
Xie C, Ye J, Liang R, Yao X, Wu X, Koh Y, Wei W, Zhang X, Ouyang H. Advanced Strategies of Biomimetic Tissue-Engineered Grafts for Bone Regeneration. Adv Healthc Mater 2021; 10:e2100408. [PMID: 33949147 DOI: 10.1002/adhm.202100408] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Indexed: 12/21/2022]
Abstract
The failure to repair critical-sized bone defects often leads to incomplete regeneration or fracture non-union. Tissue-engineered grafts have been recognized as an alternative strategy for bone regeneration due to their potential to repair defects. To design a successful tissue-engineered graft requires the understanding of physicochemical optimization to mimic the composition and structure of native bone, as well as the biological strategies of mimicking the key biological elements during bone regeneration process. This review provides an overview of engineered graft-based strategies focusing on physicochemical properties of materials and graft structure optimization from macroscale to nanoscale to further boost bone regeneration, and it summarizes biological strategies which mainly focus on growth factors following bone regeneration pattern and stem cell-based strategies for more efficient repair. Finally, it discusses the current limitations of existing strategies upon bone repair and highlights a promising strategy for rapid bone regeneration.
Collapse
Affiliation(s)
- Chang Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou 310058 China
| | - Jinchun Ye
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Xudong Yao
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu 322000 China
| | - Xinyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Yiwen Koh
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Wei Wei
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou 310058 China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou 310058 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou 310058 China
| |
Collapse
|
140
|
Mei Q, Rao J, Bei HP, Liu Y, Zhao X. 3D Bioprinting Photo-Crosslinkable Hydrogels for Bone and Cartilage Repair. Int J Bioprint 2021; 7:367. [PMID: 34286152 PMCID: PMC8287509 DOI: 10.18063/ijb.v7i3.367] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
Three-dimensional (3D) bioprinting has become a promising strategy for bone manufacturing, with excellent control over geometry and microarchitectures of the scaffolds. The bioprinting ink for bone and cartilage engineering has thus become the key to developing 3D constructs for bone and cartilage defect repair. Maintaining the balance of cellular viability, drugs or cytokines' function, and mechanical integrity is critical for constructing 3D bone and/or cartilage scaffolds. Photo-crosslinkable hydrogel is one of the most promising materials in tissue engineering; it can respond to light and induce structural or morphological transition. The biocompatibility, easy fabrication, as well as controllable mechanical and degradation properties of photo-crosslinkable hydrogel can meet various requirements of the bone and cartilage scaffolds, which enable it to serve as an effective bio-ink for 3D bioprinting. Here, in this review, we first introduce commonly used photo-crosslinkable hydrogel materials and additives (such as nanomaterials, functional cells, and drugs/cytokine), and then discuss the applications of the 3D bioprinted photo-crosslinkable hydrogel scaffolds for bone and cartilage engineering. Finally, we conclude the review with future perspectives about the development of 3D bioprinting photo-crosslinkable hydrogels in bone and cartilage engineering.
Collapse
Affiliation(s)
- Quanjing Mei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jingdong Rao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | | | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
141
|
Zhong W, Liu F, Wang C. Probing morphology and chemistry in complex soft materials with in situresonant soft x-ray scattering. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:313001. [PMID: 34140434 DOI: 10.1088/1361-648x/ac0194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Small angle scattering methodologies have been evolving at fast pace over the past few decades due to the ever-increasing demands for more details on the complex nanostructures of multiphase and multicomponent soft materials like polymer assemblies and biomaterials. Currently, element-specific and contrast variation techniques such as resonant (elastic) soft/tender x-ray scattering, anomalous small angle x-ray scattering, and contrast-matching small angle neutron scattering, or combinations of above are routinely used to extract the chemical composition and spatial arrangement of constituent elements at multiple length scales and examine electronic ordering phenomena. Here we present some recent advances in selectively characterizing structural architectures of complex soft materials, which often contain multi-components with a wide range of length scales and multiple functionalities, where novel resonant scattering approaches have been demonstrated to decipher a higher level of structural complexity that correlates to functionality. With the advancement of machine learning and artificial intelligence assisted correlative analysis, high-throughput and autonomous experiments would open a new paradigm of material research. Further development of resonant x-ray scattering instrumentation with crossplatform sample environments will enable multimodalin situ/operando characterization of the system dynamics with much improved spatial and temporal resolution.
Collapse
Affiliation(s)
- Wenkai Zhong
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|
142
|
A Damage Model to Trabecular Bone and Similar Materials: Residual Resource, Effective Elasticity Modulus, and Effective Stress under Uniaxial Compression. Symmetry (Basel) 2021. [DOI: 10.3390/sym13061051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Experimental research of bone strength remains costly and limited for ethical and technical reasons. Therefore, to predict the mechanical state of bone tissue, as well as similar materials, it is desirable to use computer technology and mathematical modeling. Yet, bone tissue as a bio-mechanical object with a hierarchical structure is difficult to analyze for strength and rigidity; therefore, empirical models are often used, the disadvantage of which is their limited application scope. The use of new analytical solutions overcomes the limitations of empirical models and significantly improves the way engineering problems are solved. Aim of the paper: the development of analytical solutions for computer models of the mechanical state of bone and similar materials. Object of research: a model of trabecular bone tissue as a quasi-brittle material under uniaxial compression (or tension). The new ideas of the fracture mechanics, as well as the methods of mathematical modeling and the biomechanics of bone tissues were used in the work. Compression and tension are considered as asymmetric mechanical states of the material. Results: a new nonlinear function that simulates both tension and compression is justified, analytical solutions for determining the effective and apparent elastic modulus are developed, the residual resource function and the damage function are justified, and the dependences of the initial and effective stresses on strain are obtained. Using the energy criterion, it is proven that the effective stress continuously increases both before and after the extremum point on the load-displacement plot. It is noted that the destruction of bone material is more likely at the inflection point of the load-displacement curve. The model adequacy is explained by the use of the energy criterion of material degradation. The results are consistent with the experimental data available in the literature.
Collapse
|
143
|
Jin S, Xia X, Huang J, Yuan C, Zuo Y, Li Y, Li J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 2021; 127:56-79. [PMID: 33831569 DOI: 10.1016/j.actbio.2021.03.067] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Bone regeneration is an interdisciplinary complex lesson, including but not limited to materials science, biomechanics, immunology, and biology. Having witnessed impressive progress in the past decades in the development of bone substitutes; however, it must be said that the most suitable biomaterial for bone regeneration remains an area of intense debate. Since its discovery, poly (lactic-co-glycolic acid) (PLGA) has been widely used in bone tissue engineering due to its good biocompatibility and adjustable biodegradability. This review systematically covers the past and the most recent advances in developing PLGA-based bone regeneration materials. Taking the different application forms of PLGA-based materials as the starting point, we describe each form's specific application and its corresponding advantages and disadvantages with many examples. We focus on the progress of electrospun nanofibrous scaffolds, three-dimensional (3D) printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds, and stents prepared by other traditional and emerging methods. Finally, we briefly discuss the current limitations and future directions of PLGA-based bone repair materials. STATEMENT OF SIGNIFICANCE: As a key synthetic biopolymer in bone tissue engineering application, the progress of PLGA-based bone substitute is impressive. In this review, we summarized the past and the most recent advances in the development of PLGA-based bone regeneration materials. According to the typical application forms and corresponding crafts of PLGA-based substitutes, we described the development of electrospinning nanofibrous scaffolds, 3D printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds and scaffolds fabricated by other manufacturing process. Finally, we briefly discussed the current limitations and proposed the newly strategy for the design and fabrication of PLGA-based bone materials or devices.
Collapse
|
144
|
Innovative Surface Modification Procedures to Achieve Micro/Nano-Graded Ti-Based Biomedical Alloys and Implants. COATINGS 2021. [DOI: 10.3390/coatings11060647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to the growing aging population of the world, and as a result of the increasing need for dental implants and prostheses, the use of titanium and its alloys as implant materials has spread rapidly. Although titanium and its alloys are considered the best metallic materials for biomedical applications, the need for innovative technologies is necessary due to the sensitivity of medical applications and to eliminate any potentially harmful reactions, enhancing the implant-to-bone integration and preventing infection. In this regard, the implant’s surface as the substrate for any reaction is of crucial importance, and it is accurately addressed in this review paper. For constructing this review paper, an internet search was performed on the web of science with these keywords: surface modification techniques, titanium implant, biomedical applications, surface functionalization, etc. Numerous recent papers about titanium and its alloys were selected and reviewed, except for the section on forthcoming modern implants, in which extended research was performed. This review paper aimed to briefly introduce the necessary surface characteristics for biomedical applications and the numerous surface treatment techniques. Specific emphasis was given to micro/nano-structured topographies, biocompatibility, osteogenesis, and bactericidal effects. Additionally, gradient, multi-scale, and hierarchical surfaces with multifunctional properties were discussed. Finally, special attention was paid to modern implants and forthcoming surface modification strategies such as four-dimensional printing, metamaterials, and metasurfaces. This review paper, including traditional and novel surface modification strategies, will pave the way toward designing the next generation of more efficient implants.
Collapse
|
145
|
Wang X, Fang J, Zhu W, Zhong C, Ye D, Zhu M, Lu X, Zhao Y, Ren F. Bioinspired Highly Anisotropic, Ultrastrong and Stiff, and Osteoconductive Mineralized Wood Hydrogel Composites for Bone Repair. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202010068] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 03/01/2025]
Abstract
AbstractAnisotropic hydrogels mimicking the biological tissues with directional functions play essential roles in damage‐tolerance, cell guidance and mass transport. However, conventional synthetic hydrogels often have an isotropic network structure, insufficient mechanical properties and lack of osteoconductivity, which greatly limit their applications for bone repair. Herein, inspired by natural bone and wood, a biomimetic strategy is presented to fabricate highly anisotropic, ultrastrong and stiff, and osteoconductive hydrogel composites via impregnation of biocompatible hydrogels into the delignified wood followed by in situ mineralization of hydroxyapatite (HAp) nanocrystals. The well‐aligned cellulose nanofibrils endow the composites with highly anisotropic structural and mechanical properties. The strong intermolecular bonds of the aligned cellulose fibrils and hydrogel/wood interaction, and the reinforcing nanofillers of HAp enable the composites remarkable tensile strength of 67.8 MPa and elastic modulus of 670 MPa, three orders of magnitude higher than those of conventional alginate hydrogels. More importantly, the biocompatible hydrogel together with aligned HAp nanocrystals could effectively promote osteogenic differentiation in vitro and induce bone formation in vivo. The bone ingrowth into the hydrogel composite scaffold also yields good osteointegration. This study provides a low‐cost, eco‐friendly, feasible, and scalable approach for fabricating anisotropic, strong, stiff, hydrophilic, and osteoconductive hydrogel composites for bone repair.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Academy for Advanced Interdisciplinary Studies (AAIS) Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Ju Fang
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Weiwei Zhu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuanxin Zhong
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Institute for Advancing Translational Medicine in Bone and Joint Diseases School of Chinese Medicine Hong Kong Baptist University Hong Kong 999077 China
| | - Dongdong Ye
- School of Textile Materials and Engineering Wuyi University Jiangmen Guangdong 529020 China
| | - Mingyu Zhu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan 621000 China
| | - Yusheng Zhao
- Academy for Advanced Interdisciplinary Studies (AAIS) Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Fuzeng Ren
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
146
|
Nanohydroxyapatite incorporated photocrosslinked gelatin methacryloyl/poly(ethylene glycol)diacrylate hydrogel for bone tissue engineering. Prog Biomater 2021; 10:43-51. [PMID: 33768485 DOI: 10.1007/s40204-021-00150-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/09/2021] [Indexed: 10/21/2022] Open
Abstract
The development of novel strategies that aim to augment the regenerative potential of bone is critical for devising better treatment options for bone defects or injuries. Facilitation of bone repair and regeneration utilizing composite hydrogels that simulates bone matrix is emerging as a viable approach in bone tissue engineering. The present study aimed to develop nanohydroxyapatite-incorporated gelatin methacryloyl (GelMA)/poly(ethylene glycol) diacrylate (PEGDA) hydrogel (GMPH hydrogel). A facile blending and photocrosslinking approach was employed to incorporate nanohydroxyapatite into the inter-crosslinked polymeric hydrogel network to obtain an ECM mimicking matrix for assisting bone tissue regeneration. Chemical characterization of GelMA and the GMPH hydrogel was carried out using FTIR and 1H NMR. Physical properties of GMPH, such as gelation, swelling and degradation ratios, and internal morphology, signified the suitability of GMPH hydrogel for tissue engineering. Cell viability assay demonstrated a healthy proliferation of MG63 osteoblast cells in GMPH hydrogel extracted growth medium, indicating the hydrogel's cytocompatibility and suitability for bone tissue engineering. Our study documented the fabrication of a novel GelMA/PEGDA-nanohydroxyapatite hydrogel that possesses ideal physicochemical and biological properties for bone tissue engineering.
Collapse
|
147
|
Zhao X, Hu DA, Wu D, He F, Wang H, Huang L, Shi D, Liu Q, Ni N, Pakvasa M, Zhang Y, Fu K, Qin KH, Li AJ, Hagag O, Wang EJ, Sabharwal M, Wagstaff W, Reid RR, Lee MJ, Wolf JM, El Dafrawy M, Hynes K, Strelzow J, Ho SH, He TC, Athiviraham A. Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering. Front Bioeng Biotechnol 2021; 9:603444. [PMID: 33842441 PMCID: PMC8026885 DOI: 10.3389/fbioe.2021.603444] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cartilage, especially articular cartilage, is a unique connective tissue consisting of chondrocytes and cartilage matrix that covers the surface of joints. It plays a critical role in maintaining joint durability and mobility by providing nearly frictionless articulation for mechanical load transmission between joints. Damage to the articular cartilage frequently results from sport-related injuries, systemic diseases, degeneration, trauma, or tumors. Failure to treat impaired cartilage may lead to osteoarthritis, affecting more than 25% of the adult population globally. Articular cartilage has a very low intrinsic self-repair capacity due to the limited proliferative ability of adult chondrocytes, lack of vascularization and innervation, slow matrix turnover, and low supply of progenitor cells. Furthermore, articular chondrocytes are encapsulated in low-nutrient, low-oxygen environment. While cartilage restoration techniques such as osteochondral transplantation, autologous chondrocyte implantation (ACI), and microfracture have been used to repair certain cartilage defects, the clinical outcomes are often mixed and undesirable. Cartilage tissue engineering (CTE) may hold promise to facilitate cartilage repair. Ideally, the prerequisites for successful CTE should include the use of effective chondrogenic factors, an ample supply of chondrogenic progenitors, and the employment of cell-friendly, biocompatible scaffold materials. Significant progress has been made on the above three fronts in past decade, which has been further facilitated by the advent of 3D bio-printing. In this review, we briefly discuss potential sources of chondrogenic progenitors. We then primarily focus on currently available chondrocyte-friendly scaffold materials, along with 3D bioprinting techniques, for their potential roles in effective CTE. It is hoped that this review will serve as a primer to bring cartilage biologists, synthetic chemists, biomechanical engineers, and 3D-bioprinting technologists together to expedite CTE process for eventual clinical applications.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Ofir Hagag
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Eric J. Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Maya Sabharwal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
148
|
Gwon Y, Park S, Kim W, Han T, Kim H, Kim J. Radially patterned transplantable biodegradable scaffolds as topographically defined contact guidance platforms for accelerating bone regeneration. J Biol Eng 2021; 15:12. [PMID: 33752709 PMCID: PMC7986475 DOI: 10.1186/s13036-021-00263-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The healing of large critical-sized bone defects remains a clinical challenge in modern orthopedic medicine. The current gold standard for treating critical-sized bone defects is autologous bone graft; however, it has critical limitations. Bone tissue engineering has been proposed as a viable alternative, not only for replacing the current standard treatment, but also for producing complete regeneration of bone tissue without complex surgical treatments or tissue transplantation. In this study, we proposed a transplantable radially patterned scaffold for bone regeneration that was defined by capillary force lithography technology using biodegradable polycaprolactone polymer. RESULTS The radially patterned transplantable biodegradable scaffolds had a radial structure aligned in a central direction. The radially aligned pattern significantly promoted the recruitment of host cells and migration of osteoblasts into the defect site. Furthermore, the transplantable scaffolds promoted regeneration of critical-sized bone defects by inducing cell migration and differentiation. CONCLUSIONS Our findings demonstrated that topographically defined radially patterned transplantable biodegradable scaffolds may have great potential for clinical application of bone tissue regeneration.
Collapse
Affiliation(s)
- Yonghyun Gwon
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Taeseong Han
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoseong Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
149
|
Chen M, Li Y, Huang X, Gu Y, Li S, Yin P, Zhang L, Tang P. Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Res 2021; 9:21. [PMID: 33753717 PMCID: PMC7985324 DOI: 10.1038/s41413-021-00138-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and osteogenesis are coupled. However, the cellular and molecular regulation of these processes remains to be further investigated. Both tissues have recently been recognized as endocrine organs, which has stimulated research interest in the screening and functional identification of novel paracrine factors from both tissues. This review aims to elaborate on the novelty and significance of endocrine regulatory loops between bone and the vasculature. In addition, research progress related to the bone vasculature, vessel-related skeletal diseases, pathological conditions, and angiogenesis-targeted therapeutic strategies are also summarized. With respect to future perspectives, new techniques such as single-cell sequencing, which can be used to show the cellular diversity and plasticity of both tissues, are facilitating progress in this field. Moreover, extracellular vesicle-mediated nuclear acid communication deserves further investigation. In conclusion, a deeper understanding of the cellular and molecular regulation of angiogenesis and osteogenesis coupling may offer an opportunity to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ya Gu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Shang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| |
Collapse
|
150
|
Wang Y, Jin S, Luo D, He D, Shi C, Zhu L, Guan B, Li Z, Zhang T, Zhou Y, Wang CY, Liu Y. Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin. Nat Commun 2021; 12:1293. [PMID: 33637721 PMCID: PMC7910464 DOI: 10.1038/s41467-021-21545-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Tendon injuries disrupt the balance between stability and mobility, causing compromised functions and disabilities. The regeneration of mature, functional tendons remains a clinical challenge. Here, we perform transcriptional profiling of tendon developmental processes to show that the extracellular matrix-associated protein periostin (Postn) contributes to the maintenance of tendon stem/progenitor cell (TSPC) functions and promotes tendon regeneration. We show that recombinant periostin (rPOSTN) promotes the proliferation and stemness of TSPCs, and maintains the tenogenic potentials of TSPCs in vitro. We also find that rPOSTN protects TSPCs against functional impairment during long-term passage in vitro. For in vivo tendon formation, we construct a biomimetic parallel-aligned collagen scaffold to facilitate TSPC tenogenesis. Using a rat full-cut Achilles tendon defect model, we demonstrate that scaffolds loaded with rPOSTN promote endogenous TSPC recruitment, tendon regeneration and repair with native-like hierarchically organized collagen fibers. Moreover, newly regenerated tendons show recovery of mechanical properties and locomotion functions. The regeneration of functional tendons remains a clinical challenge. Here the authors develop a biomimetic scaffold loaded with recombinant periostin and demonstrate its functionality in promoting tendon stem/progenitor cell recruitment and tenogenic differentiation, and tendon regeneration in a rat full-cut Achilles tendon defect model.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Dan Luo
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Chunyan Shi
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung & Vascular Diseases, Capital Medical University, Beijing, China
| | - Lisha Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Bo Guan
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ting Zhang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanheng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, United States
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| |
Collapse
|