101
|
Wang Q, Jia X, Li X, He M, Hao JN, Guan M, Mao Y, Cao Y, Dai B, Li Y. One-pot fabrication of a polydopamine-based nanoplatform for GSH triggered trimodal ROS-amplification for cancer therapy. Biomater Sci 2022; 10:4208-4217. [PMID: 35734909 DOI: 10.1039/d2bm00421f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species (ROS) based nanoplatforms have been considered as attractive and feasible candidates for cancer therapy. However, the activated endogenous antioxidant defense of cancer cells in response to the ROS attack greatly hinders their therapeutic efficacy. Although cancer-specific ROS amplification strategies have been widely explored, most of them suffer from tedious synthesis procedures and complex components, which will bring about undesired side effects and unsatisfactory results. Herein, we design a cancer-specific oxidative stress amplification nanomedicine (CA-Cu-PDA), which is simply fabricated through integrating the glutathione (GSH) responsive/depleting nanocarrier of copper-polydopamine (Cu-PDA) nanoparticles with a ROS-generating drug cinnamaldehyde (CA) via a facile one-pot polymerization route. It is verified that GSH could trigger the breakage of CA-Cu-PDA networks and the subsequent release of both copper ions and CA in cancer cells. The released copper ions efficiently oxidize GSH, thereby weakening the antioxidant system of cancer cells and increasing the ROS levels. On the other hand, extra ROS are generated by the reduced copper ions through a Fenton reaction, so that a synergistic ROS therapy with CA is achieved. Consequently, oxidative stress is specifically increased within cancer cells, leading to efficient cancer cell apoptosis, significant tumor suppression and minimized side effects. Such an ingenious structure realizes the interlocking cooperation and full utilization of each component's function, presenting promising perspectives for nanomedicine design.
Collapse
Affiliation(s)
- Qinghua Wang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xinlin Jia
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Xianglong Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Miao He
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ji-Na Hao
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Mengjia Guan
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Yuanyuan Cao
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China. .,Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
102
|
Pan Z, Yang G, Liu J, Yuan J, Pan M, Li J, Tan H. Effects of oppositely charged moieties on the self-assembly and biophysicochemical properties of polyurethane micelles. J Mater Chem B 2022; 10:4431-4441. [PMID: 35593134 DOI: 10.1039/d2tb00631f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gemini quaternary ammonium (GQA), a type of cationic surfactant, exhibits excellent micellization ability and acts as a cell internalization promoter to increase the permeability of the cell membrane. GQA is sensitive to ionic solutions, which disturb its stabilization and leads to the rapid degradation of its polymer micelles due to its unique hydrophilic N+ structure. However, the effect of negatively charged moieties in the polymer chains of GQA on its action in polymer micelles, typically with regard to its micellization and biological performance, remains unclear. In this work, a series of polyurethane micelles containing various ratios of oppositely charged moieties was prepared. We found that the interchain electrostatic interaction severely undermines the function of the GQA surfactant and hinders the self-assembly and stabilization of polyurethane micelles. Specifically, a hydrophilic corona with a longer length cannot completely overcome this effect. By regulating the ratio of oppositely charged moieties, micelles exhibited tunable biological properties, such as biocompatibility, cytotoxicity, cell internalization, and phagocytosis by macrophages. Based on our results, a moderate molecular weight of mPEG (Mn = 1900) and a slight positive surface potential (∼10 mV) are the best surface parameters for the comprehensive performance of the studied nanoplatforms. This study provides a further understanding of the electrostatic interaction effect on the properties of the cationic GQA, offering rational guidance for the design and fabrication of GQA polymer micelles.
Collapse
Affiliation(s)
- Zhicheng Pan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Guangxuan Yang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jian Liu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jinfeng Yuan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Mingwang Pan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
103
|
Guo LY, Xia QS, Qin JL, Yang M, Yang TY, You FT, Chen ZH, Liu B, Peng HS. Skin-safe nanophotosensitizers with highly-controlled synthesized polydopamine shell for synergetic chemo-photodynamic therapy. J Colloid Interface Sci 2022; 616:81-92. [DOI: 10.1016/j.jcis.2022.02.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023]
|
104
|
Geng H, Zhong QZ, Li J, Lin Z, Cui J, Caruso F, Hao J. Metal Ion-Directed Functional Metal-Phenolic Materials. Chem Rev 2022; 122:11432-11473. [PMID: 35537069 DOI: 10.1021/acs.chemrev.1c01042] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal ions are ubiquitous in nature and play significant roles in assembling functional materials in fields spanning chemistry, biology, and materials science. Metal-phenolic materials are assembled from phenolic components in the presence of metal ions through the formation of metal-organic complexes. Alkali, alkali-earth, transition, and noble metal ions as well as metalloids interacting with phenolic building blocks have been widely exploited to generate diverse hybrid materials. Despite extensive studies on the synthesis of metal-phenolic materials, a comprehensive summary of how metal ions guide the assembly of phenolic compounds is lacking. A fundamental understanding of the roles of metal ions in metal-phenolic materials engineering will facilitate the assembly of materials with specific and functional properties. In this review, we focus on the diversity and function of metal ions in metal-phenolic material engineering and emerging applications. Specifically, we discuss the range of underlying interactions, including (i) cation-π, (ii) coordination, (iii) redox, and (iv) dynamic covalent interactions, and highlight the wide range of material properties resulting from these interactions. Applications (e.g., biological, catalytic, and environmental) and perspectives of metal-phenolic materials are also highlighted.
Collapse
Affiliation(s)
- Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Qi-Zhi Zhong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China.,Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
105
|
Cao H, Yang L, Tian R, Wu H, Gu Z, Li Y. Versatile polyphenolic platforms in regulating cell biology. Chem Soc Rev 2022; 51:4175-4198. [PMID: 35535743 DOI: 10.1039/d1cs01165k] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyphenolic materials are a class of fascinating and versatile bioinspired materials for biointerfacial engineering. In particular, due to the presence of active chemical groups, a series of unique physicochemical properties become accessible and tunable of the as-prepared polyphenolic platforms, which could delicately regulate the cell activities via cell-material contact-dependent interactions. More interestingly, polyphenols could also affect the cell behaviors via cell-material contact-independent manner, which arise due to their intrinsically functional characteristics (e.g., antioxidant and photothermal behaviors). As such, a comprehensive understanding on the relationship between material properties and desired biomedical applications, as well as the underlying mechanism at the cellular and molecular level would provide material design principles and accelerate the lab-to-clinic translation of polyphenolic platforms. In this review, we firstly give a brief overview of cell hallmarks governed by surrounding cues, followed by the introduction of polyphenolic material engineering strategies. Subsequently, a detailed discussion on cell-polyphenols contact-dependent interfacial interaction and contact-independent interaction was also carefully provided. Lastly, their biomedical applications were elaborated. We believe that this review could provide guidances for the rational material design of multifunctional polyphenols and extend their application window.
Collapse
Affiliation(s)
- Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Lei Yang
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Rong Tian
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Gu
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Yiwen Li
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
106
|
Wang C, Jia C, Zhang M, Yang S, Qin J, Yang Y. A Lesion Microenvironment-Responsive Fungicide Nanoplatform for Crop Disease Prevention and Control. Adv Healthc Mater 2022; 11:e2102617. [PMID: 34964308 DOI: 10.1002/adhm.202102617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Indexed: 11/06/2022]
Abstract
Controlled fungicide delivery in response to the specific microenvironment produced by fungal pathogens is an advisable strategy to improve the efficacy of fungicides. Herein, the authors construct a smart fungicide nanoplatform, using mesoporous silica nanoparticles (MSNs) as nanocarriers loaded with eugenol (EU) and Ag+ coordinated polydopamine (Ag+ -PDA) as a coating to form Ag+ -PDA@MSNs-EU NPs for Botrytis cinerea (B. cinerea) control. As a botanical fungicide, EU offers an eco-friendly alternative to synthetic fungicides and can upregulate several defense-related genes in the tomato plant. The Ag+ -PDA coating can lock the EU inside the nanocarriers and respond to the oxalic acid produced by B. cinerea to corelease the loaded EU and Ag+ . The results demonstrate that Ag+ -PDA@MSNs-EU NPs can effectively inhibit the mycelial growth of B. cinerea on detached and potted tomato leaves. The construction of such a smart fungicide nanoplatform provides new guidance to design controlled fungicides release systems, which can respond to the microenvironment associated with plant pathogen to realize fungus control.
Collapse
Affiliation(s)
- Chao‐Yi Wang
- College of Plant Science Jilin University Changchun 130012 P. R. China
- College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Chengguo Jia
- College of Plant Science Jilin University Changchun 130012 P. R. China
| | - Ming‐Zhe Zhang
- College of Plant Science Jilin University Changchun 130012 P. R. China
| | - Song Yang
- College of Plant Science Jilin University Changchun 130012 P. R. China
| | - Jian‐Chun Qin
- College of Plant Science Jilin University Changchun 130012 P. R. China
| | - Ying‐Wei Yang
- College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
107
|
Nothling MD, Bailey CG, Fillbrook LL, Wang G, Gao Y, McCamey DR, Monfared M, Wong S, Beves JE, Stenzel MH. Polymer Grafting to Polydopamine Free Radicals for Universal Surface Functionalization. J Am Chem Soc 2022; 144:6992-7000. [PMID: 35404602 DOI: 10.1021/jacs.2c02073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modifying surfaces using free radical polymerization (FRP) offers a means to incorporate the diverse physicochemical properties of vinyl polymers onto new materials. Here, we harness the universal surface attachment of polydopamine (PDA) to "prime" a range of different surfaces for free radical polymer attachment, including glass, cotton, paper, sponge, and stainless steel. We show that the intrinsic free radical species present in PDA can serve as an anchor point for subsequent attachment of propagating vinyl polymer macroradicals through radical-radical coupling. Leveraging a straightforward, twofold soak-wash protocol, FRP over the PDA-functionalized surfaces results in covalent polymer attachment on both porous and nonporous substrates, imparting new properties to the functionalized materials, including enhanced hydrophobicity, fluorescence, or temperature responsiveness. Our strategy is then extended to covalently incorporate PDA nanoparticles into organo-/hydrogels via radical cross-linking, yielding tunable PDA-polymer composite networks. The propensity of PDA free radicals to quench FRP is studied using in situ 1H nuclear magnetic resonance and electron paramagnetic resonance spectroscopy, revealing a surface area-dependent macroradical scavenging mechanism that underpins PDA-polymer conjugation. By combining the arbitrary surface attachment of PDA with the broad physicochemical properties of vinyl polymers, our strategy provides a straightforward route for imparting unlimited new functionality to practically any surface.
Collapse
Affiliation(s)
- Mitchell D Nothling
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christopher G Bailey
- ARC Centre of Excellence in Exciton Science, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lucy L Fillbrook
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Guannan Wang
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yijie Gao
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dane R McCamey
- ARC Centre of Excellence in Exciton Science, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marzieh Monfared
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Sandy Wong
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jonathon E Beves
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
108
|
Yuan X, Wei Z, Zhang Z, Liu H. Hierarchical Coating Nanoarchitectonics of Halloysite Nanotube with Polydopamine and ZIF-8 for Adsorption of Organic Contaminants. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02339-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
109
|
Gu X, Shi H, Wang D, Chen J. Glucose-derived carbon-coated Ni–In intermetallic compounds for in situ aqueous phase selective hydrogenation of methyl palmitate to hexadecanol. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
110
|
Li Z, You S, Mao R, Xiang Y, Cai E, Deng H, Shen J, Qi X. Architecting polyelectrolyte hydrogels with Cu-assisted polydopamine nanoparticles for photothermal antibacterial therapy. Mater Today Bio 2022; 15:100264. [PMID: 35517578 PMCID: PMC9062430 DOI: 10.1016/j.mtbio.2022.100264] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
Polydopamine nanoparticles (PDA NPs) are an appealing biomimetic photothermal agent for photothermal antibacterial treatment because of their long-term safety, excellent photostability, accessible manufacturing, and good biodegradability. However, the low photothermal conversion efficiency (PCE) of PDA NPs requires high-power and long-term near-infrared light irradiation, which severely restricts their practical application. In this work, PDA@Cu NPs were fabricated by growing Cu NPs in situ on the surface of PDA and then introduced into a polyelectrolyte hydrogel precursor (cationic polyethyleneimine/anionic pectin, named as CPAP). The formulated photothermal platform possessed a high PCE (55.4%), almost twice as much as pure PDA NPs (30.8%). Moreover, the designed CPAP/PDA@Cu captured and killed some bacteria by electrostatic adsorption, which helped enhance the antibacterial performance. As expected, the formed CPAP/PDA@Cu that combined the advantageous features of PDA@Cu NPs (high PCE) and CPAP matrix (inherent antibacterial activity and preventing NPs aggregation) can efficiently kill bacteria both in vitro and in vivo under the help of near-infrared laser irradiation. Taken together, this study offers a promising strategy for constructing a facile and safe PDA-based photothermal agent for photothermal antibacterial therapy. A facile polyelectrolyte photothermal antibacterial platform (CPAP) was synthesized. CPAP is composed of polyethyleneimine, pectin and polydopamine@Cu nanoparticles. CPAP displayed good biocompatibility and tunable physicochemical properties. CPAP possessed outstanding high-efficiency bacteria-killing capability.
Collapse
Affiliation(s)
- ZhangPing Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Shengye You
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ruiting Mao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yajing Xiang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Erya Cai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hui Deng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Corresponding author.
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, China
- Corresponding author. School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Xiaoliang Qi
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Corresponding author. School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
111
|
Dong L, Wang Y, Zhang W, Mo L, Zhang Z. Nickel supported on magnetic biochar as a highly efficient and recyclable heterogeneous catalyst for the one‐pot synthesis of spirooxindole‐dihydropyridines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li‐Na Dong
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Ya‐Meng Wang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Wan‐Lu Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Li‐Ping Mo
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Zhan‐Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| |
Collapse
|
112
|
Yuan X, Wu P, Gao Q, Xu J, Guo B, He Y. Multifunctionally wearable monitoring with gelatin hydrogel electronics of liquid metals. MATERIALS HORIZONS 2022; 9:961-972. [PMID: 35179166 DOI: 10.1039/d1mh02030g] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogel-based flexible electronics have been of widespread interest in recent years. However, current hydrogel electronics have limitations, such as poor biocompatibility, non-reusability, low electrical response to deformation and being single-function. GelMA is a gelatin-based hydrogel that has been widely used in the biological field, such as in tissue repair and drug delivery. Could it be a good choice for high biocompatibility wearable electronics? Here, by controlling the replacement rate of amine and hydroxy functionalities, we made the common brittle GelMA into a highly stretchable hydrogel. And we report for the first time GelMA hydrogel electronics with liquid metals (LMGE), which could be fabricated by simply injecting liquid metals into the internal microchannels of the GelMA hydrogels (GelMA-30). With the unique biocompatibility, outstanding air and ion permeability, and great mechanical properties of GelMA-30, as well as the low toxicity, high conductivity and high rheology of liquid metals, LMGE can not only monitor movement changes and even the heartbeat of rats, but can also be used as a wireless monitor to supervise secretions produced during human exercise. The design of LMGE provides a general strategy for the manufacture of bio-flexible hydrogel electronics, which opens the way for the development of multi-functional biomimetic materials for integrated monitoring and repair for biomedical applications.
Collapse
Affiliation(s)
- Ximin Yuan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
- National Innovation Center for Advanced Medical Devices, Shenzhen, 457001, China
| | - Pengcheng Wu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.
- Engineering for Life Group (EFL), Suzhou, 215000, China
| | - Jie Xu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
- National Innovation Center for Advanced Medical Devices, Shenzhen, 457001, China
| | - Bin Guo
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
- National Innovation Center for Advanced Medical Devices, Shenzhen, 457001, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
113
|
Chen W, Miao H, Meng G, Huang K, Kong L, Lin Z, Wang X, Li X, Li J, Liu XY, Lin N. Polydopamine-Induced Multilevel Engineering of Regenerated Silk Fibroin Fiber for Photothermal Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107196. [PMID: 35060331 DOI: 10.1002/smll.202107196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Solid photothermal materials with favorable biocompatibility and modifiable mechanical properties demonstrate obvious superiority and growing demand. In this work, polydopamine (PDA) induced functionalization of regenerated silk fibroin (RSF) fibers has satisfactory photothermal conversion ability and flexibility. Based on multilevel engineering, RSF solution containing PDA nanoparticles is wet spun to PDA-incorporating RSF (PDA@RSF) fibers, and then the fibers are coated with PDA via oxidative self-polymerization of dopamine to form PDA@RSF-PDA (PRP) fibers. During the wet spinning process, PDA is to adjust the mechanical properties of RSF by affecting its hierarchical structure. Meanwhile, coated PDA gives the PRP fibers extensive absorption of near-infrared light and sunlight, which is further fabricated into PRP fibrous membranes. The temperature of PRP fibrous membranes can be adjusted and increases to about 50 °C within 360 s under 808 nm laser irradiation with a power density of 0.6 W cm-2 , and PRP fibrous membranes exhibit effective photothermal cytotoxicity both in vitro and in vivo. Under the simulated sunlight, the temperature of PRP fiber increases to more than 200 °C from room temperature and the material can generate 4.5 V voltage when assembled with a differential thermal battery, which means that the material also has the potential for flexible wearable electronic devices.
Collapse
Affiliation(s)
- Wei Chen
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Hao Miao
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Guoqing Meng
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Kailun Huang
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Lingqing Kong
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Zaifu Lin
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Xudong Wang
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Xiaobao Li
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Jinghan Li
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Xiang-Yang Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Republic of Singapore
| | - Naibo Lin
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| |
Collapse
|
114
|
Yang L, Li L, Li H, Wang T, Ren X, Cheng Y, Li Y, Huang Q. Layer-by-Layer Assembled Smart Antibacterial Coatings via Mussel-Inspired Polymerization and Dynamic Covalent Chemistry. Adv Healthc Mater 2022; 11:e2200112. [PMID: 35182462 DOI: 10.1002/adhm.202200112] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 12/14/2022]
Abstract
Bacterial colonization on the surface of medical implanted devices and bacterial infection-induced biofilm have been a lethal risk for patients of clinical treatment. While antibacterial coatings fabricated by layer-by-layer (LBL) assembly techniques have been well explored, the facile preparation of substrate-independent smart antibacterial coatings with on-demand antibiotics release profile and excellent antibacterial performance is still urgently needed. In this work, this goal is addressed by LBL assembly fabrication of robust antibacterial coatings using naturally occurring and commercially available building blocks (i.e., aminoglycosides, 5,6-dihydroxyindole, and formylphenylboronic acid) via the subsequentially performed mussel-inspired polymerization and dynamic covalent chemistries. The resulting antibacterial coatings on different substates all presente a dynamic feature (i.e., pH-responsive), on-demand antibiotics release properties, and highly effective antibacterial performance both in vitro and in vivo. It is envisioned that this work can expand the scope of LBL assembly technique toward the next generation of robust and universal antibacterial coating materials by using natural building blocks and readily available chemistries.
Collapse
Affiliation(s)
- Lei Yang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Lin Li
- Department of Orthopedics Oncology Changzheng Hospital the Navy Medical University Shanghai 200003 China
| | - Haotian Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Tianyou Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Xiancheng Ren
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology School of Life Sciences East China Normal University Shanghai 200241 China
| | - Yiwen Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Quan Huang
- Department of Orthopedics Oncology Changzheng Hospital the Navy Medical University Shanghai 200003 China
| |
Collapse
|
115
|
Xu W, Qing X, Liu S, Chen Z, Zhang Y. Manganese oxide nanomaterials for bacterial infection detection and therapy. J Mater Chem B 2022; 10:1343-1358. [PMID: 35129557 DOI: 10.1039/d1tb02646a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial infection has received substantial attention and poses a serious threat to human health. Although antibiotics can effectively fight against bacterial infection, the occurrence of antibiotic resistance has become increasingly serious in recent years, which tremendously hinders its clinical application. Consequently, it is urgent to explore novel strategies to achieve efficacious treatment of bacterial diagnosis and detection. Manganese dioxide (MnO2) nanomaterial has been extensively reported in tumor therapy. Nevertheless, there are few antibacterial reviews of MnO2. Herein, we will discuss the applications of MnO2 in the detection and treatment of bacterial infection, including photodynamic therapy, immunotherapy, improvement of hypoxia, dual-modal combination therapy, reactive oxygen species scavenging, magnetic resonance imaging, optical application of acoustic imaging, and so forth. This review is expected to provide meaningful guidance on further research of MnO2 nanomaterial for antibacterial applications.
Collapse
Affiliation(s)
- Wenjing Xu
- Medical School, Southeast University, Nanjing 210009, China.
| | - Xin Qing
- Medical School, Southeast University, Nanjing 210009, China.
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Zhencheng Chen
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | - Yewei Zhang
- Medical School, Southeast University, Nanjing 210009, China. .,Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| |
Collapse
|
116
|
Yang Y, Zhou X, Chan YK, Wang Z, Li L, Li J, Liang K, Deng Y. Photo-Activated Nanofibrous Membrane with Self-Rechargeable Antibacterial Function for Stubborn Infected Cutaneous Regeneration. SMALL 2022; 18:e2105988. [PMID: 35088512 DOI: 10.1002/smll.202105988] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/24/2021] [Indexed: 02/05/2023]
Abstract
For quick disinfection treatment, phototherapy, including photothermal therapy and photodynamic therapy, has emerged as a promising alternative to conventional methods. However, the bactericidal effect of phototherapy, which only works upon light, is short-lived. The remaining bacteria in situ may repopulate when the irradiation of light is withdrawn. To address this refractory concern, an antibacterial fibrous membrane consisting of electrospun poly (polycaprolactone) scaffolds and polydopamine (pDA) coated MXene/Ag3 PO4 bioheterojunctions (MX@AgP bio-HJs) is devised and developed. Upon near-infrared (NIR) illumination, the MX@AgP nanoparticle (NP) in nanofibrous electrospun membranes exert the excellent bactericidal effect of phototherapy and release Ag+ ions which stop the remaining bacteria from multiplying in the dark state. When removing NIR light, pDA in situ reduces Ag+ ions to Ag0 NPs to realize the self-rechargeability of Ag+ ions and provides enough Ag+ ions for the second phototherapy. In vivo results show that photoactivated nanofibrous membranes can re-shape an infected wound microenvironment to the regenerative microenvironment through killing bacteria, ceasing bleeding, increasing epithelialization, and collagen deposition on the wound bed, as well as promoting angiogenesis. As predicted, the proposal work offers potential prospects for nanofibrous membranes with NIR-assisted "self-rechargeable" antibacterial properties to treat bacteria-infected full-thickness wounds.
Collapse
Affiliation(s)
- Yingming Yang
- School of Chemical Engineering, West China College of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, China.,National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiong Zhou
- School of Chemical Engineering, West China College of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, China.,Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, 999077, China
| | - Ziyou Wang
- School of Chemical Engineering, West China College of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, China.,National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Limei Li
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Jiyao Li
- School of Chemical Engineering, West China College of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, China.,National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Kunneng Liang
- School of Chemical Engineering, West China College of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, China.,National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- School of Chemical Engineering, West China College of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610065, China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
117
|
Lu J, Fang C, Wang G, Zhu L. Design of One-Dimensional Cadmium Sulfide/Polydopamine Heteronanotube Photocatalysts for Ultrafast Degradation of Antibiotics. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingyu Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Guitu Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
118
|
Ren D, Williams GR, Zhang Y, Ren R, Lou J, Zhu LM. Mesoporous Doxorubicin-Loaded Polydopamine Nanoparticles Coated with a Platelet Membrane Suppress Tumor Growth in a Murine Model of Human Breast Cancer. ACS APPLIED BIO MATERIALS 2022; 5:123-133. [PMID: 35014822 DOI: 10.1021/acsabm.1c00926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bringing together photothermal therapy and chemotherapy (photothermal-chemotherapy, PT-CT) is a highly promising clinical approach but requires the development of intelligent multifunctional delivery vectors. In this work, we prepared mesoporous polydopamine nanoparticles (MPDA NPs) loaded with the chemotherapeutic drug doxorubicin (DOX). These NPs were then coated with the platelet membrane (PLTM). The coated MPDA NPs are spherical and clearly mesoporous in structure. They have a particle size of approximately 184 nm and pore size of ca. 45 nm. The NPs are potent photothermal agents and efficient DOX carriers, with increased rates of drug release observed in vitro in conditions representative of the tumor microenvironment. The NPs are preferentially taken up by cancer cells but not by macrophage cells, and while cytocompatible with healthy cells are highly toxic to cancer cells. An in vivo murine model of human breast cancer revealed that the NPs can markedly slow the growth of a tumor (ca. 9-fold smaller after 14 days' treatment), have extended pharmacokinetics compared to free DOX (with DOX still detectable in the bloodstream after 24 h when the NPs are applied), and are highly targeted with minimal off-site effects on the heart, liver, spleen, kidney, and lungs.
Collapse
Affiliation(s)
- Dandan Ren
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Yanyan Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Rong Ren
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiadong Lou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
119
|
Khositanon C, Deepracha S, Assabumrungrat S, Ogawa M, Weeranoppanant N. Simple Fabrication of a Continuous-Flow Photocatalytic Reactor Using Dopamine-Assisted Immobilization onto a Fluoropolymer Tubing. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chetsada Khositanon
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| | - Siwada Deepracha
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Suttichai Assabumrungrat
- Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Bio-Circular-Green-Economy Technology & Engineering Center, BCGeTEC, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
120
|
Ding L, Zheng J, Xu J, Yin XB, Zhang M. Rational design, synthesis, and applications of carbon-assisted dispersive Ni-based composites. CrystEngComm 2022. [DOI: 10.1039/d1ce01493e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, we review recent developments in the rational design and engineering of various carbon-assisted dispersive nickel-based composites, and boosted properties for protein adsorption and nitroaromatics reduction.
Collapse
Affiliation(s)
- Lei Ding
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville 37388, USA
| | - Jing Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| |
Collapse
|
121
|
Zhu X, Liu H, Wu Y, Ye J, Li Y, Liu Z. Preparation and catalytic properties of polydopamine-modified polyacrylonitrile fibers functionalized with silver nanoparticles. RSC Adv 2022; 12:25906-25911. [PMID: 36199616 PMCID: PMC9465701 DOI: 10.1039/d2ra03845e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Fiber-supported catalysts have attracted much attention due to their large specific surface area, high catalytic activity, and good recyclability. Functional polyacrylonitrile fibers were prepared by immersion of polyacrylonitrile fibers at room temperature in an alkaline dopamine (pH = 8.5) aqueous solution which can undergo self-polymerization and reduce silver ions to silver nanoparticles with mild reducibility and adsorption. The surface of the polyacrylonitrile fiber (PAN) was wrapped with a layer of polydopamine (PDA), and silver nanoparticles (Ag NPs) were adsorbed on the surface of PDA, forming an efficient fiber catalyst. The morphology and chemical composition of the catalyst material were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) patterns, and Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The catalytic activity of the nanocomposite was evaluated for the reduction reaction of 4-nitrophenol using sodium borohydride (NaBH4) at 35 °C with a material molar ratio of 1 : 10 and a fiber loaded catalysis dosage of 40 mg. The liquid phase yield can reach 98% in 30 minutes and can be reused after washing with ethanol. Moreover, the composite material exhibited a good stability up to 10 cycles without a significant loss of its catalytic activity. The results show that the catalyst is easy to recover from the reaction system and has maintained good stability and catalytic activity after many cycles. Via the help of polydopamine, polyacrylonitrile fiber catalysts functionalized with silver nanoparticles were prepared and employed for the reduction reaction of 4-nitrophenol to 4-aminophenol, with a yield of 98% in 30 minutes, and can be reused for up to 10 cycles.![]()
Collapse
Affiliation(s)
- Xiaoyu Zhu
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Huiying Liu
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Yingying Wu
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Jing Ye
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Yacheng Li
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Zhendong Liu
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| |
Collapse
|
122
|
Zhao X, Peng M, Wang J, Chen S, Lin Y. Au nanoflower film-based stretchable biosensors for in situ monitoring of superoxide anion release in cell mechanotransduction. Analyst 2022; 147:4055-4062. [DOI: 10.1039/d2an01095j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell mechanotransduction plays an important role in vascular regulation and disease development.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Meihong Peng
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jialu Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Shutong Chen
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
123
|
Dai G, Choi CKK, Choi CHJ, Fong WP, Ng DKP. Glutathione-degradable polydopamine nanoparticles as a versatile platform for fabrication of advanced photosensitisers for anticancer therapy. Biomater Sci 2021; 10:189-201. [PMID: 34817474 DOI: 10.1039/d1bm01482j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of glutathione (GSH)-responsive polydopamine (PDA) nanoparticles (NPs) were prepared using a disulfide-linked dopamine dimer as starting material, of which the size could be tuned systematically by adjusting the amount of ammonia solution used. Molecules of a phthalocyanine (Pc)-based photosensitiser and an epidermal growth factor receptor (EGFR)-targeting peptide were then sequentially immobilised on the surface of the NPs through coupling with the surface functionalities of PDA. The immobilised Pc molecules in the resulting nanosystem were photodynamically inactive due to the strong self-quenching effect and the quenching by the PDA core. Upon exposure to GSH in phosphate-buffered saline or EGFR-positive cancer cells, namely A549 and A431 cells, the NPs were disassembled through cleavage of the disulfide linkages to release the Pc molecules, thereby restoring their fluorescence emission and singlet oxygen generation. The NPs with the smallest size (ca. 200 nm in diameter) exhibited the highest cellular uptake and high photocytotoxicity with IC50 values as low as 0.05 μM based on Pc. These NPs could also accumulate and be activated in the tumour of A431 tumour-bearing nude mice, lighting up the tumour with fluorescence over a period of 72 h and completely eradicating the tumour through laser irradiation for 10 min (675 nm, 20 J cm-2). The results suggest that these biodegradable and versatile PDA-based NPs can serve as a promising nanoplatform for fabrication of advanced photosensitisers for targeted photodynamic therapy.
Collapse
Affiliation(s)
- Gaole Dai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Chun Kit K Choi
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
124
|
Gu Y, Wu J, Hu M, Pi H, Wang R, Zhang X. Polylactic acid based Janus membranes with asymmetric wettability for directional moisture transport with enhanced UV protective capabilities. RSC Adv 2021; 12:32-41. [PMID: 35424488 PMCID: PMC8978661 DOI: 10.1039/d1ra07912c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
Efficient directional moisture transport can remove excess sweat away from the human body and keep the body dry; fully utilizing this functionality to improve the wearing experience is urgently needed in the area of functional textiles. Herein, a facile strategy is used to design an eco-friendly and biodegradable PLA membrane with enhanced directional moisture transport and UV protection abilities. The PLA-based Janus membrane with asymmetric wettability is fabricated via sol-gel and electrospinning methods. Titanium dioxide nanoparticles (TiO2) were anchored onto the surface of the PLA fabric during the TiO2 sol-gel fabrication process using polydopamine, forming superhydrophilic TiO2@PDA-PLA. Then a thin PLA fibrous membrane layer showing hydrophobicity was electrospun onto this (PLA-E). The Janus PLA-E/TiO2@PDA-PLA membrane was successfully fabricated. Due to the asymmetric wettability and anchored TiO2, the PLA-E/TiO2@PDA-PLA Janus membrane exhibits efficient directional moisture transport and excellent UV protection abilities, and this work may provide a new pathway for fabricating multifunctional personal protective materials and have attractive potential applications in the future.
Collapse
Affiliation(s)
- Yingshu Gu
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Jing Wu
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Miaomiao Hu
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Haohong Pi
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Rui Wang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Xiuqin Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| |
Collapse
|
125
|
Liu Z, Yu W, Sheng W, Li R, Guo H, Feng X, Li Q, Wang R, Li W, Jia X. Controllable Synthesis of Polyphenol Spheres via Amine-Catalyzed Polymerization-Induced Self-Assembly. Biomacromolecules 2021; 23:140-149. [PMID: 34910461 DOI: 10.1021/acs.biomac.1c01158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A facile and general strategy for preparing uniform and multifunctional polyphenol-based colloidal particles through amine-catalyzed polymerization-induced self-assembly is described. The size and interfacial adhesion of polyphenol spheres can be easily controlled over a wide range via adjusting the concentration of the cosolvent and monomer. Moreover, the polyphenol spheres showed excellent thermal and chemical stability and highly active properties and could efficiently deplete the reactive oxygen species (ROS), which are helpful for in vivo ROS regulation for inflammatory therapeutic. The accessible and versatile method provides a feasible way for the rational engineering of multifunctional polyphenol spheres, which have great potential in many fields.
Collapse
Affiliation(s)
- Zhiqing Liu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Wenbo Sheng
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden Mommsenstrasse 4, 01069 Dresden, Germany
| | - Rui Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Helin Guo
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Xiantao Feng
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Rongjie Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Wei Li
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden Mommsenstrasse 4, 01069 Dresden, Germany
| | - Xin Jia
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| |
Collapse
|
126
|
Ma Y, Wang C, Zhu L, Yu C, Lu B, Wang Y, Ding Y, Dong CM, Yao Y. Polydopamine-drug conjugate nanocomposites based on ZIF-8 for targeted cancer photothermal-chemotherapy. J Biomed Mater Res A 2021; 110:954-963. [PMID: 34913253 DOI: 10.1002/jbm.a.37344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/26/2022]
Abstract
Stimuli-responsive prodrug-based nanoplatform with synergistic antitumor activity is of central importance to the development of promising nanomedicines for cancer therapy. Here, we describe a polydopamine-drug conjugate nanocomposite (ZP-PDA-DOX) with targeted cancer photothermal-chemotherapy (PTT-CT), which constructed by a gradual copolymerization of dopamine (DA) and pH-sensitive dopamine-derived prodrug (DA-DOX) into the porous channels of zeolite imidazolate frameworks-8 (ZIF-8), followed by PEGylation with amino-terminated folic acid-polyethylene glycol (NH2 -PEG-FA) to acquire the high biocompatibility, specificity, and excellent tumor-targeting property. The incorporation of polydopamine strengthened the stability and dispersion of ZIF-8, and also conferred photothermal conversion effect. In the tumor acidic microenvironment, the acid-labile hydrazone linker of DA-DOX and ZIF-8 promptly degraded to release activated DOX. Moreover, the generated hyperthermia due to the high photothermal conversion efficiency of PDA component could accelerate drug release, and simultaneously thermally ablate tumor tissue to maximize the DOX-induced CT, which could also assist PTT to eradicate tumor cells. This study provides a promising strategy for targeted cancer PTT-CT with synergistic anti-tumor effect.
Collapse
Affiliation(s)
- Yuxuan Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Chenwei Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Lvming Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Chunmei Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| |
Collapse
|
127
|
Liu Q, Ranocchiari M, van Bokhoven JA. Catalyst overcoating engineering towards high-performance electrocatalysis. Chem Soc Rev 2021; 51:188-236. [PMID: 34870651 DOI: 10.1039/d1cs00270h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clean and sustainable energy needs the development of advanced heterogeneous catalysts as they are of vital importance for electrochemical transformation reactions in renewable energy conversion and storage devices. Advances in nanoscience and material chemistry have afforded great opportunities for the design and optimization of nanostructured electrocatalysts with high efficiency and practical durability. In this review article, we specifically emphasize the synthetic methodologies for the versatile surface overcoating engineering reported to date for optimal electrocatalysts. We discuss the recent progress in the development of surface overcoating-derived electrocatalysts potentially applied in polymer electrolyte fuel cells and water electrolyzers by correlating catalyst intrinsic structures with electrocatalytic properties. Finally, we present the opportunities and perspectives of surface overcoating engineering for the design of advanced (electro)catalysts and their deep exploitation in a broad scope of applications.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
128
|
Synthetic melanin facilitates MnO supercapacitors with high specific capacitance and wide operation potential window. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
129
|
Onay M, Çetinkaya D, Özer A, Özen A, Can C, Yelken B. Do Hipnotic Anesthetic Agents Used in Patients Undergoing Radical Prostatectomy Cause A Change in Their Neutrophil/Lymphocyte Ratio? Retrospective Study. JOURNAL OF UROLOGICAL SURGERY 2021. [DOI: 10.4274/jus.galenos.2021.2021.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
130
|
Lin H, Shi S, Lan X, Quan X, Xu Q, Yao G, Liu J, Shuai X, Wang C, Li X, Yu M. Scaffold 3D-Printed from Metallic Nanoparticles-Containing Ink Simultaneously Eradicates Tumor and Repairs Tumor-Associated Bone Defects. SMALL METHODS 2021; 5:e2100536. [PMID: 34928065 DOI: 10.1002/smtd.202100536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Indexed: 06/14/2023]
Abstract
Bone metastasis occurs in about 70% of breast cancer patients. The surgical resection of metastatic tumors often leads to bone erosion and destruction, which greatly hinders the treatment and prognosis of breast cancer patients with bone metastasis. Herein, a bifunctional scaffold 3D-printed from nanoink is fabricated to simultaneously eliminate the tumor cells and repair the tumor-associated bone defects. The metallic polydopamine (PDA) nanoparticles (FeMg-NPs) may effectively load and sustainably release the metal ions Fe3+ and Mg2+ in situ. Fe3+ exerts a chemodynamic therapy to synergize with the photothermal therapy induced by PDA with effective photothermal conversion under NIR laser, which efficiently eliminates the bone-metastatic tumor. Meanwhile, the sustained release of osteoinductive Mg2+ from the bony porous 3D scaffold enhances the new bone formation in the bone defects. Taken together, the implantation of scaffold (FeMg-SC) 3D-printed from the FeMg-NPs-containing nanoink provides a novel strategy to simultaneously eradicate bone-metastatic tumor and repair the tumor-associated bone defects.
Collapse
Affiliation(s)
- Huimin Lin
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Shanwei Shi
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xinyue Lan
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaolong Quan
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Qinqin Xu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan, Guangdong, 523808, China
| | - Xiang Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Meng Yu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
131
|
Leaf-inspired fluorescence-switchable nanosystem for visual loading of mixed drugs and targeted delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
132
|
Rozhin P, Melchionna M, Fornasiero P, Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2259. [PMID: 34578575 PMCID: PMC8467784 DOI: 10.3390/nano11092259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
| | - Michele Melchionna
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
133
|
Zhang WX, Hao YN, Gao YR, Shu Y, Wang JH. Mutual Benefit between Cu(II) and Polydopamine for Improving Photothermal-Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38127-38137. [PMID: 34347422 DOI: 10.1021/acsami.1c12199] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Combination therapy has attracted extensive interest in alleviating the shortcomings of monotherapy and enhancing the treatment efficacy. In this work, hollow mesoporous silica nanoparticles (HMSNs) play the role of nanocarriers in the delivery of Cu(II)-doped polydopamine (PDA), termed as HMSNs@PDA-Cu, for synergistic therapy. PDA acts as a traditional photothermal agent to realize photothermal treatment (PTT). Chemodynamic therapy (CDT) is realized by the reaction of Cu(II) with intracellular glutathione (GSH), and subsequently, the generated Cu(I) reacts with H2O2 to produce toxic hydroxyl radical (•OH) through a Fenton-like reaction. The photothermal performance of PDA is improved after its coordination with Cu(II). On the other hand, PDA exhibits superoxide dismutase (SOD)-mimicking activity. PDA converts O2•- to H2O2 and improves the production of H2O2, which promotes the therapeutic effect of CDT. Moreover, the high temperature caused by PTT further enhances the yield of •OH for CDT. This nanotheranostic platform perfectly applied to the tumor depletion of mice, presenting great potential for cancer metastasis therapy in vitro and in vivo.
Collapse
Affiliation(s)
- Wen-Xin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ya-Nan Hao
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yi-Ru Gao
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
134
|
Zhou X, Gong X, Cao W, Forman CJ, Oktawiec J, D'Alba L, Sun H, Thompson MP, Hu Z, Kapoor U, McCallum NC, Malliakas CD, Farha OK, Jayaraman A, Shawkey MD, Gianneschi NC. Anisotropic Synthetic Allomelanin Materials via Solid-State Polymerization of Self-Assembled 1,8-Dihydroxynaphthalene Dimers. Angew Chem Int Ed Engl 2021; 60:17464-17471. [PMID: 33913253 DOI: 10.1002/anie.202103447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/13/2021] [Indexed: 01/15/2023]
Abstract
Melanosomes in nature have diverse morphologies, including spheres, rods, and platelets. By contrast, shapes of synthetic melanins have been almost entirely limited to spherical nanoparticles with few exceptions produced by complex templated synthetic methods. Here, we report a non-templated method to access synthetic melanins with a variety of architectures including spheres, sheets, and platelets. Three 1,8-dihydroxynaphthalene dimers (4-4', 2-4' and 2-2') were used as self-assembling synthons. These dimers pack to form well-defined structures of varying morphologies depending on the isomer. Specifically, distinctive ellipsoidal platelets can be obtained using 4-4' dimers. Solid-state polymerization of the preorganized dimers generates polymeric synthetic melanins while maintaining the initial particle morphologies. This work provides a new route to anisotropic synthetic melanins, where the building blocks are preorganized into specific shapes, followed by solid-state polymerization.
Collapse
Affiliation(s)
- Xuhao Zhou
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Xinyi Gong
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Cao
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Christopher J Forman
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Julia Oktawiec
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Liliana D'Alba
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, 9000, Ghent, Belgium
| | - Hao Sun
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Matthew P Thompson
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Ziying Hu
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, Newark, DE, 19716, USA
| | - Naneki C McCallum
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Christos D Malliakas
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Omar K Farha
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, 9000, Ghent, Belgium
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA.,Department of Materials Science and Engineering, and Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
135
|
Zhou X, Gong X, Cao W, Forman CJ, Oktawiec J, D'Alba L, Sun H, Thompson MP, Hu Z, Kapoor U, McCallum NC, Malliakas CD, Farha OK, Jayaraman A, Shawkey MD, Gianneschi NC. Anisotropic Synthetic Allomelanin Materials via Solid‐State Polymerization of Self‐Assembled 1,8‐Dihydroxynaphthalene Dimers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xuhao Zhou
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Xinyi Gong
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Wei Cao
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Christopher J. Forman
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Julia Oktawiec
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Liliana D'Alba
- Department of Biology Evolution and Optics of Nanostructures Group University of Ghent 9000 Ghent Belgium
| | - Hao Sun
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Matthew P. Thompson
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Ziying Hu
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering Colburn Laboratory University of Delaware Newark DE 19716 USA
| | - Naneki C. McCallum
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Christos D. Malliakas
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Omar K. Farha
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering Colburn Laboratory Department of Materials Science and Engineering University of Delaware Newark DE 19716 USA
| | - Matthew D. Shawkey
- Department of Biology Evolution and Optics of Nanostructures Group University of Ghent 9000 Ghent Belgium
| | - Nathan C. Gianneschi
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
- Department of Materials Science and Engineering, and Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| |
Collapse
|
136
|
Ruan J, Liu H, Chen B, Wang F, Wang W, Zha Z, Qian H, Miao Z, Sun J, Tian T, He Y, Wang H. Interfacially Engineered Zn xMn 1-xS@Polydopamine Hollow Nanospheres for Glutathione Depleting Photothermally Enhanced Chemodynamic Therapy. ACS NANO 2021; 15:11428-11440. [PMID: 34152125 DOI: 10.1021/acsnano.1c01077] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fenton-like reactions driven by manganese-based nanostructures have been widely applied in cancer treatment owing to the intrinsic physiochemical properties of these nanostructures and their improved sensitivity to the tumor microenvironment. In this work, ZnxMn1-xS@polydopamine composites incorporating alloyed ZnxMn1-xS and polydopamine (PDA) were constructed, in which the Fenton-like reactions driven by Mn ions can be tuned by a controllable release of Mn ions in vitro and in vivo. As a result, the ZnxMn1-xS@PDA exhibited good biocompatibility with normal cells but was specifically toxic to cancer cells. In addition, the shell thickness of PDA was carefully investigated to obtain excellent specific toxicity to cancer cells and promote synergistic chemodynamic and photothermal therapies. Overall, this work highlights an alternative strategy for fabricating high-performance, multifunctional composite nanostructures for a combined cancer treatment.
Collapse
Affiliation(s)
- Juan Ruan
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hang Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Benjin Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Fei Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research and The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Wanni Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jianan Sun
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Tian Tian
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230036, P. R. China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research and The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230036, P. R. China
| |
Collapse
|
137
|
Zhao S, Bu T, Yang K, Xu Z, Bai F, He K, Li L, Wang L. Immunochromatographic Assay Based on Polydopamine-Decorated Iridium Oxide Nanoparticles for the Rapid Detection of Salbutamol in Food Samples. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28899-28907. [PMID: 34106688 DOI: 10.1021/acsami.1c06724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salbutamol (SAL), a β-2 adrenoreceptor agonist, is an unpopular addition to livestock and poultry, causing several side effects to human health. Thus, it is very important to develop a simple and rapid analytical method to screen SAL in the field of food safety. Here, we present an immunochromatographic assay (ICA) method for sensitively detecting SAL with polydopamine-decorated iridium oxide nanoparticles (IrO2@PDA NPs) as a signal tag. The IrO2@PDA with excellent hydrophilicity, biocompatibility, and stability was synthesized by oxidating self-polymerization of dopamine hydrochloride (DAH) on the surface of IrO2 NPs and used to label monoclonal antibodies (mAbs) through simple physical adsorption. Compared with IrO2 NPs, the IrO2@PDA also possessed superior optical properties and higher affinity with mAbs. With the proposed method, the limit of detection for SAL was 0.002 ng/mL, which was improved at least 24-fold and 180-fold compared with the IrO2 NPs-based ICA and conventional gold nanoparticles-based ICA, respectively. Furthermore, the SAL residuals in pork, pork liver, and beef were successfully detected by the developed biosensor and the recoveries ranged from 85.56% to 115.56%. Briefly, this work indicated that the powerful IrO2@PDA-based ICA can significantly improve detection sensitivity and has huge potential for accurate and sensitive detection of harmful small molecules analytes in food safety fields.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kairong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zhihao Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
138
|
Luan X, Pan Y, Gao Y, Song Y. Recent near-infrared light-activated nanomedicine toward precision cancer therapy. J Mater Chem B 2021; 9:7076-7099. [PMID: 34124735 DOI: 10.1039/d1tb00671a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Light has been present throughout the history of mankind and even the universe. It is of great significance to human life, contributing to energy, agriculture, communication, and much more. In the biomedical field, light has been developed as a switch to control medical processes with minimal invasion and high spatiotemporal selectivity. During the past three years, near-infrared (NIR) light as long-wavelength light has been applied to more than 3000 achievements in biological applications due to its deep penetration depth and low phototoxicity. Remotely controlled cancer therapy usually involves the conversion of biologically inert NIR light. Thus, various materials, especially nanomaterials that can generate reactive oxygen species (ROS), ultraviolet (UV)/visual light, or thermal energy and so on under NIR illumination achieve great potential for the research of nanomedicine. Here, we offered an overview of recent advances in NIR light-activated nanomedicine for cancer therapeutic applications. NIR-light-conversion nanotechnologies for both directly triggering nanodrugs and smart drug delivery toward tumor therapy were discussed emphatically. The challenges and future trends of the use of NIR light in biomedical applications were also provided as a conclusion. We expect that this review will spark inspiration for biologists, materials scientists, pharmacologists, and chemists to fight against diseases and boost the future clinical-translational applications of NIR technology-based precision nanomedicine.
Collapse
Affiliation(s)
- Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
139
|
One-step synthesis of nitrogen-grafted copper-gallic acid for enhanced methylene blue removal. Sci Rep 2021; 11:12021. [PMID: 34103604 PMCID: PMC8187462 DOI: 10.1038/s41598-021-91484-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Nitrogen-grafting through the addition of glycine (Gly) was performed on a metal- phenolic network (MPN) of copper (Cu2+) and gallic acid (GA) to increase its adsorption capacity. Herein, we reported a one-step synthesis method of MPN, which was developed according to the metal–ligand complexation principle. The nitrogen grafted CuGA (Ng-CuGA) MPN was obtained by reacting Cu2+, GA, and Gly in an aqueous solution at a molar ratio of 1:1:1 and a pH of 8. Several physicochemical measurements, such as Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), and thermal gravimetry analysis (TGA), were done on Ng-CuGA to elucidate its characteristics. The analysis revealed that the Ng-CuGA has non-uniform spherical shaped morphology with a pore volume of 0.56 cc/g, a pore size of 23.25 nm, and thermal stability up to 205 °C. The applicational potential of the Ng-CuGA was determined based on its adsorption capacity against methylene blue (MB). The Ng-CuGA was able to adsorb 190.81 mg MB per g adsorbent at a pH of 6 and temperature of 30 °C, which is 1.53 times higher than the non-grafted CuGA. Detailed assessment of Ng-CuGA adsorption properties revealed their pH- and temperature-dependent nature. The adsorption capacity and affinity were found to decrease at a higher temperature, demonstrating the exothermic adsorption behavior.
Collapse
|
140
|
Guo Y, Sun Q, Wu FG, Dai Y, Chen X. Polyphenol-Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007356. [PMID: 33876449 DOI: 10.1002/adma.202007356] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Polyphenols, the phenolic hydroxyl group-containing organic molecules, are widely found in natural plants and have shown beneficial effects on human health. Recently, polyphenol-containing nanoparticles have attracted extensive research attention due to their antioxidation property, anticancer activity, and universal adherent affinity, and thus have shown great promise in the preparation, stabilization, and modification of multifunctional nanoassemblies for bioimaging, therapeutic delivery, and other biomedical applications. Additionally, the metal-polyphenol networks, formed by the coordination interactions between polyphenols and metal ions, have been used to prepare an important class of polyphenol-containing nanoparticles for surface modification, bioimaging, drug delivery, and disease treatments. By focusing on the interactions between polyphenols and different materials (e.g., metal ions, inorganic materials, polymers, proteins, and nucleic acids), a comprehensive review on the synthesis and properties of the polyphenol-containing nanoparticles is provided. Moreover, the remarkable versatility of polyphenol-containing nanoparticles in different biomedical applications, including biodetection, multimodal bioimaging, protein and gene delivery, bone repair, antibiosis, and cancer theranostics is also demonstrated. Finally, the challenges faced by future research regarding the polyphenol-containing nanoparticles are discussed.
Collapse
Affiliation(s)
- Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Qing Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yunlu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
141
|
Fu Y, Yang L, Zhang J, Hu J, Duan G, Liu X, Li Y, Gu Z. Polydopamine antibacterial materials. MATERIALS HORIZONS 2021; 8:1618-1633. [PMID: 34846495 DOI: 10.1039/d0mh01985b] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, the development of polydopamine (PDA) has demonstrated numerous excellent performances in free radical scavenging, UV shielding, photothermal conversion, and biocompatibility. These unique properties enable PDA to be widely used as efficient antibacterial materials for various applications. Accordingly, PDA antibacterial materials mainly include free-standing PDA materials and PDA-based composite materials. In this review, an overview of PDA antibacterial materials is provided to summarize these two types of antibacterial materials in detail, including the fabrication strategies and antibacterial mechanisms. The future development and challenges of PDA in this field are also presented. It is hoped that this review will provide an insight into the future development of antibacterial functional materials based on PDA.
Collapse
Affiliation(s)
- Yu Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Darwish ER, Kalil H, Alqahtani W, Moalla SMN, Hosny NM, Amin AS, Martin HB, Bayachou M. Fast and Reliable Synthesis of Melanin Nanoparticles with Fine-Tuned Metal Adsorption Capacities for Studying Heavy Metal Ions Uptake. Nanotechnol Sci Appl 2021; 14:101-111. [PMID: 34079238 PMCID: PMC8163724 DOI: 10.2147/nsa.s296722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/18/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose Adsorption and uptake of heavy metals by polymeric nanoparticles is driven by a variety of physicochemical processes. In this work, we examined heavy metal uptake by synthetic melanin nanoparticles and analyzed physicochemical properties that affect the extent of metal uptake by the nanoparticles. Methods Eumelanin nanoparticles were synthesized in a one-pot fast process from a 5,6-diacetoxy indole precursor that is hydrolyzed in situ into dihydroxy indole (DHI). The method allows the possibility of changing the level of sodium ions that ends up in the nanoparticles. Two variants of synthetic DHI–melanin (low-sodium and high sodium variants) were evaluated and demonstrated different relative adsorption efficiencies for heavy metal cations. Results and Discussion For the low-sodium DHI–melanin and in terms of percentages of metal ion removal, the relative order of extraction from 50 ppm solutions was Zn2+ > Cd2+ > Ni2+ > Co2+ > Cu2+ > Pb2+, with the extraction percentages ranging from 90% down to 76%, for a 30-minute adsorption time before equilibrium. The lower-sodium DHI–melanin consistently removed more Zn2+ than the higher-sodium variant. Electron microscopy (SEM) showed an increase in melanin particle size after metal ions uptake. In addition, X-ray photoelectron spectroscopy (XPS) of DHI–melanin particles with depth profiling after Zn ions uptake supported particle swelling and ion transport within the particles. Conclusion These initial studies showed the potential of this straightforward synthesis to obtain synthetic DHI–melanin nanoparticles similar to those from biological sources with the possibility to fine-tune their metal adsorption capacity. These synthetic nanoparticles can be used either for the removal of a variety of metal ions or to mimic and study mechanisms of metal uptake by melanin deriving from biological sources, with the potential to understand, for instance, differential heavy metal uptake by various melanic pigments.
Collapse
Affiliation(s)
- Eman R Darwish
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Chemical & Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, USA.,Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Haitham Kalil
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Wafa Alqahtani
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sayed M N Moalla
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Nasser M Hosny
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Alaa S Amin
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Heidi B Martin
- Department of Chemical & Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Mekki Bayachou
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
143
|
Xie X, Tang J, Xing Y, Wang Z, Ding T, Zhang J, Cai K. Intervention of Polydopamine Assembly and Adhesion on Nanoscale Interfaces: State-of-the-Art Designs and Biomedical Applications. Adv Healthc Mater 2021; 10:e2002138. [PMID: 33690982 DOI: 10.1002/adhm.202002138] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The translation of mussel-inspired wet adhesion to biomedical engineering fields have catalyzed the emergence of polydopamine (PDA)-based nanomaterials with privileged features and properties of conducting multiple interfacial interactions. Recent concerns and progress on the understanding of PDA's hierarchical structure and progressive assembly are inspiring approaches toward novel nanostructures with property and function advantages over simple nanoparticle architectures. Major breakthroughs in this field demonstrated the essential role of π-π stacking and π-cation interactions in the rational intervention of PDA self-assembly. In this review, the recently emerging concepts in the preparation and application of PDA nanomaterials, including 3D mesostructures, low-dimensional nanostructures, micelle/nanoemulsion based nanoclusters, as well as other multicomponent nanohybrids by the segregation and organization of PDA building blocks on nanoscale interfaces are outlined. The contribution of π-electron interactions on the interfacial loading/release of π electron-rich molecules (nucleic acids, drugs, photosensitizers) and the exogenous coupling of optical energy, as well as the impact of wet-adhesion interactions on the nano-bio interface interplay, are highlighted by discussing the structure-property relationships in their featured applications including fluorescent biosensing, gene therapy, drug delivery, phototherapy, combined therapy, etc. The limitations of current explorations, and future research directions are also discussed.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jia Tang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Tao Ding
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| |
Collapse
|
144
|
Wu B, Sun Z, Wu J, Ruan J, Zhao P, Liu K, Zhao C, Sheng J, Liang T, Chen D. Nanoparticle‐Stabilized Oxygen Microcapsules Prepared by Interfacial Polymerization for Enhanced Oxygen Delivery. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Baiheng Wu
- Department of Medical Oncology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310027 China
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 China
| | - Zhu Sun
- Department of Medical Oncology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310027 China
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 China
| | - Jiangchao Wu
- The First Affiliated Hospital of Zhejiang University School of Medicine Zhejiang Provincial Key Laboratory of Pancreatic Disease Hangzhou 310027 China
| | - Jian Ruan
- Department of Medical Oncology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310027 China
| | - Peng Zhao
- Department of Medical Oncology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310027 China
| | - Kai Liu
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Jianpeng Sheng
- The First Affiliated Hospital of Zhejiang University School of Medicine Zhejiang Provincial Key Laboratory of Pancreatic Disease Hangzhou 310027 China
| | - Tingbo Liang
- The First Affiliated Hospital of Zhejiang University School of Medicine Zhejiang Provincial Key Laboratory of Pancreatic Disease Hangzhou 310027 China
| | - Dong Chen
- Department of Medical Oncology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310027 China
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 China
| |
Collapse
|
145
|
Yang Z, Guo W, Yang P, Hu J, Duan G, Liu X, Gu Z, Li Y. Metal-phenolic network green flame retardants. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123627] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
146
|
Wu Y, Zhang Y, Zhang R, Chen S. Preparation and Properties of Antibacterial Polydopamine and Nano-Hydroxyapatite Modified Polyethylene Terephthalate Artificial Ligament. Front Bioeng Biotechnol 2021; 9:630745. [PMID: 33869151 PMCID: PMC8044552 DOI: 10.3389/fbioe.2021.630745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Due to its great biomechanical property, the polyethylene terephthalate (PET) artificial ligament has become one of the most promising allografts for anterior cruciate ligament (ACL) reconstruction. However, because of its chemical and biological inertness, PET is not a favored scaffold material for osteoblast growth, which promotes the ligament-bone healing. Meanwhile, in consideration of prevention of potential infection, the prophylactic injection of antibiotic was used as a post-operative standard procedure but also has the increasing risk of bacterial resistance. To face these two contradictions, in this article we coated a polydopamine (PDA) nano-layer on the PET ligament and used the coating as the adhesion interlayer to introduce nano-hydroxyapatite (nHA) and silver atoms to the surface of PET ligament. Because of the mild self-polymerization reaction of dopamine, the thermogravity analysis (TGA), Raman spectrum, and tensile test results show that the modification procedure have no negative effects on the chemical stability and mechanical properties of the PET. The results of NIH3T3 cell culture show that the PDA and nHA could effectively improve the biocompatibility of PET artificial ligament for fibroblast growth, and staphylococcus aureus antibacterial test results show that the Ag atom provided an antibacterial effect for PET ligament. As shown in this paper, the nano-PDA coating modification procedure could not only preserve the advantages of PET but also introduce new performance characteristics to PET, which opens the door for further functionalization of PET artificial ligament for its advanced development and application.
Collapse
Affiliation(s)
- Yang Wu
- Department oft of Orthopaedic Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuhan Zhang
- Department oft of Orthopaedic Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ren Zhang
- Center for Analysis and Measurement, Fudan University, Shanghai, China
| | - Shiyi Chen
- Department oft of Orthopaedic Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
147
|
Xiao L, Ni W, Zhao X, Guo Y, Li X, Wang F, Luo G, Zhan R, Xu X. A moisture balanced antibacterial dressing loaded with lysozyme possesses antibacterial activity and promotes wound healing. SOFT MATTER 2021; 17:3162-3173. [PMID: 33620055 DOI: 10.1039/d0sm02245d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wound moisture management is very important in wound healing. Previous wound management has included dry healing and moist healing, and the theory of wound moisture balance is currently generally accepted. However, current studies have not reported which humidity is suitable for wound healing and how to appropriately use antibacterial compounds when the humidity is suitable. Our study explored the moisture balance of polyurethane foam dressings through a moisture balance test and constructed a safe and effective moisture balanced antibacterial dressing by loading lysozyme onto a polyurethane foam dressing. Wound healing experiments showed that the wound healing speed was the fastest when the humidity was 25%. In vivo and in vitro antibacterial experiments showed the superior antibacterial performance of the dressing after lysozyme loading. We loaded lysozyme on moisture balanced polyurethane dressings by means of dopamine adsorption, and the modified dressings were named PU/DA-LYS (polyurethane/dopamine-lysozyme). Experiments on wound healing in infected mice indicated that PU/DA-LYS helps fight infection while promoting wound healing. Cytotoxicity experiments and in vivo biological safety experiments indicated that PU/DA-LYS was safe for use. Our study found that the lysozyme loaded polyurethane dressing can provide appropriate wound moisture and prevent bacterial infection, which is a future developmental direction for wound dressings.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Nieto C, Vega MA, Martín del Valle EM. Tailored-Made Polydopamine Nanoparticles to Induce Ferroptosis in Breast Cancer Cells in Combination with Chemotherapy. Int J Mol Sci 2021; 22:3161. [PMID: 33808898 PMCID: PMC8003616 DOI: 10.3390/ijms22063161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/16/2023] Open
Abstract
Ferroptosis is gaining followers as mechanism of selective killing cancer cells in a non-apoptotic manner, and novel nanosystems capable of inducing this iron-dependent death are being increasingly developed. Among them, polydopamine nanoparticles (PDA NPs) are arousing interest, since they have great capability of chelating iron. In this work, PDA NPs were loaded with Fe3+ at different pH values to assess the importance that the pH may have in determining their therapeutic activity and selectivity. In addition, doxorubicin was also loaded to the nanoparticles to achieve a synergist effect. The in vitro assays that were performed with the BT474 and HS5 cell lines showed that, when Fe3+ was adsorbed in PDA NPs at pH values close to which Fe(OH)3 begins to be formed, these nanoparticles had greater antitumor activity and selectivity despite having chelated a smaller amount of Fe3+. Otherwise, it was demonstrated that Fe3+ could be released in the late endo/lysosomes thanks to their acidic pH and their Ca2+ content, and that when Fe3+ was co-transported with doxorubicin, the therapeutic activity of PDA NPs was enhanced. Thus, reported PDA NPs loaded with both Fe3+ and doxorubicin may constitute a good approach to target breast tumors.
Collapse
Affiliation(s)
| | - Milena A. Vega
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Eva M. Martín del Valle
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain;
| |
Collapse
|
149
|
Wu B, Sun Z, Wu J, Ruan J, Zhao P, Liu K, Zhao C, Sheng J, Liang T, Chen D. Nanoparticle‐Stabilized Oxygen Microcapsules Prepared by Interfacial Polymerization for Enhanced Oxygen Delivery. Angew Chem Int Ed Engl 2021; 60:9284-9289. [PMID: 33586298 DOI: 10.1002/anie.202100752] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/06/2021] [Indexed: 01/06/2023]
Affiliation(s)
- Baiheng Wu
- Department of Medical Oncology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310027 China
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 China
| | - Zhu Sun
- Department of Medical Oncology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310027 China
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 China
| | - Jiangchao Wu
- The First Affiliated Hospital of Zhejiang University School of Medicine Zhejiang Provincial Key Laboratory of Pancreatic Disease Hangzhou 310027 China
| | - Jian Ruan
- Department of Medical Oncology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310027 China
| | - Peng Zhao
- Department of Medical Oncology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310027 China
| | - Kai Liu
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Jianpeng Sheng
- The First Affiliated Hospital of Zhejiang University School of Medicine Zhejiang Provincial Key Laboratory of Pancreatic Disease Hangzhou 310027 China
| | - Tingbo Liang
- The First Affiliated Hospital of Zhejiang University School of Medicine Zhejiang Provincial Key Laboratory of Pancreatic Disease Hangzhou 310027 China
| | - Dong Chen
- Department of Medical Oncology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310027 China
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 China
| |
Collapse
|
150
|
Pu Y, Zhu Y, Qiao Z, Xin N, Chen S, Sun J, Jin R, Nie Y, Fan H. A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a strong MR/PA dual-modal imaging agent for PTT/PDT synergistic therapy. J Mater Chem B 2021; 9:1846-1857. [PMID: 33527969 DOI: 10.1039/d0tb02725a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Based on widely used photoacoustic imaging (PAI) and photothermal properties of polydopamine (PDA), a multifunctional Gd-PDA-Ce6@Gd-MOF (GPCG) nanosystem with a core-shell structure and strong imaging ability was constructed. Benefitting from the metal-organic framework (MOF) structure, GPCG nanoparticles (NPs) showed enhanced magnetic resonance imaging (MRI) ability with high relaxation rates (r1 = 13.72 mM-1 s-1 and r2 = 216.14 mM-1 s-1). The MRI effect of Gd ions combined with the PAI effect of PDA, giving GPCG NPs a dual-modal imaging ability. The core, mainly composed of PDA and photodynamic photosensitizer chlorin e6 (Ce6), achieved photothermal/photodynamic therapy (PTT/PDT) synergistic performance. Besides, to overcome the unexpected release of Ce6, the MOF shell realized pH-sensitive release and a high local concentration. Through in vivo studies, we concluded that GPCG NPs show a good inhibitory effect on tumor growth. In conclusion, we successfully obtained a GPCG theranostic nanoplatform and paved the way for subsequent design of imaging guided therapeutic nanostructures based on metal-doped PDA.
Collapse
Affiliation(s)
- Yiyao Pu
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuda Zhu
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zi Qiao
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Nini Xin
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Suping Chen
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Rongrong Jin
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yu Nie
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|