101
|
Abstract
The introduction of novel technologies that can be applied to the investigation of the molecular underpinnings of human cancer has allowed for new insights into the mechanisms associated with tumor development and progression. They have also advanced the diagnosis, prognosis and treatment of cancer. These technologies include microarray and other analysis methods for the generation of large-scale gene expression data on both mRNA and miRNA, next-generation DNA sequencing technologies utilizing a number of platforms to perform whole genome, whole exome, or targeted DNA sequencing to determine somatic mutational differences and gene rearrangements, and a variety of proteomic analysis platforms including liquid chromatography/mass spectrometry (LC/MS) analysis to survey alterations in protein profiles in tumors. One other important advancement has been our current ability to survey the methylome of human tumors in a comprehensive fashion through the use of sequence-based and array-based methylation analysis (Bock et al., Nat Biotechnol 28:1106-1114, 2010; Harris et al., Nat Biotechnol 28:1097-1105, 2010). The focus of this chapter is to present and discuss the evidence for key genes involved in prostate tumor development, progression, or resistance to therapy that are regulated by methylation-induced silencing.
Collapse
Affiliation(s)
- Tawnya C McKee
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, Diagnostic Biomarkers and Technology Branch, National Cancer Institute, Bethesda, MD, 20892-7430, USA
| | | |
Collapse
|
102
|
Lundstrom K. Personalized Medicine and Epigenetic Drug Development. PERSONALIZED EPIGENETICS 2015:369-386. [DOI: 10.1016/b978-0-12-420135-4.00013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
103
|
Jiang J, Jia P, Zhao Z, Shen B. Key regulators in prostate cancer identified by co-expression module analysis. BMC Genomics 2014; 15:1015. [PMID: 25418933 PMCID: PMC4258300 DOI: 10.1186/1471-2164-15-1015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/17/2014] [Indexed: 01/07/2023] Open
Abstract
Background Prostate cancer (PrCa) is the most commonly diagnosed cancer in men in the world. Despite the fact that a large number of its genes have been investigated, its etiology remains poorly understood. Furthermore, most PrCa candidate genes have not been rigorously replicated, and the methods by which they biologically function in PrCa remain largely unknown. Results Aiming to identify key players in the complex prostate cancer system, we reconstructed PrCa co-expressed modules within functional gene sets defined by the Gene Ontology (GO) annotation (biological process, GO_BP). We primarily identified 118 GO_BP terms that were well-preserved between two independent gene expression datasets and a consequent 55 conserved co-expression modules within them. Five modules were then found to be significantly enriched with PrCa candidate genes collected from expression Quantitative Trait Loci (eQTL), somatic copy number alteration (SCNA), somatic mutation data, or prognostic analyses. Specifically, two transcription factors (TFs) (NFAT and SP1) and three microRNAs (hsa-miR-19a, hsa-miR-15a, and hsa-miR-200b) regulating these five candidate modules were found to be critical to the development of PrCa. Conclusions Collectively, our results indicated that genes with similar functions may play important roles in disease through co-expression, and modules with different functions could be regulated by similar genetic components, such as TFs and microRNAs, in a synergistic manner. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1015) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Zhongming Zhao
- Center for Systems Biology, Soochow University, Jiangsu, China.
| | | |
Collapse
|
104
|
Katz B, Reis ST, Viana NI, Morais DR, Moura CM, Dip N, Silva IA, Iscaife A, Srougi M, Leite KRM. Comprehensive study of gene and microRNA expression related to epithelial-mesenchymal transition in prostate cancer. PLoS One 2014; 9:e113700. [PMID: 25409297 PMCID: PMC4237496 DOI: 10.1371/journal.pone.0113700] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/28/2014] [Indexed: 11/18/2022] Open
Abstract
Prostate cancer is the most common cancer in men, and most patients have localized disease at the time of diagnosis. However, 4% already present with metastatic disease. Epithelial-mesenchymal transition is a fundamental process in carcinogenesis that has been shown to be involved in prostate cancer progression. The main event in epithelial-mesenchymal transition is the repression of E-cadherin by transcription factors, but the process is also regulated by microRNAs. The aim of this study was to analyze gene and microRNA expression involved in epithelial-mesenchymal transition in localized prostate cancer and metastatic prostate cancer cell lines and correlate with clinicopathological findings. We studied 51 fresh frozen tissue samples from patients with localized prostate cancer (PCa) treated by radical prostatectomy and three metastatic prostate cancer cell lines (LNCaP, DU145, PC3). The expression of 10 genes and 18 miRNAs were assessed by real-time PCR. The patients were divided into groups according to Gleason score, pathological stage, preoperative PSA, biochemical recurrence, and risk group for correlation with clinicopathological findings. The majority of localized PCa cases showed an epithelial phenotype, with overexpression of E-cadherin and underexpression of the mesenchymal markers. MiRNA-200 family members and miRNAs 203, 205, 183, 373, and 21 were overexpressed, while miRNAs 9, 495, 29b, and 1 were underexpressed. Low-expression levels of miRNAs 200b, 30a, and 1 were significantly associated with pathological stage. Lower expression of miR-200b was also associated with a Gleason score ≥ 8 and shorter biochemical recurrence-free survival. Furthermore, low-expression levels of miR-30a and high-expression levels of Vimentin and Twist1 were observed in the high-risk group. Compared with the primary tumor, the metastatic cell lines showed significantly higher expression levels of miR-183 and Twist1. In summary, miRNAs 200b, 30a, 1, and 183 and the genes Twist1 and Vimentin might play important roles in the progression of prostate cancer and may eventually become important prognostic markers.
Collapse
Affiliation(s)
- Betina Katz
- Division of Urology and Laboratory of Medical Investigation (LIM55), University of Sao Paulo Medical School, Sao Paulo, Brazil
- * E-mail:
| | - Sabrina T. Reis
- Division of Urology and Laboratory of Medical Investigation (LIM55), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Nayara I. Viana
- Division of Urology and Laboratory of Medical Investigation (LIM55), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Denis R. Morais
- Division of Urology and Laboratory of Medical Investigation (LIM55), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Caio M. Moura
- Division of Urology and Laboratory of Medical Investigation (LIM55), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Nelson Dip
- Division of Urology and Laboratory of Medical Investigation (LIM55), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Iran A. Silva
- Division of Urology and Laboratory of Medical Investigation (LIM55), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Alexandre Iscaife
- Division of Urology and Laboratory of Medical Investigation (LIM55), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Miguel Srougi
- Division of Urology and Laboratory of Medical Investigation (LIM55), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Katia R. M. Leite
- Division of Urology and Laboratory of Medical Investigation (LIM55), University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
105
|
Shi R, Xiao H, Yang T, Chang L, Tian Y, Wu B, Xu H. Effects of miR-200c on the migration and invasion abilities of human prostate cancer Du145 cells and the corresponding mechanism. Front Med 2014; 8:456-63. [PMID: 25363395 DOI: 10.1007/s11684-014-0353-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 07/11/2014] [Indexed: 01/30/2023]
Abstract
microRNAs (miRNAs) have played a key role in human tumorigenesis, tumor progression, and metastasis. On the one hand, miRNAs are aberrantly expressed in many types of human cancer; on the other hand, miRNAs can function as tumor suppressors or oncogenes that target many cancer-related genes. This study aimed to investigate the effects of miRNA-200c (miR-200c) on the biological behavior and mechanism of proliferation, migration, and invasion in the prostate cancer cell line Du145. In this study, Du145 cells were transfected with miR-200c mimics or negative control miR-NC by using an X-tremeGENE siRNA transfection reagent. The relative expression of miR-200c was measured by RT-PCR. The proliferation, migration, and invasion abilities of Du145 cells were detected by CCK8 assays, migration assays and invasion assays, respectively. The expressions of ZEB1, E-cadherin, and vimentin were observed by western blot. Results showed that DU145 cells exhibited a high expression of miR-200c compared with immortalized normal prostate epithelial cell RWPE-1. Du145 cells were then transfected with miR-200c mimics and displayed lower abilities of proliferation, migration, and invasion than those transfected with the negative control. The protein levels of ZEB1 and vimentin were expressed at a low extent in Du145 cells, which were transfected with miR-200c mimics; by contrast, E-cadherin was highly expressed. Hence, miR-200c could significantly inhibit the proliferation of the prostate cancer cell line Du145; likewise, miR-200c could inhibit migration and invasion by epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Runlin Shi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Renal fibrosis is the hallmark of chronic kidney disease progression and is characterized by an exaggerated wound-healing process with the production of renal scar tissue. It comprises both the glomerular and the tubulointerstitial compartments. Among the factors that contribute to kidney fibrosis, the members of the platelet-derived growth factor (PDGF) family are among the best characterized ones. They appear to be the key factors in driving renal fibrosis, independent of the underlying kidney disease. The PDGF family consists of four isoforms (PDGF-A, -B, -C, and -D) and two receptor chains (PDGFR-α and -β), which are constitutively or inducibly expressed in most renal cells. These components have an irreplaceable role in kidney development by recruitment of mesenchymal cells to the glomerular and tubulointerstitial compartments. They further regulate multiple pathophysiologic processes including cell proliferation, cell migration, expression and accumulation of extracellular matrix, production and secretion of pro- and anti-inflammatory mediators, vascular permeability, and hemodynamics. This review provides a brief update on the role of different PDGF isoforms in the development of glomerulosclerosis and tubulointerstitial fibrosis, newly identified endogeneous PDGF antagonists, and resulting potential therapies.
Collapse
|
107
|
Coordes A, Zhifeng S, Sangvatanakul V, Qian X, Lenarz M, Kaufmann AM, Albers AE. [Cancer stem cell phenotypes and miRNA: therapeutic targets in head and neck squamous cell carcinoma]. HNO 2014; 62:867-72. [PMID: 25337967 DOI: 10.1007/s00106-014-2931-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. HNSCC is caused by persistent high-risk human papillomavirus (HR-HPV) infection or excessive consumption of alcohol or tobacco. The persistently low survival rates result from local recurrences and metastases, which are probably caused by so-called tumor stem cells (TSCs). The epithelial-mesenchymal transition (EMT) or transformation is a key event in metastasis initiation and is being increasingly associated with TSCs. OBJECTIVES This review describes new therapeutic targets in HNSCC, focusing on the TSC hypothesis and EMT regulation. MATERIALS AND METHODS, RESULTS TSCs and EMT are regulated directly and indirectly via transcription factors and microRNAs (miRNAs). These miRNAs regulate multiple cellular processes and may serve as new therapeutic targets, whose modulation could increase the effectiveness of HNSCC treatments. Post-transcriptionally, miRNAs regulate transcription factors associated with EMT (ZEB1/2, EZH2, Bmi-1), tumor suppressors (p53), TSC markers (ALDH, CD44, EpCAM, p63) and both epithelial (E-cadherin) and mesenchymal markers (vimentin). CONCLUSION Alterations in HNSSC TSC miRNA expression before and after chemotherapy could potentially serve as a therapeutic control. In the long term, knowledge of a patient's individual protein expression pattern may permit application of specific chemotherapy. Such individualized therapy might prohibit the development of metastases and potentially unresectable recurrences with a high resistance to radiation and chemotherapy, thus improving the prognosis in HNSCC patients.
Collapse
Affiliation(s)
- A Coordes
- Hals-, Nasen- und Ohrenklinik, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Deutschland
| | | | | | | | | | | | | |
Collapse
|
108
|
Bao B, Azmi AS, Ali S, Zaiem F, Sarkar FH. Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:59. [PMID: 25333034 DOI: 10.3978/j.issn.2305-5839.2014.06.05] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/27/2014] [Indexed: 12/13/2022]
Abstract
Metformin is one of the most used diabetic drugs for the management of type II diabetes mellitus (DM) in the world. Increased numbers of epidemiological and clinical studies have provided convincing evidence supporting the role of metformin in the development and progression of a variety of human tumors including breast and pancreatic cancer. Substantial pre-clinical evidence from in vitro and in vivo experimental studies strongly suggests that metformin has an anti-cancer activity mediated through the regulation of several cell signaling pathways including activation of AMP kinase (AMPK), and other direct and indirect mechanisms; however, the detailed mechanism(s) has not yet been fully understood. The concept of cancer stem cells (CSCs) has gained significant attention in recent years due its identification and defining its clinical implications in many different tumors including breast cancer and pancreatic cancer. In this review, we will discuss the protective role of metformin in the development of breast and pancreatic cancers. We will further discuss the role of metformin as an anti-cancer agent, which is in part mediated through targeting CSCs. Finally, we will discuss the potential role of metformin in the modulation of tumor-associated or CSC-associated microRNAs (miRNAs) as part of the novel mechanism of action of metformin in the development and progression of breast and pancreatic cancers.
Collapse
Affiliation(s)
- Bin Bao
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Asfar S Azmi
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shadan Ali
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Feras Zaiem
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Fazlul H Sarkar
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
109
|
Chen DQ, Huang JY, Feng B, Pan BZ, De W, Wang R, Chen LB. Histone deacetylase 1/Sp1/microRNA-200b signaling accounts for maintenance of cancer stem-like cells in human lung adenocarcinoma. PLoS One 2014; 9:e109578. [PMID: 25279705 PMCID: PMC4184862 DOI: 10.1371/journal.pone.0109578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/01/2014] [Indexed: 12/22/2022] Open
Abstract
The presence of cancer stem-like cells (CSCs) is one of the mechanisms responsible for chemoresistance that has been a major hindrance towards lung adenocarcinoma (LAD) treatment. Recently, we have identified microRNA (miR)-200b as a key regulator of chemoresistance in human docetaxel-resistant LAD cells. However, whether miR-200b has effects on regulating CSCs remains largely unclear and needs to be further elucidated. Here, we showed that miR-200b was significantly downregulated in CD133+/CD326+ cells that exhibited properties of CSCs derived from docetaxel-resistant LAD cells. Also, restoration of miR-200b could inhibit maintenance and reverse chemoresistance of CSCs. Furthermore, suppressor of zeste-12 (Suz-12) was identified as a direct and functional target of miR-200b, and silencing of Suz-12 phenocopied the effects of miR-200b on CSCs. Additionally, overexpression of histone deacetylase (HDAC) 1 was identified as a pivotal mechanism responsible for miR-200b repression in CSCs through a specificity protein (Sp) 1-dependent mechanism, and restoration of miR-200b by HDAC1 repression significantly suppressed CSCs formation and reversed chemoresistance of CSCs by regulating Suz-12-E-cadherin signaling. Also, downregulation of HDAC1 or upregulation of miR-200b reduced the in vivo tumorigenicity of CSCs. Finally, Suz-12 was inversely correlated with miR-200b, positively correlated with HDAC1 and up-regulated in docetaxel-resistant LAD tissues compared with docetaxel-sensitive tissues. Taken together, the HDAC1/miR-200b/Suz-12-E-cadherin signaling might account for maintenance of CSCs and formation of chemoresistant phenotype in docetaxel-resistant LAD cells.
Collapse
Affiliation(s)
- Dong-Qin Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Jia-Yuan Huang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ban-Zhou Pan
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, P. R. China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Long-Bang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
110
|
Wen X, Deng FM, Wang J. MicroRNAs as predictive biomarkers and therapeutic targets in prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:219-230. [PMID: 25374924 PMCID: PMC4219315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023]
Abstract
Prostatectomy or irradiation is the most common traditional treatments for localized prostate cancer. In the event of recurrence and/or metastasis, androgen ablation therapy has been the mainstay treatment for many years. Although initially effective, the cancer inevitably recurs as androgen-independent PCa, a disease with limited effective treatments. Enhanced predictive biomarkers are needed at the time of diagnosis to better tailor therapies for patients. MicroRNAs are short nucleotide sequences which can complementary bind to and control gene expression at the post-transcriptional level. Recent studies have demonstrated that many miRNAs are variably expressed in cancers vs. normal tissues, including PCa. In this review, we summarize PCa-specific miRNAs that show potential for their utilization as identifiers of aggressive disease and predictors for risk of recurrence. Additionally, we discuss their potential clinical applications as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xin Wen
- Center for Health Informatics and Bioinformatics, New York University School of MedicineNew York, NY 10016
- Laura and Isaac Perlmutter Cancer Center, New York University School of MedicineNew York, NY 10016
| | - Fang-Ming Deng
- Department of Pathology, New York University School of MedicineNew York, NY 10016
| | - Jinhua Wang
- Center for Health Informatics and Bioinformatics, New York University School of MedicineNew York, NY 10016
- Laura and Isaac Perlmutter Cancer Center, New York University School of MedicineNew York, NY 10016
- Department of Pediatrics, New York University School of MedicineNew York, NY 10016
| |
Collapse
|
111
|
Nantajit D, Lin D, Li JJ. The network of epithelial-mesenchymal transition: potential new targets for tumor resistance. J Cancer Res Clin Oncol 2014; 141:1697-713. [PMID: 25270087 DOI: 10.1007/s00432-014-1840-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE In multiple cell metazoans, the ability of polarized epithelial cells to convert to motile mesenchymal cells in order to relocate to another location is governed by a unique process termed epithelial-mesenchymal transition (EMT). While being an essential process of cellular plasticity for normal tissue and organ developments, EMT is found to be involved in an array of malignant phenotypes of tumor cells including proliferation and invasion, angiogenesis, stemness of cancer cells and resistance to chemo-radiotherapy. Although EMT is being extensively studied and demonstrated to play a key role in tumor metastasis and in sustaining tumor hallmarks, there is a lack of clear picture of the overall EMT signaling network, wavering the potential clinical trials targeting EMT. METHODS In this review, we highlight the potential key therapeutic targets of EMT linked with tumor aggressiveness, hypoxia, angiogenesis and cancer stem cells, emphasizing on an emerging EMT-associated NF-κB/HER2/STAT3 pathway in radioresistance of breast cancer stem cells. RESULTS Further definition of cancer stem cell repopulation due to EMT-controlled tumor microenvironment will help to understand how tumors exploit the EMT mechanisms for their survival and expansion advantages. CONCLUSIONS The knowledge of EMT will offer more effective targets in clinical trials to treat therapy-resistant metastatic lesions.
Collapse
Affiliation(s)
- Danupon Nantajit
- Radiation Oncology Unit, Chulabhorn Hospital, Bangkok, 10210, Thailand
| | | | | |
Collapse
|
112
|
Shtivelman E, Beer TM, Evans CP. Molecular pathways and targets in prostate cancer. Oncotarget 2014; 5:7217-59. [PMID: 25277175 PMCID: PMC4202120 DOI: 10.18632/oncotarget.2406] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/28/2014] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer co-opts a unique set of cellular pathways in its initiation and progression. The heterogeneity of prostate cancers is evident at earlier stages, and has led to rigorous efforts to stratify the localized prostate cancers, so that progression to advanced stages could be predicted based upon salient features of the early disease. The deregulated androgen receptor signaling is undeniably most important in the progression of the majority of prostate tumors. It is perhaps because of the primacy of the androgen receptor governed transcriptional program in prostate epithelium cells that once this program is corrupted, the consequences of the ensuing changes in activity are pleotropic and could contribute to malignancy in multiple ways. Following localized surgical and radiation therapies, 20-40% of patients will relapse and progress, and will be treated with androgen deprivation therapies. The successful development of the new agents that inhibit androgen signaling has changed the progression free survival in hormone resistant disease, but this has not changed the almost ubiquitous development of truly resistant phenotypes in advanced prostate cancer. This review summarizes the current understanding of the molecular pathways involved in localized and metastatic prostate cancer, with an emphasis on the clinical implications of the new knowledge.
Collapse
Affiliation(s)
| | - Tomasz M. Beer
- Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Christopher P. Evans
- Department of Urology and Comprehensive Cancer Center, University of California Davis, Davis, CA
| |
Collapse
|
113
|
Wu Q, Wang R, Yang Q, Hou X, Chen S, Hou Y, Chen C, Yang Y, Miele L, Sarkar FH, Chen Y, Wang Z. Chemoresistance to gemcitabine in hepatoma cells induces epithelial-mesenchymal transition and involves activation of PDGF-D pathway. Oncotarget 2014; 4:1999-2009. [PMID: 24158561 PMCID: PMC3875765 DOI: 10.18632/oncotarget.1471] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignances in the world and has high mortality in part due to development of acquired drug resistance. Therefore, it is urgent to investigate the molecular mechanism of drug resistance in HCC. To explore the underlying mechanism of drug resistance in HCC, we developed gemcitabine-resistant (GR) HCC cells. We used multiple methods to achieve our goal including RT-PCR, Western blotting analysis, transfection, Wound-healing assay, migration and invasion assay. We observed that gemcitabine-resistant cells acquired epithelial-mesenchymal transition (EMT) phenotype. Moreover, we found that PDGF-D is highly expressed in GR cells. Furthermore, down-regulation of PDGF-D in GR cells led to partial reversal of the EMT phenotype. Our findings demonstrated that targeting PDGF-D could be a novel strategy to overcome gemcitabine resistance in HCC.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Bitting RL, Schaeffer D, Somarelli JA, Garcia-Blanco MA, Armstrong AJ. The role of epithelial plasticity in prostate cancer dissemination and treatment resistance. Cancer Metastasis Rev 2014; 33:441-68. [PMID: 24414193 PMCID: PMC4230790 DOI: 10.1007/s10555-013-9483-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nearly 30,000 men die annually in the USA of prostate cancer, nearly uniformly from metastatic dissemination. Despite recent advances in hormonal, immunologic, bone-targeted, and cytotoxic chemotherapies, treatment resistance and further dissemination are inevitable in men with metastatic disease. Emerging data suggests that the phenomenon of epithelial plasticity, encompassing both reversible mesenchymal transitions and acquisition of stemness traits, may underlie this lethal biology of dissemination and treatment resistance. Understanding the molecular underpinnings of this cellular plasticity from preclinical models of prostate cancer and from biomarker studies of human metastatic prostate cancer has provided clues to novel therapeutic approaches that may delay or prevent metastatic disease and lethality over time. This review will discuss the preclinical and clinical evidence for epithelial plasticity in this rapidly changing field and relate this to clinical phenotype and resistance in prostate cancer while suggesting novel therapeutic approaches.
Collapse
Affiliation(s)
- Rhonda L. Bitting
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, NC 27710, USA. Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA
| | - Daneen Schaeffer
- Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Jason A. Somarelli
- Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Mariano A. Garcia-Blanco
- Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Andrew J. Armstrong
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, NC 27710, USA. Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|
115
|
Lee KH, Lin FC, Hsu TI, Lin JT, Guo JH, Tsai CH, Lee YC, Lee YC, Chen CL, Hsiao M, Lu PJ. MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2055-2066. [PMID: 24915000 DOI: 10.1016/j.bbamcr.2014.06.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/15/2022]
Abstract
Upregulation of Pin1 was shown to advance the functioning of several oncogenic pathways. It was recently shown that Pin1 is potentially an excellent prognostic marker and can also serve as a novel therapeutic target for prostate cancer. However, the molecular mechanism of Pin1 overexpression in prostate cancer is still unclear. In the present study, we showed that the mRNA expression levels of Pin1 were not correlated with Pin1 protein levels in prostate cell lines which indicated that Pin1 may be regulated at the post-transcriptional level. A key player in post-transcriptional regulation is represented by microRNAs (miRNAs) that negatively regulate expressions of protein-coding genes at the post-transcriptional level. A bioinformatics analysis revealed that miR-296-5p has a conserved binding site in the Pin1 3'-untranslated region (UTR). A luciferase reporter assay demonstrated that the seed region of miR-296-5p directly interacts with the 3'-UTR of Pin1 mRNA. Moreover, miR-296-5p expression was found to be inversely correlated with Pin1 expression in prostate cancer cell lines and prostate cancer tissues. Furthermore, restoration of miR-296-5p or the knockdown of Pin1 had the same effect on the inhibition of the ability of cell proliferation and anchorage-independent growth of prostate cancer cell lines. Our results support miR-296-5p playing a tumor-suppressive role by targeting Pin1 and implicate potential effects of miR-296-5p on the prognosis and clinical application to prostate cancer therapy.
Collapse
Affiliation(s)
- Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Forn-Chia Lin
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan; Department of Radiation Oncology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Tai-I Hsu
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Tai Lin
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan; Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jing-Hong Guo
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Hsun Tsai
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Lee
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chieh Lee
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
116
|
Avci CB, Harman E, Dodurga Y, Susluer SY, Gunduz C. Therapeutic potential of an anti-diabetic drug, metformin: alteration of miRNA expression in prostate cancer cells. Asian Pac J Cancer Prev 2014; 14:765-8. [PMID: 23621234 DOI: 10.7314/apjcp.2013.14.2.765] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND AIMS Prostate cancer is the most commonly diagnosed cancer in males in many populations. Metformin is the most widely used anti-diabetic drug in the world, and there is increasing evidence of a potential efficacy of this agent as an anti-cancer drug. Metformin inhibits the proliferation of a range of cancer cells including prostate, colon, breast, ovarian, and glioma lines. MicroRNAs (miRNAs) are a class of small, non- coding, single-stranded RNAs that downregulate gene expression. We aimed to evaluate the effects of metformin treatment on changes in miRNA expression in PC-3 cells, and possible associations with biological behaviour. MATERIALS AND METHODS Average cell viability and cytotoxic effects of metformin were investigated at 24 hour intervals for three days using the xCELLigence system. The IC50 dose of metformin in the PC-3 cells was found to be 5 mM. RNA samples were used for analysis using custom multi-species microarrays containing 1209 probes covering 1221 human mature microRNAs present in miRBase 16.0 database. RESULTS Among the human miRNAs investigated by the arrays, 10 miRNAs were up-regulated and 12 miRNAs were down-regulated in the metformin-treated group as compared to the control group. In conclusion, expression changes in miRNAs of miR-146a, miR-100, miR-425, miR-193a-3p and, miR-106b in metformin-treated cells may be important. This study may emphasize a new role of metformin on the regulation of miRNAs in prostate cancer.
Collapse
Affiliation(s)
- Cigir Biray Avci
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
117
|
Farooqi AA, Yaylim I, Ozkan NE, Zaman F, Halim TA, Chang HW. Restoring TRAIL mediated signaling in ovarian cancer cells. Arch Immunol Ther Exp (Warsz) 2014; 62:459-74. [PMID: 25030086 DOI: 10.1007/s00005-014-0307-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 06/26/2014] [Indexed: 02/08/2023]
Abstract
Ovarian cancer has emerged as a multifaceted and genomically complex disease. Genetic/epigenetic mutations, suppression of tumor suppressors, overexpression of oncogenes, rewiring of intracellular signaling cascades and loss of apoptosis are some of the deeply studied mechanisms. In vitro and in vivo studies have highlighted different molecular mechanisms that regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis in ovarian cancer. In this review, we bring to limelight, expansion in understanding systematical characterization of ovarian cancer cells has led to the rapid development of new drugs and treatments to target negative regulators of TRAIL mediated signaling pathway. Wide ranging synthetic and natural agents have been shown to stimulate mRNA and protein expression of death receptors. This review is compartmentalized into programmed cell death protein 4, platelet-derived growth factor signaling and miRNA control of TRAIL mediated signaling to ovarian cancer. Mapatumumab and PRO95780 have been tested for efficacy against ovarian cancer. Use of high-throughput screening assays will aid in dissecting the heterogeneity of this disease and increasing a long-term survival which might be achieved by translating rapidly accumulating information obtained from molecular and cellular studies to clinic researches.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, RLMC, 35 km Ferozepur Road, Lahore, Pakistan,
| | | | | | | | | | | |
Collapse
|
118
|
Dhayat SA, Mardin WA, Köhler G, Bahde R, Vowinkel T, Wolters H, Senninger N, Haier J, Mees ST. The microRNA-200 family--a potential diagnostic marker in hepatocellular carcinoma? J Surg Oncol 2014; 110:430-8. [PMID: 24895326 DOI: 10.1002/jso.23668] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/10/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) represents the main cause of death among patients with cirrhotic liver disease, but little is known about mechanisms of cirrhosis associated carcinogenesis. We investigated the diagnostic impact of microRNA-200 (miR-200) family members as important epigenetic regulators of epithelial-mesenchymal transition (EMT) to differentiate between patients with HCC and liver cirrhosis. METHODS Expression of the miR-200 family was investigated by qRT-PCR in specimens of HCC patients with and without cirrhosis. Benign specimens with and without cirrhosis served as controls. Expression of the EMT markers ZEB-1, E-cadherin and vimentin was examined using immunohistochemistry. RESULTS MiR-200a and miR-200b were significantly downregulated in HCC (miR-200a: -40.1% (P = 0.0002); miR-200b: -52.3% (P = 0.0002)), and in HCC cirrhotic tissue (miR-200a: -40.2% (P = 0.004); miR-200b: -51.1% (P = 0.007)) compared to liver cirrhosis. Spearman's Rho analysis revealed a significant negative correlation of miR-200a and miR-200b to the expression of the mesenchymal markers Vimentin (P < 0.007) and ZEB-1 (P < 0.0005) and a significant positive correlation to the epithelial marker E-cadherin (P < 0.0002). CONCLUSIONS MiR-200 family members and their targets are significantly deregulated in HCC and liver cirrhosis. The miR-200 family is able to distinguish between cirrhotic and HCC tissue and could serve as an early marker for cirrhosis-associated HCC.
Collapse
Affiliation(s)
- Sameer A Dhayat
- Department of General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Jacob S, Nayak S, Fernandes G, Barai RS, Menon S, Chaudhari UK, Kholkute SD, Sachdeva G. Androgen receptor as a regulator of ZEB2 expression and its implications in epithelial-to-mesenchymal transition in prostate cancer. Endocr Relat Cancer 2014; 21:473-86. [PMID: 24812058 DOI: 10.1530/erc-13-0514] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Zinc finger E-box-binding protein 2 (ZEB2) is known to help mediate the epithelial-to-mesenchymal transition, and thereby it facilitates cancer metastasis. This study was initiated to explore whether ZEB2 expression differs in prostate cancer (PCa, n=7) and benign prostatic hyperplasia (BPH, n=7) tissues. In PCa tissues, the levels of both immunoreactive ZEB2 and androgen receptor (AR) were found to be significantly higher (P<0.05) when compared with BPH tissues. Co-regulation of AR and ZEB2 prompted us to investigate the role of androgenic stimuli in ZEB2 expression. ZEB2 expression was found to be significantly (P<0.05) upregulated after androgen stimulation and downregulated following AR silencing in LNCaP cells, an androgen-dependent PCa cell line. This finding suggested AR as a positive regulator of ZEB2 expression in androgen-dependent cells. Paradoxically, androgen-independent (AI) cell lines PC3 and DU145, known to possess low AR levels, showed significantly (P<0.05) higher expression of ZEB2 compared with LNCaP cells. Furthermore, forced expression of AR in PC3 (PC3-AR) and DU145 (DU-AR) cells led to reductions in ZEB2 expression, invasiveness, and migration. These cells also exhibited an increase in the levels of E-cadherin (a transcriptional target of ZEB2). Co-transfection of AR and ZEB2 cDNA constructs prevented the decline in invasiveness and migration to a significant extent. Additionally, ZEB2 downregulation was associated with an increase in miR200a/miR200b levels in PC3-AR cells and with a decrease in miR200a/miR200b levels in AR-silenced LNCaP cells. Thus, AR acts as a positive regulator of ZEB2 expression in androgen-dependent cells and as a negative regulator in AI PCa cells.
Collapse
MESH Headings
- Androgens/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Dihydrotestosterone/pharmacology
- Epithelial-Mesenchymal Transition
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Immunoenzyme Techniques
- Male
- MicroRNAs/genetics
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Prostatic Hyperplasia/drug therapy
- Prostatic Hyperplasia/genetics
- Prostatic Hyperplasia/metabolism
- Prostatic Hyperplasia/pathology
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Androgen/chemistry
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Wound Healing
- Zinc Finger E-box Binding Homeobox 2
Collapse
Affiliation(s)
- Sheeba Jacob
- Primate Biology Laboratory, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research, JM Street, Parel, Mumbai 400012, India GS Medical College and KEM Hospital, Parel, Mumbai 400012, India The Centre for Medical Bioinformatics, NIRRH, Parel, Mumbai 400012, India Department of Pathology, Tata Memorial Hospital, Mumbai 400012, India
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Kahn B, Collazo J, Kyprianou N. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int J Biol Sci 2014; 10:588-95. [PMID: 24948871 PMCID: PMC4062951 DOI: 10.7150/ijbs.8671] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/01/2014] [Indexed: 12/21/2022] Open
Abstract
The role of the androgen receptor (AR) signaling axis in the progression of prostate cancer is a cornerstone to our understanding of the molecular mechanisms causing castration-resistant prostate cancer (CRPC). Resistance of advanced prostate cancer to available treatment options makes it a clinical challenge that results in approximately 30,000 deaths of American men every year. Since the historic discovery by Dr. Huggins more than 70 years ago, androgen deprivation therapy (ADT) has been the principal treatment for advanced prostate cancer. Initially, ADT induces apoptosis of androgen-dependent prostate cancer epithelial cells and regression of androgen-dependent tumors. However, the majority of patients with advanced prostate cancer progress and become refractory to ADT due to emergence of androgen-independent prostate cancer cells driven by aberrant AR activation. Microtubule-targeting agents such as taxanes, docetaxel and paclitaxel, have enjoyed success in the treatment of metastatic prostate cancer; although new, recently designed mitosis-specific agents, such as the polo-kinase and kinesin-inhibitors, have yielded clinically disappointing results. Docetaxel, as a first-line chemotherapy, improves prostate cancer patient survival by months, but tumor resistance to these therapeutic agents inevitably develops. On a molecular level, progression to CRPC is characterized by aberrant AR expression, de novo intraprostatic androgen production, and cross talk with other oncogenic pathways. Emerging evidence suggests that reactivation of epithelial-mesenchymal-transition (EMT) processes may facilitate the development of not only prostate cancer but also prostate cancer metastases. EMT is characterized by gain of mesenchymal characteristics and invasiveness accompanied by loss of cell polarity, with an increasing number of studies focusing on the direct involvement of androgen-AR signaling axis in EMT, tumor progression, and therapeutic resistance. In this article, we discuss the current knowledge of mechanisms via which the AR signaling drives therapeutic resistance in prostate cancer metastatic progression and the novel therapeutic interventions targeting AR in CRPC.
Collapse
Affiliation(s)
| | | | - Natasha Kyprianou
- Departments of Urology and Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
121
|
Dietrich D, Meller S, Uhl B, Ralla B, Stephan C, Jung K, Ellinger J, Kristiansen G. Nucleic acid-based tissue biomarkers of urologic malignancies. Crit Rev Clin Lab Sci 2014; 51:173-99. [DOI: 10.3109/10408363.2014.906130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
122
|
|
123
|
WANG MIN, REN DONG, GUO WEI, WANG ZEYU, HUANG SHUAI, DU HONG, SONG LIBING, PENG XINSHENG. Loss of miR-100 enhances migration, invasion, epithelialmesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2. Int J Oncol 2014; 45:362-72. [DOI: 10.3892/ijo.2014.2413] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/17/2014] [Indexed: 11/06/2022] Open
|
124
|
Abstract
Prostate cancer is the second leading cause of cancer related death in American men. Androgen deprivation therapy (ADT) is used to treat patients with aggressive prostate cancers. After androgen deprivation therapy, prostate cancers slowly progress to an androgen-independent status. Taxanes (e.g., docetaxel) are used as standard treatments for androgen-independent prostate cancers. However, these chemotherapeutic agents will eventually become ineffective due to the development of drug resistance. A microRNA (miRNA) is a small noncoding RNA molecule, which can regulate gene expression at the post-transcription level. miRNAs elicit their effects by binding to the 3'-untranslated region (3'-UTR) of their target mRNAs, leading to the inhibition of translation or the degradation of the mRNAs. miRNAs have received increasing attention as targets for cancer therapy, as they can target multiple signaling pathways related to tumor progression, metastasis, invasion, and chemoresistance. Emerging evidence suggests that aberrant expression of miRNAs can lead to the development of resistant prostate cancers. Here, we discuss the roles of miRNAs in the development of resistant prostate cancers and their involvement in various drug resistant mechanisms including androgen signaling, apoptosis avoidance, multiple drug resistance (MDR) transporters, epithelialmesenchymal transition (EMT), and cancer stem cells (CSCs). In addition, we also discuss strategies for treating resistant prostate cancers by targeting specific miRNAs. Different delivery strategies are also discussed with focus on those that have been successfully used in human clinical trials.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University , Hampton, Virginia 23668, United States
| | | |
Collapse
|
125
|
Wang T, Xuan X, Pian L, Gao P, Hu H, Zheng Y, Zang W, Zhao G. Notch-1-mediated esophageal carcinoma EC-9706 cell invasion and metastasis by inducing epithelial-mesenchymal transition through Snail. Tumour Biol 2014; 35:1193-201. [PMID: 24022665 DOI: 10.1007/s13277-013-1159-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/28/2013] [Indexed: 12/19/2022] Open
Abstract
Notch has recently been shown to promote epithelial-to-mesenchymal transition (EMT) by involving in the EMT process that occurs during tumor progression and converts polarized epithelial cells into motile, invasive cells. However, it is still unclear whether the Notch signaling pathway is associated with the regulation of EMT in esophageal carcinoma. The present study explored Notch-1-mediated esophageal carcinoma EC-9706 cell invasion and metastasis by inducing epithelial–mesenchymal transition through Snail. The results demonstrated that the inhibition of Notch-1 expression in the esophageal carcinoma cell line EC-9706 could suppress the occurrence of EMT and at the same time could decrease the invasion and metastasis ability of the EC-9706 cells, indicative of its role in EMT. Snail is a transcriptional repressor of E-cadherin. We found that with the inhibition of Notch-1 expression in the esophageal carcinoma cell line EC-9706, the expression of Snail also decreased. Mechanistic studies showed that the up-expression of Snail in the EC-9706 cells restored the suppression of EMT regulated by Notch-1 inhibition, suggesting the role of Snail in Notch-1-mediated EMT. At the same time, the up-expression of Snail in the EC-9706 cells could also rescue the invasion and metastasis ability inhibited by Notch-1 siRNA. Taken together, our results had revealed that Notch-1 could participate in the invasion and metastasis of esophageal carcinoma through EMT via Snail. This study indicated that Notch-1 might be a useful target for esophageal carcinoma prevention and therapy.
Collapse
|
126
|
Santos JI, Teixeira AL, Dias F, Maurício J, Lobo F, Morais A, Medeiros R. Influence of peripheral whole-blood microRNA-7 and microRNA-221 high expression levels on the acquisition of castration-resistant prostate cancer: evidences from in vitro and in vivo studies. Tumour Biol 2014; 35:7105-13. [PMID: 24760272 DOI: 10.1007/s13277-014-1918-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022] Open
Abstract
Prostate cancer (PC) is the more frequently diagnosed neoplasia in men in developed countries. The evolution of PC to castration-resistant prostate cancer (CRPC) represents real problems of clinical management, in consequence to the limited therapeutic options. MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in gene expression and function regulation. The increased evidence that miRNAs are involved in cancer development and progression has made them potential biomarkers for cancer diagnosis, prognosis, and aggressiveness. Our purpose was to identify a miRNA expression profile associated with the development of CRPC. We firstly observed a miRNA expression profile differentially expressed between the castration-resistant (CR) PC3 cell line and the hormone-sensitive LnCaP cell line, where miR-7, miR-221, and miR-222 were upregulated in PC3 (11.3-fold increase, P = 0.012; 11.3-fold increase, P = 0.002; 8.6-fold increase, P = 0.002, respectively). We also observed that the trend of miR-1233 expression levels was higher in PC3 (3.7-fold increase, P = 0.057). These miRNAs differentially expressed in vitro were studied in a peripheral whole-blood samples from PC patients. We observed that patients presenting an early CR acquisition (≤ 20 months) had higher expression levels of miR-7 and miR-221 (P = 0.034 and P = 0.036, respectively). Furthermore, we found that patients diagnosed with high-Gleason score tumors and presenting simultaneous higher miR-7 expression levels have a significant reduce time to CR compared with patients who present lower miR-7 expression levels (11 vs. 51 months, log-rank test P = 0.004). We also found that patients diagnosed with high-Gleason score tumors and higher expression levels of miR-221 have an early CRPC compared to patients with lower miR-221 expression levels (10 vs. 46 months, log-rank test P = 0.012). We observed a significantly lower overall survival in patients with higher peripheral whole-blood expression levels of miR-7 (28 vs. 116 months, log-rank test P = 0.001). Our results suggest that miR-7 and miR-221 peripheral whole-blood expression levels can be potential predictive biomarkers of CRPC development.
Collapse
Affiliation(s)
- Juliana I Santos
- Molecular Oncology Group, Portuguese Institute of Oncology of Porto, Rua Dr. António Bernardino de Almeida, Porto 4200-072, Portugal
| | | | | | | | | | | | | |
Collapse
|
127
|
Lu YX, Yuan L, Xue XL, Zhou M, Liu Y, Zhang C, Li JP, Zheng L, Hong M, Li XN. Regulation of colorectal carcinoma stemness, growth, and metastasis by an miR-200c-Sox2-negative feedback loop mechanism. Clin Cancer Res 2014; 20:2631-42. [PMID: 24658157 DOI: 10.1158/1078-0432.ccr-13-2348] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To elucidate a novel mechanism of miR-200c in the regulation of stemness, growth, and metastasis in colorectal carcinoma (CRC). EXPERIMENTAL DESIGN Quantitative reverse transcription PCR was used to quantify miR-200c expression in CRC cell lines and tissues. A luciferase assay was adopted for the target evaluation. The functional effects of miR-200c in CRC cells were assessed by its forced or inhibited expression using lentiviruses. RESULTS MiR-200c was statistically lower in CRC clinical specimens and highly metastatic CRC cell lines compared with their counterparts. Sox2 was validated as a target for miR-200c. The knockdown of miR-200c significantly enhanced proliferation, migration, and invasion in CRC cell lines, whereas the upregulation of miR-200c exhibited an inverse effect. Moreover, rescue of Sox2 expression could abolish the effect of the upregulation of miR-200c. In addition, the reduction of miR-200c increased the expression of CRC stem cell markers and the sphere-forming capacity of CRC cell lines. Further study has shown that miR-200c and Sox2 reciprocally control their expression through a feedback loop. MiR-200c suppresses the expression of Sox2 to block the activity of the phosphoinositide 3-kinase (PI3K)-AKT pathway. CONCLUSION Our findings indicate that miR-200c regulates Sox2 expression through a feedback loop and is associated with CRC stemness, growth, and metastasis.
Collapse
Affiliation(s)
- Yan-Xia Lu
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yuan
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Lei Xue
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zhou
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Liu
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Zhang
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, ChinaAuthors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing-Ping Li
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zheng
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Hong
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Nong Li
- Authors' Affiliations: Department of Pathology, School of Basic Medical Sciences, Department of Pathology, Nanfang Hospital, Southern Medical University, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou; and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
128
|
Chen Y, Zhang L. WITHDRAWN: MiR-200 family and cancer: Function, regulation and signaling. Surg Oncol 2014:S0960-7404(14)00010-3. [PMID: 24679605 DOI: 10.1016/j.suronc.2014.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/29/2014] [Accepted: 03/05/2014] [Indexed: 11/26/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Ying Chen
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; National Clinical Research Centre of Cancer, China.
| | - Lei Zhang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; National Clinical Research Centre of Cancer, China
| |
Collapse
|
129
|
Batra JS, Girdhani S, Hlatky L. A Quest to Identify Prostate Cancer Circulating Biomarkers with a Bench-to-Bedside Potential. J Biomark 2014; 2014:321680. [PMID: 26317031 PMCID: PMC4437363 DOI: 10.1155/2014/321680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 02/01/2023] Open
Abstract
Prostate cancer (PCA) is a major health concern in current times. Ever since prostate specific antigen (PSA) was introduced in clinical practice almost three decades ago, the diagnosis and management of PCA have been revolutionized. With time, concerns arose as to the inherent shortcomings of this biomarker and alternatives were actively sought. Over the past decade new PCA biomarkers have been identified in tissue, blood, urine, and other body fluids that offer improved specificity and supplement our knowledge of disease progression. This review focuses on superiority of circulating biomarkers over tissue biomarkers due to the advantages of being more readily accessible, minimally invasive (blood) or noninvasive (urine), accessible for sampling on regular intervals, and easily utilized for follow-up after surgery or other treatment modalities. Some of the circulating biomarkers like PCA3, IL-6, and TMPRSS2-ERG are now detectable by commercially available kits while others like microRNAs (miR-21, -221, -141) and exosomes hold potential to become available as multiplexed assays. In this paper, we will review some of these potential candidate circulating biomarkers that either individually or in combination, once validated with large-scale trials, may eventually get utilized clinically for improved diagnosis, risk stratification, and treatment.
Collapse
Affiliation(s)
- Jaspreet Singh Batra
- Center of Cancer Systems Biology, GeneSys Research Institute, Tufts University, School of Medicine, 736 Cambridge Street, SEMC-CBR112, Boston, MA 02135, USA
| | - Swati Girdhani
- Center of Cancer Systems Biology, GeneSys Research Institute, Tufts University, School of Medicine, 736 Cambridge Street, SEMC-CBR112, Boston, MA 02135, USA
| | - Lynn Hlatky
- Center of Cancer Systems Biology, GeneSys Research Institute, Tufts University, School of Medicine, 736 Cambridge Street, SEMC-CBR112, Boston, MA 02135, USA
| |
Collapse
|
130
|
Guo F, Parker Kerrigan BC, Yang D, Hu L, Shmulevich I, Sood AK, Xue F, Zhang W. Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. J Hematol Oncol 2014; 7:19. [PMID: 24598126 PMCID: PMC3973872 DOI: 10.1186/1756-8722-7-19] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reverse process, mesenchymal-to-epithelial transition (MET), play important roles in embryogenesis, stem cell biology, and cancer progression. EMT can be regulated by many signaling pathways and regulatory transcriptional networks. Furthermore, post-transcriptional regulatory networks regulate EMT; these networks include the long non-coding RNA (lncRNA) and microRNA (miRNA) families. Specifically, the miR-200 family, miR-101, miR-506, and several lncRNAs have been found to regulate EMT. Recent studies have illustrated that several lncRNAs are overexpressed in various cancers and that they can promote tumor metastasis by inducing EMT. MiRNA controls EMT by regulating EMT transcription factors or other EMT regulators, suggesting that lncRNAs and miRNA are novel therapeutic targets for the treatment of cancer. Further efforts have shown that non-coding-mediated EMT regulation is closely associated with epigenetic regulation through promoter methylation (e.g., miR-200 or miR-506) and protein regulation (e.g., SET8 via miR-502). The formation of gene fusions has also been found to promote EMT in prostate cancer. In this review, we discuss the post-transcriptional regulatory network that is involved in EMT and MET and how targeting EMT and MET may provide effective therapeutics for human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengxia Xue
- Department of Pathology, Unit 85, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | | |
Collapse
|
131
|
Yungang W, Xiaoyu L, Pang T, Wenming L, Pan X. miR-370 targeted FoxM1 functions as a tumor suppressor in laryngeal squamous cell carcinoma (LSCC). Biomed Pharmacother 2014; 68:149-154. [PMID: 24055400 DOI: 10.1016/j.biopha.2013.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/10/2013] [Indexed: 02/02/2023] Open
Abstract
microRNAs, a family of small non-coding RNAs, involve in the pathogenesis of several types of cancers, including laryngeal squamous cell carcinoma (LSCC). MiR-370 is frequently aberrant expressed in various types of human cancer including LSCC. However, the role for miR-370 in LSCC remains elusive. Here, we demonstrate that miR-370 was down-regulated in human LSCC tissues. Furthermore, there was an inverse relationship between Forkhead Box ml (FoxM1), which was up-regulated and miR-370 expression in LSCC tissues. FoxM1 was subsequently predicted by bioinformatics and verified to be a target of miR-370 by Luciferase reporter assay. Restored expression of miR-370 in Hep2 cells significantly inhibited cell proliferation. In conclusion, our results suggest that miR-370 may function as a tumor suppressor in LSCC through downregulation of FoxM1, suggesting that miR-370 could serve as a novel potential maker for LSCC therapy.
Collapse
Affiliation(s)
- Wu Yungang
- Department of Otolaryngology-Head and Neck Surgery, Qi-Lu Hospital, Shandong University, Jinan, Shandong Province, PR China; Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Jining Medical University, Jining, Shandong Province, PR China
| | - Li Xiaoyu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Jining Medical University, Jining, Shandong Province, PR China
| | - Taizhong Pang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Jining Medical University, Jining, Shandong Province, PR China
| | - Li Wenming
- Department of Otolaryngology-Head and Neck Surgery, Qi-Lu Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Xinliang Pan
- Department of Otolaryngology-Head and Neck Surgery, Qi-Lu Hospital, Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
132
|
Fu Y, Liu X, Zhou N, Du L, Sun Y, Zhang X, Ge Y. MicroRNA-200b Stimulates Tumour Growth in TGFBR2-Null Colorectal Cancers by Negatively Regulating p27/kip1. J Cell Physiol 2014; 229:772-82. [DOI: 10.1002/jcp.24497] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/16/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Yuxuan Fu
- Department of Physiology; Nanjing Medical University; Nanjing People's Republic of China
| | - Xianghua Liu
- Department of Biochemistry and Molecular Biology; Nanjing Medical University; Nanjing People's Republic of China
| | - Ningtian Zhou
- Department of Cardiology; First Affiliated Hospital of Nanjing Medical University; Nanjing People's Republic of China
| | - Lijian Du
- The Laboratory Center for Basic Medical Sciences; Nanjing Medical University; Nanjing People's Republic of China
| | - Yu Sun
- Department of Orthopedics; Clinical Medical College of Yangzhou University; Subei People's Hospital of Jiangsu Province; Yangzhou People's Republic of China
| | - Xiang Zhang
- Department of Physiology; Nanjing Medical University; Nanjing People's Republic of China
| | - Yingbin Ge
- Department of Physiology; Nanjing Medical University; Nanjing People's Republic of China
| |
Collapse
|
133
|
Sethi S, Li Y, Sarkar FH. Regulating miRNA by natural agents as a new strategy for cancer treatment. Curr Drug Targets 2014; 14:1167-74. [PMID: 23834152 DOI: 10.2174/13894501113149990189] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small single-strand non-coding endogenous RNAs that regulate gene expression by multiple mechanisms. Recent evidence suggests that miRNAs are critically involved in the pathogenesis, evolution, and progression of cancer. The miRNAs are also crucial for the regulation of cancer stem cells (CSCs). In addition, miRNAs are known to control the processes of Epithelial-to-Mesenchymal Transition (EMT) of cancer cells. This evidence suggests that miRNAs could serve as targets in cancer treatment, and as such manipulating miRNAs could be useful for the killing CSCs or reversal of EMT phenotype of cancer cells. Hence, targeting miRNAs, which are deregulated in cancer, could be a promising strategy for cancer therapy. Recently, the regulation of miRNAs by natural, nontoxic chemopreventive agents including curcumin, resveratrol, isoflavones, (-)-epigallocatechin-3-gallate (EGCG), lycopene, 3,3'- diindolylmethane (DIM), and indole-3-carbinol (I3C) has been described. Therefore, natural agents could inhibit cancer progression, increase drug sensitivity, reverse EMT, and prevent metastasis though modulation of miRNAs, which will provide a newer therapeutic approach for cancer treatment especially when combined with conventional therapeutics.
Collapse
Affiliation(s)
- Sajiv Sethi
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
134
|
Lu Y, Lu J, Li X, Zhu H, Fan X, Zhu S, Wang Y, Guo Q, Wang L, Huang Y, Zhu M, Wang Z. MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell. BMC Cancer 2014; 14:85. [PMID: 24521357 PMCID: PMC3923443 DOI: 10.1186/1471-2407-14-85] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/27/2014] [Indexed: 12/24/2022] Open
Abstract
Background Pancreatic cancer is one of the most aggressive cancers, and the aggressiveness of pancreatic cancer is in part due to its intrinsic and extrinsic drug resistance characteristics, which are also associated with the acquisition of epithelial-to-mesenchymal transition (EMT). Increasing evidence suggests that EMT-type cells share many biological characteristics with cancer stem-like cells. And miR-200 has been identified as a powerful regulator of EMT. Methods Cancer Stem Cells (CSCs) of human pancreatic cancer cell line PANC-1 were processed for CD24, CD44 and ESA multi-colorstaining, and sorted out on a BD FACS Aria II machine. RT-qPCR was performed using the miScript PCR Kit to assay the expression of miR-200 family. In order to find the role of miR-200a in the process of EMT, miR-200a mimic was transfected to CSCs. Results Pancreatic cancer cells with EMT phenotype displayed stem-like cell features characterized by the expression of cell surface markers CD24, CD44 and epithelial-specific antigen (ESA), which was associated with decreased expression of miR-200a. Moreover, overexpression of miR-200a was resulted in down-regulation of N-cadherin, ZEB1 and vimentin, but up-regulation of E-cadherin. In addition, miR-200a overexpression inhibited cell migration and invasion in CSCs. Conclusion In our study, we found that miR-200a played an important role in linking the characteristics of cancer stem-like cells with EMT-like cell signatures in pancreatic cancer. Selective elimination of cancer stem-like cells by reversing the EMT phenotype to mesenchymal-to-epithelial transition (MET) phenotype using novel agents would be useful for prevention and/or treatment of pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mingyan Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, P, R, China.
| | | |
Collapse
|
135
|
Ye N, Wang B, Quan ZF, Pan HB, Zhang ML, Yan QG. The Research Progress of the Interactions between miRNA and Wnt/beta-catenin Signaling Pathway in Breast Cancer of Human and Mice. Asian Pac J Cancer Prev 2014; 15:1075-9. [DOI: 10.7314/apjcp.2014.15.3.1075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
136
|
Kim J, Morley S, Le M, Bedoret D, Umetsu DT, Di Vizio D, Freeman MR. Enhanced shedding of extracellular vesicles from amoeboid prostate cancer cells: potential effects on the tumor microenvironment. Cancer Biol Ther 2014; 15:409-18. [PMID: 24423651 DOI: 10.4161/cbt.27627] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gene encoding the cytoskeletal regulator DIAPH3 is lost at high frequency in metastatic prostate cancer, and DIAPH3 silencing evokes a transition to an amoeboid tumor phenotype in multiple cell backgrounds. This amoeboid transformation is accompanied by increased tumor cell migration, invasion, and metastasis. DIAPH3 silencing also promotes the formation of atypically large (> 1 μm) membrane blebs that can be shed as extracellular vesicles (EV) containing bioactive cargo. Whether loss of DIAPH3 also stimulates the release of nano-sized EV (e.g., exosomes) is not established. Here we examined the mechanism of release and potential biological functions of EV shed from DIAPH3-silenced and other prostate cancer cells. We observed that stimulation of LNCaP cells with the prostate stroma-derived growth factor heparin-binding EGF-like growth factor (HB-EGF), combined with p38MAPK inhibition caused EV shedding, a process mediated by ERK1/2 hyperactivation. DIAPH3 silencing in DU145 cells also increased rates of EV production. EV isolated from DIAPH3-silenced cells activated AKT1 and androgen signaling, increased proliferation of recipient tumor cells, and suppressed proliferation of human macrophages and peripheral blood mononuclear cells. DU145 EV contained miR-125a, which suppressed AKT1 expression and proliferation in recipient human peripheral blood mononuclear cells and macrophages. Our findings suggest that EV produced as a result of DIAPH3 loss or growth factor stimulation may condition the tumor microenvironment through multiple mechanisms, including the proliferation of cancer cells and suppression of tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Jayoung Kim
- Division of Cancer Biology and Therapeutics; Departments of Surgery, Pathology and Laboratory Medicine, and Biomedical Sciences; Samuel Oschin Comprehensive Cancer Institute; Cedars-Sinai Medical Center; Los Angeles, CA USA; Urological Diseases Research Center; Boston Children's Hospital; Boston, MA USA; Department of Surgery; Harvard Medical School; Boston, MA USA
| | - Samantha Morley
- Urological Diseases Research Center; Boston Children's Hospital; Boston, MA USA; Department of Surgery; Harvard Medical School; Boston, MA USA
| | - Minh Le
- Program in Cellular and Molecular Medicine; Boston Children's Hospital; Harvard Medical School; Boston, MA USA
| | - Denis Bedoret
- Division of Immunology; Boston Children's Hospital; Harvard Medical School; Boston, MA USA
| | - Dale T Umetsu
- Division of Immunology; Boston Children's Hospital; Harvard Medical School; Boston, MA USA
| | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics; Departments of Surgery, Pathology and Laboratory Medicine, and Biomedical Sciences; Samuel Oschin Comprehensive Cancer Institute; Cedars-Sinai Medical Center; Los Angeles, CA USA; Urological Diseases Research Center; Boston Children's Hospital; Boston, MA USA; Department of Surgery; Harvard Medical School; Boston, MA USA
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics; Departments of Surgery, Pathology and Laboratory Medicine, and Biomedical Sciences; Samuel Oschin Comprehensive Cancer Institute; Cedars-Sinai Medical Center; Los Angeles, CA USA; Urological Diseases Research Center; Boston Children's Hospital; Boston, MA USA; Department of Surgery; Harvard Medical School; Boston, MA USA
| |
Collapse
|
137
|
The Role of Cancer Stem(–Like) Cells and Epithelial-to-Mesenchymal Transition in Spreading Head and Neck Squamous Cell Carcinoma. STEM CELLS AND CANCER STEM CELLS, VOLUME 11 2014. [DOI: 10.1007/978-94-007-7329-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
138
|
miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS One 2013; 8:e83991. [PMID: 24391862 PMCID: PMC3877136 DOI: 10.1371/journal.pone.0083991] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/11/2013] [Indexed: 12/27/2022] Open
Abstract
miRNA regulate gene expression at post-transcriptional level and fine-tune the key biological processes, including cancer progression. Here, we demonstrate the involvement of miR-200 b in the metastatic spread of prostate cancer. We identified miR-200 b as a downstream target of androgen receptor and linked its expression to decreased tumorigenicity and metastatic capacity of the prostate cancer cells. Overexpression of miR-200 b in PC-3 cells significantly inhibited their proliferation and the formation of subcutaneous tumors. Moreover, in an orthotopic model, miR-200 b blocked spontaneous metastasis and angiogenesis by PC-3 cells. This decreased metastatic potential was likely due to the reversal of the epithelial-to-mesenchymal transition, as was evidenced by increased pan-epithelial marker E-cadherin and specific markers of prostate epithelium, cytokeratins 8 and 18. In contrast, mesenchymal markers, fibronectin and vimentin, were significantly downregulated by miR-200 b. Our results suggest an important role for miR-200 b in prostate cancer progression and indicate its potential utility for prostate cancer therapy.
Collapse
|
139
|
Hart M, Nolte E, Wach S, Szczyrba J, Taubert H, Rau TT, Hartmann A, Grässer FA, Wullich B. Comparative microRNA profiling of prostate carcinomas with increasing tumor stage by deep sequencing. Mol Cancer Res 2013; 12:250-63. [PMID: 24337069 DOI: 10.1158/1541-7786.mcr-13-0230] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
UNLABELLED MicroRNAs (miRNA) posttranscriptionally regulate gene expression and are important in tumorigenesis. Previous deep sequencing identified the miRNA profile of prostate carcinoma versus nonmalignant prostate tissue. Here, we generated miRNA expression profiles of prostate carcinoma by deep sequencing, with increasing tumor stage relative to corresponding nonmalignant and healthy prostate tissue, and detected clearly changed miRNA expression patterns. The miRNA profiles of the healthy and nonmalignant tissues were consistent with our previous findings, indicating a high fidelity of the method employed. In the tumors, quantitative real-time PCR (qRT-PCR) analysis of 40 paired samples of prostate carcinoma versus normal tissue revealed significant upregulation of miR-20a, miR-148a, miR-200b, and miR-375 and downregulation of miR-143 and miR-145. Hereby, miR-375 increased from normal to organ-confined tumors (pT2 pN0), slightly decreased in tumors with extracapsular growth (pT3 pN0), but was then expressed again at higher levels in lymph node metastasizing (pN1) tumors. The sequencing data for miR-375 were confirmed by Northern blotting and qRT-PCR. The regulation for other selected miRNAs could, however, not be confirmed by qRT-PCR in individual tumor stages. MiR-200b, in addition to miR-200c and miR-375 reduced the expression of SEC23A. Interestingly, miR-375, found by sequencing in pT2 upregulated by us and others in tumor versus normal tissue, and miR-15a, found by sequencing in pT2 and pT3 and in the metastasizing tumors, target the phosphatases PHLPP1 and PHLPP2, respectively. PHLPP1 and PHLPP2 dephosphorylate members of the AKT family of signal transducers, thereby inhibiting cell growth. Coexpression of miR-15a and miR-375 resulted in downregulation of PHLPP1/2 and strongly increased prostate carcinoma cell growth. IMPLICATIONS These genomic data reveal relevant miRNAs in prostate cancer that may have biomarker and therapeutic potential.
Collapse
Affiliation(s)
- Martin Hart
- Saarland University Medical School; Department of Virology, Kirrbergerstrasse, Haus 47, 66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. ACTA ACUST UNITED AC 2013; Chapter 14:Unit 14.25. [PMID: 23744710 DOI: 10.1002/0471141755.ph1425s61] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of small subpopulations of cancer stem cells (CSCs) from blood mononuclear cells in human acute myeloid leukemia (AML) in 1997 was a landmark observation that recognized the potential role of CSCs in tumor aggressiveness. Two critical properties contribute to the functional role of CSCs in the establishment and recurrence of cancerous tumors: their capacity for self-renewal and their potential to differentiate into unlimited heterogeneous populations of cancer cells. These findings suggest that CSCs may represent novel therapeutic targets for the treatment and/or prevention of tumor progression, since they appear to be involved in cell migration, invasion, metastasis, and treatment resistance-all of which lead to poor clinical outcomes. The identification of CSC-specific markers, the isolation and characterization of CSCs from malignant tissues, and targeting strategies for the destruction of CSCs provide a novel opportunity for cancer research. This overview describes the potential implications of several common CSC markers in the identification of CSC subpopulations that are restricted to common malignant diseases, e.g., leukemia, and breast, prostate, pancreatic, and lung cancers. The role of microRNAs (miRNAs) in the regulation of CSC function is also discussed, as are several methods commonly used in CSC research. The potential role of the antidiabetic drug metformin- which has been shown to have effects on CSCs, and is known to function as an antitumor agent-is discussed as an example of this new class of chemotherapeutics.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
141
|
Santarpia L, Calin GA, Adam L, Ye L, Fusco A, Giunti S, Thaller C, Paladini L, Zhang X, Jimenez C, Trimarchi F, El-Naggar AK, Gagel RF. A miRNA signature associated with human metastatic medullary thyroid carcinoma. Endocr Relat Cancer 2013; 20:809-23. [PMID: 24127332 DOI: 10.1530/erc-13-0357] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) represent a class of small, non-coding RNAs that control gene expression by targeting mRNA and triggering either translational repression or RNA degradation. The objective of our study was to evaluate the involvement of miRNAs in human medullary thyroid carcinoma (MTC) and to identify the markers of metastatic cells and aggressive tumour behaviour. Using matched primary and metastatic tumour samples, we identified a subset of miRNAs aberrantly regulated in metastatic MTC. Deregulated miRNAs were confirmed by quantitative real-time PCR and validated by in situ hybridisation on a large independent set of primary and metastatic MTC samples. Our results uncovered ten miRNAs that were significantly expressed and deregulated in metastatic tumours: miR-10a, miR-200b/-200c, miR-7 and miR-29c were down-regulated and miR-130a, miR-138, miR-193a-3p, miR-373 and miR-498 were up-regulated. Bioinformatic approaches revealed potential miRNA targets and signals involved in metastatic MTC pathways. Migration, proliferation and invasion assays were performed in cell lines treated with miR-200 antagomirs to ascertain a direct role for this miRNA in MTC tumourigenesis. We show that the members of miR-200 family regulate the expression of E-cadherin by directly targeting ZEB1 and ZEB2 mRNA and through the enhanced expression of tumour growth factor β (TGFβ)-2 and TGFβ-1. Overall, the treated cells shifted to a mesenchymal phenotype, thereby acquiring an aggressive phenotype with increased motility and invasion. Our data identify a robust miRNA signature associated with metastatic MTC and distinct biological processes, e.g., TGFβ signalling pathway, providing new potential insights into the mechanisms of MTC metastasis.
Collapse
Affiliation(s)
- Libero Santarpia
- Departments of Endocrine Neoplasia and Hormonal Disorders Experimental Therapeutics Urology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA Department of Oncology, The University of Naples, Naples, Italy Department of Pathology, Centro Oncologico Fiorentino, Sesto Fiorentino, Florence, Italy Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, Texas, USA Department of Oncology, Istituto Toscano Tumori, Hospital of Prato, Prato, Italy Department of Gynecologic Oncology, Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA Department of Endocrinology, University of Messina, Messina, Italy Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA Department of Internal Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Lewis H, Lance R, Troyer D, Beydoun H, Hadley M, Orians J, Benzine T, Madric K, Semmes OJ, Drake R, Esquela-Kerscher A. miR-888 is an expressed prostatic secretions-derived microRNA that promotes prostate cell growth and migration. Cell Cycle 2013; 13:227-39. [PMID: 24200968 DOI: 10.4161/cc.26984] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (MiRNAs) are a growing class of small non-coding RNAs that exhibit widespread dysregulation in prostate cancer. We profiled miRNA expression in syngeneic human prostate cancer cell lines that differed in their metastatic potential in order to determine their role in aggressive prostate cancer. miR-888 was the most differentially expressed miRNA observed in human metastatic PC3-ML cells relative to non-invasive PC3-N cells, and its levels were higher in primary prostate tumors from cancer patients, particularly those with seminal vesicle invasion. We also examined a novel miRNA-based biomarker source called expressed prostatic secretions in urine (EPS urine) for miR-888 expression and found that its levels were preferentially elevated in prostate cancer patients with high-grade disease. These expression studies indicated a correlation for miR-888 in disease progression. We next tested how miR-888 regulated cancer-related pathways in vitro using human prostate cancer cell lines. Overexpression of miR-888 increased proliferation and migration, and conversely inhibition of miR-888 activity blocked these processes. miR-888 also increased colony formation in PC3-N and LNCaP cells, supporting an oncogenic role for this miRNA in the prostate. Our data indicates that miR-888 functions to promote prostate cancer progression and can suppress protein levels of the tumor suppressor genes RBL1 and SMAD4. This miRNA holds promise as a diagnostic tool using an innovative prostatic fluid source as well as a therapeutic target for aggressive prostate cancer.
Collapse
Affiliation(s)
- Holly Lewis
- Department of Microbiology & Molecular Cell Biology; Leroy T. Canoles Jr. Cancer Research Center; Eastern Virginia Medical School; Norfolk, VA USA
| | - Raymond Lance
- Department of Microbiology & Molecular Cell Biology; Leroy T. Canoles Jr. Cancer Research Center; Eastern Virginia Medical School; Norfolk, VA USA; Department of Urology; Eastern Virginia Medical School and Urology of Virginia; Norfolk, VA USA
| | - Dean Troyer
- Department of Microbiology & Molecular Cell Biology; Leroy T. Canoles Jr. Cancer Research Center; Eastern Virginia Medical School; Norfolk, VA USA
| | - Hind Beydoun
- Graduate Program in Public Health; Eastern Virginia Medical School; Norfolk, VA USA
| | - Melissa Hadley
- Department of Microbiology & Molecular Cell Biology; Leroy T. Canoles Jr. Cancer Research Center; Eastern Virginia Medical School; Norfolk, VA USA
| | - Joseph Orians
- Department of Microbiology & Molecular Cell Biology; Leroy T. Canoles Jr. Cancer Research Center; Eastern Virginia Medical School; Norfolk, VA USA
| | - Tiffany Benzine
- Department of Microbiology & Molecular Cell Biology; Leroy T. Canoles Jr. Cancer Research Center; Eastern Virginia Medical School; Norfolk, VA USA
| | - Kenya Madric
- Department of Microbiology & Molecular Cell Biology; Leroy T. Canoles Jr. Cancer Research Center; Eastern Virginia Medical School; Norfolk, VA USA
| | - O John Semmes
- Department of Microbiology & Molecular Cell Biology; Leroy T. Canoles Jr. Cancer Research Center; Eastern Virginia Medical School; Norfolk, VA USA
| | - Richard Drake
- Department of Microbiology & Molecular Cell Biology; Leroy T. Canoles Jr. Cancer Research Center; Eastern Virginia Medical School; Norfolk, VA USA
| | - Aurora Esquela-Kerscher
- Department of Microbiology & Molecular Cell Biology; Leroy T. Canoles Jr. Cancer Research Center; Eastern Virginia Medical School; Norfolk, VA USA
| |
Collapse
|
143
|
Ahmad A, Maitah MY, Ginnebaugh KR, Li Y, Bao B, Gadgeel SM, Sarkar FH. Inhibition of Hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs. J Hematol Oncol 2013; 6:77. [PMID: 24199791 PMCID: PMC3852827 DOI: 10.1186/1756-8722-6-77] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/30/2013] [Indexed: 12/14/2022] Open
Abstract
Background Epidermal growth factor receptor- tyrosine kinase inhibitors (EGFR-TKIs) benefit Non-small cell lung cancer (NSCLC) patients, and an EGFR-TKIi erlotinib, is approved for patients with recurrent NSCLC. However, resistance to erlotinib is a major clinical problem. Earlier we have demonstrated the role of Hedgehog (Hh) signaling in Epithelial-to-Mesenchymal transition (EMT) of NSCLC cells, leading to increased proliferation and invasion. Here, we investigated the role of Hh signaling in erlotinib resistance of TGF-β1-induced NSCLC cells that are reminiscent of EMT cells. Methods Hh signaling was inhibited by specific siRNA and by GDC-0449, a small molecule antagonist of G protein coupled receptor smoothened in the Hh pathway. Not all NSCLC patients are likely to benefit from EGFR-TKIs and, therefore, cisplatin was used to further demonstrate a role of inhibition of Hh signaling in sensitization of resistant EMT cells. Specific pre- and anti-miRNA preparations were used to study the mechanistic involvement of miRNAs in drug resistance mechanism. Results siRNA-mediated inhibition as well as pharmacological inhibition of Hh signaling abrogated resistance of NSCLC cells to erlotinib and cisplatin. It also resulted in re-sensitization of TGF-β1-induced A549 (A549M) cells as well the mesenchymal phenotypic H1299 cells to erlotinib and cisplatin treatment with concomitant up-regulation of cancer stem cell (CSC) markers (Sox2, Nanog and EpCAM) and down-regulation of miR-200 and let-7 family miRNAs. Ectopic up-regulation of miRNAs, especially miR-200b and let-7c, significantly diminished the erlotinib resistance of A549M cells. Inhibition of Hh signaling by GDC-0449 in EMT cells resulted in the attenuation of CSC markers and up-regulation of miR-200b and let-7c, leading to sensitization of EMT cells to drug treatment, thus, confirming a connection between Hh signaling, miRNAs and drug resistance. Conclusions We demonstrate that Hh pathway, through EMT-induction, leads to reduced sensitivity to EGFR-TKIs in NSCLCs. Therefore, targeting Hh pathway may lead to the reversal of EMT phenotype and improve the therapeutic efficacy of EGFR-TKIs in NSCLC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fazlul H Sarkar
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
144
|
Zhang L, Liu F, Peng Y, Sun L, Chen G. Changes in expression of four molecular marker proteins and one microRNA in mesothelial cells of the peritoneal dialysate effluent fluid of peritoneal dialysis patients. Exp Ther Med 2013; 6:1189-1193. [PMID: 24223642 PMCID: PMC3820727 DOI: 10.3892/etm_2013.1281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 08/21/2013] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to detect the expression of microRNA-200c and epithelial-mesenchymal transition (EMT) in the mesothelial cells of the peritoneal dialysate effluent fluid of peritoneal dialysis (PD) patients, and to investigate the association between microRNA-200c and peritoneal mesothelial cell EMT. Twelve patients who had recently started continuous ambulatory peritoneal dialysis (PD start group) and 16 patients who had been undergoing peritoneal dialysis for >6 months (PD >6 months group) were randomly chosen for the isolation, culture and identification of effluent cells. qPCR and western blot analysis were used to detect the expression levels of microRNA-200c and the levels of four cellular marker proteins, E-cadherin, vimentin, fibronectin (FN) and COL-1, in effluent cells. The results showed that the effluent cells in peritoneal dialysis were peritoneal mesothelial cells. The level of E-cadherin protein expression was significantly lower in the PD >6 months group than in the PD start group, while vimentin, FN and COL-1 protein expression levels were significantly increased in the PD >6 months group. microRNA-200c in the PD >6 months group was significantly downregulated. The E-cadherin protein expression level was significantly decreased and vimentin, FN and COL-1 protein expression levels were significantly increased in the PD >6 months group. The level of microRNA-200c was significantly reduced in the PD > 6 months group, suggesting that microRNA-200c may be associated with EMT.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Nephrology, Second Xiangya Hospital, Institute of Nephrology, Central South University, Changsha, Hunan 410011; ; Department of Nephrology, Fourth Changsha Hospital, Changsha, Hunan 410006, P.R. China
| | | | | | | | | |
Collapse
|
145
|
Chen C, Zimmermann M, Tinhofer I, Kaufmann AM, Albers AE. Epithelial-to-mesenchymal transition and cancer stem(-like) cells in head and neck squamous cell carcinoma. Cancer Lett 2013; 338:47-56. [DOI: 10.1016/j.canlet.2012.06.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/11/2012] [Accepted: 06/27/2012] [Indexed: 12/19/2022]
|
146
|
Su A, He S, Tian B, Hu W, Zhang Z. MicroRNA-221 mediates the effects of PDGF-BB on migration, proliferation, and the epithelial-mesenchymal transition in pancreatic cancer cells. PLoS One 2013; 8:e71309. [PMID: 23967190 PMCID: PMC3742757 DOI: 10.1371/journal.pone.0071309] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/27/2013] [Indexed: 02/05/2023] Open
Abstract
The platelet-derived growth factor (PDGF) signaling pathway has been found to play important roles in the development and progression of human cancers by regulating the processes of cell proliferation, apoptosis, migration, invasion, metastasis, and the acquisition of the epithelial-mesenchymal transition (EMT) phenotype. Moreover, PDGF signaling has also been found to alter the expression profile of miRNAs, leading to the reversal of EMT phenotype. Although the role of miRNAs in cancer has been documented, there are very few studies documenting the cellular consequences of targeted re-expression of specific miRNAs. Therefore, we investigated whether the treatment of human pancreatic cancer cells with PDGF could alter the expression profile of miRNAs, and we also assessed the cellular consequences. Our study demonstrates that miR-221 is essential for the PDGF-mediated EMT phenotype, migration, and growth of pancreatic cancer cells. Down-regulation of TRPS1 by miR-221 is critical for PDGF-mediated acquisition of the EMT phenotype. Additionally, the PDGF-dependent increase in cell proliferation appears to be mediated by inhibition of a specific target of miR-221 and down-regulation of p27Kip1.
Collapse
Affiliation(s)
- Anping Su
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Sirong He
- Regenerative Medicine Research Center, West China Hospital, Sichaun University, Chengdu, P. R. China
| | - Bole Tian
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Weiming Hu
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Zhaoda Zhang
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, P. R. China
- * E-mail:
| |
Collapse
|
147
|
Singh PK, Campbell MJ. The Interactions of microRNA and Epigenetic Modifications in Prostate Cancer. Cancers (Basel) 2013; 5:998-1019. [PMID: 24202331 PMCID: PMC3795376 DOI: 10.3390/cancers5030998] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 12/27/2022] Open
Abstract
Epigenetic modifiers play important roles in fine-tuning the cellular transcriptome. Any imbalance in these processes may lead to abnormal transcriptional activity and thus result in disease state. Distortions of the epigenome have been reported in cancer initiation and progression. DNA methylation and histone modifications are principle components of this epigenome, but more recently it has become clear that microRNAs (miRNAs) are another major component of the epigenome. Interactions of these components are apparent in prostate cancer (CaP), which is the most common non-cutaneous cancer and second leading cause of death from cancer in the USA. Changes in DNA methylation, altered histone modifications and miRNA expression are functionally associated with CaP initiation and progression. Various aspects of the epigenome have also been investigated as biomarkers for different stages of CaP detection, though with limited success. This review aims to summarize key aspects of these mechanistic interactions within the epigenome and to highlight their translational potential as functional biomarkers. To this end, exploration of TCGA prostate cancer data revealed that expression of key CaP miRNAs inversely associate with DNA methylation. Given the importance and prevalence of these epigenetic events in CaP biology it is timely to understand further how different epigenetic components interact and influence each other.
Collapse
Affiliation(s)
- Prashant Kumar Singh
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | |
Collapse
|
148
|
Honeywell DR, Cabrita MA, Zhao H, Dimitroulakos J, Addison CL. miR-105 inhibits prostate tumour growth by suppressing CDK6 levels. PLoS One 2013; 8:e70515. [PMID: 23950948 PMCID: PMC3737265 DOI: 10.1371/journal.pone.0070515] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 06/25/2013] [Indexed: 12/21/2022] Open
Abstract
A significant role for micro (mi)RNA in the regulation of gene expression in tumours has been recently established. In order to further understand how miRNA expression may contribute to prostate tumour growth and progression, we evaluated expression of miRNA in two invasive prostate tumour lines, PC3 and DU145, and compared it to that in normal prostate epithelial cells. Although a number of miRNAs were differentially expressed, we focused our analysis on miR-105, a novel miRNA not previously linked to prostate cancer. miR-105 levels were significantly decreased in both tumour cell lines in comparison to normal prostate epithelial cells. To determine its potential role in prostate cancer pathogenesis, we overexpressed miR-105 in both PC3 and DU145 cells and determined its effect on various tumourigenic properties. miR-105 overexpression inhibited tumour cell proliferation, tumour growth in anchorage-independent three-dimensional conditions and tumour invasion in vitro, properties of highly aggressive tumour cells. Of potential clinical significance, miR-105 overexpression inhibited tumour growth in vivo in xenograft models using these cell lines. We further identified CDK6 as a putative target of miR-105 which is likely a main contributor to the inhibition of tumour cell growth observed in our assays. Our results suggest that miR-105 inhibits tumour cell proliferation and hence may represent a novel therapeutically relevant cellular target to inhibit tumour growth or a marker of aggressive tumours in prostate cancer patients.
Collapse
Affiliation(s)
- D. Rice Honeywell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Departments of Biochemistry Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Miguel A. Cabrita
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Huijun Zhao
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jim Dimitroulakos
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Departments of Biochemistry Microbiology and Immunology, University of Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ontario, Canada
| | - Christina L. Addison
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Departments of Biochemistry Microbiology and Immunology, University of Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
149
|
Jones J, Grizzle W, Wang H, Yates C. MicroRNAs that affect prostate cancer: emphasis on prostate cancer in African Americans. Biotech Histochem 2013; 88:410-24. [PMID: 23901944 DOI: 10.3109/10520295.2013.807069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although concerted efforts have been directed toward eradicating health disparities in the United States, the disease and mortality rates for African American men still are among the highest in the world. We focus here on the role of microRNAs (miRNAs) in the signaling pathways of androgen receptors and growth factors that promote the progression of prostate cancer to more aggressive disease. We explore also how differential expression of miRNAs contributes to aggressive prostate cancer including that of African Americans.
Collapse
Affiliation(s)
- J Jones
- Department of Biology and Center for Cancer Research, Tuskegee University , Tuskegee, Alabama
| | | | | | | |
Collapse
|
150
|
Tilghman SL, Rhodes LV, Bratton MR, Carriere P, Preyan LC, Boue SM, Vasaitis TS, McLachlan JA, Burow ME. Phytoalexins, miRNAs and breast cancer: a review of phytochemical-mediated miRNA regulation in breast cancer. J Health Care Poor Underserved 2013; 24:36-46. [PMID: 23395943 DOI: 10.1353/hpu.2013.0036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is growing interest in the diverse signaling pathways that regulate and affect breast tumorigenesis, including the role of phytochemicals and the emerging role of microRNAs (miRNAs). Recent studies demonstrate that miRNAs regulate fundamental cellular and developmental processes at the transcriptional and translational level under normal and disease conditions. While there is growing evidence to support the role of phytoalexin-mediated miRNA regulation of cancer, few reports address this role in breast cancer. Recent reports by our group and others demonstrate that natural products, including stilbenes, curcumin, and glyceollins, could alter the expression of specific miRNAs, which may lead to increased sensitivity of cancer cells to conventional anti-cancer agents and, therefore, hormone-dependent and hormone-independent tumor growth inhibition. This review will discuss how dietary intake of natural products, by regulating specific miRNAs, contribute to the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Syreeta L Tilghman
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|