101
|
Ge Y, Mu W, Ba Q, Li J, Jiang Y, Xia Q, Wang H. Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application. Cancer Lett 2020; 477:41-48. [PMID: 32112905 DOI: 10.1016/j.canlet.2020.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/21/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, despite improvements in the clinical trial and diagnosis, HCC still remains high mortality due to the 70% recurrence and lung metastasis after surgical resection. Exosomes are small membrane vesicles, which are shuttled from donor cells to recipient cells, contributing to the recruitment and reprogramming of constituents via an autocrine or paracrine fashion. HCC derived exosomes could redirect metastasis of tumor cells which lack the capacity to metastasize to a specific organ via generating pre-metastatic niche. These findings emphasize a practical and potentially feasible role of exosomes in the treatment of patients with HCC, both as a target and a vehicle for drug design. We herein summarize recent findings that implicate oncogenes and non-canonical signaling of HCC exosomes, as well as the impact of exosomal bioactive molecules in high recurrence induced by organ-specific metastasis. The aim of review is to illustrate the underlying mechanism of exosomes in tumor metastasis, immune evasion, and the potential application of prognostic biomarker in HCC process.
Collapse
Affiliation(s)
- Yang Ge
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yiguo Jiang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiang Xia
- Organ Transplantation Center, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
102
|
Abstract
The study of extracellular vesicles (EVs) has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and in organ homeostasis and disease. Exosomes, with an average diameter of ~100 nanometers, are a subset of EVs. The biogenesis of exosomes involves their origin in endosomes, and subsequent interactions with other intracellular vesicles and organelles generate the final content of the exosomes. Their diverse constituents include nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their cell of origin. In various diseases, exosomes offer a window into altered cellular or tissue states, and their detection in biological fluids potentially offers a multicomponent diagnostic readout. The efficient exchange of cellular components through exosomes can inform their applied use in designing exosome-based therapeutics.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- School of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
103
|
Daßler-Plenker J, Küttner V, Egeblad M. Communication in tiny packages: Exosomes as means of tumor-stroma communication. Biochim Biophys Acta Rev Cancer 2020; 1873:188340. [PMID: 31926290 DOI: 10.1016/j.bbcan.2020.188340] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
Tumor-derived exosomes are nano-sized vesicles acting as multi-signal devices influencing tumor growth at local and distant sites. Exosomes are derived from the endolysosomal compartment and can shuttle diverse biomolecules like nucleic acids (microRNAs and DNA fragments), lipids, proteins, and even pharmacological compounds from a donor cell to recipient cells. The transfer of cargo to recipient cells enables tumor-derived exosomes to influence diverse cellular functions like proliferation, cell survival, and migration in recipient cells, highlighting tumor-derived exosomes as important players in communication within the tumor microenvironment and at distant sites. In this review, we discuss the mechanisms associated with exosome biogenesis and cargo sorting. In addition, we highlight the communication of tumor-derived exosomes in the tumor microenvironment during different phases of tumor development, focusing on angiogenesis, immune escape mechanisms, drug resistance, and metastasis.
Collapse
Affiliation(s)
| | - Victoria Küttner
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
104
|
Deng S, Zhou X, Xu J. Checkpoints Under Traffic Control: From and to Organelles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:431-453. [DOI: 10.1007/978-981-15-3266-5_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
105
|
Shao X, Cheng Z, Xu M, Tan Z, Gao L, Wang J, Zhou C. Pooled analysis of prognostic value and clinical significance of Rab1A expression in human solid tumors. Medicine (Baltimore) 2019; 98:e18370. [PMID: 31852145 PMCID: PMC6922505 DOI: 10.1097/md.0000000000018370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study aims to assess the relationship between Rab1A expression and clinicopathological parameters and prognosis of patients with human solid cancer by summarizing the studies included. METHODS PubMed, EMBASE, The Cochrane Library, and other sources were searched for relative studies. The risk ratios (RRs) and confidence interval (CI) were used to assess association between Rab1A expression and clinical parameters and prognosis in solid cancer patients. RESULTS Eight studies were included in the final analysis with 800 patients. The results revealed that expression of Rab1A was significantly related with differentiation (RR = 0.883, 95%CI = 0.782-0.997, P = .044), lymph node metastasis (RR = 0.835, 95%CI = 0.753-0.926, P = .001), tumor-lymph node-metastasis (TNM) stage (RR = 1.190, 95%CI = 1.071-1.322, P < .001) and tumor size (RR = 0.818, 95%CI = 0.730-0.915, P < .001). What is more, no significant difference was seen in 1-year survival between high and low expression of Rab1A in multiple malignancies (RR = 0.855, 95%CI = 0.697-1.050, P = .136). However, increased Rab1A revealed poorer prognosis with 2-year survival (RR = 0.760, 95%CI = 0.701-0.824, P < .001), 3-year survival (RR = 0.669, 95%CI = 0.604-0.742, P < .001), 4-year survival (RR = 0.622, 95%CI = 0.554-0.698, P < .001) and 5-year survival (RR = 0.525, 95%CI = 0.458-0.698, P < .001). Expression of Rab1A was increased obviously in solid cancer tissues compared with the adjacent normal tissue (RR = 4.78, 95%CI 4.05-5.63, P = .015). CONCLUSION This study revealed Rab1A expression links closely with tumor size, differentiation, lymph node metastasis, TNM stage and poor prognosis of human solid cancer patients. It may act as a biomarker of prognosis and a novel therapeutic target in solid cancer.
Collapse
Affiliation(s)
- Xinyu Shao
- Department of gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College
| | - Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu
| | - Zhuqing Tan
- Department of Medicine, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Junfeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College
| | - Chunli Zhou
- Department of gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou
| |
Collapse
|
106
|
Ronsley R, Kariminia A, Ng B, Mostafavi S, Reid G, Subrt P, Hijiya N, Schultz KR. The TLR9 agonist (GNKG168) induces a unique immune activation pattern in vivo in children with minimal residual disease positive acute leukemia: Results of the TACL T2009-008 phase I study. Pediatr Hematol Oncol 2019; 36:468-481. [PMID: 31530240 DOI: 10.1080/08880018.2019.1667461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Preclinical studies show that TLR9 agonists can eradicate leukemia by induction of immune responses in vivo against AML and ALL. These studies demonstrated that TLR9 agonists induce an immediate NK response followed by adaptive T and B cells responses resulting in long term anti-leukemia immunity. Methods: The Therapeutic Advances in Childhood Leukemia and Lymphoma Phase I consortium performed a pilot study on 3 patients with MRD positive acute leukemia after an initial remission on conventional chemotherapy (TACL T2009-008) with the TLR 9 agonist (GNKG168). To guide future trial development, we evaluated the impact of GNKG168 by Nanostring on the expression 608 genes before and 8 days after initiation of GNKG168 therapy. Results: Twenty-three out of 578 markers on the nanostring panel showed significant difference (p ≤ 0.05). We focused on 8 markers that had the greatest differences with p < 0.01. Two genes were increased, promyelocytic leukemia protein (PML) and H-RAS, and 6 were decreased, Single Ig and TIR Domain containing (SIGIRR, IL1R8), interleukin 1 receptor 1 (IL1RL1, ST2), C-C Motif chemokine receptor 8 (CCR8), interleukin 7 R (IL7R), cluster of differentiation 8B (CD8B), and cluster of differentiation 3 (CD3D). Tumor inhibitory pathways were downregulated including the SIGIRR (IL1R8), important in IL-37 signaling and NK cell inhibition. TLR9 can induce IL-33, which is known to downregulate ST2 (IL1RL1) a receptor for IL-33. Conclusion: GNKG168 therapy is associated with immunologic changes in pediatric leukemia patients. Further work with a larger sample size is required to assess the impact of these changes on disease treatment and persistence of leukemia remission.
Collapse
Affiliation(s)
- Rebecca Ronsley
- Department of Pediatric Hematology, Oncology & BMT, University of British Columbia, Vancouver, USA
| | - Amina Kariminia
- Department of Pediatric Hematology, Oncology & BMT, University of British Columbia, Vancouver, USA.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Bernard Ng
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Sara Mostafavi
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Gregor Reid
- Department of Pediatric Hematology, Oncology & BMT, University of British Columbia, Vancouver, USA.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Peter Subrt
- Department of Pediatric Hematology, Oncology & BMT, University of British Columbia, Vancouver, USA.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Nobuko Hijiya
- Pediatric Hematology, Oncology and Stem Cell Transplant Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IIllinois, USA
| | - Kirk R Schultz
- Department of Pediatric Hematology, Oncology & BMT, University of British Columbia, Vancouver, USA.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
107
|
Mohammadi S, Yousefi F, Shabaninejad Z, Movahedpour A, Mahjoubin Tehran M, Shafiee A, Moradizarmehri S, Hajighadimi S, Savardashtaki A, Mirzaei H. Exosomes and cancer: From oncogenic roles to therapeutic applications. IUBMB Life 2019; 72:724-748. [PMID: 31618516 DOI: 10.1002/iub.2182] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Exosomes belong to extracellular vehicles that were produced and secreted from most eukaryotic cells and are involved in cell-to-cell communications. They are an effective delivery system for biological compounds such as mRNAs, microRNAs (miRNAs), proteins, lipids, saccharides, and other physiological compounds to target cells. In this way, they could influence on cellular pathways and mediate their physiological behaviors including cell proliferation, tumorigenesis, differentiation, and so on. Many research studies focused on their role in cancers and also on potentially therapeutic and biomarker applications. In the current study, we reviewed the exosomes' effects on cancer progression based on their cargoes including miRNAs, long noncoding RNAs, circular RNAs, DNAs, mRNAs, proteins, and lipids. Moreover, their therapeutic roles in cancer were considered. In this regard, we have given a brief overview of challenges and obstacles in using exosomes as therapeutic agents.
Collapse
Affiliation(s)
- Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mahjoubin Tehran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
108
|
Targeting CDC7 sensitizes resistance melanoma cells to BRAF V600E-specific inhibitor by blocking the CDC7/MCM2-7 pathway. Sci Rep 2019; 9:14197. [PMID: 31578454 PMCID: PMC6775054 DOI: 10.1038/s41598-019-50732-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
Although the utilization of selective BRAFV600E inhibitors is associated with improved overall survival in patients with metastatic melanoma, a growing challenge of drug resistance has emerged. CDC7 has been shown to be overexpressed and associated with poor prognosis in various cancers including melanoma. Thus, we aimed to elucidate the biological role of CDC7 in promoting Vemurafenib resistance and the anticipated benefits of dual targeting of BRAFV600E and CDC7 in melanoma cells. We performed exosomes-associated microRNA profiling and functional assays to determine the role of CDC7 in drug resistance using Vemurafenib-sensitive and resistant melanoma cells. Our results demonstrated that Vemurafenib-resistant cells exhibited a persistent expression of CDC7 in addition to prolonged activity of MCM2 compared to drug-sensitive cells. Reconstitution of miR-3613-3p in resistant cells downregulated CDC7 expression and reduced the number of colonies. Treatment of cells with low concentrations of CDC7 inhibitor TAK-931 sensitized resistant cells to Vemurafenib and reduced the number of cell colonies. Taken together, CDC7 overexpression and downregulation of miR-3613-3p were associated with Vemurafenib resistance in BRAFV600E- bearing melanoma cells. Dual targeting of CDC7 and BRAFV600E reduced the development of resistance against Vemurafenib. Further studies are warranted to investigate the clinical effect of targeting CDC7 in metastatic melanoma.
Collapse
|
109
|
Othman N, Jamal R, Abu N. Cancer-Derived Exosomes as Effectors of Key Inflammation-Related Players. Front Immunol 2019; 10:2103. [PMID: 31555295 PMCID: PMC6737008 DOI: 10.3389/fimmu.2019.02103] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes, a category of small lipid bilayer extracellular vesicles that are naturally secreted by many cells (both healthy and diseased), carry cargo made up of proteins, lipids, DNAs, and RNAs; all of which are functional when transferred to their recipient cells. Numerous studies have demonstrated the powerful role that exosomes play in the mediation of cell-to-cell communication to induce a pro-tumoral environment to encourage tumor progression and survival. Recently, considerable interest has developed in regard to the role that exosomes play in immunity; with studies demonstrating the ability of exosomes to either metabolically alter immune players such as dendritic cells, T cells, macrophages, and natural killer cells. In this review, we summarize the recent literature on the function of exosomes in regulating a key process that has long been associated with the progression of cancer-inflammation and immunity.
Collapse
Affiliation(s)
- Norahayu Othman
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| |
Collapse
|
110
|
Zhang H, Shen T, Zhang Z, Li Y, Pan Z. Expression of KIF18A Is Associated with Increased Tumor Stage and Cell Proliferation in Prostate Cancer. Med Sci Monit 2019; 25:6418-6428. [PMID: 31451680 PMCID: PMC6724560 DOI: 10.12659/msm.917352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background The role of KIF18A in tumorigenesis and tumor development has been well studied in several cancers, but not in prostate cancer. In this study, we investigated the potential prognostic utility of KIF18A and its role in prostate cancer progression. Material/Methods We collected prostate cancer and paracancerous tissue samples from the same patient. Immunohistochemical staining was performed to investigate the KIF18A expression levels in the clinical sample. The Cancer Genome Atlas (TCGA) database was analyzed via a bioinformatics approach to gain insight into the relationship between KIF18A expression and prognosis. We examined the effect of KIF18A knockdown on PC-3 cell proliferation via colony formation and MTT assays. Flow cytometry was used to assess the effect of KIF18A knockdown on PC-3 cell apoptosis. Transwell invasion assay was performed to assess whether KIF18A affects the invasion ability of PC-3 cells. Results The KIF18A protein level was higher in PCa tissue than in paracancerous tissue. The In addition, upregulated KIF18A suggested a poor tumor stage and prognosis for prostate cancer patients. Our in vitro experiments demonstrated that KIF18A knockdown in PC-3 cells significantly inhibited proliferation and metastasis. Conclusions High KIF18A expression in prostate cancer patients predicts a poor prognosis. KIF18A knockdown inhibits prostate cell proliferation and metastasis. Therefore, this study confirms the usefulness of KIF18A as an oncological prognostic indicator and a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Hua Zhang
- Ultrasound Department, Tianjin Union Medical Center, Tianjin, China (mainland)
| | - Tianyu Shen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland).,Tianjin Medical University, Tianjin, China (mainland)
| | - Zheng Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Yang Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Zhongjie Pan
- Ultrasound Department, Tianjin Union Medical Center, Tianjin, China (mainland)
| |
Collapse
|
111
|
Che Y, Shi X, Shi Y, Jiang X, Ai Q, Shi Y, Gong F, Jiang W. Exosomes Derived from miR-143-Overexpressing MSCs Inhibit Cell Migration and Invasion in Human Prostate Cancer by Downregulating TFF3. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:232-244. [PMID: 31563120 PMCID: PMC6796755 DOI: 10.1016/j.omtn.2019.08.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 01/03/2023]
Abstract
Exosomes are membrane-enclosed nanovesicles that shuttle active cargoes, such as mRNAs and microRNAs (miRNAs), between different cells. Mesenchymal stem cells (MSCs) are able to migrate to the tumor sites and exert complex functions over tumor progress. We investigated the effect of human bone marrow-derived MSC (BMSC)-derived exosomal miR-143 on prostate cancer. During the co-culture experiments, we disrupted exosome secretion by the inhibitor GW4869 and overexpressed exosomal miR-143 using miR-143 plasmid. miR-143 was involved in the progression of prostate cancer via trefoil factor 3 (TFF3). Moreover, miR-143 was downregulated while TFF3 was upregulated in prostate cancer cells and tissues, and miR-143 was found to specifically inhibit TFF3 expression. Human MSC-derived exosomes enriched miR-143 and transferred miR-143 to prostate cancer cells. Furthermore, elevated miR-143 or exosome-miR-143 or silencing TFF3 inhibited the expression of TFF3, proliferating cell nuclear antigen (PCNA), matrix metalloproteinase (MMP)-2, and MMP-9 and PC3 cell proliferation, migration, invasion, and tumor growth, whereas it promoted apoptosis. In conclusion, hMSC-derived exosomal miR-143 directly and negatively targets TFF3 to suppress prostate cancer.
Collapse
Affiliation(s)
- Yuanyuan Che
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130000, P.R. China
| | - Xu Shi
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130000, P.R. China
| | - Yunpeng Shi
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130000, P.R. China
| | - Xiaoming Jiang
- Emergency Department, The First Hospital of Jilin University, Changchun 130000, P.R. China
| | - Qing Ai
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130000, P.R. China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130000, P.R. China
| | - Fengyan Gong
- Department of Gynaecology and Obstetrics, The First Hospital of Jilin University, Changchun 130000, P.R. China,Corresponding author: Fengyan Gong, Department of Gynaecology and Obstetrics, The First Hospital of Jilin University, No. 3302, Jilin Road, Changchun 130000, Jilin Province, P.R. China.
| | - Wenyan Jiang
- Department of Radiology, The First Hospital of Jilin University, Changchun 130000, P.R. China,Corresponding author: Wenyan Jiang, Department of Radiology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun 130000, Jilin Province, P.R. China.
| |
Collapse
|
112
|
Li Z, Zeng C, Nong Q, Long F, Liu J, Mu Z, Chen B, Wu D, Wu H. Exosomal Leucine-Rich-Alpha2-Glycoprotein 1 Derived from Non-Small-Cell Lung Cancer Cells Promotes Angiogenesis via TGF-β Signal Pathway. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:313-322. [PMID: 31528707 PMCID: PMC6739429 DOI: 10.1016/j.omto.2019.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/01/2019] [Indexed: 01/27/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is a major cause for cancer-related deaths around the globe, partially due to the frequent recurrence and metastasis. Leucine-rich-alpha2-glycoprotein 1 (LRG1) is reportedly upregulated in several cancers including NSCLC; however, its functions in NSCLC remain elusive. We used quantitative real-time PCR and western blot assays to evaluate the expression patterns of LRG1 in tumor tissues collected from NSCLC patients, as well as NSCLC cell lines, and examined the effects of LRG1 on the proliferation, migration, and invasion of NSCLC cells. Further, we isolated exosomes from the blood of NSCLC patients, as well as NSCLC cell cultures, and assessed the impact of exosome exposure on the angiogenic capacities of human umbilical vein endothelial cells. LRG1 was upregulated in NSCLC tissues and cells and induced an enhancement of NSCLC cell proliferation, migration, and invasion. In addition, LRG1 was enriched in the exosomes derived from NSCLC tissue and cells, and mediated a proangiogenic effect via the activation of transforming growth factor β (TGF-β) pathway. Exosomal LRG1 derived from NSCLC cells promotes angiogenesis via TGF-β signaling and possesses the potential of a therapeutic target in NSCLC treatment.
Collapse
Affiliation(s)
- Zifan Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Chao Zeng
- Department of Respiration, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Qiaohong Nong
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Feihu Long
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Zhimin Mu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Baokun Chen
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Da Wu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Hao Wu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
113
|
Sabol RA, Giacomelli P, Beighley A, Bunnell BA. Adipose Stem Cells and Cancer: Concise Review. Stem Cells 2019; 37:1261-1266. [DOI: 10.1002/stem.3050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/11/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Rachel A. Sabol
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Paulina Giacomelli
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Adam Beighley
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
- Department of Pharmacology; Tulane University; New Orleans Louisiana USA
- Division of Regenerative Medicine; Tulane National Primate Research Center; Covington Louisiana USA
| |
Collapse
|
114
|
Scioli MG, Storti G, D'Amico F, Gentile P, Kim BS, Cervelli V, Orlandi A. Adipose-Derived Stem Cells in Cancer Progression: New Perspectives and Opportunities. Int J Mol Sci 2019; 20:ijms20133296. [PMID: 31277510 PMCID: PMC6651808 DOI: 10.3390/ijms20133296] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Growing importance has been attributed to interactions between tumors, the stromal microenvironment and adult mesenchymal stem cells. Adipose-derived stem cells (ASCs) are routinely employed in regenerative medicine and in autologous fat transfer procedures. To date, clinical trials have failed to demonstrate the potential pro-oncogenic role of ASC enrichment. Nevertheless, some pre-clinical studies from in vitro and in vivo models have suggested that ASCs act as a potential tumor promoter for different cancer cell types, and support tumor progression and invasiveness through the activation of several intracellular signals. Interaction with the tumor microenvironment and extracellular matrix remodeling, the exosomal release of pro-oncogenic factors as well as the induction of epithelial-mesenchymal transitions are the most investigated mechanisms. Moreover, ASCs have also demonstrated an elective tumor homing capacity and this tumor-targeting capacity makes them a suitable carrier for anti-cancer drug delivery. New genetic and applied nanotechnologies may help to design promising anti-cancer cell-based approaches through the release of loaded intracellular nanoparticles. These new anti-cancer therapies can more effectively target tumor cells, reaching higher local concentrations even in pharmacological sanctuaries, and thus minimizing systemic adverse drug effects. The potential interplay between ASCs and tumors and potential ASCs-based therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Federico D'Amico
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Bong-Sung Kim
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
| |
Collapse
|
115
|
Chiabotto G, Gai C, Deregibus MC, Camussi G. Salivary Extracellular Vesicle-Associated exRNA as Cancer Biomarker. Cancers (Basel) 2019; 11:cancers11070891. [PMID: 31247906 PMCID: PMC6679099 DOI: 10.3390/cancers11070891] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) secreted in biological fluids contain several transcripts of the cell of origin, which may modify the functions and phenotype of proximal and distant cells. Cancer-derived EVs may promote a favorable microenvironment for cancer growth and invasion by acting on stroma and endothelial cells and may favor metastasis formation. The transcripts contained in cancer EVs may be exploited as biomarkers. Protein and extracellular RNA (exRNA) profiling in patient bio-fluids, such as blood and urine, was performed to identify molecular features with potential diagnostic and prognostic values. EVs are concentrated in saliva, and salivary EVs are particularly enriched in exRNAs. Several studies were focused on salivary EVs for the detection of biomarkers either of non-oral or oral cancers. The present paper provides an overview of the available studies on the diagnostic potential of exRNA profiling in salivary EVs.
Collapse
Affiliation(s)
- Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Torino 10126, Italy.
| | - Chiara Gai
- Department of Medical Sciences, University of Torino, Torino 10126, Italy.
| | - Maria Chiara Deregibus
- i3T Business Incubator and Technology Transfer, University of Torino, Torino 10126, Italy.
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Torino 10126, Italy.
| |
Collapse
|
116
|
Exosomes as Emerging Pro-Tumorigenic Mediators of the Senescence-Associated Secretory Phenotype. Int J Mol Sci 2019; 20:ijms20102547. [PMID: 31137607 PMCID: PMC6566274 DOI: 10.3390/ijms20102547] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
Communication between cells is quintessential for biological function and cellular homeostasis. Membrane-bound extracellular vesicles known as exosomes play pivotal roles in mediating intercellular communication in tumor microenvironments. These vesicles and exosomes carry and transfer biomolecules such as proteins, lipids and nucleic acids. Here we focus on exosomes secreted from senescent cells. Cellular senescence can alter the microenvironment and influence neighbouring cells via the senescence-associated secretory phenotype (SASP), which consists of factors such as cytokines, chemokines, matrix proteases and growth factors. This review focuses on exosomes as emerging SASP components that can confer pro-tumorigenic effects in pre-malignant recipient cells. This is in addition to their role in carrying SASP factors. Transfer of such exosomal components may potentially lead to cell proliferation, inflammation and chromosomal instability, and consequently cancer initiation. Senescent cells are known to gather in various tissues with age; eliminating senescent cells or blocking the detrimental effects of the SASP has been shown to alleviate multiple age-related phenotypes. Hence, we speculate that a better understanding of the role of exosomes released from senescent cells in the context of cancer biology may have implications for elucidating mechanisms by which aging promotes cancer and other age-related diseases, and how therapeutic resistance is exacerbated with age.
Collapse
|
117
|
Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol 2019; 15:617-638. [PMID: 29795272 DOI: 10.1038/s41571-018-0036-9] [Citation(s) in RCA: 988] [Impact Index Per Article: 197.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The sustained growth, invasion, and metastasis of cancer cells depend upon bidirectional cell-cell communication within complex tissue environments. Such communication predominantly involves the secretion of soluble factors by cancer cells and/or stromal cells within the tumour microenvironment (TME), although these cell types have also been shown to export membrane-encapsulated particles containing regulatory molecules that contribute to cell-cell communication. These particles are known as extracellular vesicles (EVs) and include species of exosomes and shed microvesicles. EVs carry molecules such as oncoproteins and oncopeptides, RNA species (for example, microRNAs, mRNAs, and long non-coding RNAs), lipids, and DNA fragments from donor to recipient cells, initiating profound phenotypic changes in the TME. Emerging evidence suggests that EVs have crucial roles in cancer development, including pre-metastatic niche formation and metastasis. Cancer cells are now recognized to secrete more EVs than their nonmalignant counterparts, and these particles can be isolated from bodily fluids. Thus, EVs have strong potential as blood-based or urine-based biomarkers for the diagnosis, prognostication, and surveillance of cancer. In this Review, we discuss the biophysical properties and physiological functions of EVs, particularly their pro-metastatic effects, and highlight the utility of EVs for the development of cancer diagnostics and therapeutics.
Collapse
|
118
|
Yin C, Han Q, Xu D, Zheng B, Zhao X, Zhang J. SALL4-mediated upregulation of exosomal miR-146a-5p drives T-cell exhaustion by M2 tumor-associated macrophages in HCC. Oncoimmunology 2019; 8:1601479. [PMID: 31143524 DOI: 10.1080/2162402x.2019.1601479] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/03/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence indicates that cancer cell-derived exosomes contribute to cancer progression through the modulation of tumor microenvironment, but the underlying mechanisms are not fully elucidated. Here, we reported that hepatocellular carcinoma (HCC)-derived exosomes could remodel macrophages by activating NF-κB signaling and inducing pro-inflammatory factors, and resulted in M2-polarized tumor-associated macrophages. In addition, the expression of IFN-γ and TNF-α was inhibited, while the expression of inhibitory receptors such as PD-1 and CTLA-4 was upregulated in T cells by HCC-derived exosome educated macrophages. Data also revealed that HCC exosomes were enriched with miR-146a-5p and promoted M2-polarization. Further investigation demonstrated that the transcription factor Sal-like protein-4 (SALL4) was critical for regulating miR-146a-5p in HCC exosomes and M2-polarization. Mechanistically, SALL4 could bind to the promoter of miR-146a-5p, and directly controlled its expression in exosomes. Blocking the SALL4/miR-146a-5p interaction in HCC reduced the expression of inhibitory receptors on T cells, reversed T cell exhaustion, and delayed HCC progression in DEN/CCL4-induced HCC mice. In conclusion, identification of a role of the exosomal SALL4/miR-146a-5p regulatory axis in M2-polarization as well as HCC progression provides potential targets for therapeutic and diagnostic applications in liver cancer.
Collapse
Affiliation(s)
- Chunlai Yin
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Dongqing Xu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Bingqing Zheng
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Xuemei Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
119
|
Dong L, Zieren RC, Wang Y, de Reijke TM, Xue W, Pienta KJ. Recent advances in extracellular vesicle research for urological cancers: From technology to application. Biochim Biophys Acta Rev Cancer 2019; 1871:342-360. [DOI: 10.1016/j.bbcan.2019.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 02/09/2023]
|
120
|
Cheng Z, Shao X, Xu M, Wang J, Kuai X, Zhang L, Wu J, Zhou C, Mao J. Rab1A promotes proliferation and migration abilities via regulation of the HER2/AKT-independent mTOR/S6K1 pathway in colorectal cancer. Oncol Rep 2019; 41:2717-2728. [PMID: 30896866 PMCID: PMC6448090 DOI: 10.3892/or.2019.7071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common malignancies worldwide and the second leading cause of cancer-related deaths in the US. Recently, Rab1A has been reported to be an activator of mTORC1 and p-S6K1, which is downstream of mTORC1. However, the association between Rab1A and p-S6K1 in CRC remains elusive. In the present study, we first demonstrated that Rab1A was overexpressed in CRC tissues and Rab1A overexpression was positively related to lymph node invasion, degree of differentiation, venous invasion and tumor-node-metastasis (TNM) stage. In both TNM stage I–II and III–IV patients, Rab1A-positive patients had a shorter survival time than Rab1A-negative patients. Furthermore, in univariate and multivariate analyses, only Rab1A expression was verified as an independent prognostic factor for survival in CRC patients. The level of p-S6K1 was markedly high in CRC tissues and Rab1A expression level had a positive association with p-S6K1 level. In addition, high levels of both Rab1A and p-S6K1 were associated with a poorer prognosis compared with low expression of either Rab1A or p-S6K1 level. Moreover, high levels of both Rab1A and p-S6K1 were associated with a poorer prognosis than patients with high levels of either Rab1A or p-S6K1 alone. Finally, knockdown of Rab1A expression inhibited migration and proliferation of SW480 and HCT116 cell lines by targeting regulation of p-S6K1. Thus, our findings indicate that Rab1A plays an important role in CRC and may provide a therapeutic target for CRC, particularly for mTORC1-targeted therapy-resistant cancers.
Collapse
Affiliation(s)
- Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China
| | - Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Junfeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Xiaoyi Kuai
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China
| | - Liping Zhang
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiading Mao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
121
|
Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxid Redox Signal 2019; 30:813-856. [PMID: 29634347 DOI: 10.1089/ars.2017.7265] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Secreted extracellular vesicles (EVs) are now considered veritable entities for diagnosis, prognosis, and therapeutics. These structures are able to interact with target cells and modify their phenotype and function. Recent Advances: Since composition of EVs depends on the cell type of origin and the stimulation that leads to their release, the analysis of EV content remains an important input to understand the potential effects of EVs on target cells. CRITICAL ISSUES Here, we review recent data related to the mechanisms involved in the formation of EVs and the methods allowing specific EV isolation and identification. Also, we analyze the potential use of EVs as biomarkers in different pathologies such as diabetes, obesity, atherosclerosis, neurodegenerative diseases, and cancer. Besides, their role in these diseases is discussed. Finally, we consider EVs enriched in microRNA or drugs as potential therapeutic cargo able to deliver desirable information to target cells/tissues. FUTURE DIRECTIONS We underline the importance of the homogenization of the parameters of isolation of EVs and their characterization, which allow considering EVs as excellent biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Marine Malloci
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Liliana Perdomo
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maëva Veerasamy
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Ramaroson Andriantsitohaina
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Gilles Simard
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - M Carmen Martínez
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| |
Collapse
|
122
|
Jalalian SH, Ramezani M, Jalalian SA, Abnous K, Taghdisi SM. Exosomes, new biomarkers in early cancer detection. Anal Biochem 2019; 571:1-13. [PMID: 30776327 DOI: 10.1016/j.ab.2019.02.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/26/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Exosomes are endosomal-derived vesicles, playing a major role in cell-to-cell communication. Multiple cells secret these vesicles to induce and inhibit different cellular and molecular pathways. Cancer-derived exosomes have been shown to affect development of cancer in different stages and contribute to the recruitment and reprogramming of both proximal and distal tissues. The growing interest in defining the clinical relevance of these nano-sized particles in cancers, has led to the identification of either tissue- or disease-specific exosomal contents, such as nucleic acids, proteins and lipids as a source of new biomarkers which propose the diagnostic potentials of exosomes in early detection of cancers. In this review, we have discussed some aspects of exosomes including their contents, applications and isolation techniques in the field of early cancer detection. Although, exosomes are considered as ideal biomarkers in cancer diagnosis, due to their unique characteristics, there is still a long way in the development of exosome-based assays.
Collapse
Affiliation(s)
- Seyed Hamid Jalalian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Students Research Committee, Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Academic Center for Education, Culture and Research (ACECR)-Mashhad Branch, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Jalalian
- Students Research Committee, Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
123
|
Sexton RE, Mpilla G, Kim S, Philip PA, Azmi AS. Ras and exosome signaling. Semin Cancer Biol 2019; 54:131-137. [PMID: 30769101 DOI: 10.1016/j.semcancer.2019.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 01/25/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Ras gene (HRAS, NRAS, and KRAS) has been observed to be mutated and hyper-activated in a significant proportion of cancers. However, mutant Ras remains a challenging therapeutic target. Similarly, inhibition of targets upstream and downstream of Ras has shown limited clinical utility. There have been attempts to develop and deliver mutant K-Ras silencing RNAs either through their encapsulation in liposomes or nanoparticles. However, these approaches show very limited success due to the lack of stability of such carrier molecules alongside associated toxicity. There is a pressing need for the identification of better therapeutic targets for Ras or its associated pathways as well as improvements in the design of superior RNAi delivery systems to suppress mutant K-Ras. More than a decade ago, it was shown that aggregates of palmitoylated Ras isoforms (H-Ras and N-Ras) passage through the cytosol on rapidly moving nanosized particles ("rasosomes"). Fast forward a decade, considerable new knowledge has emerged in the area of small vesicles, microparticles, and exosomes. Exosomes are tiny vesicles and play a significant role in regulating cancer-related signaling pathways. Exosomes have also been studied as delivery vehicles to transport drugs, proteins, and microRNAs of choice for therapeutic purposes. K-Ras pathway proteins have been implicated in exosome biogenesis and extravasation processes. This review provides an update on the current knowledge related to K-Ras signaling and exosomes and also discusses how these tiny vesicles can be harnessed to successfully deliver the K-Ras silencing moieties.
Collapse
Affiliation(s)
- Rachel E Sexton
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gabriel Mpilla
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steve Kim
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
124
|
Moustafa AA, Kim H, Albeltagy RS, El-Habit OH, Abdel-Mageed AB. MicroRNAs in prostate cancer: From function to biomarker discovery. Exp Biol Med (Maywood) 2019; 243:817-825. [PMID: 29932371 DOI: 10.1177/1535370218775657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a small functional non-coding RNAs that post-transcriptionally regulate gene expression through mRNA degradation or translational repression. miRNAs are key regulatory components of various cellular networks. Current evidence support that multiple mammalian genome-encoded miRNAs impact the cellular biology, including proliferation, apoptosis, differentiation, and tumorigenesis, by targeting specific subsets of mRNAs. This minireview is focused on the current themes underlying the interactions between miRNAs and their mRNA targets and pathways in prostate tumorigenesis and progression, and their potential clinical utility as biomarkers for prostate cancer. Impact statement The primary goal of this article was to review recent literature on miRNA biogenesis and further elaborate on the identity of newly discovered miRNAs and their potential functional significance in the complex biological network associated with prostate tumorigenesis and disease progression and as biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- 1 Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11790, Egypt
| | - Hogyoung Kim
- 2 Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rasha S Albeltagy
- 1 Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11790, Egypt
| | - Ola H El-Habit
- 1 Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11790, Egypt
| | - Asim B Abdel-Mageed
- 2 Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA.,3 Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
125
|
Batista IA, Melo SA. Exosomes and the Future of Immunotherapy in Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20030567. [PMID: 30699928 PMCID: PMC6387297 DOI: 10.3390/ijms20030567] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease, associated with a late diagnosis and a five-year survival rate of 8%. Currently available treatments fall short in improving the survival and quality of life of PDAC patients. The only possible curative option is still the surgical resection of the tumor. Exosomes are extracellular vesicles secreted by cells that transport proteins, lipids, and nucleic acids to other cells, triggering phenotypic changes in the recipient cells. Tumor cells often secrete increased amounts of exosomes. Tumor exosomes are now accepted as important players in the remodeling of PDAC tumor stroma, particularly in the establishment of an immunosuppressive microenvironment. This has sparked the interest in their usefulness as mediators of immunomodulatory effects for the treatment of PDAC. In fact, exosomes are now under study to understand their potential as nanocarriers to stimulate an immune response against cancer. This review highlights the latest findings regarding the function of exosomes in tumor-driven immunomodulation, and the challenges and advantages associated with the use of these vesicles to potentiate immunotherapy in PDAC.
Collapse
Affiliation(s)
- Ines A Batista
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), 4200-135 Porto, Portugal.
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal.
| | - Sonia A Melo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), 4200-135 Porto, Portugal.
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal.
- Medical Faculty of the University of Porto (FMUP), 4200-319 Porto, Portugal.
| |
Collapse
|
126
|
On the Choice of the Extracellular Vesicles for Therapeutic Purposes. Int J Mol Sci 2019; 20:ijms20020236. [PMID: 30634425 PMCID: PMC6359369 DOI: 10.3390/ijms20020236] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid membrane vesicles released by all human cells and are widely recognized to be involved in many cellular processes, both in physiological and pathological conditions. They are mediators of cell-cell communication, at both paracrine and systemic levels, and therefore they are active players in cell differentiation, tissue homeostasis, and organ remodeling. Due to their ability to serve as a cargo for proteins, lipids, and nucleic acids, which often reflects the cellular source, they should be considered the future of the natural nanodelivery of bio-compounds. To date, natural nanovesicles, such as exosomes, have been shown to represent a source of disease biomarkers and have high potential benefits in regenerative medicine. Indeed, they deliver both chemical and bio-molecules in a way that within exosomes drugs are more effective that in their exosome-free form. Thus, to date, we know that exosomes are shuttle disease biomarkers and probably the most effective way to deliver therapeutic molecules within target cells. However, we do not know exactly which exosomes may be used in therapy in avoiding side effects as well. In regenerative medicine, it will be ideal to use autologous exosomes, but it seems not ideal to use plasma-derived exosomes, as they may contain potentially dangerous molecules. Here, we want to present and discuss a contradictory relatively unmet issue that is the lack of a general agreement on the choice for the source of extracellular vesicles for therapeutic use.
Collapse
|
127
|
Choi D, Spinelli C, Montermini L, Rak J. Oncogenic Regulation of Extracellular Vesicle Proteome and Heterogeneity. Proteomics 2019; 19:e1800169. [PMID: 30561828 DOI: 10.1002/pmic.201800169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/05/2018] [Indexed: 12/12/2022]
Abstract
Mutational and epigenetic driver events profoundly alter intercellular communication pathways in cancer. This effect includes deregulated release, molecular composition, and biological activity of extracellular vesicles (EVs), membranous cellular fragments ranging from a few microns to less than 100 nm in diameter and filled with bioactive molecular cargo (proteins, lipids, and nucleic acids). While EVs are usually classified on the basis of their physical properties and biogenetic mechanisms, recent analyses of their proteome suggest a larger than expected molecular diversity, a notion that is also supported by multicolour nano-flow cytometry and other emerging technology platforms designed to analyze single EVs. Both protein composition and EV diversity are markedly altered by oncogenic transformation, epithelial to mesenchymal transition, and differentiation of cancer stem cells. Interestingly, only a subset of EVs released from mutant cells may carry oncogenic proteins (e.g., EGFRvIII), hence, these EVs are often referred to as "oncosomes". Indeed, oncogenic transformation alters the repertoire of EV-associated proteins, increases the presence of pro-invasive cargo, and alters the composition of distinct EV populations. Molecular profiling of single EVs may reveal a more intricate effect of transforming events on the architecture of EV populations in cancer and shed new light on their biological role and diagnostic utility.
Collapse
Affiliation(s)
- Dongsic Choi
- Research Institute, Health Centre, Glen Site, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Cristiana Spinelli
- Research Institute, Health Centre, Glen Site, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Laura Montermini
- Research Institute, Health Centre, Glen Site, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Janusz Rak
- Research Institute, Health Centre, Glen Site, McGill University, Montreal, Quebec, H4A 3J1, Canada
| |
Collapse
|
128
|
Wu CH, Silvers CR, Messing EM, Lee YF. Bladder cancer extracellular vesicles drive tumorigenesis by inducing the unfolded protein response in endoplasmic reticulum of nonmalignant cells. J Biol Chem 2018; 294:3207-3218. [PMID: 30593508 DOI: 10.1074/jbc.ra118.006682] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
The field cancerization effect has been proposed to explain bladder cancer's multifocal and recurrent nature, yet the mechanisms of this effect remain unknown. In this work, using cell biology, flow cytometry, and qPCR analyses, along with a xenograft mouse tumor model, we show that chronic exposure to tumor-derived extracellular vesicles (TEVs) results in the neoplastic transformation of nonmalignant human SV-HUC urothelial cells. Inhibition of EV uptake prevented this transformation. Transformed cells not only possessed several oncogenic properties, such as increased genome instability, loss of cell-cell contact inhibition, and invasiveness, but also displayed altered morphology and cell structures, such as an enlarged cytoplasm with disrupted endoplasmic reticulum (ER) alignment and the accumulation of smaller mitochondria. Exposure of SV-HUC cells to TEVs provoked the unfolded protein response in the endoplasmic reticulum (UPRER). Prolonged induction of UPRER signaling activated the survival branch of the UPRER pathway, in which cells had elevated expression of inositol-requiring enzyme 1 (IRE1), NF-κB, and the inflammatory cytokine leptin, and incurred loss of the pro-apoptotic protein C/EBP homologous protein (CHOP). More importantly, inhibition of ER stress by docosahexaenoic acid prevented TEV-induced transformation. We propose that TEVs promote malignant transformation of predisposed cells by inhibiting pro-apoptotic signals and activating tumor-promoting ER stress-induced unfolded protein response and inflammation. This study provides detailed insight into the mechanisms underlying the bladder cancer field effect and tumor recurrence.
Collapse
Affiliation(s)
- Chia-Hao Wu
- From the Departments of Pathology & Laboratory Medicine and
| | | | - Edward M Messing
- Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Yi-Fen Lee
- From the Departments of Pathology & Laboratory Medicine and .,Urology, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
129
|
Zhang C, Ji Q, Yang Y, Li Q, Wang Z. Exosome: Function and Role in Cancer Metastasis and Drug Resistance. Technol Cancer Res Treat 2018; 17:1533033818763450. [PMID: 29681222 PMCID: PMC5949932 DOI: 10.1177/1533033818763450] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As a kind of nanometric lipidic vesicles, exosomes have been presumed to play a leading role in the regulation of tumor microenvironment through exosomes-mediated transfer of proteins and genetic materials. Tumor-derived exosomes are recognized as a critical determinant of the tumor progression. Intriguingly, some current observations have identified that exosomes are essential for several intercellular exchanges of proteins, messenger RNAs, noncoding RNAs (including long noncoding RNAs and microRNAs) as well as to the process of cancer metastasis and drug resistance. Herein, we review the role of exosomes and their molecular cargos in cancer invasion and metastasis, summarize how they interact with antitumor agents, and highlight their translational implications.
Collapse
Affiliation(s)
- Chengcheng Zhang
- 1 Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,2 Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ji
- 2 Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Yang
- 2 Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- 2 Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhongqi Wang
- 1 Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
130
|
Zhang Z, Xie H, Zhu S, Chen X, Yu J, Shen T, Li X, Shang Z, Niu Y. High Expression of KIF22/Kinesin-Like DNA Binding Protein (Kid) as a Poor Prognostic Factor in Prostate Cancer Patients. Med Sci Monit 2018; 24:8190-8197. [PMID: 30427826 PMCID: PMC6247746 DOI: 10.12659/msm.912643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Kid (kinesin-like DNA binding protein), a member of microtubule-dependent molecular motor proteins, also known as KIF22, is reported to be associated with carcinogenesis and cancer progression in different types of malignant tumor, but the biologic behavior and clinical outcome of KIF22 in prostate cancer (PCa) has not been well studied. This study aimed to analyze the association between KIF22 and clinical outcome in PCa patients. Material/Methods The expression of KIF22 in tumor specimens compared with paired paracancerous tissue from 114 patients undergoing radical prostatectomy was detected by immunohistochemistry; results were verified using The Cancer Genome Atlas (TCGA) database. Subsequently, the relationship between KIF22 expression and clinical prognosis of PCa patients was then statistically analyzed. Results Both immunohistochemistry and database analysis showed that KIF22 was obviously overexpressed in PCa tissues compared with paracancerous tissue. The overexpression of KIF22 at the protein level was significantly related to higher clinical stage (P=0.025), Gleason score (P=0.002), seminal vesicle invasion (P=0.007), and lymph node metastasis (P=0.009). Furthermore, with the overexpression of KIF22 mRNA level in PCa patients, the oncological prognosis of PCa patients was much poorer. Conclusions High-level expression of KIF22 was related to both tumor progression and adverse clinical outcome. For this reason, KIF22 may become a potential prognostic factor for PCa.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Hui Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Shimiao Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Xuanrong Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Jianpeng Yu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Tianyun Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Xiaoqing Li
- Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| |
Collapse
|
131
|
Role of tumor-derived exosomes in cancer metastasis. Biochim Biophys Acta Rev Cancer 2018; 1871:12-19. [PMID: 30419312 DOI: 10.1016/j.bbcan.2018.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022]
Abstract
The highlights of cancer research include the discovery of exosomes, which are small (30-100 nm) sized vesicular nanoparticles released virtually by all cells. Tumor-derived exosomes (TDEs) are notoriously known for orchestrating the invasion-metastasis cascade via systemic pathways that we have previously proposed (1), resulting in a paradigm shift of our understanding about the pathobiology of metastases. In principle, exosomes serve as transport medium for proteins, mRNAs and miRNAs to transmit targeted cues from the primary cell to distant sites via horizontal transfer or cell-receptor interaction. In this chapter, we seek to explore in-depth the mechanisms engendering TDE in the metastatic cascade, along with experimental models to augment our understanding. The aforementioned has also paved way for parallel advancements in the therapeutic armamentarium, as evident from pronounced efforts to exploit the metastatic process for therapeutic targeting. In this light, we aim to examine potential anti-metastatic therapeutic opportunities derived from exosomal research. Lastly, exosomes may play a crucial role in the contemporary era of "liquid biopsies", given the array of molecular information with diagnostic and predictive indications. We thus intend to end this chapter off by exploring future applications of exosomes that could illuminate shortcomings and propel advancements in biomarker research.
Collapse
|
132
|
Cai W, Chiu YJ, Ramakrishnan V, Tsai Y, Chen C, Lo YH. A single-cell translocation and secretion assay (TransSeA). LAB ON A CHIP 2018; 18:3154-3162. [PMID: 30179236 PMCID: PMC6177299 DOI: 10.1039/c8lc00821c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Understanding biological heterogeneity at the single cell level is required for advancing insights into the complexity of human physiology and diseases. While advances in technological and analytical methods have afforded unprecedented glimpses of this heterogeneity, the information captured to date largely represents one-time "snap" shots of single cell physiology. To address the limits of existing methods and to accelerate discoveries from single cell studies, we developed a single-cell translocation and secretion assay (TransSeA) that supports time lapse analysis, enables molecular cargo analysis of secretions such as extracellular vesicles (EVs) from single cells, allows massively parallel single cell transfer according to user-defined cell selection criteria, and supports tracking of phenotypes between parental and progeny cells derived from single cells. To demonstrate the unique capabilities and efficiencies of the assay, we present unprecedented single cell studies related to cell secretions, EV cargos and cell intrinsic properties. Although used as examples to demonstrate the feasibility and versatility of the technology, the studies already provided insights into key unanswered questions such as the microRNAs carried by EVs, the relationships between EV secretion rates and gene expressions, and the spontaneous, trans-generational phenotypic changes in EV secretion between parental and progeny cells.
Collapse
Affiliation(s)
- Wei Cai
- Materials Science and Engineering Program, University of California at San Diego, La Jolla, California, USA.
| | | | | | | | | | | |
Collapse
|
133
|
Gulei D, Petrut B, Tigu AB, Onaciu A, Fischer-Fodor E, Atanasov AG, Ionescu C, Berindan-Neagoe I. Exosomes at a glance - common nominators for cancer hallmarks and novel diagnosis tools. Crit Rev Biochem Mol Biol 2018; 53:564-577. [PMID: 30247075 DOI: 10.1080/10409238.2018.1508276] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer represents a heterogeneous disease with multiple levels of regulation and a dynamic environment that sustains the evolution of the malignant mass. This dynamic is in part sustained by a class of extracellular vesicles termed exosomes that are able to imprint the pathological state by incorporating differential cargos in order to facilitate cell-to-cell communication. Exosomes are stable within the extracellular medium and function as shuttles secreted by healthy or pathological cells, being further taken by the accepting cell with direct effects on its phenotype. The exosomal trafficking is deeply involved in multiple levels of cancer development with roles in all cancer hallmarks. Nowadays, studies are constantly exploring the ability of exosomes to sustain the malignant progression in order to attack this pathological trafficking and impair the ability of the tumor mass to expand within the organisms. As important, the circulatory characteristics of exosomes represent a steady advantage regarding the possibility of using them as minimally invasive diagnosis tools, where cancer patients' present modified exosomal profiles compared to the healthy ones. This last characteristic, as novel diagnosis tools, has the advantage of a possible rapid transition within the clinic, compared to the studies that evaluate the therapeutic meaning.
Collapse
Affiliation(s)
- Diana Gulei
- a MEDFUTURE - Research Center for Advanced Medicine "Iuliu-Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Bogdan Petrut
- b Department of Urology , The Oncology Institute "Prof Dr. Ion Chiricuta" , Cluj-Napoca , Romania
| | - Adrian Bogdan Tigu
- a MEDFUTURE - Research Center for Advanced Medicine "Iuliu-Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Anca Onaciu
- a MEDFUTURE - Research Center for Advanced Medicine "Iuliu-Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Eva Fischer-Fodor
- a MEDFUTURE - Research Center for Advanced Medicine "Iuliu-Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania.,c Tumor Biology Department , Ion Chiricuta Oncology Institute , Cluj-Napoca , Romania
| | - Atanas G Atanasov
- d Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzȩbiec, Magdalenka , Poland.,e Department of Pharmacognosy , University of Vienna , Vienna , Austria
| | - Calin Ionescu
- f 5th Surgical Department , Municipal Hospital , Cluj-Napoca , Romania.,g "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Ioana Berindan-Neagoe
- a MEDFUTURE - Research Center for Advanced Medicine "Iuliu-Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania.,h Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania.,i Department of Functional Genomics and Experimental Pathology , "Prof. Dr. Ion Chiricuta" Oncology Institute , Cluj-Napoca , Romania
| |
Collapse
|
134
|
Exosomes Regulate the Transformation of Cancer Cells in Cancer Stem Cell Homeostasis. Stem Cells Int 2018; 2018:4837370. [PMID: 30344611 PMCID: PMC6174755 DOI: 10.1155/2018/4837370] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
In different biological model systems, exosomes are considered mediators of cell-cell communication between different cell populations. Exosomes, as extracellular vesicles, participate in physiological and pathological processes by transmitting signaling molecules such as proteins, nucleic acids, and lipids. The tumor's microenvironment consists of many types of cells, including cancer stem cells and mesenchymal cells. It is well known that these cells communicate with each other and thereby regulate the progression of the tumor. Recent studies have provided evidence that exosomes mediate the interactions between different types of cells in the tumor microenvironment, providing further insight into how these cells interact through exosome signaling. Cancer stem cells are a small kind of heterogeneous cells that existed in tumor tissues or cancer cell lines. These cells possess a stemness phenotype with a self-renewal ability and multipotential differentiation which was considered the reason for the failure of conventional cancer therapies and tumor recurrence. However, a highly dynamic equilibrium was found between cancer stem cells and cancer cells, and this indicates that cancer stem cells are no more special target and blocking the transformation of cancer stem cells and cancer cells seem to be a more significant therapy strategy. Whether exosomes, as an information transforming carrier between cells, regulated cancer cell transformation in cancer stem cell dynamic equilibrium and targeting exosome signaling attenuated the formation of cancer stem cells and finally cure cancers is worthy of further study.
Collapse
|
135
|
Ngalame NNO, Luz AL, Makia N, Tokar EJ. Arsenic Alters Exosome Quantity and Cargo to Mediate Stem Cell Recruitment Into a Cancer Stem Cell-Like Phenotype. Toxicol Sci 2018; 165:40-49. [PMID: 30169766 PMCID: PMC6111788 DOI: 10.1093/toxsci/kfy176] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Inorganic arsenic is a human carcinogen that can target the prostate. Accumulating evidence suggests arsenic can disrupt stem cell (SC) dynamics during the carcinogenic process. Previous work demonstrated arsenic-transformed prostate epithelial (CAsE-PE) cells can recruit prostate SCs into rapidly acquiring a cancer SC (CSC) phenotype via the secretion of soluble factors. Exosomes are small, membrane-derived vesicles that contain lipids, RNA, and proteins, and actively contribute to cancer initiation and progression when taken up by target cells. Here we hypothesized that CAsE-PE cells are recruiting SCs to a CSC-like phenotype via exosomal signaling. CAsE-PE cells secreted 700% more exosomes than parental RWPE-1 cells. CAsE-PE exosomes were enriched with oncogenic factors, including oncogenes (KRAS, NRAS, VEFGA, MYB, and EGFR), inflammation-related (cyclooxygenase-2, interleukin 1B (IL1B), IL6, transforming growth factor-β, and tumor necrosis factor-A), and apoptosis-related (CASP7, CASP9, and BCL2) transcripts, and oncogenesis-associated microRNAs. When compared with SCs cultured in exosome-depleted conditioned medium (CM), SCs cultured in CM containing CAsE-PE-derived exosomes showed increased (198%) matrix metalloproteinase activity and underwent an epithelial-to-mesenchymal transition in morphology, suggesting an exosome-mediated transformation. KRAS plays an important role in arsenic carcinogenesis. Although KRAS transcript (>24 000%) and protein (866%) levels were elevated in CAsE-PE exosomes, knock-down of KRAS in these cells only partially mitigated the CSC-like phenotype in cocultured SCs. Collectively, these results suggest arsenic impacts both exosomal quantity and cargo. Exosomal KRAS is only minimally involved in this recruitment, and additional factors (eg, cancer-associated miRNAs) likely also play a role. This work furthers our mechanistic understanding of how arsenic disrupts SC dynamics and influences the tumor microenvironment during carcinogenesis.
Collapse
Affiliation(s)
- Ntube N O Ngalame
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Anthony L Luz
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Ngome Makia
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Erik J Tokar
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
136
|
Vlaeminck-Guillem V. Extracellular Vesicles in Prostate Cancer Carcinogenesis, Diagnosis, and Management. Front Oncol 2018; 8:222. [PMID: 29951375 PMCID: PMC6008571 DOI: 10.3389/fonc.2018.00222] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, are now well recognized as major ways by which cancer cells interact with each other and stromal cells. The meaningful messages transmitted by the EVs are carried by all components of the EVs, i.e., the membrane lipids and the cargo (DNAs, RNAs, microRNAs, long non-coding RNAs, proteins). They are clearly part of the armed arsenal by which cancer cells obtain and share more and more advantages to grow and conquer new spaces. Identification of these messages offers a significant opportunity to better understand how a cancer occurs and then develops both locally and distantly. But it also provides a powerful means by which cancer progression can be detected and monitored. In the last few years, significant research efforts have been made to precisely identify how the EV trafficking is modified in cancer cells as compared to normal cells and how this trafficking is altered during cancer progression. Prostate cancer has not escaped this trend. The aim of this review is to describe the results obtained when assessing the meaningful content of prostate cancer- and stromal-derived EVs in terms of a better comprehension of the cellular and molecular mechanisms underlying prostate cancer occurrence and development. This review also deals with the use of EVs as powerful tools to diagnose non-indolent prostate cancer as early as possible and to accurately define, in a personalized approach, its present and potential aggressiveness, its response to treatment (androgen deprivation, chemotherapy, radiation, surgery), and the overall patients’ prognosis.
Collapse
Affiliation(s)
- Virginie Vlaeminck-Guillem
- Medical Unit of Molecular Oncology and Transfer, Department of Biochemistry and Molecular Biology, Centre Hospitalier Lyon-Sud, Hospices Civils of Lyon, Pierre-Bénite, France.,Cancer Research Centre of Lyon, U1052 INSERM, CNRS 5286, Claude Bernard University Lyon 1, Léon Bérard Centre, Lyon, France
| |
Collapse
|
137
|
Allen B, Schneider A, Victoria B, Nunez Lopez YO, Muller M, Szewczyk M, Pazdrowski J, Majchrzak E, Barczak W, Golusinski W, Golusinski P, Masternak MM. Blood Serum From Head and Neck Squamous Cell Carcinoma Patients Induces Altered MicroRNA and Target Gene Expression Profile in Treated Cells. Front Oncol 2018; 8:217. [PMID: 29942793 PMCID: PMC6004400 DOI: 10.3389/fonc.2018.00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/25/2018] [Indexed: 12/16/2022] Open
Abstract
The head and neck squamous cell carcinoma (HNSCC) represents one of the most common cancers in humans. Close to 600,000 new diagnoses are made every year worldwide and over half of diagnosed patients will not survive. In view of this low survival rate, the development of novel cell-based assays for HNSCC will allow more mechanistic approaches for specific diagnostics for each individual patient. The cell-based assays will provide more informative data predicting cellular processes in treated patient, which in effect would improve patient follow up. More importantly, it will increase the specificity and effectiveness of therapeutic approaches. In this study, we investigated the role of serum from HNSCC patients on the regulation of microRNA (miRNA) expression in exposed cells in vitro. Next-generation sequencing of miRNA revealed that serum from HNSCC patients induced a different miRNA expression profile than the serum from healthy individuals. Out of 377 miRNA detected, we found that 16 miRNAs were differentially expressed when comparing cells exposed to serum from HNSCC or healthy individuals. The analysis of gene ontologies and pathway analysis revealed that these miRNA target genes were involved in biological cancer-related processes, including cell cycle and apoptosis. The real-time PCR analysis revealed that serum from HNSCC patients downregulate the expression level of five genes involved in carcinogenesis and two of these genes-P53 and SLC2A1-are direct targets of detected miRNAs. These novel findings provide new insight into how cancer-associated factors in circulation regulate the expression of genes and regulatory elements in distal cells in favor of tumorigenesis. This has the potential for new therapeutic approaches and more specific diagnostics with tumor-specific cell lines or single-cell in vitro assays for personalized treatment and early detection of primary tumors or metastasis.
Collapse
Affiliation(s)
- Brittany Allen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Yury O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Mark Muller
- Epigenetics Division, TopoGEN Inc, Buena Vista, CO, United States
| | - Mateusz Szewczyk
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Jakub Pazdrowski
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Ewa Majchrzak
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Wojciech Barczak
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Pawel Golusinski
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland.,Biology and Environmental Studies, Head and Neck Cancer Biology Laboratory, Poznań University of Medical Sciences, Poznan, Poland
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States.,Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
138
|
Extracellular vesicles and ctDNA in lung cancer: biomarker sources and therapeutic applications. Cancer Chemother Pharmacol 2018; 82:171-183. [PMID: 29948020 DOI: 10.1007/s00280-018-3586-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/20/2018] [Indexed: 02/05/2023]
Abstract
Lung cancer is the leading cause of cancer death in the world. Recently, targeted therapy and anti-programmed cell death receptor 1 (PD-1) and anti-programmed cell death ligand 1 (PD-L1) immunotherapy have made great progress in treatment of lung cancer. However, responses to these therapies are variable, influenced by genetic alterations, high microsatellite instability and mismatch repair deficiency. Liquid biopsy of extracellular vesicles and circulating tumor DNA (ctDNA) emerges as a new promising non-invasive means that enables not only biomarker determination, but also continuous monitoring of cancer treatment. Notably, tumor extracellular vesicles play important roles in tumor formation and progression, and also serve as natural carriers for anti-tumor drugs and short-interfering RNA. In this review, we summarize the latest progress in understanding the relationships of extracellular vesicles and ctDNA in cancer biology, diagnosis and drug delivery. In particular, the application of extracellular vesicles and ctDNA in anti-PD-1/PD-L1 immunotherapy is discussed.
Collapse
|
139
|
High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: A drug repurposing strategy for advanced cancer. Sci Rep 2018; 8:8161. [PMID: 29802284 PMCID: PMC5970137 DOI: 10.1038/s41598-018-26411-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
Targeting exosome biogenesis and release may have potential clinical implications for cancer therapy. Herein, we have optimized a quantitative high throughput screen (qHTS) assay to identify compounds that modulate exosome biogenesis and/or release by aggressive prostate cancer (PCa) CD63-GFP-expressing C4-2B cells. A total of 4,580 compounds were screened from the LOPAC library (a collection of 1,280 pharmacologically active compounds) and the NPC library (NCGC collection of 3,300 compounds approved for clinical use). Twenty-two compounds were found to be either potent activators or inhibitors of intracellular GFP signal in the CD63-GFP-expressing C4-2B cells. The activity of lead compounds in modulating the secretion of exosomes was validated by a tunable resistive pulse sensing (TRPS) system (qNano-IZON) and flow cytometry. The mechanism of action of the lead compounds in modulating exosome biogenesis and/or secretion were delineated by immunoblot analysis of protein markers of the endosomal sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways. The lead compounds tipifarnib, neticonazole, climbazole, ketoconazole, and triademenol were validated as potent inhibitors and sitafloxacin, forskolin, SB218795, fenoterol, nitrefazole and pentetrazol as activators of exosome biogenesis and/or secretion in PC cells. Our findings implicate the potential utility of drug-repurposing as novel adjunct therapeutic strategies in advanced cancer.
Collapse
|
140
|
Fort RS, Mathó C, Oliveira-Rizzo C, Garat B, Sotelo-Silveira JR, Duhagon MA. An integrated view of the role of miR-130b/301b miRNA cluster in prostate cancer. Exp Hematol Oncol 2018; 7:10. [PMID: 29744254 PMCID: PMC5930504 DOI: 10.1186/s40164-018-0102-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/20/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a major health problem worldwide due to its high incidence morbidity and mortality. There is currently a need of improved biomarkers, capable to distinguish mild versus aggressive forms of the disease, and thus guide therapeutic decisions. Although miRNAs deregulated in cancer represent exciting candidates as biomarkers, its scientific literature is frequently fragmented in dispersed studies. This problem is aggravated for miRNAs belonging to miRNA gene clusters with shared target genes. The miRNA cluster composed by hsa-mir-130b and hsa-mir-301b precursors was recently involved in prostate cancer pathogenesis, yet different studies assigned it opposite effects on the disease. We sought to elucidate the role of the human miR-130b/301b miRNA cluster in prostate cancer through a comprehensive data analysis of most published clinical cohorts. We interrogated methylomes, transcriptomes and patient clinical data, unifying previous reports and adding original analysis using the largest available cohort (TCGA-PRAD). We found that hsa-miR-130b-3p and hsa-miR-301b-3p are upregulated in neoplastic vs normal prostate tissue, as well as in metastatic vs primary sites. However, this increase in expression is not due to a decrease of the global DNA methylation of the genes in prostate tissues, as the promoter of the gene remains lowly methylated in normal and neoplastic tissue. A comparison of the levels of human miR-130b/301b and all the clinical variables reported for the major available cohorts, yielded positive correlations with malignance, specifically significant for T-stage, residual tumor status and primary therapy outcome. The assessment of the correlations between the hsa-miR-130b-3p and hsa-miR-301b-3p and candidate target genes in clinical samples, supports their repression of tumor suppressor genes in prostate cancer. Altogether, these results favor an oncogenic role of miR-130b/301b cluster in prostate cancer.
Collapse
Affiliation(s)
- Rafael Sebastián Fort
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,2Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Mathó
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,2Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carolina Oliveira-Rizzo
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,2Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Garat
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - José Roberto Sotelo-Silveira
- 3Depto. de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,4Depto. de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,2Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
141
|
Migration/Invasion of Malignant Gliomas and Implications for Therapeutic Treatment. Int J Mol Sci 2018; 19:ijms19041115. [PMID: 29642503 PMCID: PMC5979613 DOI: 10.3390/ijms19041115] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant tumors of the central nervous system (CNS) are among cancers with the poorest prognosis, indicated by their association with tumors of high-level morbidity and mortality. Gliomas, the most common primary CNS tumors that arise from neuroglial stem or progenitor cells, have estimated annual incidence of 6.6 per 100,000 individuals in the USA, and 3.5 per 100,000 individuals in Taiwan. Tumor invasion and metastasis are the major contributors to the deaths in cancer patients. Therapeutic goals including cancer stem cells (CSC), phenotypic shifts, EZH2/AXL/TGF-β axis activation, miRNAs and exosomes are relevant to GBM metastasis to develop novel targeted therapeutics for GBM and other brain cancers. Herein, we highlight tumor metastasis in our understanding of gliomas, and illustrate novel exosome therapeutic approaches in glioma, thereby paving the way towards innovative therapies in neuro-oncology.
Collapse
|
142
|
Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B, Rajasingh J. Exosomes: new molecular targets of diseases. Acta Pharmacol Sin 2018; 39:501-513. [PMID: 29219950 PMCID: PMC5888687 DOI: 10.1038/aps.2017.162] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) comprise apoptotic bodies, microvesicles and exosomes, and they perform as key regulators in cell-to-cell communication in normal as well as diseased states. EVs contain natural cargo molecules, such as miRNA, mRNA and proteins, and transfer these functional cargos to neighboring cells or more distant cells through circulation. These functionally active molecules then affect distinct signaling cascades. The message conveyed to the recipient cells is dependent upon the composition of the EV, which is determined by the parent cell and the EV biogenesis. Because of their properties such as increased stability in circulation, biocompatibility, low immunogenicity and toxicity, EVs have drawn attention as attractive delivery systems for therapeutics. This review focuses on the functional use of exosomes in therapy and the potential advantages and challenges in using exosomes for therapeutic purposes.
Collapse
Affiliation(s)
- Saheli Samanta
- Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine
| | - Sheeja Rajasingh
- Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine
| | - Nicholas Drosos
- Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine
| | - Zhigang Zhou
- Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine
| | - Buddhadeb Dawn
- Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine
| | - Johnson Rajasingh
- Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
143
|
Yan Y, Fu G, Ming L. Role of exosomes in pancreatic cancer. Oncol Lett 2018; 15:7479-7488. [PMID: 29731898 PMCID: PMC5920881 DOI: 10.3892/ol.2018.8348] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies. Exosomes, which are released by multiple cell types, such as cancer cells, contain functional biomolecules (including proteins, nucleic acids and lipids) that can be horizontally delivered to recipient cells. Exosomes act as the most prominent mediator of intercellular communication and can regulate, instruct and re-educate their surrounding microenvironment and target specific organs. The present review performed an extensive search of multiple databases from 2005 to April 23 2017, for eligible literature relating to exosomes and their role in pancreatic cancer. With a focus on the latest findings for pancreatic cancer exosomes, their role in tumorigenesis was summarized, as well as their aggressive behaviors and their contribution to immunosuppression and therapy resistance in pancreatic cancer. In addition, the potential function of exosomes as novel diagnostic biomarkers is briefly discussed. Finally, we propose potential clinical applications for exosomes in pancreatic cancer.
Collapse
Affiliation(s)
- Yunmeng Yan
- Department of Clinical Laboratory and Key Clinical Laboratory of The Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guangzhen Fu
- Department of Clinical Laboratory and Key Clinical Laboratory of The Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liang Ming
- Department of Clinical Laboratory and Key Clinical Laboratory of The Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
144
|
Nassar ZD, Aref AT, Miladinovic D, Mah CY, Raj GV, Hoy AJ, Butler LM. Peri‐prostatic adipose tissue: the metabolic microenvironment of prostate cancer. BJU Int 2018; 121 Suppl 3:9-21. [DOI: 10.1111/bju.14173] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zeyad D. Nassar
- University of Adelaide Medical School Adelaide SA Australia
- Freemasons Foundation Centre for Men's Health Adelaide SA Australia
- South Australian Health and Medical Research Institute Adelaide SA Australia
| | - Adel T. Aref
- University of Adelaide Medical School Adelaide SA Australia
- Freemasons Foundation Centre for Men's Health Adelaide SA Australia
- South Australian Health and Medical Research Institute Adelaide SA Australia
| | - Dushan Miladinovic
- Discipline of Physiology School of Medical Sciences and Bosch Institute Charles Perkins Centre University of Sydney Sydney NSWAustralia
| | - Chui Yan Mah
- University of Adelaide Medical School Adelaide SA Australia
- Freemasons Foundation Centre for Men's Health Adelaide SA Australia
- South Australian Health and Medical Research Institute Adelaide SA Australia
| | - Ganesh V. Raj
- Departments of Urology and Pharmacology UT Southwestern Medical Center at Dallas Dallas TX USA
| | - Andrew J. Hoy
- Discipline of Physiology School of Medical Sciences and Bosch Institute Charles Perkins Centre University of Sydney Sydney NSWAustralia
| | - Lisa M. Butler
- University of Adelaide Medical School Adelaide SA Australia
- Freemasons Foundation Centre for Men's Health Adelaide SA Australia
- South Australian Health and Medical Research Institute Adelaide SA Australia
| |
Collapse
|
145
|
Logvina NA, Shender VO, Arapidi GP, Holina TD. A Role of Vesicular Transduction of Intercellular Signals in Cancer Development. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
146
|
Lugini L, Valtieri M, Federici C, Cecchetti S, Meschini S, Condello M, Signore M, Fais S. Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells. Oncotarget 2018; 7:50086-50098. [PMID: 27418137 PMCID: PMC5226570 DOI: 10.18632/oncotarget.10574] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/29/2016] [Indexed: 12/30/2022] Open
Abstract
Background Cancer cells, including colorectal cancer ones (CRC), release high amounts of nanovesicles (exosomes), delivering biochemical messages for paracrine or systemic crosstalk. Mesenchymal stromal cells (MSCs) have been shown to play contradicting roles in tumor progression. Results CRC exosomes induce in cMSCs: i) atypical morphology, higher proliferation, migration and invasion; ii) formation of spheroids; iii) an acidic extracellular environment associated with iv) a plasma membrane redistribution of vacuolar H+-ATPase and increased expression of CEA. Colon cancer derived MSCs, which were isolated from tumor masses, produce umbilicated spheroids, a future frequently observed in the inner core of rapidly growing tumors and recapitulate the changes observed in normal colonic MSCs exposed to CRC exosomes. Materials and Methods Tissue specific colonic (c)MSCs were exposed to primary or metastatic CRC exosomes and analysed by light and electron microscopy, proliferation in 2D and 3D cultures, migration and invasion assays, Western blot and confocal microscopy for vacuolar H+-ATPase expression. Conclusions CRC exosomes are able to induce morphological and functional changes in colonic MSCs, which may favour tumor growth and its malignant progression. Our results suggest that exosomes are actively involved in cancer progression and that inhibiting tumor exosome release may represent a way to interfere with cancer.
Collapse
Affiliation(s)
- Luana Lugini
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Valtieri
- Department of Ematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Federici
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Meschini
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Condello
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Signore
- Department of Ematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Fais
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
147
|
Wang L, Chen X, Zhou X, Roizman B, Zhou GG. miRNAs Targeting ICP4 and Delivered to Susceptible Cells in Exosomes Block HSV-1 Replication in a Dose-Dependent Manner. Mol Ther 2018. [PMID: 29526650 DOI: 10.1016/j.ymthe.2018.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
miRNAs are potent tools that in principle can be used to control the replication of infectious agents. The objectives of the studies reported here were to design miRNAs that can block the replication of herpes simplex virus 1 and which could be delivered to infected cells via exosomes. We report the following: (1) We designed three miRNAs targeting the mRNA encoding ICP4, an essential viral regulatory protein. Of the three miRNAs, one miRNA401 effectively blocked ICP4 accumulation and viral replication on transfection into susceptible cells. (2) To facilitate packaging of the miRNA into exosomes, we incorporated into the sequence of miRNA401 an exosome-packaging motif. miRNA401 was shown to be packaged into exosomes and successfully delivered by exosomes to susceptible cells, where it remained stable for at least 72 hr. Finally, the results show that miRNA401 delivered to cells via exosomes effectively reduced virus yields in a miRNA401 dose-dependent fashion. The protocol described in this report can be applied to study viral gene functions without actually deleting or mutagenizing the gene.
Collapse
Affiliation(s)
- Lei Wang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xiaoqing Chen
- Shenzhen International Institute for Biomedical Research, Dapeng New District, Shenzhen, Guangdong 518116, China
| | - Xusha Zhou
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Bernard Roizman
- Shenzhen International Institute for Biomedical Research, Dapeng New District, Shenzhen, Guangdong 518116, China; Cummings Life Sciences Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Grace Guoying Zhou
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; Shenzhen International Institute for Biomedical Research, Dapeng New District, Shenzhen, Guangdong 518116, China.
| |
Collapse
|
148
|
Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-Based Cell-Cell Communication in the Tumor Microenvironment. Front Cell Dev Biol 2018. [PMID: 29515996 PMCID: PMC5826063 DOI: 10.3389/fcell.2018.00018] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumors are not isolated entities, but complex systemic networks involving cell-cell communication between transformed and non-transformed cells. The milieu created by tumor-associated cells may either support or halt tumor progression. In addition to cell-cell contact, cells communicate through secreted factors via a highly complex system involving characteristics such as ligand concentration, receptor expression and integration of diverse signaling pathways. Of these, extracellular vesicles, such as exosomes, are emerging as novel cell-cell communication mediators in physiological and pathological scenarios. Exosomes, membrane vesicles of endocytic origin released by all cells (both healthy and diseased), ranging in size from 30 to 150 nm, transport all the main biomolecules, including lipids, proteins, DNAs, messenger RNAs and microRNA, and perform intercellular transfer of components, locally and systemically. By acting not only in tumor cells, but also in tumor-associated cells such as fibroblasts, endothelium, leukocytes and progenitor cells, tumor- and non-tumor cells-derived exosomes have emerged as new players in tumor growth and invasion, tumor-associated angiogenesis, tissue inflammation and immunologic remodeling. In addition, due to their property of carrying molecules from their cell of origin to the peripheral circulation, exosomes have been increasingly studied as sources of tumor biomarkers in liquid biopsies. Here we review the current literature on the participation of exosomes in the communication between tumor and tumor-associated cells, highlighting the role of this process in the setup of tumor microenvironments that modulate tumor initiation and metastasis.
Collapse
Affiliation(s)
- Joana Maia
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Sergio Caja
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Nuno Couto
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
149
|
Zöller M. Janus-Faced Myeloid-Derived Suppressor Cell Exosomes for the Good and the Bad in Cancer and Autoimmune Disease. Front Immunol 2018; 9:137. [PMID: 29456536 PMCID: PMC5801414 DOI: 10.3389/fimmu.2018.00137] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells originally described to hamper immune responses in chronic infections. Meanwhile, they are known to be a major obstacle in cancer immunotherapy. On the other hand, MDSC can interfere with allogeneic transplant rejection and may dampen autoreactive T cell activity. Whether MDSC-Exosomes (Exo) can cope with the dangerous and potentially therapeutic activities of MDSC is not yet fully explored. After introducing MDSC and Exo, it will be discussed, whether a blockade of MDSC-Exo could foster the efficacy of immunotherapy in cancer and mitigate tumor progression supporting activities of MDSC. It also will be outlined, whether application of native or tailored MDSC-Exo might prohibit autoimmune disease progression. These considerations are based on the steadily increasing knowledge on Exo composition, their capacity to distribute throughout the organism combined with selectivity of targeting, and the ease to tailor Exo and includes open questions that answers will facilitate optimizing protocols for a MDSC-Exo blockade in cancer as well as for strengthening their therapeutic efficacy in autoimmune disease.
Collapse
Affiliation(s)
- Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
150
|
Borrelli DA, Yankson K, Shukla N, Vilanilam G, Ticer T, Wolfram J. Extracellular vesicle therapeutics for liver disease. J Control Release 2018; 273:86-98. [PMID: 29373816 DOI: 10.1016/j.jconrel.2018.01.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are endogenous nanoparticles that play important roles in intercellular communication. Unmodified and engineered EVs can be utilized for therapeutic purposes. For instance, mesenchymal stem cell (MSC)-derived EVs have shown promise for tissue repair, while drug-loaded EVs have the potential to be used for cancer treatment. The liver is an ideal target for EV therapy due to the intrinsic regenerative capacity of hepatic tissue and the tropism of systemically injected nanovesicles for this organ. This review will give an overview of the potential of EV therapeutics in liver disease. Specifically, the mechanisms by which MSC-EVs induce liver repair will be covered. Moreover, the use of drug-loaded EVs for the treatment of hepatocellular carcinoma will also be discussed. Although there are several challenges associated with the clinical translation of EVs, these biological nanoparticles represent a promising new therapeutic modality for liver disease.
Collapse
Affiliation(s)
- David A Borrelli
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kiera Yankson
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Neha Shukla
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - George Vilanilam
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Taylor Ticer
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Joy Wolfram
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Biology, University of North Florida, Jacksonville, FL 32224, USA; Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Wenzhou, China.
| |
Collapse
|