101
|
Abstract
Accumulating evidence supports the idea that stem and progenitor cells play important roles in skeletal development. Over the last decade, the definition of skeletal stem and progenitor cells has evolved from cells simply defined by their in vitro behaviors to cells fully defined by a combination of sophisticated approaches, including serial transplantation assays and in vivo lineage-tracing experiments. These approaches have led to better identification of the characteristics of skeletal stem cells residing in multiple sites, including the perichondrium of the fetal bone, the resting zone of the postnatal growth plate, the bone marrow space and the periosteum in adulthood. These diverse groups of skeletal stem cells appear to closely collaborate and achieve a number of important biological functions of bones, including not only bone development and growth, but also bone maintenance and repair. Although these are important findings, we are only beginning to understand the diversity and the nature of skeletal stem and progenitor cells, and how they actually behave in vivo.
Collapse
Affiliation(s)
- Noriaki Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, United States.
| | - Deepak H Balani
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
102
|
Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn J, Miclau T, Marcucio RS, Hankenson KD. Cellular biology of fracture healing. J Orthop Res 2019; 37:35-50. [PMID: 30370699 PMCID: PMC6542569 DOI: 10.1002/jor.24170] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 02/04/2023]
Abstract
The biology of bone healing is a rapidly developing science. Advances in transgenic and gene-targeted mice have enabled tissue and cell-specific investigations of skeletal regeneration. As an example, only recently has it been recognized that chondrocytes convert to osteoblasts during healing bone, and only several years prior, seminal publications reported definitively that the primary tissues contributing bone forming cells during regeneration were the periosteum and endosteum. While genetically modified animals offer incredible insights into the temporal and spatial importance of various gene products, the complexity and rapidity of healing-coupled with the heterogeneity of animal models-renders studies of regenerative biology challenging. Herein, cells that play a key role in bone healing will be reviewed and extracellular mediators regulating their behavior discussed. We will focus on recent studies that explore novel roles of inflammation in bone healing, and the origins and fates of various cells in the fracture environment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Chelsea S. Bahney
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Robert L. Zondervan
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Patrick Allison
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Alekos Theologis
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Jason W. Ashley
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Jaimo Ahn
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
103
|
Vidovic-Zdrilic I, Vijaykumar A, Mina M. Activation of αSMA expressing perivascular cells during reactionary dentinogenesis. Int Endod J 2019; 52:68-76. [PMID: 29985533 PMCID: PMC6283699 DOI: 10.1111/iej.12983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
Abstract
AIM To examine the contribution of perivascular cells expressing αSMA to reactionary dentinogenesis. METHODOLOGY An inducible, Cre-loxP in vivo fate-mapping approach was used to examine the contribution of the descendants of cells expressing the αSMA-CreERT2 transgene to reactionary dentinogenesis in mice molars. Reactionary dentinogenesis was induced by experimental mild injury to dentine without pulp exposure. The Student's t test was used to determine statistical significance at *P ≤ 0.05. RESULTS The lineage tracing experiments revealed that mild injury to dentine first led to activation of αSMA-tdTomato+ cells in the entire pulp chamber. The percentage of areas occupied by αSMA-tdTomato+ in injured (7.5 ± 0.7%) teeth were significantly higher than in teeth without injury (2 ± 0.5%). After their activation, αSMA-tdTomato+ cells migrated towards the site of injury, gave rise to pulp cells and a few odontoblasts that became integrated into the existing odontoblast layer expressing Col2.3-GFP and Dspp. CONCLUSION Mild insult to dentine activated perivascular αSMA-tdTomato+ cells giving rise to pulp cells as well as a few odontoblasts that were integrated into the pre-existing odontoblast layer.
Collapse
Affiliation(s)
- I Vidovic-Zdrilic
- Departments of Craniofacial Sciences, Division of Pediatric Dentistry, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - A Vijaykumar
- Departments of Craniofacial Sciences, Division of Pediatric Dentistry, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - M Mina
- Departments of Craniofacial Sciences, Division of Pediatric Dentistry, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
104
|
Moser HL, Doe AP, Meier K, Garnier S, Laudier D, Akiyama H, Zumstein MA, Galatz LM, Huang AH. Genetic lineage tracing of targeted cell populations during enthesis healing. J Orthop Res 2018; 36:3275-3284. [PMID: 30084210 PMCID: PMC6320286 DOI: 10.1002/jor.24122] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/06/2018] [Indexed: 02/04/2023]
Abstract
Rotator cuff supraspinatus tendon injuries are clinically challenging due to the high rates of failure after surgical repair. One key limitation to functional healing is the failure to regenerate the enthesis transition between tendon and bone, which heals by disorganized scar formation. Using two models of supraspinatus tendon injury in mouse (partial tear and full detachment/repair), the purpose of the study was to determine functional gait outcomes and identify the origin of the cells that mediate healing. Consistent with previous reports, enthesis injuries did not regenerate; partial tear resulted in a localized scar defect adjacent to intact enthesis, while full detachment with repair resulted in full disruption of enthesis alignment and massive scar formation between tendon and enthesis fibrocartilage. Although gait after partial tear injury was largely normal, gait was permanently impaired after full detachment/repair. Genetic lineage tracing of intrinsic tendon and cartilage/fibrocartilage cells (ScxCreERT2 and Sox9CreERT2 , respectively), myofibroblasts (αSMACreERT2 ), and Wnt-responsive stem cells (Axin2CreERT2 ) failed to identify scar-forming cells in partial tear injury. Unmineralized enthesis fibrocartilage was strongly labeled by Sox9CreERT2 while Axin2CrERT2 labeled a subset of tendon cells away from the skeletal insertion site. In contrast to the partial tear model, Axin2CreERT2 labeling showed considerable contribution of Axin2lin cells to the scar after full detachment/repair. Clinical Significance: Clinically relevant models of rotator cuff tendon injuries in mouse enable the use of genetic tools; lineage tracing suggests that distinct mechanisms of healing are activated with full detachment/repair injuries versus partial tear. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3275-3284, 2018.
Collapse
Affiliation(s)
- Helen L. Moser
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Anton Ph. Doe
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen Meier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Damien Laudier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University School of Medicine Gifu, Gifu Prefecture, Japan
| | - Matthias A. Zumstein
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Leesa M. Galatz
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alice H. Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
105
|
Alharbi MA, Zhang C, Lu C, Milovanova TN, Yi L, Ryu JD, Jiao H, Dong G, O'Connor JP, Graves DT. FOXO1 Deletion Reverses the Effect of Diabetic-Induced Impaired Fracture Healing. Diabetes 2018; 67:2682-2694. [PMID: 30279162 PMCID: PMC6245226 DOI: 10.2337/db18-0340] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/21/2018] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes impairs fracture healing. We tested the hypothesis that diabetes affects chondrocytes to impair fracture healing through a mechanism that involves the transcription factor FOXO1. Type 1 diabetes was induced by streptozotocin in mice with FOXO1 deletion in chondrocytes (Col2α1Cre+FOXO1L/L) or littermate controls (Col2α1Cre-FOXO1L/L) and closed femoral fractures induced. Diabetic mice had 77% less cartilage and 30% less bone than normoglycemics evaluated histologically and by micro-computed tomography. Both were reversed with lineage-specific FOXO1 ablation. Diabetic mice had a threefold increase in osteoclasts and a two- to threefold increase in RANKL mRNA or RANKL-expressing chondrocytes compared with normoglycemics. Both parameters were rescued by FOXO1 ablation in chondrocytes. Conditions present in diabetes, high glucose (HG), and increased advanced glycation end products (AGEs) stimulated FOXO1 association with the RANKL promoter in vitro, and overexpression of FOXO1 increased RANKL promoter activity in luciferase reporter assays. HG and AGE stimulated FOXO1 nuclear localization, which was reversed by insulin and inhibitors of TLR4, histone deacetylase, nitric oxide, and reactive oxygen species. The results indicate that chondrocytes play a prominent role in diabetes-impaired fracture healing and that high levels of glucose, AGEs, and tumor necrosis factor-α, which are elevated by diabetes, alter RANKL expression in chondrocytes via FOXO1.
Collapse
Affiliation(s)
- Mohammed A Alharbi
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Citong Zhang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chanyi Lu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tatyana N Milovanova
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Leah Yi
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Je Dong Ryu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hongli Jiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Guangyu Dong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - J Patrick O'Connor
- Department of Orthopedics, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
106
|
Featherall J, Robey PG, Rowe DW. Continuing Challenges in Advancing Preclinical Science in Skeletal Cell-Based Therapies and Tissue Regeneration. J Bone Miner Res 2018; 33:1721-1728. [PMID: 30133922 PMCID: PMC6691896 DOI: 10.1002/jbmr.3578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 12/28/2022]
Abstract
Cell-based therapies hold much promise for musculoskeletal medicine; however, this rapidly growing field faces a number of challenges. Few of these therapies have proven clinical benefit, and an insufficient regulatory environment has allowed for widespread clinical implementation without sufficient evidence of efficacy. The technical and biological complexity of cell-based therapies has contributed to difficulties with reproducibility and mechanistic clarity. In order to aid in addressing these challenges, we aim to clarify the key issues in the preclinical cell therapy field, and to provide a conceptual framework for advancing the state of the science. Broadly, these suggestions relate to: (i) delineating cell-therapy types and moving away from "catch-all" terms such as "stem cell" therapies; (ii) clarifying descriptions of cells and their processing; and (iii) increasing the standard of in vivo evaluation of cell-based therapy experiments to determining cell fates. Further, we provide an overview of methods for experimental evaluation, data sharing, and professional society participation that would be instrumental in advancing this field. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joseph Featherall
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.,Medical Research Scholars Program, Clinical Center, National Institutes of Health, Department of Health and Human Services, Bethesda MD, USA.,Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda MD, USA
| | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda MD, USA
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, UConn School of Dental Medicine, Farmington, CT, USA
| |
Collapse
|
107
|
Farr JN, Almeida M. The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. J Bone Miner Res 2018; 33:1568-1584. [PMID: 30075061 PMCID: PMC6327947 DOI: 10.1002/jbmr.3564] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Aging research has undergone unprecedented advances at an accelerating rate in recent years, leading to excitement in the field as well as opportunities for imagination and innovation. Novel insights indicate that, rather than resulting from a preprogrammed series of events, the aging process is predominantly driven by fundamental non-adaptive mechanisms that are interconnected, linked, and overlap. To varying degrees, these mechanisms also manifest with aging in bone where they cause skeletal fragility. Because these mechanisms of aging can be manipulated, it might be possible to slow, delay, or alleviate multiple age-related diseases and their complications by targeting conserved genetic signaling pathways, controlled functional networks, and basic biochemical processes. Indeed, findings in various mammalian species suggest that targeting fundamental aging mechanisms (eg, via either loss-of-function or gain-of-function mutations or administration of pharmacological therapies) can extend healthspan; ie, the healthy period of life free of chronic diseases. In this review, we summarize the evidence supporting the role of the spectrum of fundamental basic science discoveries contributing to organismal aging, with emphasis on mammalian studies and in particular aging mechanisms in bone that drive skeletal fragility. These mechanisms or aging hallmarks include: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. Because these mechanisms are linked, interventions that ameliorate one hallmark can in theory ameliorate others. In the field of bone and mineral research, current challenges include defining the relative contributions of each aging hallmark to the natural skeletal aging process, better understanding the complex interconnections among the hallmarks, and identifying the most effective therapeutic strategies to safely target multiple hallmarks. Based on their interconnections, it may be feasible to simultaneously interfere with several fundamental aging mechanisms to alleviate a wide spectrum of age-related chronic diseases, including osteoporosis. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joshua N Farr
- Division of Endocrinology and Metabolism and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
108
|
Abstract
PURPOSE OF REVIEW The identity and functional roles of stem cell population(s) that contribute to fracture repair remains unclear. This review provides a brief history of mesenchymal stem cell (MSCs) and provides an updated view of the many stem/progenitor cell populations contributing to fracture repair. RECENT FINDINGS Functional studies show MSCs are not the multipotential stem cell population that form cartilage and bone during fracture repair. Rather, multiple studies have confirmed the periosteum is the primary source of stem/progenitor cells for fracture repair. Newer work is also identifying other stem/progenitor cells that may also contribute to healing. Although the heterogenous periosteal cells migrate to the fracture site and contribute directly to callus formation, other cell populations are involved. Pericytes and bone marrow stromal cells are now thought of as key secretory centers that mostly coordinate the repair process. Other populations of stem/progenitor cells from the muscle and transdifferentiated chondroctyes may also contribute to repair, and their functional role is an area of active research.
Collapse
Affiliation(s)
- Beth C Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, 72 East Concord St, Evans 243, Boston, MA, 02118, USA.
| | - Chelsea S Bahney
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
109
|
Uribe G, Villéger R, Bressollier P, Dillard RN, Worthley DL, Wang TC, Powell DW, Urdaci MC, Pinchuk IV. Lactobacillus rhamnosus GG increases cyclooxygenase-2 expression and prostaglandin E2 secretion in colonic myofibroblasts via a MyD88-dependent mechanism during homeostasis. Cell Microbiol 2018; 20:e12871. [PMID: 29920917 DOI: 10.1111/cmi.12871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022]
Abstract
Prostaglandin E2 (PGE2 ) plays a critical role in intestinal mucosal tolerance and barrier integrity. Cyclooxygenase-2 (COX-2)-dependent PGE2 production involves mobilisation of arachidonic acid. Lactobacillus rhamnosus GG (LbGG) is one of the most widely used probiotics reported to colonise the colonic mucosa. LbGG contributes to the protection of the small intestine against radiation injury through the repositioning of mucosal COX-2 expressing cells. However, it is unknown if LbGG modulates PGE2 production in the colonic mucosa under homeostasis and the major cellular elements involved in these processes. Colonic epithelial and CD90+ mesenchymal stromal cells, also known as (myo) fibroblasts (CMFs), are abundant innate immune cells in normal colonic mucosa able to produce PGE2 . Herein, we tested the hypothesis that under colonic mucosal homeostasis, LbGG modulates the eicosanoid pathway resulting in increased PGE2 production in both epithelial and stromal cells. Among the five tested human colonic epithelial cell lines, only exposure of Caco-2 to LbGG for 24 hr led to the mobilisation of arachidonic acid with concomitant increase in the components within the leukotriene and COX-2-dependent PGE2 pathways. By contrast, CMFs isolated from the normal human colonic mucosa responded to LbGG with increased expression of COX-2 and PGE2 in the prostaglandin pathway, but not 5-LO in the leukotriene pathway. Oral gavage of C57BL/6 mice for 5 days with LbGG (5 × 108 Colony-Forming Unit (CFU)/dose) increased COX-2 expression in the colonic mucosa. The majority of cells upregulating COX-2 protein expression were located in the colonic lamina propria and colocalised with α-SMA+ cells corresponding to the CMF phenotype. This process was myeloid differentiation factor-88-dependent, because silencing of myeloid differentiation factor-88 expression in CMFs abrogated LbGG-induced upregulation of COX-2 in culture and in vivo. Taken together, our data suggest that LbGG increases release of COX-2-mediated PGE2 , contributing to the maintenance of mucosal homeostasis in the colon and CMFs are among the major contributors to this process.
Collapse
Affiliation(s)
- Gabriela Uribe
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Romain Villéger
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Philippe Bressollier
- Laboratoire de Microbiologie, Bordeaux Sciences Agro, University of Bordeaux, Gradignan, France
| | - Rachel N Dillard
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel L Worthley
- Cancer Theme, University of Adelaide and SAHMRI, Adelaide, Australia
| | - Timothy C Wang
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Don W Powell
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Maria C Urdaci
- Laboratoire de Microbiologie, Bordeaux Sciences Agro, University of Bordeaux, Gradignan, France
| | - Irina V Pinchuk
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA.,Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
110
|
Hachemi Y, Rapp AE, Picke AK, Weidinger G, Ignatius A, Tuckermann J. Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. J Mol Endocrinol 2018; 61:R75-R90. [PMID: 29588427 PMCID: PMC5976078 DOI: 10.1530/jme-18-0024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/27/2018] [Indexed: 12/29/2022]
Abstract
Glucocorticoid hormones (GCs) have profound effects on bone metabolism. Via their nuclear hormone receptor - the GR - they act locally within bone cells and modulate their proliferation, differentiation, and cell death. Consequently, high glucocorticoid levels - as present during steroid therapy or stress - impair bone growth and integrity, leading to retarded growth and glucocorticoid-induced osteoporosis, respectively. Because of their profound impact on the immune system and bone cell differentiation, GCs also affect bone regeneration and fracture healing. The use of conditional-mutant mouse strains in recent research provided insights into the cell-type-specific actions of the GR. However, despite recent advances in system biology approaches addressing GR genomics in general, little is still known about the molecular mechanisms of GCs and GR in bone cells. Here, we review the most recent findings on the molecular mechanisms of the GR in general and the known cell-type-specific actions of the GR in mesenchymal cells and their derivatives as well as in osteoclasts during bone homeostasis, GC excess, bone regeneration and fracture healing.
Collapse
Affiliation(s)
- Yasmine Hachemi
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| | - Anna E Rapp
- Institute of Orthopaedic Research and BiomechanicsUlm University Medical Centre, Ulm, Germany
| | - Ann-Kristin Picke
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular BiologyUlm University, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and BiomechanicsUlm University Medical Centre, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| |
Collapse
|
111
|
Wang H, Wang Y, He J, Diao C, Sun J, Wang J. Identification of key gene networks associated with fracture healing using αSMA‑labeled progenitor cells. Mol Med Rep 2018; 18:834-840. [PMID: 29845231 PMCID: PMC6059713 DOI: 10.3892/mmr.2018.9029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to investigate the key gene network in fracture healing. The dataset GSE45156 was downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified using the linear models for microarray data package of Bioconductor. Subsequently, Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted for DEGs in day 2 and 6 fractured samples via the Database for Annotation, Visualization and Integrated Discovery. Furthermore, protein-protein interactions (PPIs) of DEGs were analyzed and a PPI network was constructed. A total of 774 and 1,172 DEGs were identified in day 2 and 6 fractured samples, respectively, compared with unfractured controls. Of the DEGs in day 2 and 6 fractured samples, various upregulated DEGs, including protein kinase C α (Prkca) and B-cell lymphoma antagonist/killer 1 were significantly enriched in GO terms associated with cell death, and certain downregulated DEGs, including fms-related tyrosine kinase 1 (Flt1), nitric oxide synthase 3 (Nos3), bone morphogenetic protein 4 (Bmp4) and Notch1 were enriched in GO terms associated with angiogenesis. Furthermore, a series of downregulated DEGs were enriched in the Notch signaling pathway, including hes family bHLH transcription factor 1 and Notch1. Certain DEGs had a high degree and interacted with each other, including Flt1, Nos3, Bmp4 and Notch1, and Prkca and ras-related C3 botulinum toxin substrate 3. The up and downregulated DEGs may exert critical functions by interactively regulating angiogenesis or apoptosis.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopedics, The First Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yongxiang Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu, Yangzhou, Jiangsu 225001, P.R. China
| | - Jinshan He
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu, Yangzhou, Jiangsu 225001, P.R. China
| | - Chunyu Diao
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu, Yangzhou, Jiangsu 225001, P.R. China
| | - Junying Sun
- Department of Orthopedics, The First Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jingcheng Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
112
|
Lees-Shepard JB, Goldhamer DJ. Stem cells and heterotopic ossification: Lessons from animal models. Bone 2018; 109:178-186. [PMID: 29409971 PMCID: PMC5866227 DOI: 10.1016/j.bone.2018.01.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
Put most simply, heterotopic ossification (HO) is the abnormal formation of bone at extraskeletal sites. HO can be classified into two main subtypes, genetic and acquired. Acquired HO is a common complication of major connective tissue injury, traumatic central nervous system injury, and surgical interventions, where it can cause significant pain and postoperative disability. A particularly devastating form of HO is manifested in the rare genetic disorder, fibrodysplasia ossificans progressiva (FOP), in which progressive heterotopic bone formation occurs throughout life, resulting in painful and disabling cumulative immobility. While the central role of stem/progenitor cell populations in HO is firmly established, the identity of the offending cell type(s) remains to be conclusively determined, and little is known of the mechanisms that direct these progenitor cells to initiate cartilage and bone formation. In this review, we summarize current knowledge of the cells responsible for acquired HO and FOP, highlighting the strengths and weaknesses of animal models used to interrogate the cellular origins of HO.
Collapse
Affiliation(s)
- John B Lees-Shepard
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, United States
| | - David J Goldhamer
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
113
|
Čamernik K, Barlič A, Drobnič M, Marc J, Jeras M, Zupan J. Mesenchymal Stem Cells in the Musculoskeletal System: From Animal Models to Human Tissue Regeneration? Stem Cell Rev Rep 2018; 14:346-369. [DOI: 10.1007/s12015-018-9800-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
114
|
Miwa H, Era T. Tracing the destiny of mesenchymal stem cells from embryo to adult bone marrow and white adipose tissue via Pdgfrα expression. Development 2018; 145:145/2/dev155879. [DOI: 10.1242/dev.155879] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Mesenchymal stem cells (MSCs) are somatic stem cells that can be derived from adult bone marrow (BM) and white adipose tissue (WAT), and that display multipotency and self-renewal capacity. Although MSCs are essential for tissue formation and have already been used in clinical therapy, the origins and markers of these cells remain unknown. In this study, we first investigated the developmental process of MSCs in mouse embryos using the gene encoding platelet-derived growth factor receptor α (Pdgfra) as a marker. We then traced cells expressing Pdgfra and other genes (brachyury, Sox1 and Pmx1) in various mutant mouse embryos until the adult stage. This tracing of MSC origins and destinies indicates that embryonic MSCs emerge in waves and that almost all adult BM MSCs and WAT MSCs originate from mesoderm and embryonic Pdgfrα-positive cells. Furthermore, we demonstrate that adult Pdgfrα-positive cells are involved in some pathological conditions.
Collapse
Affiliation(s)
- Hiroyuki Miwa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
115
|
Youngstrom DW, Senos R, Zondervan RL, Brodeur JD, Lints AR, Young DR, Mitchell TL, Moore ME, Myers MH, Tseng WJ, Loomes KM, Hankenson KD. Intraoperative delivery of the Notch ligand Jagged-1 regenerates appendicular and craniofacial bone defects. NPJ Regen Med 2017; 2:32. [PMID: 29302365 PMCID: PMC5732299 DOI: 10.1038/s41536-017-0037-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/07/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022] Open
Abstract
Each year, 33% of US citizens suffer from a musculoskeletal condition that requires medical intervention, with direct medical costs approaching $1 trillion USD per year. Despite the ubiquity of skeletal dysfunction, there are currently limited safe and efficacious bone growth factors in clinical use. Notch is a cell-cell communication pathway that regulates self-renewal and differentiation within the mesenchymal/osteoblast lineage. The principal Notch ligand in bone, Jagged-1, is a potent osteoinductive protein that positively regulates post-traumatic bone healing in animals. This report describes the temporal regulation of Notch during intramembranous bone formation using marrow ablation as a model system and demonstrates decreased bone formation following disruption of Jagged-1 in mesenchymal progenitor cells. Notch gain-of-function using recombinant Jagged-1 protein on collagen scaffolds promotes healing of craniofacial (calvarial) and appendicular (femoral) surgical defects in both mice and rats. Localized delivery of Jagged-1 promotes bone apposition and defect healing, while avoiding the diffuse bone hypertrophy characteristic of the clinically problematic bone morphogenetic proteins. It is concluded that Jagged-1 is a bone-anabolic agent with therapeutic potential for regenerating traumatic or congenital bone defects.
Collapse
Affiliation(s)
- Daniel W Youngstrom
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI USA
| | - Rafael Senos
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI USA
| | - Robert L Zondervan
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI USA.,Department of Physiology, Michigan State University College of Osteopathic Medicine, East Lansing, MI USA
| | - Jack D Brodeur
- Department of Physiology, Michigan State University College of Osteopathic Medicine, East Lansing, MI USA
| | - Austin R Lints
- Department of Physiology, Michigan State University College of Osteopathic Medicine, East Lansing, MI USA
| | - Devin R Young
- Department of Physiology, Michigan State University College of Osteopathic Medicine, East Lansing, MI USA
| | - Troy L Mitchell
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI USA
| | - Megan E Moore
- Department of Physiology, Michigan State University College of Osteopathic Medicine, East Lansing, MI USA
| | - Marc H Myers
- Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Wei-Ju Tseng
- Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Kathleen M Loomes
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Kurt D Hankenson
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI USA.,Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| |
Collapse
|
116
|
Shi Y, He G, Lee WC, McKenzie JA, Silva MJ, Long F. Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat Commun 2017; 8:2043. [PMID: 29230039 PMCID: PMC5725597 DOI: 10.1038/s41467-017-02171-2] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022] Open
Abstract
Bone formation in mammals requires continuous production of osteoblasts throughout life. A common molecular marker for all osteogenic mesenchymal progenitors has not been identified. Here, by lineage-tracing experiments in fetal or postnatal mice, we discover that Gli1+ cells progressively produce osteoblasts in all skeletal sites. Most notably, in postnatal growing mice, the Gli1+ cells residing immediately beneath the growth plate, termed here "metaphyseal mesenchymal progenitors" (MMPs), are essential for cancellous bone formation. Besides osteoblasts, MMPs also give rise to bone marrow adipocytes and stromal cells in vivo. RNA-seq reveals that MMPs express a number of marker genes previously assigned to mesenchymal stem/progenitor cells, including CD146/Mcam, CD44, CD106/Vcam1, Pdgfra, and Lepr. Genetic disruption of Hh signaling impairs proliferation and osteoblast differentiation of MMPs. Removal of β-catenin causes MMPs to favor adipogenesis, resulting in osteopenia coupled with increased marrow adiposity. Finally, postnatal Gli1+ cells contribute to both chondrocytes and osteoblasts during bone fracture healing. Thus Gli1 marks mesenchymal progenitors responsible for both normal bone formation and fracture repair.
Collapse
Affiliation(s)
- Yu Shi
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Guangxu He
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Orthopedic Surgery, The Second Xiangya Hospital, Central South University, Hunan, 410011, China
| | - Wen-Chih Lee
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jennifer A McKenzie
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew J Silva
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fanxin Long
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Departments of Medicine and Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
117
|
Stiers PJ, van Gastel N, Moermans K, Stockmans I, Carmeliet G. Regulatory elements driving the expression of skeletal lineage reporters differ during bone development and adulthood. Bone 2017; 105:154-162. [PMID: 28863946 DOI: 10.1016/j.bone.2017.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023]
Abstract
To improve bone healing or regeneration more insight in the fate and role of the different skeletal cell types is required. Mouse models for fate mapping and lineage tracing of skeletal cells, using stage-specific promoters, have advanced our understanding of bone development, a process that is largely recapitulated during bone repair. However, validation of these models is often only performed during development, whereas proof of the activity and specificity of the used promoters during the bone regenerative process is limited. Here, we show that the regulatory elements of the 6kb collagen type II promoter are not adequate to drive gene expression during bone repair. Similarly, the 2.3kb promoter of collagen type I lacks activity in adult mice, but the 3.2kb promoter is suitable. Furthermore, Cre-mediated fate mapping allows the visualization of progeny, but this label retention may hinder to distinguish these cells from ones with active expression of the marker at later time points. Together, our results show that the lineage-specific regulatory elements driving gene expression during bone development differ from those required later in life and during bone repair, and justify validation of lineage-specific cell tracing and gene silencing strategies during fracture healing and bone regenerative applications.
Collapse
Affiliation(s)
- Pieter-Jan Stiers
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Nick van Gastel
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Karen Moermans
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Ingrid Stockmans
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
118
|
Doro DH, Grigoriadis AE, Liu KJ. Calvarial Suture-Derived Stem Cells and Their Contribution to Cranial Bone Repair. Front Physiol 2017; 8:956. [PMID: 29230181 PMCID: PMC5712071 DOI: 10.3389/fphys.2017.00956] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022] Open
Abstract
In addition to the natural turnover during life, the bones in the skeleton possess the ability to self-repair in response to injury or disease-related bone loss. Based on studies of bone defect models, both processes are largely supported by resident stem cells. In the long bones, the source of skeletal stem cells has been widely investigated over the years, where the major stem cell population is thought to reside in the perivascular niche of the bone marrow. In contrast, we have very limited knowledge about the stem cells contributing to the repair of calvarial bones. In fact, until recently, the presence of specific stem cells in adult craniofacial bones was uncertain. These flat bones are mainly formed via intramembranous rather than endochondral ossification and thus contain minimal bone marrow space. It has been previously proposed that the overlying periosteum and underlying dura mater provide osteoprogenitors for calvarial bone repair. Nonetheless, recent studies have identified a major stem cell population within the suture mesenchyme with multiple differentiation abilities and intrinsic reparative potential. Here we provide an updated review of calvarial stem cells and potential mechanisms of regulation in the context of skull injury repair.
Collapse
Affiliation(s)
- Daniel H Doro
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Agamemnon E Grigoriadis
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
119
|
Different Notch signaling in cells from calcified bicuspid and tricuspid aortic valves. J Mol Cell Cardiol 2017; 114:211-219. [PMID: 29158034 DOI: 10.1016/j.yjmcc.2017.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
AIMS Calcific aortic valve disease is the most common heart valve disease in the Western world. Bicuspid and tricuspid aortic valve calcifications are traditionally considered together although the dynamics of the disease progression is different between the two groups of patients. Notch signaling is critical for bicuspid valve development and NOTCH1 mutations are associated with bicuspid valve and calcification. We hypothesized that Notch-dependent mechanisms of valve mineralization might be different in the two groups. METHODS AND RESULTS We used aortic valve interstitial cells and valve endothelial cells from patients with calcific aortic stenosis with bicuspid or tricuspid aortic valve. Expression of Notch-related genes in valve interstitial cells by qPCR was different between bicuspid and tricuspid groups. Discriminant analysis of gene expression pattern in the interstitial cells revealed that the cells from calcified bicuspid valves formed a separate group from calcified tricuspid and control cells. Interstitial cells from bicuspid calcified valves demonstrated significantly higher sensitivity to stimuli at early stages of induced proosteogenic differentiation and were significantly more sensitive to the activation of proosteogenic OPN, ALP and POSTIN expression by Notch activation. Notch-activated endothelial-to-mesenchymal transition and the corresponding expression of HEY1 and SLUG were also more prominent in bicuspid valve derived endothelial cells compared to the cells from calcified tricuspid and healthy valves. CONCLUSION Early signaling events including Notch-dependent mechanisms that are responsible for the initiation of aortic valve calcification are different between the patients with bicuspid and tricuspid aortic valves.
Collapse
|
120
|
Marcucio RS, Qin L, Alsberg E, Boerckel JD. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering. J Orthop Res 2017; 35:2356-2368. [PMID: 28660712 DOI: 10.1002/jor.23636] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017.
Collapse
Affiliation(s)
- Ralph S Marcucio
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia 19104-6081, Pennsylvania
| | - Eben Alsberg
- Departments of Biomedical Engineering and Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia 19104-6081, Pennsylvania.,Department of Bioengineering, University of Pennslyvania, Philadelphia, Pennsylvania.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
121
|
Zhang H, Kot A, Lay YAE, Fierro FA, Chen H, Lane NE, Yao W. Acceleration of Fracture Healing by Overexpression of Basic Fibroblast Growth Factor in the Mesenchymal Stromal Cells. Stem Cells Transl Med 2017; 6:1880-1893. [PMID: 28792122 PMCID: PMC6430058 DOI: 10.1002/sctm.17-0039] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/20/2017] [Indexed: 12/29/2022] Open
Abstract
In this study, we engineered mesenchymal stem cells (MSCs) to over‐express basic fibroblast growth factor (bFGF) and evaluated its effects on fracture healing. Adipose‐derived mouse MSCs were transduced to express bFGF and green fluorescence protein (ADSCbFGF‐GFP). Closed‐femoral fractures were performed with osterix‐mCherry reporter mice of both sexes. The mice received 3 × 105 ADSCs transfected with control vector or bFGF via intramuscular injection within or around the fracture sites. Mice were euthanized at days 7, 14, and 35 to monitor MSC engraftment, osteogenic differentiation, callus formation, and bone strength. Compared to ADSC culture alone, ADSCbFGF increased bFGF expression and higher levels of bFGF and vascular endothelial growth factor (VEGF) in the culture supernatant for up to 14 days. ADSCbFGF treatment increased GFP‐labeled MSCs at the fracture gaps and these cells were incorporated into the newly formed callus. quantitative reverse transcription polymerase chain reaction (qRT‐PCR) from the callus revealed a 2‐ to 12‐fold increase in the expression of genes associated with nervous system regeneration, angiogenesis, and matrix formation. Compared to the control, ADSCbFGF treatment increased VEGF expression at the periosteal region of the callus, remodeling of collagen into mineralized callus and bone strength. In summary, MSCbFGF accelerated fracture healing by increasing the production of growth factors that stimulated angiogenesis and differentiation of MSCs to osteoblasts that formed new bone and accelerated fracture repair. This novel treatment may reduce the time required for fracture healing. Stem Cells Translational Medicine2017;6:1880–1893
Collapse
Affiliation(s)
- Hongliang Zhang
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA.,Department of Emergency Medicine, Center for Difficult Diagnoses and Rare Diseases, Second Xiangya Hospital of the Central-South University, Hunan, Changsha, People's Republic of China
| | - Alexander Kot
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA
| | - Yu-An E Lay
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA
| | - Fernando A Fierro
- Stem Cell Program, UC Davis Health System, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Haiyan Chen
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA.,Adult Programs Division, California Department of Social Services, Sacramento, California, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA
| | - Wei Yao
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA
| |
Collapse
|
122
|
Ignatieva E, Kostina D, Irtyuga O, Uspensky V, Golovkin A, Gavriliuk N, Moiseeva O, Kostareva A, Malashicheva A. Mechanisms of Smooth Muscle Cell Differentiation Are Distinctly Altered in Thoracic Aortic Aneurysms Associated with Bicuspid or Tricuspid Aortic Valves. Front Physiol 2017; 8:536. [PMID: 28790933 PMCID: PMC5524772 DOI: 10.3389/fphys.2017.00536] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022] Open
Abstract
Cellular and molecular mechanisms of thoracic aortic aneurysm are not clear and therapeutic approaches are mostly absent. Thoracic aortic aneurysm is associated with defective differentiation of smooth muscle cells (SMC) of aortic wall. Bicuspid aortic valve (BAV) comparing to tricuspid aortic valve (TAV) significantly predisposes to a risk of thoracic aortic aneurysms. It has been suggested recently that BAV-associated aortopathies represent a separate pathology comparing to TAV-associated dilations. The only proven candidate gene that has been associated with BAV remains NOTCH1. In this study we tested the hypothesis that Notch-dependent and related TGF-β and BMP differentiation pathways are differently altered in aortic SMC of BAV- vs. TAV-associated aortic aneurysms. SMC were isolated from aortic tissues of the patients with BAV- or TAV-associated aortic aneurysms and from healthy donors used as controls. Gene expression was verified by qPCR and Western blotting. For TGF-β induced differentiation SMC were treated with the medium containing TGF-β1. To induce proosteogenic signaling we cultured SMC in the presence of specific osteogenic factors. Notch-dependent differentiation was induced via lentiviral transduction of SMC with activated Notch1 domain. MYOCD expression, a master gene of SMC differentiation, was down regulated in SMC of both BAV and TAV patients. Discriminant analysis of gene expression patterns included a set of contractile genes specific for SMC, Notch-related genes and proosteogenic genes and revealed that control cells form a separate cluster from both BAV and TAV group, while BAV- and TAV-derived SMC are partially distinct with some overlapping. In differentiation experiments TGF-β caused similar patterns of target gene expression for BAV- and TAV derived cells while the induction was higher in the diseased cells than in control ones. Osteogenic induction caused significant change in RUNX2 expression exclusively in BAV group. Notch activation induced significant ACTA2 expression also exclusively in BAV group. We show that Notch acts synergistically with proosteogenic factors to induce ACTA2 transcription and osteogenic differentiation. In conclusion we have found differences in responsiveness of SMC to Notch and to proosteogenic induction between BAV- and TAV-associated aortic aneurysms.
Collapse
Affiliation(s)
- Elena Ignatieva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Daria Kostina
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Department of Medical Physics, Peter the Great Saint-Petersburg Polytechnic UniversitySaint Petersburg, Russia
| | - Olga Irtyuga
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Vladimir Uspensky
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Alexey Golovkin
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Natalia Gavriliuk
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Olga Moiseeva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Anna Kostareva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Laboratory of Bioinformatics and Genomics, Institute of Translational Medicine, ITMO UniversitySaint Petersburg, Russia
| | - Anna Malashicheva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Laboratory of Bioinformatics and Genomics, Institute of Translational Medicine, ITMO UniversitySaint Petersburg, Russia.,Faculty of Biology, Saint-Petersburg State UniversitySaint Petersburg, Russia
| |
Collapse
|
123
|
Vidovic Zdrilic I, de Azevedo Queiroz IO, Matthews BG, Gomes-Filho JE, Mina M, Kalajzic I. Mineral trioxide aggregate improves healing response of periodontal tissue to injury in mice. J Periodontal Res 2017; 52:1058-1067. [PMID: 28691752 DOI: 10.1111/jre.12478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Mineral trioxide aggregate (MTA) is a biomaterial used in endodontic procedures as it exerts beneficial effects on regenerative processes. In this study, we evaluate the effect of MTA on healing of periodontal ligament (PDL) and surrounding tissue, following injury, in a transgenic mouse model and on the differentiation of murine mesenchymal progenitor cells in vitro. MATERIAL AND METHODS We used an inducible Cre-loxP in vivo fate mapping approach to examine the effects of MTA on the contributions of descendants of cells expressing the αSMA-CreERT2 transgene (SMA9+ ) to the PDL and alveolar bone after experimental injury to the root furcation on the maxillary first molars. Col2.3GFP was used as a marker to identify mature osteoblasts, cementoblasts and PDL fibroblasts. The effects of MTA were examined 2, 17 and 30 days after injury and compared histologically with sealing using an adhesive system. The effects of two dilutions of medium conditioned with MTA on proliferation and differentiation of mesenchymal progenitor cells derived from bone marrow (BMSC) and periodontal ligament (PDLC) in vitro were examined using the PrestoBlue viability assay, alkaline phosphatase and Von Kossa staining. The expression of markers of differentiation was assessed using real-time PCR. RESULTS Histological analyses showed better repair in teeth restored with MTA, as shown by greater expansion of SMA9+ progenitor cells and Col2.3GFP+ osteoblasts compared with control teeth. We also observed a positive effect on differentiation of SMA9+ progenitors into osteoblasts and cementoblasts in the apical region distant from the site of injury. The in vitro data showed that MTA-conditioned medium reduced cell viability and osteogenic differentiation in both PDLC and BMSC, indicated by reduced von Kossa staining and lower expression of osteocalcin and bone sialoprotein. In addition, cultures grown in the presence of MTA had marked decreases in SMA9+ and Col2.3GFP+ areas as compared with osteogenic medium, confirming reduced osteogenesis. CONCLUSION MTA promotes regeneration of injured PDL and alveolar bone, reflected as contribution of progenitors (SMA9+ cells) into osteoblasts (Col2.3GFP+ cells). In vitro, MTA-conditioned medium fails to promote osteogenic differentiation of both PDLC and BMSC.
Collapse
Affiliation(s)
- I Vidovic Zdrilic
- Department of Pediatric Dentistry, Uconn Health, Farmington, CT, USA
| | | | - B G Matthews
- Department of Reconstructive Sciences, Uconn Health, Farmington, CT, USA
| | - J E Gomes-Filho
- Department of Endodontics, School of Dentistry, São Paulo State University, Aracatuba, Brazil
| | - M Mina
- Department of Pediatric Dentistry, Uconn Health, Farmington, CT, USA
| | - I Kalajzic
- Department of Reconstructive Sciences, Uconn Health, Farmington, CT, USA
| |
Collapse
|
124
|
Kuznetsova D, Ageykin A, Koroleva A, Deiwick A, Shpichka A, Solovieva A, Kostjuk S, Meleshina A, Rodimova S, Akovanceva A, Butnaru D, Frolova A, Zagaynova E, Chichkov B, Bagratashvili V, Timashev P. Surface micromorphology of cross-linked tetrafunctional polylactide scaffolds inducing vessel growth and bone formation. Biofabrication 2017; 9:025009. [PMID: 28300041 DOI: 10.1088/1758-5090/aa6725] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the presented study, we have developed a synthetic strategy allowing a gradual variation of a polylactide arms' length, which later influences the micromorphology of the scaffold surface, formed by a two-photon polymerization technique. It has been demonstrated that the highest number of cells is present on the scaffolds with the roughest surface made of the polylactide with longer arms (PLA760), and osteogenic differentiation of mesenchymal stem cells is most pronounced on such scaffolds. According to the results of biological testing, the PLA760 scaffolds were implanted into a created cranial defect in a mouse for an in vivo assessment of the bone tissue formation. The in vivo experiments have shown that, by week 10, deposition of calcium phosphate particles occurs in the scaffold at the defect site, as well as, the formation of a new bone and ingrowth of blood vessels from the surrounding tissues. These results demonstrate that the cross-linked microstructured tetrafunctional polylactide scaffolds are promising microstructures for bone regeneration in tissue engineering.
Collapse
Affiliation(s)
- D Kuznetsova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Nizhny Novgorod, 603005, Russia. Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Harris SE, Rediske M, Neitzke R, Rakian A. Periodontal Biology: Stem Cells, Bmp2 Gene, Transcriptional Enhancers, and Use of Sclerostin Antibody and Pth for Treatment of Periodontal Disease and Bone Loss. CELL, STEM CELLS AND REGENERATIVE MEDICINE 2017; 3:10.16966/2472-6990.113. [PMID: 29457146 PMCID: PMC5813290 DOI: 10.16966/2472-6990.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The periodontium is a complex tissue with epithelial components and a complex set of mesodermal derived alveolar bone, cellular and a cellular cementum, and tendon like ligaments (PDL). The current evidence demonstrates that the major pool of periodontal stem cells is derived from a population of micro vascular associated aSMA-positive stem/progenitor (PSC) cells that by lineage tracing form all three major mesodermal derived components of the periodontium. With in vitro aSMA+ stem cells, transcriptome and chip- seq experiments, the gene network and enhancer maps were determined at several differentiation states of the PSC. Current work on the role of the Bmp2 gene in the periodontal stem cell differentiation demonstrated that this Wnt regulated gene, Bmp2, is necessary for differentiation to all three major mesodermal derived component of the periodontium. The mechanism and use of Sclerostin antibody as an activator of Wnt signaling and Bmp2 gene as a potential route to treat craniofacial bone loss is discussed. As well, the mechanism and use of Pth in the treatment of periodontal bone loss or other craniofacial bone loss is presented in this review.
Collapse
Affiliation(s)
- Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael Rediske
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Rebecca Neitzke
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Audrey Rakian
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
126
|
Vidovic I, Banerjee A, Fatahi R, Matthews BG, Dyment NA, Kalajzic I, Mina M. αSMA-Expressing Perivascular Cells Represent Dental Pulp Progenitors In Vivo. J Dent Res 2016; 96:323-330. [PMID: 27834664 DOI: 10.1177/0022034516678208] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The goal of this study was to examine the contribution of perivascular cells to odontoblasts during the development, growth, and repair of dentin using mouse molars as a model. We used an inducible, Cre-loxP in vivo fate-mapping approach to examine the contributions of the descendants of cells expressing the αSMA-CreERT2 transgene to the odontoblast lineage. In vivo lineage-tracing experiments in molars showed the contribution of αSMA-tdTomato+ cells to a small number of newly formed odontoblasts during primary dentinogenesis. Using an experimental pulp exposure model in molars to induce reparative dentinogenesis, we demonstrate the contribution of αSMA-tdTomato+ cells to cells secreting reparative dentin. Our results demonstrate that αSMA-tdTomato+ cells differentiated into Col2.3-GFP+ cells composed of both Dspp+ odontoblasts and Bsp+ osteoblasts. Our findings identify a population of mesenchymal progenitor cells capable of giving rise to a second generation of odontoblasts during reparative dentinogenesis. This population also makes a small contribution to odontoblasts during primary dentinogenesis.
Collapse
Affiliation(s)
- I Vidovic
- 1 Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - A Banerjee
- 1 Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - R Fatahi
- 2 Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - B G Matthews
- 2 Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - N A Dyment
- 2 Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - I Kalajzic
- 2 Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - M Mina
- 1 Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
127
|
de Souza LEB, Malta TM, Kashima Haddad S, Covas DT. Mesenchymal Stem Cells and Pericytes: To What Extent Are They Related? Stem Cells Dev 2016; 25:1843-1852. [PMID: 27702398 DOI: 10.1089/scd.2016.0109] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) were initially identified as progenitors of skeletal tissues within mammalian bone marrow and cells with similar properties were also obtained from other tissues such as adipose and dental pulp. Although MSCs have been extensively investigated, their native behavior and in vivo identity remain poorly defined. Uncovering the in vivo identity of MSCs has been challenging due to the lack of exclusive cell markers, cellular alterations caused by culture methods, and extensive focus on in vitro properties for characterization. Although MSC site of origin influences their functional properties, these mesenchymal progenitors can be found in the perivascular space in virtually all organs from where they were obtained. However, the precise identity of MSCs within the vascular wall is highly controversial. The recurrent concept that MSCs correspond to pericytes in vivo has been supported mainly by their perivascular localization and expression of some molecular markers. However, this view has been a subject of controversy, in part, due to the application of loose criteria to define pericytes and due to the lack of a marker able to unequivocally identify these cells. Furthermore, recent evidences indicate that subpopulations of MSCs can be found at extravascular sites such as the endosteum. In this opinion review, we bring together the advances and pitfalls on the search for the in vivo identity of MSCs and highlight the recent evidences that suggest that perivascular MSCs are adventitial cells, acting as precursors of pericytes and other stromal cells during tissue homeostasis.
Collapse
Affiliation(s)
- Lucas Eduardo Botelho de Souza
- 1 Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil .,2 National Institute of Science and Technology for Stem Cell and Cell Therapy , Ribeirão Preto, Brazil
| | - Tathiane Maistro Malta
- 2 National Institute of Science and Technology for Stem Cell and Cell Therapy , Ribeirão Preto, Brazil .,3 Department of Genetics, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil
| | - Simone Kashima Haddad
- 2 National Institute of Science and Technology for Stem Cell and Cell Therapy , Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- 1 Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil .,2 National Institute of Science and Technology for Stem Cell and Cell Therapy , Ribeirão Preto, Brazil
| |
Collapse
|
128
|
Roeder E, Matthews BG, Kalajzic I. Visual reporters for study of the osteoblast lineage. Bone 2016; 92:189-195. [PMID: 27616604 PMCID: PMC5056847 DOI: 10.1016/j.bone.2016.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022]
Abstract
Advancing our understanding of osteoblast biology and differentiation is critical to elucidate the pathological mechanisms responsible for skeletal diseases such as osteoporosis. Histology and histomorphometry, the classical methods to study osteoblast biology, identify osteoblasts based on their location and morphology and ability to mineralize matrix, but do not clearly define their stage of differentiation. Introduction of visual transgenes into the cells of osteoblast lineage has revolutionized the field and resulted in a paradigm shift that allowed for specific identification and isolation of subpopulations within the osteoblast lineage. Knowledge acquired from the studies based on GFP transgenes has allowed for more precise interpretation of studies analyzing targeted overexpression or deletion of genes in the osteoblast lineage. Here, we provide a condensed overview of the currently available promoter-fluorescent reporter transgenic mice that have been generated and evaluated to varying extents. We cover different stages of the lineage as transgenes have been utilized to identify osteoprogenitors, pre-osteoblasts, osteoblasts, or osteocytes. We show that each of these promoters present with advantages and disadvantages. The studies based on the use of these reporter mice have improved our understanding of bone biology. They constitute attractive models to target osteoblasts and help to understand their cell biology.
Collapse
Affiliation(s)
- Emilie Roeder
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Brya G Matthews
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Pathophysiology, University of Osijek, Osijek, Croatia.
| |
Collapse
|
129
|
Yoshida R, Alaee F, Dyrna F, Kronenberg MS, Maye P, Kalajzic I, Rowe DW, Mazzocca AD, Dyment NA. Murine supraspinatus tendon injury model to identify the cellular origins of rotator cuff healing. Connect Tissue Res 2016; 57:507-515. [PMID: 27184388 PMCID: PMC5149426 DOI: 10.1080/03008207.2016.1189910] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
UNLABELLED Purpose of this study: To elucidate the origin of cell populations that contribute to rotator cuff healing, we developed a mouse surgical model where a full-thickness, central detachment is created in the supraspinatus. MATERIALS AND METHODS Three different inducible Cre transgenic mice with Ai9-tdTomato reporter expression (PRG4-9, αSMA-9, and AGC-9) were used to label different cell populations in the shoulder. The defect was created surgically in the supraspinatus. The mice were injected with tamoxifen at surgery to label the cells and sacrificed at 1, 2, and 5 weeks postoperatively. Frozen sections were fluorescently imaged then stained with Toluidine Blue and re-imaged. RESULTS Three notable changes were apparent postoperatively. (1) A long thin layer of tissue formed on the bursal side overlying the supraspinatus tendon. (2) The tendon proximal to the defect initially became hypercellular and disorganized. (3) The distal stump at the insertion underwent minimal remodeling. In the uninjured shoulder, tdTomato expression was seen in the tendon midsubstance and paratenon cell on the bursal side in PRG4-9, in paratenon, blood vessels, and periosteum of acromion in SMA-9, and in articular cartilage, unmineralized fibrocartilage of supraspinatus enthesis, and acromioclavicular joint in AGC-9 mice. In the injured PRG4-9 and SMA-9 mice, the healing tissues contained an abundant number of tdTomato+ cells, while minimal contribution of tdTomato+ cells was seen in AGC-9 mice. CONCLUSIONS The study supports the importance of the bursal side of the tendon to rotator cuff healing and PRG4 and αSMA may be markers for these progenitor cells.
Collapse
Affiliation(s)
- Ryu Yoshida
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT
| | - Farhang Alaee
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT
| | - Felix Dyrna
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT
| | - Mark S. Kronenberg
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT
| | - Peter Maye
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT
| | - David W Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT
| | - Augustus D. Mazzocca
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT
| | - Nathaniel A Dyment
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
130
|
Mori Y, Adams D, Hagiwara Y, Yoshida R, Kamimura M, Itoi E, Rowe DW. Identification of a progenitor cell population destined to form fracture fibrocartilage callus in Dickkopf-related protein 3-green fluorescent protein reporter mice. J Bone Miner Metab 2016; 34:606-614. [PMID: 26369320 DOI: 10.1007/s00774-015-0711-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/02/2015] [Indexed: 01/23/2023]
Abstract
Fracture healing is a complex biological process involving the proliferation of mesenchymal progenitor cells, and chondrogenic, osteogenic, and angiogenic differentiation. The mechanisms underlying the proliferation and differentiation of mesenchymal progenitor cells remain unclear. Here, we demonstrate Dickkopf-related protein 3 (Dkk3) expression in periosteal cells using Dkk3-green fluorescent protein reporter mice. We found that proliferation of mesenchymal progenitor cells began in the periosteum, involving Dkk3-positive cell proliferation near the fracture site. In addition, Dkk3 was expressed in fibrocartilage cells together with smooth muscle α-actin and Col3.6 in the early phase of fracture healing as a cell marker of fibrocartilage cells. Dkk3 was not expressed in mature chondrogenic cells or osteogenic cells. Transient expression of Dkk3 disappeared in the late phase of fracture healing, except in the superficial periosteal area of fracture callus. The Dkk3 expression pattern differed in newly formed type IV collagen positive blood vessels and the related avascular tissue. This is the first report that shows Dkk3 expression in the periosteum at a resting state and in fibrocartilage cells during the fracture healing process, which was associated with smooth muscle α-actin and Col3.6 expression in mesenchymal progenitor cells. These fluorescent mesenchymal lineage cells may be useful for future studies to better understand fracture healing.
Collapse
Affiliation(s)
- Yu Mori
- Center for Regenerative Medicine and Skeletal Biology, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA.
- Department of Orthopaedic Surgery, Graduate School of Tohoku University, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8574, Japan.
| | - Douglas Adams
- Center for Regenerative Medicine and Skeletal Biology, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Yusuke Hagiwara
- Center for Regenerative Medicine and Skeletal Biology, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Ryu Yoshida
- Center for Regenerative Medicine and Skeletal Biology, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Graduate School of Tohoku University, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8574, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Graduate School of Tohoku University, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8574, Japan
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Biology, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
131
|
Embree MC, Chen M, Pylawka S, Kong D, Iwaoka GM, Kalajzic I, Yao H, Shi C, Sun D, Sheu TJ, Koslovsky DA, Koch A, Mao JJ. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury. Nat Commun 2016; 7:13073. [PMID: 27721375 PMCID: PMC5062541 DOI: 10.1038/ncomms13073] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
Tissue regeneration using stem cell-based transplantation faces many hurdles. Alternatively, therapeutically exploiting endogenous stem cells to regenerate injured or diseased tissue may circumvent these challenges. Here we show resident fibrocartilage stem cells (FCSCs) can be used to regenerate and repair cartilage. We identify FCSCs residing within the superficial zone niche in the temporomandibular joint (TMJ) condyle. A single FCSC spontaneously generates a cartilage anlage, remodels into bone and organizes a haematopoietic microenvironment. Wnt signals deplete the reservoir of FCSCs and cause cartilage degeneration. We also show that intra-articular treatment with the Wnt inhibitor sclerostin sustains the FCSC pool and regenerates cartilage in a TMJ injury model. We demonstrate the promise of exploiting resident FCSCs as a regenerative therapeutic strategy to substitute cell transplantation that could be beneficial for patients suffering from fibrocartilage injury and disease. These data prompt the examination of utilizing this strategy for other musculoskeletal tissues.
Collapse
Affiliation(s)
- Mildred C. Embree
- TMJ Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Medical Center, 630 W 168th St, P&S 16-440, New York, New York 10032, USA
| | - Mo Chen
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University Medical Center, 622 W 168th St, New York, New York 10032, USA
| | - Serhiy Pylawka
- TMJ Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Medical Center, 630 W 168th St, P&S 16-440, New York, New York 10032, USA
| | - Danielle Kong
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University Medical Center, 622 W 168th St, New York, New York 10032, USA
| | - George M. Iwaoka
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University Medical Center, 622 W 168th St, New York, New York 10032, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, MC3705, L7005, University of Connecticut Health Sciences Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA
| | - Hai Yao
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, 173 Ashley Avenue, MSC 508, Charleston, South Carolina 29425, USA
| | - Chancheng Shi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Beibei District, Chongqing 400714, China
| | - Dongming Sun
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, D-251, Piscataway, New Jersey 08854, USA
| | - Tzong-Jen Sheu
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York 14620, USA
| | - David A. Koslovsky
- Metropolitan Oral Surgery Associates, 488 Madison Avenue, #200, New York, New York 10022, USA
| | - Alia Koch
- College of Dental Medicine, Division of Oral and Maxillofacial Surgery, Columbia University Medical Center, 622 W 168th St, New York, New York 10032, USA
| | - Jeremy J. Mao
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University Medical Center, 622 W 168th St, New York, New York 10032, USA
| |
Collapse
|
132
|
Dyment NA, Jiang X, Chen L, Hong SH, Adams DJ, Ackert-Bicknell C, Shin DG, Rowe DW. High-Throughput, Multi-Image Cryohistology of Mineralized Tissues. J Vis Exp 2016. [PMID: 27684089 DOI: 10.3791/54468] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is an increasing need for efficient phenotyping and histopathology of a variety of tissues. This phenotyping need is evident with the ambitious projects to disrupt every gene in the mouse genome. The research community needs rapid and inexpensive means to phenotype tissues via histology. Histological analyses of skeletal tissues are often time consuming and semi-quantitative at best, regularly requiring subjective interpretation of slides from trained individuals. Here, we present a cryohistological paradigm for efficient and inexpensive phenotyping of mineralized tissues. First, we present a novel method of tape-stabilized cryosectioning that preserves the morphology of mineralized tissues. These sections are then adhered rigidly to glass slides and imaged repeatedly over several rounds of staining. The resultant images are then aligned either manually or via computer software to yield composite stacks of several layered images. The protocol allows for co-localization of numerous molecular signals to specific cells within a given section. In addition, these fluorescent signals can be quantified objectively via computer software. This protocol overcomes many of the shortcomings associated with histology of mineralized tissues and can serve as a platform for high-throughput, high-content phenotyping of musculoskeletal tissues moving forward.
Collapse
Affiliation(s)
- Nathaniel A Dyment
- Department of Reconstructive Sciences, University of Connecticut Health Center;
| | - Xi Jiang
- Department of Reconstructive Sciences, University of Connecticut Health Center
| | - Li Chen
- Department of Reconstructive Sciences, University of Connecticut Health Center
| | - Seung-Hyun Hong
- Department of Computer Science and Engineering, University of Connecticut
| | - Douglas J Adams
- Department of Orthopaedic Surgery, University of Connecticut Health Center
| | | | - Dong-Guk Shin
- Department of Computer Science and Engineering, University of Connecticut
| | - David W Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center;
| |
Collapse
|
133
|
Matic I, Matthews BG, Wang X, Dyment NA, Worthley DL, Rowe DW, Grcevic D, Kalajzic I. Quiescent Bone Lining Cells Are a Major Source of Osteoblasts During Adulthood. Stem Cells 2016; 34:2930-2942. [PMID: 27507737 DOI: 10.1002/stem.2474] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/15/2016] [Accepted: 07/05/2016] [Indexed: 12/23/2022]
Abstract
The in vivo origin of bone-producing osteoblasts is not fully defined. Skeletal stem cells, a population of mesenchymal stem cells resident in the bone marrow compartment, are thought to act as osteoprogenitors during growth and adulthood. Quiescent bone lining cells (BLCs) have been suggested as a population capable of activation into mature osteoblasts. These cells were defined by location and their morphology and studies addressing their significance have been hampered by their inaccessibility, and lack of markers that would allow for their identification and tracing. Using lineage tracing models, we have observed labeled osteoblasts at time points extending beyond the reported lifespan for this cell type, suggesting continuous reactivation of BLCs. BLCs also make a major contribution to bone formation after osteoblast ablation, which includes the ability to proliferate. In contrast, mesenchymal progenitors labeled by Gremlin1 or alpha smooth muscle actin do not contribute to bone formation in this setting. BLC activation is inhibited by glucocorticoids, which represent a well-established cause of osteoporosis. BLCs express cell surface markers characteristic of mesenchymal stem/progenitors that are largely absent in osteoblasts including Sca1 and Leptin Receptor. BLCs also show different gene expression profiles to osteoblasts, including elevated expression of Mmp13, and osteoclast regulators RANKL and macrophage colony stimulating factor, and retain osteogenic potential upon transplantation. Our findings provide evidence that bone lining cells represent a major source of osteoblasts during adulthood. Stem Cells 2016;34:2930-2942.
Collapse
Affiliation(s)
- Igor Matic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Brya G Matthews
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Xi Wang
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Nathaniel A Dyment
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Daniel L Worthley
- Department of Medicine and Cancer Theme, University of Adelaide & SAHMRI, Adelaide, South Australia, Australia
| | - David W Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Danka Grcevic
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
134
|
Yao W, Lay YAE, Kot A, Liu R, Zhang H, Chen H, Lam K, Lane NE. Improved Mobilization of Exogenous Mesenchymal Stem Cells to Bone for Fracture Healing and Sex Difference. Stem Cells 2016; 34:2587-2600. [PMID: 27334693 DOI: 10.1002/stem.2433] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/15/2016] [Accepted: 05/06/2016] [Indexed: 01/05/2023]
Abstract
Mesenchymal stem cell (MSC) transplantation has been tested in animal and clinical fracture studies. We have developed a bone-seeking compound, LLP2A-Alendronate (LLP2A-Ale) that augments MSC homing to bone. The purpose of this study was to determine whether treatment with LLP2A-Ale or a combination of LLP2A-Ale and MSCs would accelerate bone healing in a mouse closed fracture model and if the effects are sex dependent. A right mid-femur fracture was induced in two-month-old osterix-mCherry (Osx-mCherry) male and female reporter mice. The mice were subsequently treated with placebo, LLP2A-Ale (500 μg/kg, IV), MSCs derived from wild-type female Osx-mCherry adipose tissue (ADSC, 3 x 105 , IV) or ADSC + LLP2A-Ale. In phosphate buffered saline-treated mice, females had higher systemic and surface-based bone formation than males. However, male mice formed a larger callus and had higher volumetric bone mineral density and bone strength than females. LLP2A-Ale treatment increased exogenous MSC homing to the fracture gaps, enhanced incorporation of these cells into callus formation, and stimulated endochondral bone formation. Additionally, higher engraftment of exogenous MSCs in fracture gaps seemed to contribute to overall fracture healing and improved bone strength. These effects were sex-independent. There was a sex-difference in the rate of fracture healing. ADSC and LLP2A-Ale combination treatment was superior to on callus formation, which was independent of sex. Increased mobilization of exogenous MSCs to fracture sites accelerated endochondral bone formation and enhanced bone tissue regeneration. Stem Cells 2016;34:2587-2600.
Collapse
Affiliation(s)
- Wei Yao
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA.
| | - Yu-An Evan Lay
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| | - Alexander Kot
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California at Davis Medical Center, Sacramento, California, USA
| | - Hongliang Zhang
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| | - Haiyan Chen
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| | - Kit Lam
- Department of Biochemistry and Molecular Medicine, University of California at Davis Medical Center, Sacramento, California, USA
| | - Nancy E Lane
- Department of Internal Medicine, Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
135
|
Collette NM, Yee CS, Hum NR, Murugesh DK, Christiansen BA, Xie L, Economides AN, Manilay JO, Robling AG, Loots GG. Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells. Bone 2016; 88:20-30. [PMID: 27102547 PMCID: PMC6277141 DOI: 10.1016/j.bone.2016.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Loss of Sostdc1, a growth factor paralogous to Sost, causes the formation of ectopic incisors, fused molars, abnormal hair follicles, and resistance to kidney disease. Sostdc1 is expressed in the periosteum, a source of osteoblasts, fibroblasts and mesenchymal progenitor cells, which are critically important for fracture repair. Here, we investigated the role of Sostdc1 in bone metabolism and fracture repair. Mice lacking Sostdc1 (Sostdc1(-/-)) had a low bone mass phenotype associated with loss of trabecular bone in both lumbar vertebrae and in the appendicular skeleton. In contrast, Sostdc1(-/-) cortical bone measurements revealed larger bones with higher BMD, suggesting that Sostdc1 exerts differential effects on cortical and trabecular bone. Mid-diaphyseal femoral fractures induced in Sostdc1(-/-) mice showed that the periosteal population normally positive for Sostdc1 rapidly expands during periosteal thickening and these cells migrate into the fracture callus at 3days post fracture. Quantitative analysis of mesenchymal stem cell (MSC) and osteoblast populations determined that MSCs express Sostdc1, and that Sostdc1(-/-) 5day calluses harbor >2-fold more MSCs than fractured wildtype controls. Histologically a fraction of Sostdc1-positive cells also expressed nestin and α-smooth muscle actin, suggesting that Sostdc1 marks a population of osteochondral progenitor cells that actively participate in callus formation and bone repair. Elevated numbers of MSCs in D5 calluses resulted in a larger, more vascularized cartilage callus at day 7, and a more rapid turnover of cartilage with significantly more remodeled bone and a thicker cortical shell at 21days post fracture. These data support accelerated or enhanced bone formation/remodeling of the callus in Sostdc1(-/-) mice, suggesting that Sostdc1 may promote and maintain mesenchymal stem cell quiescence in the periosteum.
Collapse
Affiliation(s)
- Nicole M Collette
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA
| | - Cristal S Yee
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; Molecular and Cell Biology Unit, School of Natural Sciences, University of California at Merced, Merced, CA, USA
| | - Nicholas R Hum
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA
| | - Deepa K Murugesh
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA
| | | | - LiQin Xie
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Jennifer O Manilay
- Molecular and Cell Biology Unit, School of Natural Sciences, University of California at Merced, Merced, CA, USA
| | | | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; Molecular and Cell Biology Unit, School of Natural Sciences, University of California at Merced, Merced, CA, USA.
| |
Collapse
|
136
|
Saeed H, Ahsan M, Saleem Z, Iqtedar M, Islam M, Danish Z, Khan AM. Mesenchymal stem cells (MSCs) as skeletal therapeutics - an update. J Biomed Sci 2016; 23:41. [PMID: 27084089 PMCID: PMC4833928 DOI: 10.1186/s12929-016-0254-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/03/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells hold the promise to treat not only several congenital and acquired bone degenerative diseases but also to repair and regenerate morbid bone tissues. Utilizing MSCs, several lines of evidences advocate promising clinical outcomes in skeletal diseases and skeletal tissue repair/regeneration. In this context, both, autologous and allogeneic cell transfer options have been utilized. Studies suggest that MSCs are transplanted either alone by mixing with autogenous plasma/serum or by loading onto repair/induction supportive resorb-able scaffolds. Thus, this review is aimed at highlighting a wide range of pertinent clinical therapeutic options of MSCs in the treatment of skeletal diseases and skeletal tissue regeneration. Additionally, in skeletal disease and regenerative sections, only the early and more recent preclinical evidences are discussed followed by all the pertinent clinical studies. Moreover, germane post transplant therapeutic mechanisms afforded by MSCs have also been conversed. Nonetheless, assertive use of MSCs in the clinic for skeletal disorders and repair is far from a mature therapeutic option, therefore, posed challenges and future directions are also discussed. Importantly, for uniformity at all instances, term MSCs is used throughout the review.
Collapse
Affiliation(s)
- Hamid Saeed
- Section of Clinical Pharmacy, University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000, Lahore, Pakistan.
| | - Muhammad Ahsan
- Section of Clinical Pharmacy, University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000, Lahore, Pakistan
| | - Zikria Saleem
- Section of Clinical Pharmacy, University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000, Lahore, Pakistan
| | - Mehwish Iqtedar
- Department of Bio-technology, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Islam
- Section of Clinical Pharmacy, University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000, Lahore, Pakistan
| | - Zeeshan Danish
- Section of Clinical Pharmacy, University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000, Lahore, Pakistan
| | - Asif Manzoor Khan
- Department of Biochemistry and Molecular Biology, University of the Southern Denmark, 5230, Odense, Denmark
| |
Collapse
|
137
|
Abou-Khalil R, Yang F, Lieu S, Julien A, Perry J, Pereira C, Relaix F, Miclau T, Marcucio R, Colnot C. Role of muscle stem cells during skeletal regeneration. Stem Cells 2016; 33:1501-11. [PMID: 25594525 DOI: 10.1002/stem.1945] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/07/2014] [Indexed: 01/20/2023]
Abstract
Although the importance of muscle in skeletal regeneration is well recognized clinically, the mechanisms by which muscle supports bone repair have remained elusive. Muscle flaps are often used to cover the damaged bone after traumatic injury yet their contribution to bone healing is not known. Here, we show that direct bone-muscle interactions are required for periosteum activation and callus formation, and that muscle grafts provide a source of stem cells for skeletal regeneration. We investigated the role of satellite cells, the muscle stem cells. Satellite cells loss in Pax7(-/-) mice and satellite cell ablation in Pax7(Cre) (ERT) (2/) (+) ;DTA(f/f) mice impaired bone regeneration. Although satellite cells did not contribute as a large source of cells endogenously, they exhibited a potential to contribute to bone repair after transplantation. The fracture healing phenotype in Pax7(Cre) (ERT) (2/) (+) ;DTA(f/f) mice was associated with decreased bone morphogenetic proteins (BMPs), insulin-like growth factor 1, and fibroblast growth factor 2 expression that are normally upregulated in response to fracture in satellite cells. Exogenous rhBMP2 improved bone healing in Pax7(Cre) (ERT) (2/) (+) ;DTA(f/f) mice further supporting the role of satellite cells as a source of growth factors. These results provide the first functional evidence for a direct contribution of muscle to bone regeneration with important clinical implications as it may impact the use of muscle flaps, muscle stem cells, and growth factors in orthopedic applications.
Collapse
Affiliation(s)
- Rana Abou-Khalil
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Matthews BG, Torreggiani E, Roeder E, Matic I, Grcevic D, Kalajzic I. Osteogenic potential of alpha smooth muscle actin expressing muscle resident progenitor cells. Bone 2016; 84:69-77. [PMID: 26721734 PMCID: PMC4755912 DOI: 10.1016/j.bone.2015.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/14/2015] [Accepted: 12/19/2015] [Indexed: 12/16/2022]
Abstract
Heterotopic ossification (HO) is a pathological process where bone forms in connective tissues such as skeletal muscle. Previous studies have suggested that muscle-resident non-myogenic mesenchymal progenitors are the likely source of osteoblasts and chondrocytes in HO. However, the previously identified markers of muscle-resident osteoprogenitors label up to half the osteoblasts within heterotopic lesions, suggesting other cell populations are involved. We have identified alpha smooth muscle actin (αSMA) as a marker of osteoprogenitor cells in bone and periodontium, and of osteo-chondro progenitors in the periosteum during fracture healing. We therefore utilized a lineage tracing approach to evaluate whether αSMACreERT2 identifies osteoprogenitors in the muscle. We show that in the muscle, αSMACreERT2 labels both perivascular cells, and satellite cells. αSMACre-labeled cells undergo osteogenic differentiation in vitro and form osteoblasts and chondrocytes in BMP2-induced HO in vivo. In contrast, Pax7CreERT2-labeled muscle satellite cells were restricted to myogenic differentiation in vitro, and rarely contributed to HO in vivo. Our data indicate that αSMACreERT2 labels a large proportion of osteoprogenitors in skeletal muscle, and therefore represents another marker of muscle-resident cells with osteogenic potential under HO-inducing stimulus. In contrast, muscle satellite cells make minimal contribution to bone formation in vivo.
Collapse
Affiliation(s)
- Brya G Matthews
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Elena Torreggiani
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Emilie Roeder
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Igor Matic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Danka Grcevic
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
139
|
McHaffie SL, Hastie ND, Chau YY. Effects of CreERT2, 4-OH Tamoxifen, and Gender on CFU-F Assays. PLoS One 2016; 11:e0148105. [PMID: 26828722 PMCID: PMC4734617 DOI: 10.1371/journal.pone.0148105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/13/2016] [Indexed: 12/29/2022] Open
Abstract
Gene function in stem cell maintenance is often tested by inducing deletion via the Cre-loxP system. However, controls for Cre and other variables are frequently not included. Here we show that when cultured in the presence of 4-OH tamoxifen, bone and marrow cells containing the CreERT2 construct have a reduced colony forming ability. Inactive CreERT2 recombinase, however, has the opposite effect. Young female marrow cells containing the inactive CreERT2 construct grew more colonies than cells lacking the construct altogether. Young female control marrow cells (i.e., negative for CreERT2) also produced significantly greater colony numbers when cultured with 4-OH tamoxifen, compared with the ethanol vehicle control. In conclusion, we report that the use of the Cre-loxP system is inadvisable in combination with CFU-F assays, and that appropriate controls should be in place to extend the future use of Cre-loxP in alternate assays.
Collapse
Affiliation(s)
- Sophie L. McHaffie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicholas D. Hastie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - You-Ying Chau
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
140
|
Pontikoglou C, Langonné A, Ba MA, Varin A, Rosset P, Charbord P, Sensébé L, Deschaseaux F. CD200 expression in human cultured bone marrow mesenchymal stem cells is induced by pro-osteogenic and pro-inflammatory cues. J Cell Mol Med 2016; 20:655-65. [PMID: 26773707 PMCID: PMC5125749 DOI: 10.1111/jcmm.12752] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023] Open
Abstract
Similar to other adult tissue stem/progenitor cells, bone marrow mesenchymal stem/stromal cells (BM MSCs) exhibit heterogeneity at the phenotypic level and in terms of proliferation and differentiation potential. In this study such a heterogeneity was reflected by the CD200 protein. We thus characterized CD200(pos) cells sorted from whole BM MSC cultures and we investigated the molecular mechanisms regulating CD200 expression. After sorting, measurement of lineage markers showed that the osteoblastic genes RUNX2 and DLX5 were up-regulated in CD200(pos) cells compared to CD200(neg) fraction. At the functional level, CD200(pos) cells were prone to mineralize the extra-cellular matrix in vitro after sole addition of phosphates. In addition, osteogenic cues generated by bone morphogenetic protein 4 (BMP4) or BMP7 strongly induced CD200 expression. These data suggest that CD200 expression is related to commitment/differentiation towards the osteoblastic lineage. Immunohistochemistry of trephine bone marrow biopsies further corroborates the osteoblastic fate of CD200(pos) cells. However, when dexamethasone was used to direct osteogenic differentiation in vitro, CD200 was consistently down-regulated. As dexamethasone has anti-inflammatory properties, we assessed the effects of different immunological stimuli on CD200 expression. The pro-inflammatory cytokines interleukin-1β and tumour necrosis factor-α increased CD200 membrane expression but down-regulated osteoblastic gene expression suggesting an additional regulatory pathway of CD200 expression. Surprisingly, whatever the context, i.e. pro-inflammatory or pro-osteogenic, CD200 expression was down-regulated when nuclear-factor (NF)-κB was inhibited by chemical or adenoviral agents. In conclusion, CD200 expression by cultured BM MSCs can be induced by both osteogenic and pro-inflammatory cytokines through the same pathway: NF-κB.
Collapse
Affiliation(s)
- Charalampos Pontikoglou
- EA3855, Université François Rabelais, Tours, France.,Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
| | - Alain Langonné
- Etablissement Français du sang Centre-Atlantique, Tours, France
| | - Mamadou Aliou Ba
- Stromalab Université de Toulouse, UMR/CNRS 5273, U1031 Inserm, EFS-Pyrénées-Méditerranée, UPS, Toulouse, France
| | - Audrey Varin
- Stromalab Université de Toulouse, UMR/CNRS 5273, U1031 Inserm, EFS-Pyrénées-Méditerranée, UPS, Toulouse, France
| | - Philippe Rosset
- Service d'orthopédie et traumatologie, CHU Trousseau, Chambray-lès-Tours, France
| | - Pierre Charbord
- Inserm U972 and Université Paris XI, Villejuif Cedex, France
| | - Luc Sensébé
- Stromalab Université de Toulouse, UMR/CNRS 5273, U1031 Inserm, EFS-Pyrénées-Méditerranée, UPS, Toulouse, France
| | - Frédéric Deschaseaux
- Stromalab Université de Toulouse, UMR/CNRS 5273, U1031 Inserm, EFS-Pyrénées-Méditerranée, UPS, Toulouse, France
| |
Collapse
|
141
|
McHaffie S, Chau YY. Isolation and Colony Formation of Murine Bone and Bone Marrow Cells. Methods Mol Biol 2016; 1467:73-80. [PMID: 27417960 DOI: 10.1007/978-1-4939-4023-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Adult homeostasis is dependent on normal Wt1 expression. Loss of Wt1 expression in adult mice causes rapid loss of the mesenchymal tissues, fat and bone, amongst other phenotypes. Bone and bone marrow mesenchymal stromal cells can be studied by cell isolation and expansion. The stemness of these cells can then be characterized by carrying out a colony-forming unit-fibroblast assay and observing clonogenic capabilities.
Collapse
Affiliation(s)
- Sophie McHaffie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - You-Ying Chau
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
- British Heart Foundation Centrefor Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
142
|
Harrell DB, Caradonna E, Mazzucco L, Gudenus R, Amann B, Prochazka V, Giannoudis PV, Hendrich C, Jäger M, Krauspe R, Hernigou P. Non-Hematopoietic Essential Functions of Bone Marrow Cells: A Review of Scientific and Clinical Literature and Rationale for Treating Bone Defects. Orthop Rev (Pavia) 2015; 7:5691. [PMID: 26793290 PMCID: PMC4703908 DOI: 10.4081/or.2015.5691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 10/20/2015] [Indexed: 01/13/2023] Open
Abstract
Hematopoiesis as the only essential function of bone marrow cells has been challenged for several decades through basic science (in vitro and in vivo) and clinical data. Such work has shed light on two other essential functions of bone marrow cells: osteopoiesis and angio-genesis/vasculogenesis. Clinical utility of autologous concentrated bone marrow aspirate (CBMA) has demonstrated both safety and efficacy in treating bone defects. Moreover, CBMA has been shown to be comparable to the gold standard of iliac crest bone graft (ICBG), or autograft, with regard to being osteogenic and osteoinductive. ICBG is not considered an advanced therapy medicinal product (ATMP), but CBMA may become regulated as an ATMP. The European Medicines Agency Committee for Advanced Therapies (EMA:CAT) has issued a reflection paper (20 June 2014) in which reversal of the 2013 ruling that CBMA is a non-ATMP has been proposed. We review bone marrow cell involvement in osteopoiesis and angiogenesis/vasculogenesis to examine EMA:CAT 2013 decision to use CBMA for treatment of osteonecrosis (e.g, of the femoral head) should be considered a non-ATMP. This paper is intended to provide discussion on the 20 June 2014 reflection paper by reviewing two non-hematopoietic essential functions of bone marrow cells. Additionally, we provide clinical and scientific rationale for treating osteonecrosis with CBMA.
Collapse
Affiliation(s)
| | - Eugenio Caradonna
- Department of Cardiovascular Disease, Fondazione de Ricerca e Cura Giovanni e Paolo II, Campbasso, Italy
| | - Laura Mazzucco
- Blood Component and Regenerative Medicine Laboratory, Alessandria Hospital, Italy
| | | | | | - Vaclav Prochazka
- Interventional Neuroradiology and Angiology, University of Ostrava, Czech Republic
| | | | | | | | | | | |
Collapse
|
143
|
Kolind M, Bobyn JD, Matthews BG, Mikulec K, Aiken A, Little DG, Kalajzic I, Schindeler A. Lineage tracking of mesenchymal and endothelial progenitors in BMP-induced bone formation. Bone 2015; 81:53-59. [PMID: 26141839 PMCID: PMC4844190 DOI: 10.1016/j.bone.2015.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/29/2022]
Abstract
To better understand the relative contributions of mesenchymal and endothelial progenitor cells to rhBMP-2 induced bone formation, we examined the distribution of lineage-labeled cells in Tie2-Cre:Ai9 and αSMA-creERT2:Col2.3-GFP:Ai9 reporter mice. Established orthopedic models of ectopic bone formation in the hind limb and spine fusion were employed. Tie2-lineage cells were found extensively in the ectopic bone and spine fusion masses, but co-staining was only seen with tartrate-resistant acid phosphatase (TRAP) activity (osteoclasts) and CD31 immunohistochemistry (vascular endothelial cells), and not alkaline phosphatase (AP) activity (osteoblasts). To further confirm the lack of a functional contribution of Tie2-lineage cells to BMP-induced bone, we developed conditional knockout mice where Tie2-lineage cells are rendered null for key bone transcription factor osterix (Tie2-cre:Osx(fx/fx) mice). Conditional knockout mice showed no difference in BMP-induced bone formation compared to littermate controls. Pulse labeling of mesenchymal cells with Tamoxifen in mice undergoing spine fusion revealed that αSMA-lineage cells contributed to the osteoblastic lineage (Col2.3-GFP), but not to endothelial cells or osteoclast populations. These data indicate that the αSMA+ and Tie2+ progenitor lineages make distinct cellular contributions to bone formation, angiogenesis, and resorption/remodeling.
Collapse
Affiliation(s)
- Mille Kolind
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Justin D Bobyn
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Brya G Matthews
- Department of Reconstructive Sciences, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Kathy Mikulec
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Alastair Aiken
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - David G Little
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Aaron Schindeler
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
144
|
Sheng G. The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC DEVELOPMENTAL BIOLOGY 2015; 15:44. [PMID: 26589542 PMCID: PMC4654913 DOI: 10.1186/s12861-015-0094-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mesenchymal Stem/Stromal Cells (MSCs) define a population of progenitor cells capable of giving rises to at least three mesodermal lineages in vitro, the chondrocytes, osteoblasts and adipocytes. The validity of MSCs in vivo has been questioned because their existence, either as a homogeneous progenitor cell population or as a stem cell lineage, has been difficult to prove. The wide use of primary MSCs in regenerative and therapeutic applications raises ethical and regulatory concerns in many countries. In contrast to hematopoietic stem cells, a parallel concept which carries an embryological emphasis from its outset, MSCs have attracted little interest among developmental biologists and the embryological basis for their existence, or lack thereof, has not been carefully evaluated. METHODS This article provides a brief, embryological overview of these three mesoderm cell lineages and offers a framework of ontological rationales for the potential existence of MSCs in vivo. RESULTS Emphasis is given to the common somatic lateral plate mesoderm origin of the majority of body's adipose and skeletal tissues and of the major sources used for MSC derivation clinically. Support for the MSC hypothesis also comes from a large body of molecular and lineage analysis data in vivo. CONCLUSIONS It is concluded that despite the lack of a definitive proof, the MSC concept has a firm embryological basis and that advances in MSC research can be facilitated by achieving a better integration with developmental biology.
Collapse
Affiliation(s)
- Guojun Sheng
- Sheng Laboratory, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
145
|
Myers TJ, Longobardi L, Willcockson H, Temple JD, Tagliafierro L, Ye P, Li T, Esposito A, Moats-Staats BM, Spagnoli A. BMP2 Regulation of CXCL12 Cellular, Temporal, and Spatial Expression is Essential During Fracture Repair. J Bone Miner Res 2015; 30:2014-27. [PMID: 25967044 PMCID: PMC4970512 DOI: 10.1002/jbmr.2548] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 12/30/2022]
Abstract
The cellular and humoral responses that orchestrate fracture healing are still elusive. Here we report that bone morphogenic protein 2 (BMP2)-dependent fracture healing occurs through a tight control of chemokine C-X-C motif-ligand-12 (CXCL12) cellular, spatial, and temporal expression. We found that the fracture repair process elicited an early site-specific response of CXCL12(+)-BMP2(+) endosteal cells and osteocytes that was not present in unfractured bones and gradually decreased as healing progressed. Absence of a full complement of BMP2 in mesenchyme osteoprogenitors (BMP2(cKO/+)) prevented healing and led to a dysregulated temporal and cellular upregulation of CXCL12 expression associated with a deranged angiogenic response. Healing was rescued when BMP2(cKO/+) mice were systemically treated with AMD3100, an antagonist of CXCR4 and agonist for CXCR7 both receptors for CXCL12. We further found that mesenchymal stromal cells (MSCs), capable of delivering BMP2 at the endosteal site, restored fracture healing when transplanted into BMP2(cKO/+) mice by rectifying the CXCL12 expression pattern. Our in vitro studies showed that in isolated endosteal cells, BMP2, while inducing osteoblastic differentiation, stimulated expression of pericyte markers that was coupled with a decrease in CXCL12. Furthermore, in isolated BMP2(cKO/cKO) endosteal cells, high expression levels of CXCL12 inhibited osteoblastic differentiation that was restored by AMD3100 treatment or coculture with BMP2-expressing MSCs that led to an upregulation of pericyte markers while decreasing platelet endothelial cell adhesion molecule (PECAM). Taken together, our studies show that following fracture, a CXCL12(+)-BMP2(+) perivascular cell population is recruited along the endosteum, then a timely increase of BMP2 leads to downregulation of CXCL12 that is essential to determine the fate of the CXCL12(+)-BMP2(+) to osteogenesis while departing their supportive role to angiogenesis. Our findings have far-reaching implications for understanding mechanisms regulating the selective recruitment of distinct cells into the repairing niches and the development of novel pharmacological (by targeting BMP2/CXCL12) and cellular (MSCs, endosteal cells) interventions to promote fracture healing.
Collapse
Affiliation(s)
- Timothy J Myers
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lara Longobardi
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Helen Willcockson
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph D Temple
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Lidia Tagliafierro
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ping Ye
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tieshi Li
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Alessandra Esposito
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Billie M Moats-Staats
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anna Spagnoli
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
146
|
Pensak M, Hong SH, Dukas A, Bayron J, Tinsley B, Jain A, Tang A, Rowe D, Lieberman JR. Combination therapy with PTH and DBM cannot heal a critical sized murine femoral defect. J Orthop Res 2015; 33:1242-9. [PMID: 25877402 DOI: 10.1002/jor.22896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/10/2015] [Indexed: 02/04/2023]
Abstract
Orthopaedic surgeons continue to search for cost-effective bone graft substitutes to enhance bone repair. Teriparatide (PTH 1-34) and demineralized bone matrix (DBM) have been used in patients to promote bone healing. We evaluated the efficacy of PTH and DBM in healing a critical sized femoral defect in three lineage-specific transgenic mice expressing Col3.6GFPtopaz (pre-osteoblastic marker), Col2.3GFPemerald (osteoblastic marker) and α-SMA-Cherry (pericyte/myofibroblast marker). Mid-diaphyseal defects measuring 2 mm in length were created in the central 1/3 of mice femora using a circular saw and stabilized with an alveolar distractor device and cerclage wires. Three groups were evaluated: Group I, PTH 30 μg/kg injection daily, Group II, PTH 30 μg/kg injection daily + DBM, and Group III, DBM + 30μL saline injection. PTH was given for 28 days or until the time of sacrifice. Animals were sacrificed at 7, 14, 28, and 56 days. Radiographs at the time of sacrifice were evaluated using a 5-point scaled scoring system. Radiographs showed a lack of healing across all treatment groups at all time points: Group I, 1.57 +/- 0.68; Group II, 3.00 +/- 1.29; and Group III, 2.90 +/- 1.03. Bone formation in the defect as measured by radiographic healing score was significantly better at 56 days in Groups II (p = 0.01) and III (p < 0.01) compared to Group I. Across all treatment groups and time points the defects were largely absent of osteoprogenitor cells based on gross observation of frozen histology and quantitation of cellular based histomorphometric parameters. Quantitation of frozen histologic slides showed a limited osteoprogenitor response to PTH and DBM. Our results suggest that the anabolic agent teriparatide is unable to induce healing in a critical sized mouse femoral defect when given alone or in combination with the DBM preparation we used as a local bone graft substitute.
Collapse
Affiliation(s)
- Michael Pensak
- University of Connecticut Health Center, Farmington, Connecticut
| | | | - Alex Dukas
- University of Connecticut Health Center, Farmington, Connecticut
| | - Jennifer Bayron
- University of Connecticut Health Center, Farmington, Connecticut
| | - Brian Tinsley
- University of Connecticut Health Center, Farmington, Connecticut
| | | | - Amy Tang
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - David Rowe
- University of Connecticut Health Center, Farmington, Connecticut
| | - Jay R Lieberman
- Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
147
|
Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol 2015; 65:20-31. [DOI: 10.1016/j.biocel.2015.05.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 04/18/2015] [Accepted: 05/08/2015] [Indexed: 01/21/2023]
|
148
|
Abstract
Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.
Collapse
Affiliation(s)
- Noriaki Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA,
| |
Collapse
|
149
|
Dyment NA, Galloway JL. Regenerative biology of tendon: mechanisms for renewal and repair. ACTA ACUST UNITED AC 2015; 1:124-131. [PMID: 26389023 DOI: 10.1007/s40610-015-0021-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Understanding the molecular and cellular mechanisms underlying tissue turnover and repair are essential towards addressing pathologies in aging, injury and disease. Each tissue has distinct means of maintaining homeostasis and healing after injury. For some, resident stem cell populations mediate both of these processes. These stem cells, by definition, are self renewing and give rise to all the differentiated cells of that tissue. However, not all organs fit with this traditional stem cell model of regeneration, and some do not appear to harbor somatic stem or progenitor cells capable of multilineage in vivo reconstitution. Despite recent progress in tendon progenitor cell research, our current knowledge of the mechanisms regulating tendon cell homeostasis and injury response is limited. Understanding the role of resident tendon cell populations is of great importance for regenerative medicine based approaches to tendon injuries and disease. The goal of this review is to bring to light our current knowledge regarding tendon progenitor cells and their role in tissue maintenance and repair. We will focus on pressing questions in the field and the new tools, including model systems, available to address them.
Collapse
Affiliation(s)
- Nathaniel A Dyment
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute
| |
Collapse
|
150
|
Dyment NA, Hagiwara Y, Jiang X, Huang J, Adams DJ, Rowe DW. Response of knee fibrocartilage to joint destabilization. Osteoarthritis Cartilage 2015; 23:996-1006. [PMID: 25680653 PMCID: PMC4757847 DOI: 10.1016/j.joca.2015.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/16/2015] [Accepted: 01/28/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE A major challenge to understanding osteoarthritis (OA) pathology is identifying the cellular events that precede the onset of cartilage damage. The objective of this study is to determine the effect of joint destabilization on early changes to fibrocartilage in the joint. DESIGN/METHODS The anterior cruciate ligament was transected in collagen reporter mice (Col1CFP and ColXRFP). Mineralization labels were given every 2 weeks to measure new mineralized cartilage apposition. Novel fluorescent histology of mineralized tissue was used to characterize the changes in fibrocartilage at 2 and 4 weeks post-injury. RESULTS Changes in fibrocartilaginous structures of the joint occur as early as 2 weeks after injury and are well developed by 4 weeks. The alterations are seen in multiple entheses and in the medial surface of the femoral and tibial condyles. In the responding entheses, mineral apposition towards the ligament midsubstance results in thickening of the mineralize fibrocartilage. These changes are associated with increases in ColX-RFP, Col1-CFP reporter activity and alkaline phosphatase enzyme activity. Mineral apposition also occurs in the fibrocartilage of the non-articular regions of the medial condyles by 2 weeks and develops into osteophytes by 4 weeks post-injury. An unexpected observation is punctate expression of tartrate resistant acid phosphatase activity in unmineralized fibrochondrocytes adjacent to active appositional mineralization. DISCUSSION These observations suggest that fibrocartilage activates prior to degradation of the articular cartilage. Thus clinical and histological imaging of fibrocartilage may be an earlier indicator of disease initiation and may indicate a more appropriate time to start preventative treatment.
Collapse
Affiliation(s)
- N A Dyment
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine and Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT 06032, USA.
| | - Y Hagiwara
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine and Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT 06032, USA; Department of Orthopedic Surgery, Nippon Medical School Hospital, Tokyo 113, Japan.
| | - X Jiang
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine and Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT 06032, USA.
| | - J Huang
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine and Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT 06032, USA.
| | - D J Adams
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine and Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT 06032, USA.
| | - D W Rowe
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine and Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT 06032, USA.
| |
Collapse
|