101
|
Callén L, Moreno E, Barroso-Chinea P, Moreno-Delgado D, Cortés A, Mallol J, Casadó V, Lanciego JL, Franco R, Lluis C, Canela EI, McCormick PJ. Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. J Biol Chem 2012; 287:20851-65. [PMID: 22532560 DOI: 10.1074/jbc.m111.335273] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Exploring the role of cannabinoid CB(2) receptors in the brain, we present evidence of CB(2) receptor molecular and functional interaction with cannabinoid CB(1) receptors. Using biophysical and biochemical approaches, we discovered that CB(2) receptors can form heteromers with CB(1) receptors in transfected neuronal cells and in rat brain pineal gland, nucleus accumbens, and globus pallidus. Within CB(1)-CB(2) receptor heteromers expressed in a neuronal cell model, agonist co-activation of CB(1) and CB(2) receptors resulted in a negative cross-talk in Akt phosphorylation and neurite outgrowth. Moreover, one specific characteristic of CB(1)-CB(2) receptor heteromers consists of both the ability of CB(1) receptor antagonists to block the effect of CB(2) receptor agonists and, conversely, the ability of CB(2) receptor antagonists to block the effect of CB(1) receptor agonists, showing a bidirectional cross-antagonism phenomenon. Taken together, these data illuminate the mechanism by which CB(2) receptors can negatively modulate CB(1) receptor function.
Collapse
Affiliation(s)
- Lucía Callén
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Kovacs FE, Knop T, Urbanski MJ, Freiman I, Freiman TM, Feuerstein TJ, Zentner J, Szabo B. Exogenous and endogenous cannabinoids suppress inhibitory neurotransmission in the human neocortex. Neuropsychopharmacology 2012; 37:1104-14. [PMID: 22048459 PMCID: PMC3306870 DOI: 10.1038/npp.2011.262] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activation of CB(1) receptors on axon terminals by exogenous cannabinoids (eg, Δ(9)-tetrahydrocannabinol) and by endogenous cannabinoids (endocannabinoids) released by postsynaptic neurons leads to presynaptic inhibition of neurotransmission. The aim of this study was to characterize the effect of cannabinoids on GABAergic synaptic transmission in the human neocortex. Brain slices were prepared from neocortical tissues surgically removed to eliminate epileptogenic foci. Spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) were recorded in putative pyramidal neurons using patch-clamp techniques. To enhance the activity of cannabinoid-sensitive presynaptic axons, muscarinic receptors were continuously stimulated by carbachol. The synthetic cannabinoid receptor agonist WIN55212-2 decreased the cumulative amplitude of sIPSCs. The CB(1) antagonist rimonabant prevented this effect, verifying the involvement of CB(1) receptors. WIN55212-2 decreased the frequency of miniature IPSCs (mIPSCs) recorded in the presence of tetrodotoxin, but did not change their amplitude, indicating that the neurotransmission was inhibited presynaptically. Depolarization of postsynaptic pyramidal neurons induced a suppression of sIPSCs. As rimonabant prevented this suppression, it is very likely that it was due to endocannabinods acting on CB(1) receptors. This is the first demonstration that an exogenous cannabinoid inhibits synaptic transmission in the human neocortex and that endocannabinoids released by postsynaptic neurons suppress synaptic transmission in the human brain. Interferences of cannabinoid agonists and antagonists with synaptic transmission in the cortex may explain the cognitive and memory deficits elicited by these drugs.
Collapse
Affiliation(s)
- Flora E Kovacs
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität, Freiburg i. Br., Germany
| | - Tim Knop
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität, Freiburg i. Br., Germany
| | - Michal J Urbanski
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität, Freiburg i. Br., Germany
| | - Ilka Freiman
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität, Freiburg i. Br., Germany
| | - Thomas M Freiman
- Neurochirurgische Klinik, Albert-Ludwigs-Universität, Freiburg i. Br., Germany
| | - Thomas J Feuerstein
- Neurochirurgische Klinik, Albert-Ludwigs-Universität, Freiburg i. Br., Germany
| | - Josef Zentner
- Neurochirurgische Klinik, Albert-Ludwigs-Universität, Freiburg i. Br., Germany
| | - Bela Szabo
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität, Freiburg i. Br., Germany,Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, D-79104 Freiburg i. Br., Germany, Tel: +49 761 203 5312, Fax: +49 761 203 5318, E-mail:
| |
Collapse
|
103
|
Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc Natl Acad Sci U S A 2012; 109:3534-9. [PMID: 22331871 DOI: 10.1073/pnas.1118167109] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endocannabinoid (eCB) system is widely expressed throughout the central nervous system (CNS) and the functionality of type-1 cannabinoid receptors in neurons is well documented. In contrast, there is little knowledge about type-2 cannabinoid receptors (CB(2)Rs) in the CNS. Here, we show that CB(2)Rs are located intracellularly in layer II/III pyramidal cells of the rodent medial prefrontal cortex (mPFC) and that their activation results in IP(3)R-dependent opening of Ca(2+)-activated Cl(-) channels. To investigate the functional role of CB(2)R activation, we induced neuronal firing and observed a CB(2)R-mediated reduction in firing frequency. The description of this unique CB(2)R-mediated signaling pathway, controlling neuronal excitability, broadens our knowledge of the influence of the eCB system on brain function.
Collapse
|
104
|
Izumi Y, Zorumski CF. NMDA receptors, mGluR5, and endocannabinoids are involved in a cascade leading to hippocampal long-term depression. Neuropsychopharmacology 2012; 37:609-17. [PMID: 21993209 PMCID: PMC3260982 DOI: 10.1038/npp.2011.243] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the CA1 region of the rat hippocampus, metabotropic glutamate receptor-5 (mGluR5) and cannabinoid-1 receptors (CB1Rs) are believed to participate in long-term synaptic depression (LTD). How mGluRs and CB1Rs interact to promote LTD remains uncertain. In this study, we examined LTD induced by CB1R agonists, mGluR5 agonists, and low-frequency electrical stimulation (LFS) of the Schaffer collateral pathway. Synthetic CB1R agonists induced robust LTD that was mimicked by the endocannabinoid (EC), noladin ether (NLDE), but not by anandamide. 2-Arachidonylglycerol (2AG) produced only a small degree of LTD. The selective mGluR5 agonist, namely (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), also induced robust LTD, and CHPG and NLDE occluded each other's effects. Similarly, CHPG and NLDE occluded LFS-induced LTD, and LTD resulting from all three treatments was blocked by a CB1R antagonist. CHPG-LTD and NLDE-LTD were insensitive to N-methyl-D-aspartate receptor (NMDAR) block, even though LFS-LTD requires NMDARs. LTD induced by LFS or CHPG, but not NLDE-LTD, was blocked by a selective mGluR5 antagonist. (RS)-3,5-dihydroxyphenylglycine (DHPG), a less selective group I mGluR agonist, also induced LTD, but its effects were not blocked by mGluR5 or CB1R antagonists. Furthermore, DHPG-LTD was additive with LFS-LTD and CHGP-LTD. These results suggest that NMDARs, mGluR5, and CB1Rs participate in a cascade that underlies LFS-LTD and that release of an EC and CB1R activation occur downstream of NMDARs and mGluR5. Furthermore, DHPG induces a form of LTD that differs mechanistically from LFS-induced depression.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Charles F Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St Louis, MO, USA,Department of Neurobiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
105
|
Abstract
There are two well characterized cannabinoid receptors (CBRs), CB1-Rs and CB2-Rs, with other candidates, such as GPR55, PPARs and vanilloid TRPV1 (VR1) receptors, which are either activated by cannabinoids and/or endocannabinoids (eCBs). The neuronal and functional expression of CB2-Rs in the brain has been much less well characterized in comparison with the expression of the ubiquitous CB1-Rs. CB2-Rs were previously thought to be predominantly expressed in immune cells in the periphery and were traditionally referred to as peripheral CB2-Rs. We and others have now demonstrated the expression of CB2-Rs in neuronal, glial and endothelial cells in the brain, and this warrants a re-evaluation of the CNS effects of CB2-Rs. In the present review we summarize our current understanding of CNR2 genomic structure, its polymorphic nature, subtype specificity, from mice to human subjects, and its variants that confer vulnerabilities to neuropsychiatric disorders beyond neuro-immuno-cannabinoid activity.
Collapse
Affiliation(s)
- Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA.
| | | | | | | |
Collapse
|
106
|
Andó RD, Bíró J, Csölle C, Ledent C, Sperlágh B. The inhibitory action of exo- and endocannabinoids on [³H]GABA release are mediated by both CB₁and CB₂receptors in the mouse hippocampus. Neurochem Int 2011; 60:145-52. [PMID: 22133429 DOI: 10.1016/j.neuint.2011.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/19/2011] [Accepted: 11/15/2011] [Indexed: 11/15/2022]
Abstract
Exogenous and endogenous cannabinoids play an important role in modulating the release of neurotransmitters in hippocampal excitatory and inhibitory networks, thus having profound effect on higher cognitive and emotional functions such as learning and memory. In this study we have studied the effect of cannabinoid agonists on the potassium depolarization-evoked [(3)H]GABA release from hippocampal synaptosomes in the wild-type (WT) and cannabinoid 1 receptor (CB(1)R)-null mutant mice. All tested cannabinoid agonists (WIN55,212-2, CP55,940, HU-210, 2-arachidonoyl-glycerol, 2-AG; delta-9-tetra-hydrocannabinol, THC) inhibited [(3)H]GABA release in WT mice with the following rank order of agonist potency: HU-210>CP55,490>WIN55,212-2>>2-AG>THC. By contrast, 2-AG and THC displayed the greatest efficacy eliciting almost complete inhibition of evoked [(3)H]GABA efflux, whereas the maximal inhibition obtained by HU-210, CP55,490, and WIN55,212-2 were less, eliciting not more than 40% inhibition. The inhibitory effect of WIN55,212-2, THC and 2-AG on evoked [(3)H]GABA efflux was antagonized by the CB(1) receptor inverse agonist AM251 (0.5 μM) in the WT mice. In the CB(1)R knockout mice the inhibitory effects of all three agonists were attenuated. In these mice, AM251 did not antagonize, but further reduced the [(3)H]GABA release in the presence of the synthetic agonist WIN55,212-2. By contrast, the concentration-dependent inhibitory effects of THC and 2-AG were partially antagonized by AM251 in the absence of CB(1) receptors. Finally, the inhibition of evoked [(3)H]GABA efflux by THC and 2-AG was also partially attenuated by AM630 (1 μM), the CB(2) receptor-selective antagonist, both in WT and CB(1) knockout mice. Our data prove the involvement of CB(1) receptors in the effect of exo- and endocannabinoids on GABA efflux from hippocampal nerve terminals. In addition, in the effect of the exocannabinoid THC and the endocannabinoid 2-AG, non-CB(1), probably CB(2)-like receptors are also involved.
Collapse
MESH Headings
- Animals
- Cannabinoid Receptor Modulators/physiology
- Cannabinoids/pharmacology
- Endocannabinoids
- Hippocampus/metabolism
- Hippocampus/physiology
- Male
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Neural Inhibition/genetics
- Neural Inhibition/physiology
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/physiology
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Tritium
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Rómeó D Andó
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
107
|
Onaivi ES. Commentary: Functional Neuronal CB2 Cannabinoid Receptors in the CNS. Curr Neuropharmacol 2011; 9:205-8. [PMID: 21886591 PMCID: PMC3137183 DOI: 10.2174/157015911795017416] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
Cannabinoids are the constituents of the marijuana plant (Cannabis sativa). There are numerous cannabinoids and other natural compounds that have been reported in the cannabis plant. The recent progress in marijuana-cannabinoid research include the discovery of an endocannabinoid system with specific genes coding for cannabinoid receptors (CBRs) that are activated by smoking marijuana, and that the human body and brain makes its own marijuana-like substances called endocannabinoids that also activate CBRs. This new knowledge and progress about cannabinoids and endocannabinoids indicate that a balanced level of endocannabinoids is important for pregnancy and that the breast milk in animals and humans has endocannabinoids for the growth and development of the new born. There are two well characterized cannabinoid receptors termed CB1-Rs and CB2-Rs and these CBRs are perhaps the most abundant G-protein coupled receptors that are expressed at high levels in many regions of the mammalian brain. The expression of CB1-Rs in the brain and periphery and the identification of CB2-Rs in immune cells and during inflammation has been extensively studied and characterized. However, the expression of functional neuronal CB2-Rs in the CNS has been much less well established and characterized in comparison to the expression of abundant brain CB1-Rs and functional neuronal CB2-Rs has ignited debate and controversy. While the issue of the specificity of CB2-R antibodies remains, many recent studies have reported the discovery and functional characterization of functional neuronal CB2-Rs in the CNS beyond neuro-immuno cannabinoid activity.
Collapse
Affiliation(s)
- E S Onaivi
- William Paterson University, Wayne NJ and Molecular Neurobiology Branch, National Institute on Drug Abuse, NIH, Baltimore, USA
| |
Collapse
|
108
|
Iravani MM, Jenner P. Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation. J Neural Transm (Vienna) 2011; 118:1661-90. [DOI: 10.1007/s00702-011-0698-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/06/2011] [Indexed: 12/18/2022]
|
109
|
Serrano A, Parsons LH. Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol Ther 2011; 132:215-41. [PMID: 21798285 DOI: 10.1016/j.pharmthera.2011.06.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/12/2022]
Abstract
The endogenous cannabinoid system is an important regulatory system involved in physiological homeostasis. Endocannabinoid signaling is known to modulate neural development, immune function, metabolism, synaptic plasticity and emotional state. Accumulating evidence also implicates brain endocannabinoid signaling in the etiology of drug addiction which is characterized by compulsive drug seeking, loss of control in limiting drug intake, emergence of a negative emotional state in the absence of drug use and a persistent vulnerability toward relapse to drug use during protracted abstinence. In this review we discuss the effects of drug intake on brain endocannabinoid signaling, evidence implicating the endocannabinoid system in the motivation for drug consumption, and drug-induced alterations in endocannabinoid function that may contribute to various aspects of addiction including dysregulated synaptic plasticity, increased stress responsivity, negative affective states, drug craving and relapse to drug taking. Current knowledge of genetic variants in endocannabinoid signaling associated with addiction is also discussed.
Collapse
Affiliation(s)
- Antonia Serrano
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
110
|
Involvement of dopaminergic and glutamatergic systems of the basolateral amygdala in amnesia induced by the stimulation of dorsal hippocampal cannabinoid receptors. Neuroscience 2011; 175:118-26. [DOI: 10.1016/j.neuroscience.2010.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/16/2010] [Accepted: 12/05/2010] [Indexed: 12/21/2022]
|
111
|
Lanciego JL, Barroso-Chinea P, Rico AJ, Conte-Perales L, Callén L, Roda E, Gómez-Bautista V, López IP, Lluis C, Labandeira-García JL, Franco R. Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of Macaca fascicularis. J Psychopharmacol 2011; 25:97-104. [PMID: 20488834 DOI: 10.1177/0269881110367732] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The putative presence of the cannabinoid receptor type 2 (CB(2)-R) in the central nervous system is still a matter of debate. Although first described in peripheral and immune tissues, evidence suggesting the existence of CB(2)-Rs in glial cells and even neurons has been made available more recently. By taking advantage of newly designed CB(2)-R mRNA riboprobes, we have demonstrated by in situ hybridization and PCR the existence of CB2-R transcripts in a variety of brain areas of the primate Macaca fascicularis, including the cerebral cortex and the hippocampus, as well as in the external and internal divisions of the globus pallidus, both pallidal segments showing the highest abundance of CB(2)-R transcripts. In this regard, the presence of the messenger coding CB(2)-Rs within the pallidal complex highlights their consideration as potential targets for the treatment of movement disorders of basal ganglia origin.
Collapse
Affiliation(s)
- José L Lanciego
- Neurosciences Division, Center for Applied Medical Research (CIMA and CIBERNED), University of Navarra Medical College, Pamplona, Navarra, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Atwood BK, Mackie K. CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol 2010. [PMID: 20590558 DOI: 10.1111/j.1476-5381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CB(2) was first considered to be the 'peripheral cannabinoid receptor'. This title was bestowed based on its abundant expression in the immune system and presumed absence from the central nervous system. However, multiple recent reports question the absence of CB(2) from the central nervous system. For example, it is now well accepted that CB(2) is expressed in brain microglia during neuroinflammation. However, the extent of CB(2) expression in neurons has remained controversial. There have been studies claiming either extreme-its complete absence to its widespread expression-as well as everything in between. This review will discuss the reported tissue distribution of CB(2) with a focus on CB(2) in neurons, particularly those in the central nervous system as well as the implications of that presence. As CB(2) is an attractive therapeutic target for pain management and immune system modulation without overt psychoactivity, defining the extent of its presence in neurons will have a significant impact on drug discovery. Our recommendation is to encourage cautious interpretation of data that have been presented for and against CB(2)'s presence in neurons and to encourage continued rigorous study.
Collapse
Affiliation(s)
- Brady K Atwood
- The Gill Center and the Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
113
|
Ferré S, Lluís C, Justinova Z, Quiroz C, Orru M, Navarro G, Canela EI, Franco R, Goldberg SR. Adenosine-cannabinoid receptor interactions. Implications for striatal function. Br J Pharmacol 2010; 160:443-53. [PMID: 20590556 DOI: 10.1111/j.1476-5381.2010.00723.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Adenosine and endocannabinoids are very ubiquitous non-classical neurotransmitters that exert a modulatory role on the transmission of other more 'classical' neurotransmitters. In this review we will focus on their common role as modulators of dopamine and glutamate neurotransmission in the striatum, the main input structure of the basal ganglia. We will pay particular attention to the role of adenosine A(2A) receptors and cannabinoid CB(1) receptors. Experimental results suggest that presynaptic CB(1) receptors interacting with A(2A) receptors in cortico-striatal glutamatergic terminals that make synaptic contact with dynorphinergic medium-sized spiny neurons (MSNs) are involved in the motor-depressant and addictive effects of cannabinoids. On the other hand, postsynaptic CB(1) receptors interacting with A(2A) and D(2) receptors in the dendritic spines of enkephalinergic MSNs and postsynaptic CB(1) receptors in the dendritic spines of dynorphinergic MSN are probably involved in the cataleptogenic effects of cannabinoids. These receptor interactions most probably depend on the existence of a variety of heteromers of A(2A), CB(1) and D(2) receptors in different elements of striatal spine modules. Drugs selective for the different striatal A(2A) and CB(1) receptor heteromers could be used for the treatment of neuropsychiatric disorders and drug addiction and they could provide effective drugs with fewer side effects than currently used drugs.
Collapse
Affiliation(s)
- Sergi Ferré
- National Institute on Drug Abuse, IRP, NIH, DHHS, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
CB(2) was first considered to be the 'peripheral cannabinoid receptor'. This title was bestowed based on its abundant expression in the immune system and presumed absence from the central nervous system. However, multiple recent reports question the absence of CB(2) from the central nervous system. For example, it is now well accepted that CB(2) is expressed in brain microglia during neuroinflammation. However, the extent of CB(2) expression in neurons has remained controversial. There have been studies claiming either extreme-its complete absence to its widespread expression-as well as everything in between. This review will discuss the reported tissue distribution of CB(2) with a focus on CB(2) in neurons, particularly those in the central nervous system as well as the implications of that presence. As CB(2) is an attractive therapeutic target for pain management and immune system modulation without overt psychoactivity, defining the extent of its presence in neurons will have a significant impact on drug discovery. Our recommendation is to encourage cautious interpretation of data that have been presented for and against CB(2)'s presence in neurons and to encourage continued rigorous study.
Collapse
Affiliation(s)
- Brady K Atwood
- The Gill Center and the Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
115
|
López EM, Tagliaferro P, Onaivi ES, López-Costa JJ. Distribution of CB2 cannabinoid receptor in adult rat retina. Synapse 2010; 65:388-92. [DOI: 10.1002/syn.20856] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/11/2010] [Indexed: 01/06/2023]
|
116
|
Vulnerability Factors for the Psychiatric and Behavioral Effects of Cannabis. Pharmaceuticals (Basel) 2010; 3:2799-2820. [PMID: 27713377 PMCID: PMC4034098 DOI: 10.3390/ph3092799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/23/2010] [Accepted: 08/25/2010] [Indexed: 11/18/2022] Open
Abstract
Cogent evidence shows that cannabis plays a variable role on behavioral regulation and the pathophysiology of most psychiatric conditions. Accordingly, cannabis has been alternatively shown to exacerbate or ameliorate mental symptoms, depending on its composition and route of consumption, as well as specific individual and contextual characteristics. The vulnerability to the psychological effects of cannabis is influenced by a complex constellation of genetic and environmental factors. In the present article, we will review the current evidence on the pharmacological, individual and situational factors that have been documented to affect the behavioral and psychiatric effects of cannabinoids.
Collapse
|
117
|
Brain CB₂ Receptors: Implications for Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2010; 3:2517-2553. [PMID: 27713365 PMCID: PMC4033937 DOI: 10.3390/ph3082517] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/04/2010] [Accepted: 08/09/2010] [Indexed: 12/26/2022] Open
Abstract
Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB2 receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons. Expression of the CB2 receptor in the brain is significantly lower than that of the CB1 receptor. Conflicting findings have been reported on the neurological effects of pharmacological agents targeting the CB2 receptor under normal conditions. Under inflammatory conditions, CB2 receptor expression in the brain is enhanced and CB2 receptor agonists exhibit potent anti-inflammatory effects. These findings have prompted research into the CB2 receptor as a possible target for the treatment of neuroinflammatory and neurodegenerative disorders. Neuroinflammatory alterations are also associated with neuropsychiatric disorders and polymorphisms in the CB2 gene have been reported in depression, eating disorders and schizophrenia. This review will examine the evidence to date for a role of brain CB2 receptors in neuropsychiatric disorders.
Collapse
|
118
|
Viscomi M, Oddi S, Latini L, Bisicchia E, Maccarrone M, Molinari M. The endocannabinoid system: A new entry in remote cell death mechanisms. Exp Neurol 2010; 224:56-65. [DOI: 10.1016/j.expneurol.2010.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
119
|
Nasehi M, Piri M, Jamali-Raeufy N, Zarrindast MR. Influence of intracerebral administration of NO agents in dorsal hippocampus (CA1) on cannabinoid state-dependent memory in the step-down passive avoidance test. Physiol Behav 2010; 100:297-304. [DOI: 10.1016/j.physbeh.2010.02.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 05/02/2009] [Accepted: 02/25/2010] [Indexed: 12/17/2022]
|
120
|
Zarrindast MR, Dorrani M, Lachinani R, Rezayof A. Blockade of dorsal hippocampal dopamine receptors inhibits state-dependent learning induced by cannabinoid receptor agonist in mice. Neurosci Res 2010; 67:25-32. [DOI: 10.1016/j.neures.2010.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
|
121
|
Lozano-Ondoua AN, Wright C, Vardanyan A, King T, Largent-Milnes TM, Nelson M, Jimenez-Andrade JM, Mantyh PW, Vanderah TW. A cannabinoid 2 receptor agonist attenuates bone cancer-induced pain and bone loss. Life Sci 2010; 86:646-53. [PMID: 20176037 DOI: 10.1016/j.lfs.2010.02.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 12/22/2022]
Abstract
AIMS Cannabinoid CB(2) agonists have been shown to alleviate behavioral signs of inflammatory and neuropathic pain in animal models. AM1241, a CB(2) agonist, does not demonstrate central nervous system side effects seen with CB(1) agonists such as hypothermia and catalepsy. Metastatic bone cancer causes severe pain in patients and is treated with analgesics such as opiates. Recent reports suggest that sustained opiates can produce paradoxical hyperalgesic actions and enhance bone destruction in a murine model of bone cancer. In contrast, CB(2) selective agonists have been shown to reduce bone loss associated with a model of osteoporosis. Here we tested whether a CB(2) agonist administered over a 7day period inhibits bone cancer-induced pain as well as attenuates cancer-induced bone degradation. MAIN METHODS A murine bone cancer model was used in which osteolytic sarcoma cells were injected into the intramedullary space of the distal end of the femur. Behavioral and radiographic image analysis was performed at days 7, 10 and 14 after injection of tumor cells into the femur. KEY FINDINGS Osteolytic sarcoma within the femur produced spontaneous and touch evoked behavioral signs of pain within the tumor-bearing limb. The systemic administration of AM1241 acutely or for 7days significantly attenuated spontaneous and evoked pain in the inoculated limb. Sustained AM1241 significantly reduced bone loss and decreased the incidence of cancer-induced bone fractures. SIGNIFICANCE These findings suggest a novel therapy for cancer-induced bone pain, bone loss and bone fracture while lacking many unwanted side effects seen with current treatments for bone cancer pain.
Collapse
Affiliation(s)
- Alysia N Lozano-Ondoua
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Ishiguro H, Carpio O, Horiuchi Y, Shu A, Higuchi S, Schanz N, Benno R, Arinami T, Onaivi ES. A nonsynonymous polymorphism in cannabinoid CB2 receptor gene is associated with eating disorders in humans and food intake is modified in mice by its ligands. Synapse 2010; 64:92-6. [PMID: 19768813 DOI: 10.1002/syn.20714] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Marijuana use activates cannabinoid receptors (CB-Rs) producing several behavioral effects related to addiction, mood, and appetite. We investigated the association between CNR2 gene, which encodes cannabinoid CB2 receptor (CB2-R) and eating disorders in 204 subjects with eating disorders and 1876 healthy volunteers in Japanese population. The effect of treatment with CB2-R ligands on mouse food consumption was also determined. The CB2-R ligands used suppressed food intake in a time- and strain-dependent manner when food was available ad libitum and during the 12-h fast except, AM 630-the CB2-R antagonist that stimulated food consumption in food-deprived mice. There is an association between the R63Q polymorphism of the CNR2 gene and eating disorders (P = 0.04; Odds ratio 1.24, 95% CI, (1.01-1.53). These results suggest that cannabinoid CB2-R is involved in the endocannabinoid signaling mechanisms associated with the regulation of food intake and in eating disorders.
Collapse
Affiliation(s)
- H Ishiguro
- Department of Medical Genetics, Doctoral Program in Social and Environmental Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Zarrindast MR, Nasehi M, Piri M, Bina P. Anxiety-like behavior induced by histaminergic agents can be prevented by cannabinoidergic WIN55,212-2 injected into the dorsal hippocampus in mice. Pharmacol Biochem Behav 2010; 94:387-96. [DOI: 10.1016/j.pbb.2009.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 09/15/2009] [Accepted: 09/24/2009] [Indexed: 11/28/2022]
|
124
|
Intracellular mechanisms of N-acylethanolamine-mediated neuroprotection in a rat model of stroke. Neuroscience 2009; 166:252-62. [PMID: 19963043 DOI: 10.1016/j.neuroscience.2009.11.069] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/11/2009] [Accepted: 11/29/2009] [Indexed: 11/23/2022]
Abstract
N-acyl ethanolamines (NAEs) are endogenous lipids that are synthesized in response to tissue injury, including ischemia and stroke, suggesting they may exhibit neuroprotective properties. We hypothesized that NAE 16:0 (palmitoylethanolamine) is neuroprotective against ischemia-reperfusion injury in rats, a widely employed model of stroke, and that neuroprotection is mediated through an intracellular mechanism independent of known NAE receptors. Administration of NAE 16:0 from 30 min before to 2 h after stroke significantly reduced cortical and subcortical infarct volume, and correlated with an improvement of the neurological phenotype, as assessed by the neurological deficit score. We here show that NAE 16:0-mediated neuroprotection was independent of cannabinoid (CB1) and vanilloid (VR1) receptor activation, known NAE receptors on the plasma membrane, as determined by inclusion of specific inhibitors. The inclusion of an NAE uptake inhibitor (AM404), however, completely reversed NAE 16:0-mediated neuroprotection, suggesting that NAE 16:0s effects are through an intracellular mechanism. NAE 16:0 produced a significant reduction in the number of cells undergoing apoptosis and reversed ischemia-induced upregulation of several proteins, including inducible nitric oxide synthase and transcription factor NFkappaB. Our findings suggest that NAE 16:0-mediated neuroprotection is due to the reduction of neuronal apoptosis and inflammation in the brain.
Collapse
|
125
|
Effects of cannabinoids infused into the dorsal hippocampus upon memory formation in 3-days apomorphine-treated rats. Neurobiol Learn Mem 2009; 92:391-9. [DOI: 10.1016/j.nlm.2009.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 05/10/2009] [Accepted: 05/13/2009] [Indexed: 11/19/2022]
|
126
|
Suárez J, Llorente R, Romero-Zerbo SY, Mateos B, Bermúdez-Silva FJ, de Fonseca FR, Viveros MP. Early maternal deprivation induces gender-dependent changes on the expression of hippocampal CB(1) and CB(2) cannabinoid receptors of neonatal rats. Hippocampus 2009; 19:623-32. [PMID: 19115376 DOI: 10.1002/hipo.20537] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early maternal deprivation (MD) in rats (24 h, postnatal day 9-10) is a model for neurodevelopmental stress. There are some data proving that MD affects the endocannabinoid system (ECS) in a gender-dependent manner, and that these changes may account for the proposed schizophrenia-like phenotype of MD rats. The impact of MD on cannabinoid receptor distribution in the hippocampus is unknown. The aim of this study is to evaluate the expression of CB(1) and CB(2) receptors in diverse relevant subregions (DG, CA1, and CA3) of the hippocampus in 13-day-old rats by immunohistochemistry and densitometry. MD induced a significant decrease in CB(1) immunoreactivity (more marked in males than in females), which was mainly associated with fibers in the strata pyramidale and radiatum of CA1 and in the strata oriens, pyramidale, and radiatum of CA3. In contrast, MD males and females showed a significant increase in CB(2) immunoreactivity in the three hippocampal areas analyzed that was detected in neuropil and puncta in the stratum oriens of CA1 and CA3, and in the polymorphic cell layer of the dentate gyrus. A marked sex dimorphism was observed in CA3, with females exhibiting higher CB(1) immunoreactivity than males, and in dentate gyrus, with females exhibiting lower CB(2) immunoreactivity than males. These results point to a clear association between developmental stress and dysregulation of the ECS. The present MD procedure may provide an interesting experimental model to further address the role of the ECS in neurodevelopmental mental illnesses such as schizophrenia.
Collapse
Affiliation(s)
- Juan Suárez
- Laboratorio de Medicina Regenerativa, Fundación IMABIS, Hospital Carlos Haya, 29010 Málaga, Spain.
| | | | | | | | | | | | | |
Collapse
|
127
|
Liu QR, Pan CH, Hishimoto A, Li CY, Xi ZX, Llorente-Berzal A, Viveros MP, Ishiguro H, Arinami T, Onaivi ES, Uhl GR. Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. GENES BRAIN AND BEHAVIOR 2009; 8:519-30. [PMID: 19496827 DOI: 10.1111/j.1601-183x.2009.00498.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cannabinoids, endocannabinoids and marijuana activate two well-characterized cannabinoid receptors (CB-Rs), CB1-Rs and CB2-Rs. The expression of CB1-Rs in the brain and periphery has been well studied, but neuronal CB2-Rs have received much less attention than CB1-Rs. Many studies have now identified and characterized functional glial and neuronal CB2-Rs in the central nervous system. However, many features of CB2-R gene structure, regulation and variation remain poorly characterized in comparison with the CB1-R. In this study, we report on the discovery of a novel human CB2 gene promoter transcribing testis (CB2A) isoform with starting exon located ca 45 kb upstream from the previously identified promoter transcribing the spleen isoform (CB2B). The 5' exons of both CB2 isoforms are untranslated 5'UTRs and alternatively spliced to the major protein coding exon of the CB2 gene. CB2A is expressed higher in testis and brain than CB2B that is expressed higher in other peripheral tissues than CB2A. Species comparison found that the CB2 gene of human, rat and mouse genomes deviated in their gene structures and isoform expression patterns. mCB2A expression was increased significantly in the cerebellum of mice treated with the CB-R mixed agonist, WIN55212-2. These results provide much improved information about CB2 gene structure and its human and rodent variants that should be considered in developing CB2-R-based therapeutic agents.
Collapse
Affiliation(s)
- Q-R Liu
- Mol. Neurobiol. Branch, NIDA-IRP, NIH, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
Humans have used Cannabis sativa (marijuana) for at least 12,000 years, but researchers have only recently described an endogenous cannabinoid system. The endocannabinoid system modulates an array of physiological and psychological functions. Endocannabinoids are widely distributed throughout the body, including the central nervous system (CNS). This article gives a basic overview of endocannabinoid neuroanatomy and function. Several endocannabinoids have been discovered to date, and their roles are being elucidated. Two G-protein coupled cannabinoid receptors, CB1R and CB2R, have been identified, although other candidate receptors exist, including ion channel and nuclear receptors that might be components of the endocannabinoid system. It appears that cannabinoids are dysregulated in a number of psychiatric disorders and might be involved in their pathogenesis. There is now evidence that manipulation of the endocannabinoid system could be a therapeutic target for a variety of conditions.
Collapse
Affiliation(s)
- Chris S Breivogel
- Department of Pharmaceutical Sciences, Campbell University School of Pharmacy, Buies Creek, North Carolina 27506, USA.
| | | |
Collapse
|
129
|
Onaivi ES. Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:335-69. [PMID: 19897083 DOI: 10.1016/s0074-7742(09)88012-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Much progress has been achieved in cannabinoid research. A major breakthrough in marijuana-cannabinoid research has been the discovery of a previously unknown but elaborate endogenous endocannabinoid system (ECS), complete with endocannabinoids and enzymes for their biosynthesis and degradation with genes encoding two distinct cannabinoid (CB1 and CB2) receptors (CBRs) that are activated by endocannabinoids, cannabinoids, and marijuana use. Physical and genetic localization of the CBR genes CNR1 and CNR2 have been mapped to chromosome 6 and 1, respectively. A number of variations in CBR genes have been associated with human disorders including osteoporosis, attention deficit hyperactivity disorder (ADHD), posttraumatic stress disorder (PTSD), drug dependency, obesity, and depression. Other family of lipid receptors including vanilloid (VR1) and lysophosphatidic acid (LPA) receptors appear to be related to the CBRs at the phylogenetic level. The ubiquitous abundance and differential distribution of the ECS in the human body and brain along with the coupling to many signal transduction pathways may explain the effects in most biological system and the myriad behavioral effects associated with smoking marijuana. The neuropharmacological and neuroprotective features of phytocannabinoids and endocannabinoid associated neurogenesis have revealed roles for the use of cannabinoids in neurodegenerative pathologies with less neurotoxicity. The remarkable progress in understanding the biological actions of marijuana and cannabinoids have provided much richer results than previously appreciated cannabinoid genomics and raised a number of critical issues on the molecular mechanisms of cannabinoid induced behavioral and biochemical alterations. These advances will allow specific therapeutic targeting of the different components of the ECS in health and disease. This review focuses on these recent advances in cannabinoid genomics and the surprising new fundamental roles that the ECS plays in the retrograde signaling associated with cannabinoid inhibition of neurotransmitter release to the genetic basis of the effects of marijuana use and pharmacotherpeutic applications and limitations. Much evidence is provided for the complex CNR1 and CNR2 gene structures and their associated regulatory elements. Thus, understanding the ECS in the human body and brain will contribute to elucidating this natural regulatory mechanism in health and disease.
Collapse
Affiliation(s)
- Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, New Jersey 07470, USA
| |
Collapse
|