101
|
Pavan WJ, Raible DW. Specification of neural crest into sensory neuron and melanocyte lineages. Dev Biol 2012; 366:55-63. [PMID: 22465373 PMCID: PMC3351495 DOI: 10.1016/j.ydbio.2012.02.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/29/2012] [Indexed: 11/27/2022]
Abstract
Elucidating the mechanisms by which multipotent cells differentiate into distinct lineages is a common theme underlying developmental biology investigations. Progress has been made in understanding some of the essential factors and pathways involved in the specification of different lineages from the neural crest. These include gene regulatory networks involving transcription factor hierarchies and input from signaling pathways mediated from environmental cues. In this review, we examine the mechanisms for two lineages that are derived from the neural crest, peripheral sensory neurons and melanocytes. Insights into the specification of these cell types may reveal common themes in the specification processes that occur throughout development.
Collapse
Affiliation(s)
- William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
102
|
Tabone‐Eglinger S, Wehrle‐Haller M, Aebischer N, Jacquier M, Wehrle‐Haller B. Membrane‐bound Kit ligand regulates melanocyte adhesion and survival, providing physical interaction with an intraepithelial niche. FASEB J 2012; 26:3738-53. [DOI: 10.1096/fj.12-206045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Severine Tabone‐Eglinger
- Department of Cell Physiology and MetabolismCentre Médical UniversitaireUniversity of GenevaGenevaSwitzerland
| | - Monique Wehrle‐Haller
- Department of Cell Physiology and MetabolismCentre Médical UniversitaireUniversity of GenevaGenevaSwitzerland
| | - Nicole Aebischer
- Department of Cell Physiology and MetabolismCentre Médical UniversitaireUniversity of GenevaGenevaSwitzerland
| | - Marie‐Claude Jacquier
- Department of Cell Physiology and MetabolismCentre Médical UniversitaireUniversity of GenevaGenevaSwitzerland
| | - Bernhard Wehrle‐Haller
- Department of Cell Physiology and MetabolismCentre Médical UniversitaireUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
103
|
Extrafollicular dermal melanocyte stem cells and melanoma. Stem Cells Int 2012; 2012:407079. [PMID: 22666269 PMCID: PMC3359770 DOI: 10.1155/2012/407079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/13/2012] [Indexed: 12/27/2022] Open
Abstract
Recent studies suggest that extrafollicular dermal melanocyte stem cells (MSCs) persist after birth in the superficial nerve sheath of peripheral nerves and give rise to migratory melanocyte precursors when replacements for epidermal melanocytes are needed on the basal epidermal layer of the skin. If a damaged MSC or melanocyte precursor can be shown to be the primary origin of melanoma, targeted identification and eradication of it by antibody-based therapies will be the best method to treat melanoma and a very effective way to prevent its recurrence. Transcription factors and signaling pathways involved in MSC self-renewal, expansion and differentiation are reviewed. A model is presented to show how the detrimental effects of long-term UVA/UVB radiation on DNA and repair mechanisms in MSCs convert them to melanoma stem cells. Zebrafish have many advantages for investigating the role of MSCs in the development of melanoma. The signaling pathways regulating the development of MSCs in zebrafish are very similar to those found in humans and mice. The ability to easily manipulate the MSC population makes zebrafish an excellent model for studying how damage to MSCs may lead to melanoma.
Collapse
|
104
|
Hozumi H, Takeda K, Yoshida-Amano Y, Takemoto Y, Kusumi R, Fukuzaki-Dohi U, Higashitani A, Yamamoto H, Shibahara S. Impaired development of melanoblasts in the black-eyed white Mitf(mi-bw) mouse, a model for auditory-pigmentary disorders. Genes Cells 2012; 17:494-508. [PMID: 22563733 DOI: 10.1111/j.1365-2443.2012.01603.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microphthalmia-associated transcription factor (Mitf) is a regulator for differentiation of melanoblasts that are derived from the neural crest. The mouse homozygous for the black-eyed white (Mitf(mi-bw)) allele is characterized by the white coat color and deafness, with black eye that is associated with the lack of melanocytes in skin and inner ear. The Mitf(mi-bw) mutation is an insertion of the LINE1 retrotransposable element into intron 3 of the Mitf gene that causes the selective deficiency of the melanocyte-specific Mitf isoform, Mitf-M. Here, we show the expression of Mitf-M mRNA in the trunk region of the homozygous Mitf(mi-bw)(bw) mouse at embryonic days (E) 11.5 and E12.5, but Mitf-M mRNA is undetectable at E13.5. In addition, using bw mouse that carries the lacZ transgene under the control of a melanoblast-specific promoter, we show that the number of migrating melanoblasts in bw embryos was less than 10% of that in control embryos at E11.5 and E12.5, and melanoblasts disappear by E13.5. The loss of melanoblasts in bw embryos was probably caused by apoptosis. Finally, forced expression of Mitf-M in the cultured neural tube of bw embryos ensured the differentiation of melanoblasts. Therefore, the correct dose of Mitf-M is required for the normal development of melanoblasts.
Collapse
Affiliation(s)
- Hiroki Hozumi
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Li J, Song JS, Bell RJA, Tran TNT, Haq R, Liu H, Love KT, Langer R, Anderson DG, Larue L, Fisher DE. YY1 regulates melanocyte development and function by cooperating with MITF. PLoS Genet 2012; 8:e1002688. [PMID: 22570637 PMCID: PMC3342948 DOI: 10.1371/journal.pgen.1002688] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 03/20/2012] [Indexed: 11/18/2022] Open
Abstract
Studies of coat color mutants have greatly contributed to the discovery of genes that regulate melanocyte development and function. Here, we generated Yy1 conditional knockout mice in the melanocyte-lineage and observed profound melanocyte deficiency and premature gray hair, similar to the loss of melanocytes in human piebaldism and Waardenburg syndrome. Although YY1 is a ubiquitous transcription factor, YY1 interacts with M-MITF, the Waardenburg Syndrome IIA gene and a master transcriptional regulator of melanocytes. YY1 cooperates with M-MITF in regulating the expression of piebaldism gene KIT and multiple additional pigmentation genes. Moreover, ChIP–seq identified genome-wide YY1 targets in the melanocyte lineage. These studies mechanistically link genes implicated in human conditions of melanocyte deficiency and reveal how a ubiquitous factor (YY1) gains lineage-specific functions by co-regulating gene expression with a lineage-restricted factor (M-MITF)—a general mechanism which may confer tissue-specific gene expression in multiple lineages. Skin and hair pigmentation is among the most identifiable human traits. Disorders of pigment cells, melanocytes, result in multiple hypopigmentation conditions. Here, we described the phenotype of loss of a ubiquitous transcription factor YY1 in mouse melanocytes, which is reminiscent of certain human hypopigmentation conditions. We revealed at a molecular level that YY1 cooperates with a melanocyte-specific transcription factor M-MITF to regulate survival and pigmentation gene expression. This study is the first report of YY1 function in melanocyte lineage, and it reveals how a ubiquitous transcription factor gains lineage-specific functions by co-regulating gene expression with a lineage-restricted transcription factor.
Collapse
Affiliation(s)
- Juying Li
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jun S. Song
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, Department of Bioengineering and Therapeutic Sciences, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (JSS); (DEF)
| | - Robert J. A. Bell
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Thanh-Nga T. Tran
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rizwan Haq
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Huifei Liu
- Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kevin T. Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States of America
| | - Daniel G. Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States of America
| | - Lionel Larue
- Institut Curie, Developmental Genetics of Melanocytes, U1021 INSERM, UMR 3347 CNRS, Orsay, France
| | - David E. Fisher
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (JSS); (DEF)
| |
Collapse
|
106
|
Guo H, Yang K, Deng F, Ye J, Xing Y, Li Y, Lian X, Yang T. Wnt3a promotes melanin synthesis of mouse hair follicle melanocytes. Biochem Biophys Res Commun 2012; 420:799-804. [DOI: 10.1016/j.bbrc.2012.03.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
|
107
|
Adameyko I, Lallemend F, Furlan A, Zinin N, Aranda S, Kitambi SS, Blanchart A, Favaro R, Nicolis S, Lübke M, Müller T, Birchmeier C, Suter U, Zaitoun I, Takahashi Y, Ernfors P. Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest. Development 2012; 139:397-410. [PMID: 22186729 DOI: 10.1242/dev.065581] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cellular origin and molecular mechanisms regulating pigmentation of head and neck are largely unknown. Melanocyte specification is controlled by the transcriptional activity of Mitf, but no general logic has emerged to explain how Mitf and progenitor transcriptional activities consolidate melanocyte and progenitor cell fates. We show that cranial melanocytes arise from at least two different cellular sources: initially from nerve-associated Schwann cell precursors (SCPs) and later from a cellular source that is independent of nerves. Unlike the midbrain-hindbrain cluster from which melanoblasts arise independently of nerves, a large center of melanocytes in and around cranial nerves IX-X is derived from SCPs, as shown by genetic cell-lineage tracing and analysis of ErbB3-null mutant mice. Conditional gain- and loss-of-function experiments show genetically that cell fates in the neural crest involve both the SRY transcription factor Sox2 and Mitf, which consolidate an SCP progenitor or melanocyte fate by cross-regulatory interactions. A gradual downregulation of Sox2 in progenitors during development permits the differentiation of both neural crest- and SCP-derived progenitors into melanocytes, and an initial small pool of nerve-associated melanoblasts expands in number and disperses under the control of endothelin receptor B (Ednrb) and Wnt5a signaling.
Collapse
Affiliation(s)
- Igor Adameyko
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Phosphorylation of BRN2 modulates its interaction with the Pax3 promoter to control melanocyte migration and proliferation. Mol Cell Biol 2012; 32:1237-47. [PMID: 22290434 DOI: 10.1128/mcb.06257-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
MITF-M and PAX3 are proteins central to the establishment and transformation of the melanocyte lineage. They control various cellular mechanisms, including migration and proliferation. BRN2 is a POU domain transcription factor expressed in melanoma cell lines and is involved in proliferation and invasion, at least in part by regulating the expression of MITF-M and PAX3. The T361 and S362 residues of BRN2, both in the POU domain, are conserved throughout the POU protein family and are targets for phosphorylation, but their roles in vivo remain unknown. To examine the role of this phosphorylation, we generated mutant BRN2 in which these two residues were replaced with alanines (BRN2TS→BRN2AA). When expressed in melanocytes in vitro or in the melanocyte lineage in transgenic mice, BRN2TS induced proliferation and repressed migration, whereas BRN2AA repressed both proliferation and migration. BRN2TS and BRN2AA bound and repressed the MITF-M promoter, whereas PAX3 transcription was induced by BRN2TS but repressed by BRN2AA. Expression of the BRN2AA transgene in a Mitf heterozygous background and in a Pax3 mutant background enhanced the coat color phenotype. Our findings show that melanocyte migration and proliferation are controlled both through the regulation of PAX3 by nonphosphorylated BRN2 and through the regulation of MITF-M by the overall BRN2 level.
Collapse
|
109
|
Functional Characterization of Melanocyte Stem Cells in Hair Follicles. J Invest Dermatol 2011; 131:2358-67. [DOI: 10.1038/jid.2011.195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
110
|
Lindsay CR, Lawn S, Campbell AD, Faller WJ, Rambow F, Mort RL, Timpson P, Li A, Cammareri P, Ridgway RA, Morton JP, Doyle B, Hegarty S, Rafferty M, Murphy IG, McDermott EW, Sheahan K, Pedone K, Finn AJ, Groben PA, Thomas NE, Hao H, Carson C, Norman JC, Machesky LM, Gallagher WM, Jackson IJ, Van Kempen L, Beermann F, Der C, Larue L, Welch HC, Ozanne BW, Sansom OJ. P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nat Commun 2011; 2:555. [PMID: 22109529 PMCID: PMC3400057 DOI: 10.1038/ncomms1560] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/20/2011] [Indexed: 12/15/2022] Open
Abstract
Metastases are the major cause of death from melanoma, a skin cancer that has the fastest rising incidence of any malignancy in the Western world. Molecular pathways that drive melanoblast migration in development are believed to underpin the movement and ultimately the metastasis of melanoma. Here we show that mice lacking P-Rex1, a Rac-specific Rho GTPase guanine nucleotide exchange factor, have a melanoblast migration defect during development evidenced by a white belly. Moreover, these P-Rex1(-/-) mice are resistant to metastasis when crossed to a murine model of melanoma. Mechanistically, this is associated with P-Rex1 driving invasion in a Rac-dependent manner. P-Rex1 is elevated in the majority of human melanoma cell lines and tumour tissue. We conclude that P-Rex1 has an important role in melanoblast migration and cancer progression to metastasis in mice and humans.
Collapse
Affiliation(s)
| | - Samuel Lawn
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | | | | | - Florian Rambow
- Centre de Recherche, U1021 INSERM, Institut Curie, Paris, France
| | | | - Paul Timpson
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | - Ang Li
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | | | | | | | - Brendan Doyle
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | - Shauna Hegarty
- School of Medicine Dentistry & Biomedical Science, Queen’s University, Belfast, UK
| | - Mairin Rafferty
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin 4, Ireland
| | - Ian G. Murphy
- Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Enda W. McDermott
- Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Kieran Sheahan
- Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Katherine Pedone
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Alexander J. Finn
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Pamela A. Groben
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Nancy E. Thomas
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Honglin Hao
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Craig Carson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Jim C Norman
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | | | - William M. Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin 4, Ireland
| | | | - Leon Van Kempen
- McGill University/Jewish General Hospital, Dept of Pathology, Montreal, Quebec, Canada, H3A 2B4
| | | | - Channing Der
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Lionel Larue
- Centre de Recherche, U1021 INSERM, Institut Curie, Paris, France
| | | | - Brad W. Ozanne
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | - Owen J. Sansom
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| |
Collapse
|
111
|
Berlin I, Luciani F, Gallagher SJ, Rambow F, Conde-Perez A, Colombo S, Champeval D, Delmas V, Larue L. General strategy to analyse coat colour phenotypes in mice. Pigment Cell Melanoma Res 2011; 25:117-9. [PMID: 22085368 DOI: 10.1111/j.1755-148x.2011.00912.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Irina Berlin
- Institut Curie, Developmental Genetics of Melanocytes, Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Li A, Ma Y, Yu X, Mort RL, Lindsay CR, Stevenson D, Strathdee D, Insall RH, Chernoff J, Snapper SB, Jackson IJ, Larue L, Sansom OJ, Machesky LM. Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod- driven motility and cell-cycle progression. Dev Cell 2011; 21:722-34. [PMID: 21924960 PMCID: PMC3464460 DOI: 10.1016/j.devcel.2011.07.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/03/2011] [Accepted: 07/17/2011] [Indexed: 01/16/2023]
Abstract
During embryogenesis, melanoblasts proliferate and migrate ventrally through the developing dermis and epidermis as single cells. Targeted deletion of Rac1 in melanoblasts during embryogenesis causes defects in migration, cell-cycle progression, and cytokinesis. Rac1 null cells migrate markedly less efficiently, but surprisingly, global steering, crossing the dermal/epidermal junction, and homing to hair follicles occur normally. Melanoblasts navigate in the epidermis using two classes of protrusion: short stubs and long pseudopods. Short stubs are distinct from blebs and are driven by actin assembly but are independent of Rac1, Arp2/3 complex, myosin, or microtubules. Rac1 positively regulates the frequency of initiation of long pseudopods, which promote migration speed and directional plasticity. Scar/WAVE and Arp2/3 complex drive actin assembly for long pseudopod extension, which also depends on microtubule dynamics. Myosin contractility balances the extension of long pseudopods by effecting retraction and allowing force generation for movement through the complex 3D epidermal environment.
Collapse
Affiliation(s)
- Ang Li
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Luciani F, Champeval D, Herbette A, Denat L, Aylaj B, Martinozzi S, Ballotti R, Kemler R, Goding CR, De Vuyst F, Larue L, Delmas V. Biological and mathematical modeling of melanocyte development. Development 2011; 138:3943-54. [DOI: 10.1242/dev.067447] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We aim to evaluate environmental and genetic effects on the expansion/proliferation of committed single cells during embryonic development, using melanoblasts as a paradigm to model this phenomenon. Melanoblasts are a specific type of cell that display extensive cellular proliferation during development. However, the events controlling melanoblast expansion are still poorly understood due to insufficient knowledge concerning their number and distribution in the various skin compartments. We show that melanoblast expansion is tightly controlled both spatially and temporally, with little variation between embryos. We established a mathematical model reflecting the main cellular mechanisms involved in melanoblast expansion, including proliferation and migration from the dermis to epidermis. In association with biological information, the model allows the calculation of doubling times for melanoblasts, revealing that dermal and epidermal melanoblasts have short but different doubling times. Moreover, the number of trunk founder melanoblasts at E8.5 was estimated to be 16, a population impossible to count by classical biological approaches. We also assessed the importance of the genetic background by studying gain- and loss-of-function β-catenin mutants in the melanocyte lineage. We found that any alteration of β-catenin activity, whether positive or negative, reduced both dermal and epidermal melanoblast proliferation. Finally, we determined that the pool of dermal melanoblasts remains constant in wild-type and mutant embryos during development, implying that specific control mechanisms associated with cell division ensure half of the cells at each cell division to migrate from the dermis to the epidermis. Modeling melanoblast expansion revealed novel links between cell division, cell localization within the embryo and appropriate feedback control through β-catenin.
Collapse
Affiliation(s)
- Flavie Luciani
- Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, 91405 Orsay, France
- CNRS UMR3347, 91405 Orsay, France
- INSERM U1021, 91405 Orsay, France
| | - Delphine Champeval
- Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, 91405 Orsay, France
- CNRS UMR3347, 91405 Orsay, France
- INSERM U1021, 91405 Orsay, France
| | - Aurélie Herbette
- Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, 91405 Orsay, France
- CNRS UMR3347, 91405 Orsay, France
- INSERM U1021, 91405 Orsay, France
| | - Laurence Denat
- Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, 91405 Orsay, France
- CNRS UMR3347, 91405 Orsay, France
- INSERM U1021, 91405 Orsay, France
| | - Bouchra Aylaj
- Laboratoire Mathématiques Appliquées aux systèmes, Ecole Centrale Paris, Grande Voie des Vignes, 94235 Chatenay-Malabry Cedex, France
| | - Silvia Martinozzi
- Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, 91405 Orsay, France
- CNRS UMR3347, 91405 Orsay, France
- INSERM U1021, 91405 Orsay, France
| | - Robert Ballotti
- INSERM U895, Equipe 1, 28 Avenue de Valombrose, 06107 Nice Cedex 2, France
| | - Rolf Kemler
- Max-Planck Institute of Immunobiology, Department of Molecular Embryology, D-79108 Freiburg, Germany
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Florian De Vuyst
- Laboratoire Mathématiques Appliquées aux systèmes, Ecole Centrale Paris, Grande Voie des Vignes, 94235 Chatenay-Malabry Cedex, France
- Centre de Mathématiques et de leurs applications, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France
| | - Lionel Larue
- Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, 91405 Orsay, France
- CNRS UMR3347, 91405 Orsay, France
- INSERM U1021, 91405 Orsay, France
| | - Véronique Delmas
- Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, 91405 Orsay, France
- CNRS UMR3347, 91405 Orsay, France
- INSERM U1021, 91405 Orsay, France
| |
Collapse
|
114
|
Transcriptomic analysis of mouse embryonic skin cells reveals previously unreported genes expressed in melanoblasts. J Invest Dermatol 2011; 132:170-8. [PMID: 21850021 DOI: 10.1038/jid.2011.252] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studying the development of melanoblasts, precursors of melanocytes, is challenging owing to their scarcity and dispersion in the skin embryo. However, this is an important subject because diverse diseases are associated with defective melanoblast development. Consequently, characterizing patterns of expression in melanoblasts during normal development is an important issue. This requires isolating enough melanoblasts during embryonic development to obtain sufficient RNA to study their transcriptome. ZEG reporter mouse line crossed with Tyr::Cre mouse line was used to label melanoblasts by enhanced green fluorescent protein (EGFP) autofluorescence. We isolated melanoblasts by FACS from the skin of E14.5-E16.5 embryos, and obtained sufficient cells for large-scale transcriptomic analysis after RNA isolation and amplification. We confirmed our array-based data for various genes of interest by standard quantitative real-time RT-PCR. We demonstrated that phosphatase and tensin homolog was expressed in melanoblasts but BRN2 was not, although both are involved in melanomagenesis. We also revealed the potential contribution of genes not previously implicated in any function in melanocytes or even in neural crest derivatives. Finally, the Schwann cell markers, PLP1 and FABP7, were significantly expressed in melanoblasts, melanocytes, and melanoma. This study demonstrates the feasibility of the transcriptomic analysis of purified melanoblasts at different embryonic stages and reveals the involvement of previously unreported genes in melanoblast development.
Collapse
|
115
|
Taylor KL, Lister JA, Zeng Z, Ishizaki H, Anderson C, Kelsh RN, Jackson IJ, Patton EE. Differentiated melanocyte cell division occurs in vivo and is promoted by mutations in Mitf. Development 2011; 138:3579-89. [PMID: 21771814 DOI: 10.1242/dev.064014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Coordination of cell proliferation and differentiation is crucial for tissue formation, repair and regeneration. Some tissues, such as skin and blood, depend on differentiation of a pluripotent stem cell population, whereas others depend on the division of differentiated cells. In development and in the hair follicle, pigmented melanocytes are derived from undifferentiated precursor cells or stem cells. However, differentiated melanocytes may also have proliferative capacity in animals, and the potential for differentiated melanocyte cell division in development and regeneration remains largely unexplored. Here, we use time-lapse imaging of the developing zebrafish to show that while most melanocytes arise from undifferentiated precursor cells, an unexpected subpopulation of differentiated melanocytes arises by cell division. Depletion of the overall melanocyte population triggers a regeneration phase in which differentiated melanocyte division is significantly enhanced, particularly in young differentiated melanocytes. Additionally, we find reduced levels of Mitf activity using an mitfa temperature-sensitive line results in a dramatic increase in differentiated melanocyte cell division. This supports models that in addition to promoting differentiation, Mitf also promotes withdrawal from the cell cycle. We suggest differentiated cell division is relevant to melanoma progression because the human melanoma mutation MITF(4T)(Δ)(2B) promotes increased and serial differentiated melanocyte division in zebrafish. These results reveal a novel pathway of differentiated melanocyte division in vivo, and that Mitf activity is essential for maintaining cell cycle arrest in differentiated melanocytes.
Collapse
Affiliation(s)
- Kerrie L Taylor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh EH4 2XR, UK
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Ida-Eto M, Ohgami N, Iida M, Yajima I, Kumasaka MY, Takaiwa K, Kimitsuki T, Sone M, Nakashima T, Tsuzuki T, Komune S, Yanagisawa M, Kato M. Partial requirement of endothelin receptor B in spiral ganglion neurons for postnatal development of hearing. J Biol Chem 2011; 286:29621-6. [PMID: 21715336 DOI: 10.1074/jbc.m111.236802] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Impairments of endothelin receptor B (Ednrb/EDNRB) cause the development of Waardenburg-Shah syndrome with congenital hearing loss, hypopigmentation, and megacolon disease in mice and humans. Hearing loss in Waardenburg-Shah syndrome has been thought to be caused by an Ednrb-mediated congenital defect of melanocytes in the stria vascularis (SV) of inner ears. Here we show that Ednrb expressed in spiral ganglion neurons (SGNs) in inner ears is required for postnatal development of hearing in mice. Ednrb protein was expressed in SGNs from WT mice on postnatal day 19 (P19), whereas it was undetectable in SGNs from WT mice on P3. Correspondingly, Ednrb homozygously deleted mice (Ednrb(-/-) mice) with congenital hearing loss showed degeneration of SGNs on P19 but not on P3. The congenital hearing loss involving neurodegeneration of SGNs as well as megacolon disease in Ednrb(-/-) mice were markedly improved by introducing an Ednrb transgene under control of the dopamine β-hydroxylase promoter (Ednrb(-/-);DBH-Ednrb mice) on P19. Neither defects of melanocytes nor hypopigmentation in the SV and skin in Ednrb(-/-) mice was rescued in the Ednrb(-/-);DBH-Ednrb mice. Thus, the results of this study indicate a novel role of Ednrb expressed in SGNs distinct from that in melanocytes in the SV contributing partially to postnatal hearing development.
Collapse
Affiliation(s)
- Michiru Ida-Eto
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Scott TL, Wakamatsu K, Ito S, D'Orazio JA. Purification and growth of melanocortin 1 receptor (Mc1r)- defective primary murine melanocytes is dependent on stem cell factor (SFC) from keratinocyte-conditioned media. In Vitro Cell Dev Biol Anim 2011; 45:577-83. [PMID: 19633898 DOI: 10.1007/s11626-009-9232-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/26/2009] [Indexed: 11/29/2022]
Abstract
The melanocortin 1 receptor (MC1R) is a transmembrane G(s)-coupled surface protein found on melanocytes that binds melanocyte-stimulating hormone and mediates activation of adenylyl cyclase and generation of the second messenger cyclic AMP (cAMP). MC1R regulates growth and differentiation of melanocytes and protects against carcinogenesis. Persons with loss-offunction polymorphisms of MC1R tend to be UV-sensitive (fair-skinned and with a poor tanning response) and are at high risk for melanoma. Mechanistic studies of the role of MC1R in melanocytic UV responses, however, have been hindered in part because Mc1r-defective primary murine melanocytes have been difficult to culture in vitro. Until now, effective growth of murine melanocytes has depended on cAMP stimulation with adenylyl cyclase-activating or phosphodiesterase-inhibiting agents. However, rescuing cAMP in the setting of defective MC1R signaling would be expected to confound experiments directly testing MC1R function on melanocytic UV responses. In this paper, we report a novel method of culturing primary murine melanocytes in the absence of pharmacologic cAMP stimulation by incorporating conditioned supernatants containing stem cell factor derived from primary keratinocytes. Importantly, this method seems to permit similar pigment expression by cultured melanocytes as that found in the skin of their parental murine strains. This novel approach will allow mechanistic investigation into MC1R's role in the protection against UV-mediated carcinogenesis and determination of the role of melanin pigment subtypes on UV-mediated melanocyte responses.
Collapse
Affiliation(s)
- Timothy L Scott
- The Graduate Center for Toxicology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
118
|
Zaidi MR, Hornyak TJ, Merlino G. A genetically engineered mouse model with inducible GFP expression in melanocytes. Pigment Cell Melanoma Res 2011; 24:393-4. [PMID: 21392368 DOI: 10.1111/j.1755-148x.2011.00832.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- M Raza Zaidi
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
119
|
Tryon RC, Higdon CW, Johnson SL. Lineage relationship of direct-developing melanocytes and melanocyte stem cells in the zebrafish. PLoS One 2011; 6:e21010. [PMID: 21698209 PMCID: PMC3116864 DOI: 10.1371/journal.pone.0021010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/16/2011] [Indexed: 11/25/2022] Open
Abstract
Previous research in zebrafish has demonstrated that embryonic and larval regeneration melanocytes are derived from separate lineages. The embryonic melanocytes that establish the larval pigment pattern do not require regulative melanocyte stem cell (MSC) precursors, and are termed direct-developing melanocytes. In contrast, the larval regeneration melanocytes that restore the pigment pattern after ablation develop from MSC precursors. Here, we explore whether embryonic melanocytes and MSCs share bipotent progenitors. Furthermore, we explore when fate segregation of embryonic melanocytes and MSCs occurs in zebrafish development. In order to achieve this, we develop and apply a novel lineage tracing method. We first demonstrate that Tol2-mediated genomic integration of reporter constructs from plasmids injected at the 1-2 cell stage occurs most frequently after the midblastula transition but prior to shield stage, between 3 and 6 hours post-fertilization. This previously uncharacterized timing of Tol2-mediated genomic integration establishes Tol2-mediated transposition as a means for conducting lineage tracing in zebrafish. Combining the Tol2-mediated lineage tracing strategy with a melanocyte regeneration assay previously developed in our lab, we find that embryonic melanocytes and larval regeneration melanocytes are derived from progenitors that contribute to both lineages. We estimate 50-60 such bipotent melanogenic progenitors to be present in the shield-stage embryo. Furthermore, our examination of direct-developing and MSC-restricted lineages suggests that these are segregated from bipotent precursors after the shield stage, but prior to the end of convergence and extension. Following this early fate segregation, we estimate approximately 100 embryonic melanocyte and 90 MSC-restricted lineages are generated to establish or regenerate the zebrafish larval pigment pattern, respectively. Thus, the dual strategies of direct-development and MSC-derived development are established in the early gastrula, via fate segregation of the two lineages.
Collapse
Affiliation(s)
- Robert C Tryon
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America.
| | | | | |
Collapse
|
120
|
Terzian T, Dumble M, Arbab F, Thaller C, Donehower LA, Lozano G, Justice MJ, Roop DR, Box NF. Rpl27a mutation in the sooty foot ataxia mouse phenocopies high p53 mouse models. J Pathol 2011; 224:540-52. [PMID: 21674502 DOI: 10.1002/path.2891] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 02/28/2011] [Accepted: 03/04/2011] [Indexed: 01/06/2023]
Abstract
Ribosomal stress is an important, yet poorly understood, mechanism that results in activation of the p53 tumour suppressor. We present a mutation in the ribosomal protein Rpl27a gene (sooty foot ataxia mice), isolated through a sensitized N-ethyl-N-nitrosourea (ENU) mutagenesis screen for p53 pathway defects, that shares striking phenotypic similarities with high p53 mouse models, including cerebellar ataxia, pancytopenia and epidermal hyperpigmentation. This phenocopy is rescued in a haploinsufficient p53 background. A detailed examination of the bone marrow in these mice identified reduced numbers of haematopoietic stem cells and a p53-dependent c-Kit down-regulation. These studies suggest that reduced Rpl27a increases p53 activity in vivo, further evident with a delay in tumorigenesis in mutant mice. Taken together, these data demonstrate that Rpl27a plays a crucial role in multiple tissues and that disruption of this ribosomal protein affects both development and transformation.
Collapse
|
121
|
Aoki H, Hara A, Motohashi T, Kunisada T. Protective effect of Kit signaling for melanocyte stem cells against radiation-induced genotoxic stress. J Invest Dermatol 2011; 131:1906-15. [PMID: 21633369 DOI: 10.1038/jid.2011.148] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Radiation-induced hair graying is caused by irreversible defects in the self-renewal and/or development of follicular melanocyte stem cells in the hair follicles. Kit signaling is an essential growth and differentiation signaling pathway for various cell lineages including melanocytes, and its radioprotective effects have been shown in hematopoietic cells. However, it is uncertain whether Kit signaling exerts a radioprotective effect for melanocytes. In this study, we found that various loss-of-function mutations of Kit facilitate radiation-induced hair graying. In contrast, transgenic mice expressing the ligand for Kit (Kitl) in the epidermis have significantly reduced levels of radiation-induced hair graying. The X-ray doses used did not show a systemic lethal effect, indicating that the in vivo radiosensitivity of Kit mutants is mainly caused by the damaged melanocyte stem cell population. X-ray-damaged melanocyte stem cells seemed to take the fate of ectopically pigmented melanocytes in the bulge regions of hair follicles in vivo. Endothelin 3, another growth and differentiation factor for melanocytes, showed a lesser radioprotective effect compared with Kitl. These results indicate the prevention of radiation-induced hair graying by Kit signaling.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | |
Collapse
|
122
|
Kim NY, Han SH, Lee SS, Lee CE, Park NG, Ko MS, Yang YH. Relationship Between MC1R and ASIP Genotypes and Basic Coat Colors in Jeju Horses. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2011. [DOI: 10.5187/jast.2011.53.2.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
123
|
Abstract
The neural crest is a transient structure in vertebrate embryos that generates multiple neural and mesenchymal cell types as well as melanocytes. Melanocytes in the skin either derive directly from neural crest cells populating the skin via a dorsolateral migratory pathway or arise by detaching from nerves innervating the skin. Several transcription factors, such as FoxD3, Sox10, Pax3, and Mitf, take part in a genetic network regulating melanocyte formation from the neural crest. The activity of these intrinsic factors is controlled and modulated by extracellular signals including canonical Wnt, Edn, Kitl, and other signals that remain to be identified. Here, we summarize the current view of how melanocytes are specified from the neural crest and put this process into the context of spatiotemporal lineage decisions in neural crest cells.
Collapse
Affiliation(s)
- Lukas Sommer
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse, Zurich, Switzerland.
| |
Collapse
|
124
|
Tanimura S, Tadokoro Y, Inomata K, Binh NT, Nishie W, Yamazaki S, Nakauchi H, Tanaka Y, McMillan JR, Sawamura D, Yancey K, Shimizu H, Nishimura EK. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 2011; 8:177-87. [PMID: 21295274 DOI: 10.1016/j.stem.2010.11.029] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/27/2010] [Accepted: 10/23/2010] [Indexed: 12/12/2022]
Abstract
In most stem cell systems, the organization of the stem cell niche and the anchoring matrix required for stem cell maintenance are largely unknown. We report here that collagen XVII (COL17A1/BP180/BPAG2), a hemidesmosomal transmembrane collagen, is highly expressed in hair follicle stem cells (HFSCs) and is required for the maintenance not only of HFSCs but also of melanocyte stem cells (MSCs), which do not express Col17a1 but directly adhere to HFSCs. Mice lacking Col17a1 show premature hair graying and hair loss. Analysis of Col17a1-null mice revealed that COL17A1 is critical for the self-renewal of HFSCs through maintaining their quiescence and immaturity, potentially explaining the mechanism underlying hair loss in human COL17A1 deficiency. Moreover, forced expression of COL17A1 in basal keratinocytes, including HFSCs, in Col17a1-null mice rescues MSCs from premature differentiation and restores TGF-β signaling, demonstrating that HFSCs function as a critical regulatory component of the MSC niche.
Collapse
Affiliation(s)
- Shintaro Tanimura
- Department of Stem Cell Medicine, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Torigoe D, Ichii O, Dang R, Ohnaka T, Okano S, Sasaki N, Kon Y, Agui T. High-resolution linkage mapping of the rat hooded locus. J Vet Med Sci 2011; 73:707-10. [PMID: 21224527 DOI: 10.1292/jvms.10-0529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify a gene responsible for the hooded phenotype in the rat, high-resolution linkage mapping for the hooded locus was performed using IS (non-hooded) and LEA (hooded) rats. The map revealed that only Kit gene existed in the critical region, suggesting that the Kit is a strong candidate gene. However, mutation was not found in the coding region of the LEA rat Kit gene. Further, the expressions of Kit mRNA were not different in fetal neural tubes and both neonatal and adult skins between IS and LEA rats. Furthermore, Kit-positive cells, possibly melanocytes, were found in the non-pigmented hair follicles of hooded phenotype rats. Several hypotheses are conceivable to account for mechanisms in the appearance of hooded phenotype.
Collapse
Affiliation(s)
- Daisuke Torigoe
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Aoki H, Hara A, Motohashi T, Osawa M, Kunisada T. Functionally distinct melanocyte populations revealed by reconstitution of hair follicles in mice. Pigment Cell Melanoma Res 2010; 24:125-35. [PMID: 21054816 DOI: 10.1111/j.1755-148x.2010.00801.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hair follicle reconstitution analysis was used to test the contribution of melanocytes or their precursors to regenerated hair follicles. In this study, we first confirmed the process of chimeric hair follicle regeneration by both hair keratinocytes and follicular melanocytes. Then, as first suggested from the differential growth requirements of epidermal skin melanocytes and non-cutaneous or dermal melanocytes, we confirmed the inability of the latter to be involved as follicular melanocytes to regenerate hair follicles during the hair reconstitution assay. This clear functional discrimination between non-cutaneous or dermal melanocytes and epidermal melanocytes suggests the presence of two different melanocyte cell lineages, a finding that might be important in the pathogenesis of melanocyte-related diseases and melanomas.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Yanagido, Gifu, Japan
| | | | | | | | | |
Collapse
|
127
|
Schouwey K, Aydin IT, Radtke F, Beermann F. RBP-Jκ-dependent Notch signaling enhances retinal pigment epithelial cell proliferation in transgenic mice. Oncogene 2010; 30:313-22. [DOI: 10.1038/onc.2010.428] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
128
|
Van Otterloo E, Li W, Bonde G, Day KM, Hsu MY, Cornell RA. Differentiation of zebrafish melanophores depends on transcription factors AP2 alpha and AP2 epsilon. PLoS Genet 2010; 6:e1001122. [PMID: 20862309 PMCID: PMC2940735 DOI: 10.1371/journal.pgen.1001122] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 08/13/2010] [Indexed: 11/30/2022] Open
Abstract
A model of the gene-regulatory-network (GRN), governing growth, survival, and differentiation of melanocytes, has emerged from studies of mouse coat color mutants and melanoma cell lines. In this model, Transcription Factor Activator Protein 2 alpha (TFAP2A) contributes to melanocyte development by activating expression of the gene encoding the receptor tyrosine kinase Kit. Next, ligand-bound Kit stimulates a pathway activating transcription factor Microphthalmia (Mitf), which promotes differentiation and survival of melanocytes by activating expression of Tyrosinase family members, Bcl2, and other genes. The model predicts that in both Tfap2a and Kit null mutants there will be a phenotype of reduced melanocytes and that, because Tfap2a acts upstream of Kit, this phenotype will be more severe, or at least as severe as, in Tfap2a null mutants in comparison to Kit null mutants. Unexpectedly, this is not the case in zebrafish or mouse. Because many Tfap2 family members have identical DNA–binding specificity, we reasoned that another Tfap2 family member may work redundantly with Tfap2a in promoting Kit expression. We report that tfap2e is expressed in melanoblasts and melanophores in zebrafish embryos and that its orthologue, TFAP2E, is expressed in human melanocytes. We provide evidence that Tfap2e functions redundantly with Tfap2a to maintain kita expression in zebrafish embryonic melanophores. Further, we show that, in contrast to in kita mutants where embryonic melanophores appear to differentiate normally, in tfap2a/e doubly-deficient embryonic melanophores are small and under-melanized, although they retain expression of mitfa. Interestingly, forcing expression of mitfa in tfap2a/e doubly-deficient embryos partially restores melanophore differentiation. These findings reveal that Tfap2 activity, mediated redundantly by Tfap2a and Tfap2e, promotes melanophore differentiation in parallel with Mitf by an effector other than Kit. This work illustrates how analysis of single-gene mutants may fail to identify steps in a GRN that are affected by the redundant activity of related proteins. Neural crest-derived pigment cells, known as melanocytes, are important to an organism's survival because they protect skin cells from ultraviolet radiation, camouflage the organism from predators, and contribute to sexual selection. Networks of regulatory proteins control the steps of melanocyte development, including lineage specification, migration, survival, and differentiation. Gaps in our understanding of these networks hamper progress in effective prevention and treatment of diseases of melanocytes, including metastatic melanoma and vitiligo. Studies conducted in tissue-culture cells and mouse embryos implicate regulatory proteins including the transcription factor TFAP2A, the growth factor receptor KIT, and the transcription factor MITF as being important for multiple steps in melanocyte development. Abnormalities in TFAP2A, KIT, and MITF expression in melanoma highlight the importance of this pathway in human disease. Here we show that a gene closely related to TFAP2A, tfap2e, is expressed in zebrafish embryonic melanocytes and human melanocytes. We provide evidence that Tfap2e cooperates with Tfap2a to promote expression of zebrafish kita in embryonic melanocytes. Further we show that an effector of Tfap2a/e activity other than Kita is required for melanocyte differentiation and that this effector acts upstream or in parallel with Mitfa activity. These findings reveal unexpected complexity to the gene-regulatory network governing melanocyte differentiation.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
129
|
Adameyko I, Lallemend F. Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes. Cell Mol Life Sci 2010; 67:3037-55. [PMID: 20454996 PMCID: PMC11115498 DOI: 10.1007/s00018-010-0390-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/20/2010] [Accepted: 04/26/2010] [Indexed: 12/12/2022]
Abstract
Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.
Collapse
Affiliation(s)
- Igor Adameyko
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1-A1-plan2, 171 77 Stockholm, Sweden
| | - Francois Lallemend
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1-A1-plan2, 171 77 Stockholm, Sweden
| |
Collapse
|
130
|
A new transgenic mouse line for tetracycline inducible transgene expression in mature melanocytes and the melanocyte stem cells using the Dopachrome tautomerase promoter. Transgenic Res 2010; 20:421-8. [PMID: 20577802 PMCID: PMC3051065 DOI: 10.1007/s11248-010-9421-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 06/10/2010] [Indexed: 01/09/2023]
Abstract
We have generated a novel transgenic mouse to direct inducible and reversible transgene expression in the melanocytic compartment. The Dopachrome tautomerase (Dct) control sequences we used are active early in the development of melanocytes and so this system was designed to enable the manipulation of transgene expression during development in utero and in the melanocyte stem cells as well as mature melanocytes. We observed inducible lacZ and GFP reporter transgene activity specifically in melanocytes and melanocyte stem cells in mouse skin. This mouse model will be a useful tool for the pigment cell community to investigate the contribution of candidate genes to normal melanocyte and/or melanoma development in vivo. Deregulated expression of the proto-oncogene MYC has been observed in melanoma, however whether MYC is involved in tumorigenesis in pigment cells has yet to be directly investigated in vivo. We have used our system to over-express MYC in the melanocytic compartment and show for the first time that increased MYC expression can indeed promote melanocytic tumor formation.
Collapse
|
131
|
Levy C, Khaled M, Robinson KC, Veguilla RA, Chen PH, Yokoyama S, Makino E, Lu J, Larue L, Beermann F, Chin L, Bosenberg M, Song JS, Fisher DE. Lineage-specific transcriptional regulation of DICER by MITF in melanocytes. Cell 2010; 141:994-1005. [PMID: 20550935 DOI: 10.1016/j.cell.2010.05.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 01/19/2010] [Accepted: 04/09/2010] [Indexed: 12/21/2022]
Abstract
DICER is a central regulator of microRNA maturation. However, little is known about mechanisms regulating its expression in development or disease. While profiling miRNA expression in differentiating melanocytes, two populations were observed: some upregulated at the pre-miRNA stage, and others upregulated as mature miRNAs (with stable pre-miRNA levels). Conversion of pre-miRNAs to fully processed miRNAs appeared to be dependent upon stimulation of DICER expression--an event found to occur via direct transcriptional targeting of DICER by the melanocyte master transcriptional regulator MITF. MITF binds and activates a conserved regulatory element upstream of DICER's transcriptional start site upon melanocyte differentiation. Targeted KO of DICER is lethal to melanocytes, at least partly via DICER-dependent processing of the pre-miRNA-17 approximately 92 cluster thus targeting BIM, a known proapoptotic regulator of melanocyte survival. These observations highlight a central mechanism underlying lineage-specific miRNA regulation which could exist for other cell types during development.
Collapse
Affiliation(s)
- Carmit Levy
- Department of Dermatology, Cutaneous Biology Research Center, Mass. General Hospital, Harvard Medical School, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Yao K, Ge W. Kit System in the Zebrafish Ovary: Evidence for Functional Divergence of Two Isoforms of Kit (Kita and Kitb) and Kit Ligand (Kitlga and Kitlgb) During Folliculogenesis1. Biol Reprod 2010; 82:1216-26. [DOI: 10.1095/biolreprod.109.082644] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
133
|
Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 2010; 6:130-40. [PMID: 20144786 DOI: 10.1016/j.stem.2009.12.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 10/23/2009] [Accepted: 12/14/2009] [Indexed: 11/24/2022]
Abstract
Melanocyte stem cells in the bulge area of hair follicles are responsible for hair pigmentation, and defects in them cause hair graying. Here we describe the process of melanocyte stem cell entry into the quiescent state and show that niche-derived transforming growth factor beta (TGF-beta) signaling plays important roles in this process. In vitro, TGF-beta not only induces reversible cell cycle arrest, but also promotes melanocyte immaturity by downregulating MITF, the master transcriptional regulator of melanocyte differentiation, and its downstream melanogenic genes. In vivo, TGF-beta signaling is activated in melanocyte stem cells when they reenter the quiescent noncycling state during the hair cycle and this process requires Bcl2 for cell survival. Furthermore, targeted TGF-beta type II receptor (TGFbRII) deficiency in the melanocyte lineage causes incomplete maintenance of melanocyte stem cell immaturity and results in mild hair graying. These data demonstrate that the TGF-beta signaling pathway is one of the key niche factors that regulate melanocyte stem cell immaturity and quiescence.
Collapse
|
134
|
Ernfors P. Cellular origin and developmental mechanisms during the formation of skin melanocytes. Exp Cell Res 2010; 316:1397-407. [PMID: 20211169 DOI: 10.1016/j.yexcr.2010.02.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 02/28/2010] [Indexed: 11/20/2022]
Abstract
Melanocytes are derived from the neural crest (NC), which are transient multipotent cells arising by delamination from the developing dorsal neural tube. During recent years, signaling systems and molecular mechanisms of melanocyte development have been studied in detail, but the exact diversification of the NC into melanocytes and how they migrate, expand and disperse in the skin have not been fully understood. The recent finding that Schwann cell precursors (SCPs) of the growing nerve represents a stem cell niche from which various cell types, including Schwann cells, endoneural fibroblasts and melanocytes arise has exposed new knowledge on the cellular basis for melanocyte development. This opens for the identification of new factors and reinterpretation of old data on cell fate instructive, proliferative, survival and cell homing factors participating in melanocyte development.
Collapse
Affiliation(s)
- Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
135
|
Aydin IT, Beermann F. Melanocyte and RPE-specific expression in transgenic mice by mouse MART-1/Melan-A/mlanaregulatory sequences. Pigment Cell Melanoma Res 2009; 22:854-6. [DOI: 10.1111/j.1755-148x.2009.00629.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
136
|
Vanover JC, Spry ML, Hamilton L, Wakamatsu K, Ito S, D’Orazio JA. Stem cell factor rescues tyrosinase expression and pigmentation in discreet anatomic locations in albino mice. Pigment Cell Melanoma Res 2009; 22:827-38. [PMID: 19682281 PMCID: PMC4962694 DOI: 10.1111/j.1755-148x.2009.00617.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The K14-SCF transgenic murine model of variant pigmentation is based on epidermal expression of stem cell factor (SCF) on the C57BL/6J background. In this system, constitutive expression of SCF by epidermal keratinocytes results in retention of melanocytes in the interfollicular basal layer and pigmentation of the epidermis itself. Here, we extend this animal model by developing a compound mutant transgenic amelanotic animal defective at both the melanocortin 1 receptor (Mc1r) and tyrosinase (Tyr) loci. In the presence of K14-Scf, tyrosinase-mutant animals (previously thought incapable of synthesizing melanin) exhibited progressive robust epidermal pigmentation with age in the ears and tails. Furthermore, K14-SCF Tyr(c2j/c2j) animals demonstrated tyrosinase expression and enzymatic activity, suggesting that the c2j Tyr defect can be rescued in part by SCF in the ears and tail. Lastly, UV sensitivity of K14-Scf congenic animals depended mainly on the amount of eumelanin present in the skin. These findings suggest that c-kit signaling can overcome the c2j Tyr mutation in the ears and tails of aging animals and that UV resistance depends on accumulation of epidermal eumelanin.
Collapse
Affiliation(s)
- Jillian C. Vanover
- University of Kentucky College of Medicine, Department of Pediatrics, The Markey Cancer Center and the Graduate Center for Toxicology, Department of Molecular and Biomedical Pharmacology 800 Rose Street, Lexington, KY, 40536
| | - Malinda L. Spry
- University of Kentucky College of Medicine, Department of Pediatrics, The Markey Cancer Center and the Graduate Center for Toxicology, Department of Molecular and Biomedical Pharmacology 800 Rose Street, Lexington, KY, 40536
| | - Laura Hamilton
- University of Kentucky College of Medicine, Department of Pediatrics, The Markey Cancer Center and the Graduate Center for Toxicology, Department of Molecular and Biomedical Pharmacology 800 Rose Street, Lexington, KY, 40536
| | - Kazumasa Wakamatsu
- Fujita Health University School of Health Sciences, Toyoake Aichi, 470-1192, Japan
| | - Shosuke Ito
- Fujita Health University School of Health Sciences, Toyoake Aichi, 470-1192, Japan
| | - John A. D’Orazio
- University of Kentucky College of Medicine, Department of Pediatrics, The Markey Cancer Center and the Graduate Center for Toxicology, Department of Molecular and Biomedical Pharmacology 800 Rose Street, Lexington, KY, 40536
| |
Collapse
|
137
|
Levin MD, Lu MM, Petrenko NB, Hawkins BJ, Gupta TH, Lang D, Buckley PT, Jochems J, Liu F, Spurney CF, Yuan LJ, Jacobson JT, Brown CB, Huang L, Beermann F, Margulies KB, Madesh M, Eberwine JH, Epstein JA, Patel VV. Melanocyte-like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers. J Clin Invest 2009; 119:3420-36. [PMID: 19855129 DOI: 10.1172/jci39109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 08/25/2009] [Indexed: 01/27/2023] Open
Abstract
Atrial fibrillation is the most common clinical cardiac arrhythmia. It is often initiated by ectopic beats arising from the pulmonary veins and atrium, but the source and mechanism of these beats remains unclear. The melanin synthesis enzyme dopachrome tautomerase (DCT) is involved in intracellular calcium and reactive species regulation in melanocytes. Given that dysregulation of intracellular calcium and reactive species has been described in patients with atrial fibrillation, we investigated the role of DCT in this process. Here, we characterize a unique DCT-expressing cell population within murine and human hearts that populated the pulmonary veins, atria, and atrioventricular canal. Expression profiling demonstrated that this population expressed adrenergic and muscarinic receptors and displayed transcriptional profiles distinct from dermal melanocytes. Adult mice lacking DCT displayed normal cardiac development but an increased susceptibility to atrial arrhythmias. Cultured primary cardiac melanocyte-like cells were excitable, and those lacking DCT displayed prolonged repolarization with early afterdepolarizations. Furthermore, mice with mutations in the tyrosine kinase receptor Kit lacked cardiac melanocyte-like cells and did not develop atrial arrhythmias in the absence of DCT. These data suggest that dysfunction of melanocyte-like cells in the atrium and pulmonary veins may contribute to atrial arrhythmias.
Collapse
Affiliation(s)
- Mark D Levin
- Penn Cardiovascular Institute and University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Loftus SK, Baxter LL, Buac K, Watkins-Chow DE, Larson DM, Pavan WJ. Comparison of melanoblast expression patterns identifies distinct classes of genes. Pigment Cell Melanoma Res 2009; 22:611-22. [PMID: 19493314 PMCID: PMC3007121 DOI: 10.1111/j.1755-148x.2009.00584.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A full understanding of transcriptional regulation requires integration of information obtained from multiple experimental datasets. These include datasets annotating gene expression within the context of an entire organism under normal and genetically perturbed conditions. Here we describe an expression dataset annotating pigment cell-expressed genes of the developing melanocyte and retinal pigmented epithelium lineages. Expression images are annotated and available at http://research.nhgri.nih.gov/manuscripts/Loftus/March2009/. Data are also summarized in a standardized manner using a universal melanoblast scoring scale that accounts for the embryonic location of cells and regional cell density. This approach allowed us to classify 14 pigment genes into four groupings classified by cell lineage expression, temporal-spatial context, and differential alteration in response to altered MITF and SOX10 status. Significant differences in regional populations were also observed across inbred strain backgrounds, highlighting the value of this approach to identify modifier allele influences on melanoblast number and distributions. This analysis revealed novel features of in vivo expression patterns that are not measurable by in vitro-based assays, providing data that in combination with genomic analyses will allow modeling of pigment cell gene expression in development and disease.
Collapse
Affiliation(s)
- Stacie K Loftus
- National Institutes of Health, National Human Genome Research Institute, Genetic Disease Research Branch, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
139
|
Adameyko I, Lallemend F, Aquino JB, Pereira JA, Topilko P, Müller T, Fritz N, Beljajeva A, Mochii M, Liste I, Usoskin D, Suter U, Birchmeier C, Ernfors P. Schwann Cell Precursors from Nerve Innervation Are a Cellular Origin of Melanocytes in Skin. Cell 2009; 139:366-79. [DOI: 10.1016/j.cell.2009.07.049] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 04/03/2009] [Accepted: 07/22/2009] [Indexed: 02/02/2023]
|
140
|
Van Raamsdonk CD, Barsh GS, Wakamatsu K, Ito S. Independent regulation of hair and skin color by two G protein-coupled pathways. Pigment Cell Melanoma Res 2009; 22:819-26. [PMID: 19627560 DOI: 10.1111/j.1755-148x.2009.00609.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hair color and skin color are frequently coordinated in mammalian species. To explore this, we have studied mutations in two different G protein coupled pathways, each of which affects the darkness of both hair and skin color. In each mouse mutant (Gnaq(Dsk1), Gna11(Dsk7), and Mc1r(e)), we analyzed the melanocyte density and the concentrations of eumelanin (black pigment) and pheomelanin (yellow pigment) in the hair or skin to determine the mechanisms regulating pigmentation. Surprisingly, we discovered that each mutation affects hair and skin color differently. Furthermore, we have found that in the epidermis, the melanocortin signaling pathway does not couple the synthesis of eumelanin with pheomelanin, as it does in hair follicles. Even by shared signaling pathways, hair and skin melanocytes are regulated quite independently.
Collapse
|
141
|
Inomata K, Aoto T, Binh NT, Okamoto N, Tanimura S, Wakayama T, Iseki S, Hara E, Masunaga T, Shimizu H, Nishimura EK. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 2009; 137:1088-99. [PMID: 19524511 DOI: 10.1016/j.cell.2009.03.037] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/15/2008] [Accepted: 03/18/2009] [Indexed: 01/30/2023]
Abstract
Somatic stem cell depletion due to the accumulation of DNA damage has been implicated in the appearance of aging-related phenotypes. Hair graying, a typical sign of aging in mammals, is caused by the incomplete maintenance of melanocyte stem cells (MSCs) with age. Here, we report that irreparable DNA damage, as caused by ionizing radiation, abrogates renewal of MSCs in mice. Surprisingly, the DNA-damage response triggers MSC differentiation into mature melanocytes in the niche, rather than inducing their apoptosis or senescence. The resulting MSC depletion leads to irreversible hair graying. Furthermore, deficiency of Ataxia-telangiectasia mutated (ATM), a central transducer kinase of the DNA-damage response, sensitizes MSCs to ectopic differentiation, demonstrating that the kinase protects MSCs from their premature differentiation by functioning as a "stemness checkpoint" to maintain the stem cell quality and quantity.
Collapse
Affiliation(s)
- Ken Inomata
- Division of Stem Cell Medicine, Center for Cancer and Stem Cell Research, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Transient expression of ephrin b2 in perinatal skin is required for maintenance of keratinocyte homeostasis. J Invest Dermatol 2009; 129:2386-95. [PMID: 19571816 DOI: 10.1038/jid.2009.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The formation of functional skin entails multiple key signals that are implicated repeatedly in distinct processes during embryogenesis. Although Eph receptors and their membrane-bound ephrin ligands play a role in a wide variety of embryonic processes, their function in skin development has not been addressed. Here, we show that ephrin B2 is transiently expressed in hair buds during embryogenesis and in dermal mesenchymal cells during the perinatal period. Keratinocyte-specific ephrin B2-targeted mutant mice exhibit no skin phenotype, whereas postnatal systemic ephrin B2 ablation results in the enhancement of keratinocyte proliferation. Although the same treatment results in a defect of vascular remodeling, our analyses showed that the keratinocyte phenotype is not caused by hypoxia due to vascular defects. Interestingly, we found an enhanced expression of IL-1 family molecules, which have been implicated in the regulation of keratinocyte proliferation. On the basis of these observations, we propose that the transient expression of ephrin B2 in perinatal dermal mesenchymal cells plays a role in adjusting the activity of the mesenchymal microenvironment that regulates proliferation of keratinocytes.
Collapse
|
143
|
Aoki H, Yamada Y, Hara A, Kunisada T. Two distinct types of mouse melanocyte: differential signaling requirement for the maintenance of non-cutaneous and dermal versus epidermal melanocytes. Development 2009; 136:2511-21. [PMID: 19553284 DOI: 10.1242/dev.037168] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Unlike the thoroughly investigated melanocyte population in the hair follicle of the epidermis, the growth and differentiation requirements of the melanocytes in the eye, harderian gland and inner ear - the so-called non-cutaneous melanocytes - remain unclear. In this study, we investigated the in vitro and in vivo effects of the factors that regulate melanocyte development on the stem cells or the precursors of these non-cutaneous melanocytes. In general, a reduction in KIT receptor tyrosine kinase signaling leads to disordered melanocyte development. However, melanocytes in the eye, ear and harderian gland were revealed to be less sensitive to KIT signaling than cutaneous melanocytes. Instead, melanocytes in the eye and harderian gland were stimulated more effectively by endothelin 3 (ET3) or hepatocyte growth factor (HGF) signals than by KIT signaling, and the precursors of these melanocytes expressed the lowest amount of KIT. The growth and differentiation of these non-cutaneous melanocytes were specifically inhibited by antagonists for ET3 and HGF. In transgenic mice induced to express ET3 or HGF in their skin and epithelial tissues from human cytokeratin 14 promoters, the survival and differentiation of non-cutaneous and dermal melanocytes, but not epidermal melanocytes, were enhanced, apparently irrespective of KIT signaling. These results provide a molecular basis for the clear discrimination between non-cutaneous or dermal melanocytes and epidermal melanocytes, a difference that might be important in the pathogenesis of melanocyte-related diseases and melanomas.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Yanagido, Gifu, Japan
| | | | | | | |
Collapse
|
144
|
Motohashi T, Yamanaka K, Chiba K, Aoki H, Kunisada T. Unexpected multipotency of melanoblasts isolated from murine skin. Stem Cells 2009; 27:888-97. [PMID: 19350691 DOI: 10.1634/stemcells.2008-0678] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Melanoblasts, precursor of melanocytes, are generated from the neural crest and differentiate into melanocytes during their migration throughout the entire body. The melanoblasts are thought to be progenitor cells that differentiate only into melanocyte. Here, we show that melanoblasts, even after they have already migrated throughout the skin, are multipotent, being able to generate neurons, glial cells, and smooth muscle cells in addition to melanocytes. We isolated Kit-positive and CD45-negative (Kit+/CD45-) cells from both embryonic and neonate skin by flow cytometry and cultured them on stromal cells. The Kit+/CD45- cells formed colonies containing neurons, glial cells, and smooth muscle cells, together with melanocytes. The Kit+/CD45- cells expressed Mitf-M, Sox10, and Trp-2, which are genes known to be expressed in melanoblasts. Even a single Kit+/CD45- cell formed colonies that contained neurons, glial cells, and melanocytes, confirming their multipotential cell fate. The colonies formed from Kit+/CD45- cells retained Kit+/CD45- cells even after 21 days in culture and these retained cells also differentiated into neurons, glial cells, and melanocytes, confirming their self-renewal capability. When the Kit signal was inhibited by the antagonist ACK2, the Kit+/CD45- cells did not form colonies that contained multidifferentiated cells. These results indicate that melanoblasts isolated from skin have multipotency and self-renewal capabilities.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | |
Collapse
|
145
|
Masson K, Rönnstrand L. Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cell Signal 2009; 21:1717-26. [PMID: 19540337 DOI: 10.1016/j.cellsig.2009.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 01/01/2023]
Abstract
Signal transduction in response to growth factors is a strictly controlled process with networks of feedback systems, highly selective interactions and finely tuned on-and-off switches. In the context of cancer, detailed signaling studies have resulted in the development of some of the most frequently used means of therapy, with several well established examples such as the small molecule inhibitors imatinib and dasatinib in the treatment of chronic myeloid leukemia. Impaired function of receptor tyrosine kinases is implicated in various types of tumors, and much effort is put into mapping the many interactions and downstream pathways. Here we discuss the hematopoietic growth factor receptors c-Kit and Flt3 and their downstream signaling in normal as well as malignant cells. Both receptors are members of the same family of tyrosine kinases and crucial mediators of stem-and progenitor-cell proliferation and survival in response to ligand stimuli from the surrounding microenvironment. Gain-of-function mutations/alterations render the receptors constitutively and ligand-independently activated, resulting in aberrant signaling which is a crucial driving force in tumorigenesis. Frequently found mutations in c-Kit and Flt3 are point mutations of aspartic acid 816 and 835 respectively, in the activation loop of the kinase domains. Several other point mutations have been identified, but in the case of Flt3, the most common alterations are internal tandem duplications (ITDs) in the juxtamembrane region, reported in approximately 30% of patients with acute myeloid leukemia (AML). During the last couple of years, the increasing understanding of c-Kit and Flt3 signaling has also revealed the complexity of these receptor systems. The impact of gain-of-function mutations of c-Kit and Flt3 in different malignancies is well established and shown to be of clinical relevance in both prognosis and therapy. Many inhibitors of both c-Kit or Flt3 or of their downstream substrates are in clinical trials with encouraging results, and targeted therapy using a combination of such inhibitors is considered a promising approach for future treatments.
Collapse
Affiliation(s)
- Kristina Masson
- Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Malmö University Hospital, Lund University, 20502 Malmö, Sweden
| | | |
Collapse
|
146
|
Aoki H, Hara A, Motohashi T, Chem H, Kunisada T. Iris as a recipient tissue for pigment cells: organized in vivo differentiation of melanocytes and pigmented epithelium derived from embryonic stem cells in vitro. Dev Dyn 2009; 237:2394-404. [PMID: 18729218 DOI: 10.1002/dvdy.21656] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Regenerative transplantation of embryonic stem (ES) cell-derived melanocytes into adult tissues, especially skin that includes hair follicles or the hair follicle itself, generally not possible, whereas that of ES cell-derived pigmented epithelium was reported previously. We investigated the in vivo differentiation of these two pigment cell types derived from ES cells after their transfer into the iris. Melanocytes derived from ES cells efficiently integrated into the iris and expanded to fill the stromal layer of the iris, like those prepared from neonatal skin. Transplanted pigmented epithelium from either ES cells or the neonatal eye was also found to be integrated into the iris. Both types of these regenerated pigment cells showed the correct morphology. Regenerated pigment epithelium expressed its functional marker. Functional blocking of signals required for melanocyte development abolished the differentiation of transplanted melanocytes. These results indicate successful in vivo regenerative transfer of pigment cells induced from ES cells in vitro.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | |
Collapse
|
147
|
The chemokine SDF-1/CXCL12 regulates the migration of melanocyte progenitors in mouse hair follicles. Differentiation 2008; 77:395-411. [PMID: 19281787 DOI: 10.1016/j.diff.2008.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/12/2008] [Accepted: 10/13/2008] [Indexed: 11/21/2022]
Abstract
Mouse skin melanocytes originate from the neural crest and subsequently invade the epidermis and migrate into the hair follicles (HF) where they proliferate and differentiate. Here we demonstrate a role for the chemokine SDF-1/CXCL12 and its receptor CXCR4 in regulating the migration and positioning of melanoblasts during HF formation and cycling. CXCR4 expression by melanoblasts was upregulated during the anagen phase of the HF cycle. CXCR4-expressing cells in the HF also expressed the stem cell markers nestin and LEX, the neural crest marker SOX10 and the cell proliferation marker PCNA. SDF-1 was widely expressed along the path taken by migrating CXCR4-expressing cells in the outer root sheath (ORS), suggesting that SDF-1-mediated signaling might be required for the migration of CXCR4 cells. Skin sections from CXCR4-deficient mice, and skin explants treated with the CXCR4 antagonist AMD3100, contained melanoblasts abnormally concentrated in the epidermis, consistent with a defect in their migration. SDF-1 acted as a chemoattractant for FACS-sorted cells isolated from the anagen skin of CXCR4-EGFP transgenic mice in vitro, and AMD3100 inhibited the SDF-1-induced migratory response. Together, these data demonstrate an important role for SDF-1/CXCR4 signaling in directing the migration and positioning of melanoblasts in the HF.
Collapse
|
148
|
Hou L, Pavan WJ. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? Cell Res 2008; 18:1163-76. [PMID: 19002157 DOI: 10.1038/cr.2008.303] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human neurocristopathies include a number of syndromes, tumors, and dysmorphologies of neural crest (NC) stem cell derivatives. In recent years, many white spotting genes have been associated with hypopigmentary disorders and deafness in neurocristopathies resulting from NC stem cell-derived melanocyte deficiency during development. These include PAX3, SOX10, MITF, SNAI2, EDNRB, EDN3, KIT, and KITL. Recent studies have revealed surprising new insights into a central role of MITF in the complex network of interacting genes in melanocyte development. In this perspective, we provide an overview of some of the current findings and explore complex functional roles of these genes during NC stem cell-derived melanocyte development.
Collapse
Affiliation(s)
- Ling Hou
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of China Ministry of Health, Eye Hospital, Wenzhou Medical College, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China.
| | | |
Collapse
|
149
|
Murisier F, Aydin IT, Guichard S, Brunschwiler S, Beermann F. Expression from a bacterial artificial chromosome containing the Dct gene locus. Pigment Cell Melanoma Res 2008; 21:212-5. [PMID: 18426415 DOI: 10.1111/j.1755-148x.2008.00449.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
150
|
Spry ML, Vanover JC, Scott T, Abona-Ama O, Wakamatsu K, Ito S, D'Orazio JA. Prolonged treatment of fair-skinned mice with topical forskolin causes persistent tanning and UV protection. Pigment Cell Melanoma Res 2008; 22:219-29. [PMID: 19087231 DOI: 10.1111/j.1755-148x.2008.00536.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We previously reported that topical application of forskolin to the skin of fair-skinned MC1R-defective mice with epidermal melanocytes resulted in accumulation of eumelanin in the epidermis and was highly protective against UV-mediated cutaneous injury. In this report, we describe the long-term effects of chronic topical forskolin treatment in this animal model. Forskolin-induced eumelanin production persisted through 3 months of daily applications, and forskolin-induced eumelanin remained protective against UV damage as assessed by minimal erythematous dose (MED). No obvious toxic changes were noted in the skin or overall health of animals exposed to prolonged forskolin therapy. Body weights were maintained throughout the course of topical forskolin application. Topical application of forskolin was associated with an increase in the number of melanocytes in the epidermis and thickening of the epidermis due, at least in part, to an accumulation of nucleated keratinocytes. Together, these data suggest in this animal model, short-term topical regular application of forskolin promotes eumelanin induction and that over time, topical forskolin treatment is associated with persistent melanization, epidermal cell accumulation, and skin thickening.
Collapse
|