101
|
Abstract
Arteriviruses are positive-stranded RNA viruses that infect mammals. They can cause persistent or asymptomatic infections, but also acute disease associated with a respiratory syndrome, abortion or lethal haemorrhagic fever. During the past two decades, porcine reproductive and respiratory syndrome virus (PRRSV) and, to a lesser extent, equine arteritis virus (EAV) have attracted attention as veterinary pathogens with significant economic impact. Particularly noteworthy were the 'porcine high fever disease' outbreaks in South-East Asia and the emergence of new virulent PRRSV strains in the USA. Recently, the family was expanded with several previously unknown arteriviruses isolated from different African monkey species. At the molecular level, arteriviruses share an intriguing but distant evolutionary relationship with coronaviruses and other members of the order Nidovirales. Nevertheless, several of their characteristics are unique, including virion composition and structure, and the conservation of only a subset of the replicase domains encountered in nidoviruses with larger genomes. During the past 15 years, the advent of reverse genetics systems for EAV and PRRSV has changed and accelerated the structure-function analysis of arterivirus RNA and protein sequences. These systems now also facilitate studies into host immune responses and arterivirus immune evasion and pathogenesis. In this review, we have summarized recent advances in the areas of arterivirus genome expression, RNA and protein functions, virion architecture, virus-host interactions, immunity, and pathogenesis. We have also briefly reviewed the impact of these advances on disease management, the engineering of novel candidate live vaccines and the diagnosis of arterivirus infection.
Collapse
Affiliation(s)
- Eric J Snijder
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
102
|
A fast and robust method for full genome sequencing of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Type 1 and Type 2. J Virol Methods 2013; 193:697-705. [PMID: 23891870 DOI: 10.1016/j.jviromet.2013.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/03/2013] [Accepted: 07/12/2013] [Indexed: 11/21/2022]
Abstract
PRRSV is a positive-sense RNA virus with a high degree of genetic variability among isolates. For diagnostic sensitivity and vaccine design it is essential to monitor PRRSV genetic diversity. However, to date only a few full genome sequences of PRRSV isolates have been made publicly available. In the present study, fast and robust methods for long range RT-PCR amplification and subsequent next generation sequencing (NGS) were developed and validated on nine Type 1 and nine Type 2 PRRSV viruses. The methods generated robust and reliable sequences both on primary material and cell culture adapted viruses and the protocols performed well on all three NGS platforms tested (Roche 454 FLX, Illumina HiSeq2000, and Ion Torrent PGM™ Sequencer). These methods will greatly facilitate the generation of more full genome PRRSV sequences globally.
Collapse
|
103
|
Nilubol D, Tripipat T, Hoonsuwan T, Tipsombatboon P, Piriyapongsa J. Dynamics and evolution of porcine reproductive and respiratory syndrome virus (PRRSV) ORF5 following modified live PRRSV vaccination in a PRRSV-infected herd. Arch Virol 2013; 159:17-27. [PMID: 23851653 DOI: 10.1007/s00705-013-1781-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/29/2013] [Indexed: 02/06/2023]
Abstract
The objective of this study was to investigate the dynamics and evolution of porcine reproductive and respiratory syndrome virus (PRRSV) ORF5 following the use of a modified live PRRSV (MLV) vaccine. A PRRSV-positive farm with coexistence of types 1 and 2 and no history of MLV vaccination was investigated. Vaccination with a type 2 MLV (Ingelvac PRRS MLV, Boehringer Ingelheim, USA) was implemented. All sows were vaccinated at monthly intervals for two consecutive months and then every third month. Piglets were vaccinated once at 7-10 days of age and weaned to nursery facilities at 21-23 days of age. Serum samples were collected monthly before and after vaccination from four population groups, including replacement gilts and suckling, nursery and finishing pigs, and assayed by PCR. After a year of blood collection, amplified products were sequenced, resulting in 277 complete ORF5 gene sequences from 145 type 1 and 132 type 2 isolates. Prior to and following vaccination, both type 1 and type 2 PRRSV were isolated and found to coexist in an individual pig. Each genotype evolved separately without influencing the strain development of the other. Although the substitution rates of both genotypes were relatively similar, MLV vaccination appears to increase the heterogenicity of type 2 PRRSV, resulting in the emergence of three novel type 2 PRRSV clusters in the herd, including an MLV-like cluster, which disappeared within the month following whole-herd vaccination. Two additional clusters included one related to the MLV vaccine and one related to the endemic cluster of the herd.
Collapse
Affiliation(s)
- Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand,
| | | | | | | | | |
Collapse
|
104
|
Zhou L, Ni YY, Piñeyro P, Cossaboom CM, Subramaniam S, Sanford BJ, Dryman BA, Huang YW, Meng XJ. Broadening the heterologous cross-neutralizing antibody inducing ability of porcine reproductive and respiratory syndrome virus by breeding the GP4 or M genes. PLoS One 2013; 8:e66645. [PMID: 23826108 PMCID: PMC3691207 DOI: 10.1371/journal.pone.0066645] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important swine pathogens, which causes reproductive failure in sows and respiratory disease in piglets. A major hurdle to control PRRSV is the ineffectiveness of the current vaccines to confer protection against heterologous strains. Since both GP4 and M genes of PRRSV induce neutralizing antibodies, in this study we molecularly bred PRRSV through DNA shuffling of the GP4 and M genes, separately, from six genetically different strains of PRRSV in an attempt to identify chimeras with improved heterologous cross-neutralizing capability. The shuffled GP4 and M genes libraries were each cloned into the backbone of PRRSV strain VR2385 infectious clone pIR-VR2385-CA. Three GP4-shuffled chimeras and five M-shuffled chimeras, each representing sequences from all six parental strains, were selected and further characterized in vitro and in pigs. These eight chimeric viruses showed similar levels of replication with their backbone strain VR2385 both in vitro and in vivo, indicating that the DNA shuffling of GP4 and M genes did not significantly impair the replication ability of these chimeras. Cross-neutralization test revealed that the GP4-shuffled chimera GP4TS14 induced significantly higher cross-neutralizing antibodies against heterologous strains FL-12 and NADC20, and similarly that the M-shuffled chimera MTS57 also induced significantly higher levels of cross-neutralizing antibodies against heterologous strains MN184B and NADC20, when compared with their backbone parental strain VR2385 in infected pigs. The results suggest that DNA shuffling of the GP4 or M genes from different parental viruses can broaden the cross-neutralizing antibody-inducing ability of the chimeric viruses against heterologous PRRSV strains. The study has important implications for future development of a broadly protective vaccine against PRRSV.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Yan-Yan Ni
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Pablo Piñeyro
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Caitlin M. Cossaboom
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Sakthivel Subramaniam
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Brenton J. Sanford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Barbara A. Dryman
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Yao-Wei Huang
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| |
Collapse
|
105
|
Zhang L, Liu J, Bai J, Du Y, Wang X, Liu X, Jiang P. Poly(I:C) inhibits porcine reproductive and respiratory syndrome virus replication in MARC-145 cells via activation of IFIT3. Antiviral Res 2013; 99:197-206. [PMID: 23791982 DOI: 10.1016/j.antiviral.2013.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major cause of heavy economic losses in many swine-producing regions. Current vaccination strategies and antiviral drugs provide only limited protection. Interferon (IFN)-induced protein with tetratricopeptide repeats 3 (IFIT3) has been characterized as the product of a novel antiviral gene and as an important modulator in innate immunity. However, the role of IFIT3 in PRRSV infection is scarcely understood. In this study, polyinosinic-polycytidylic acid (poly(I:C)) inhibited PRRSV replication in MARC-145 cells, following the appearance of increased IFIT3. Overexpression of porcine IFIT3 resulted in a decrease of PRRSV. Knockdown of IFIT3 in MARC-145 cells increased PRRSV replication and impaired the antiviral activity mediated by poly(I:C). Moreover, in the presence or absence of IFIT3, poly(I:C)-induced IFN-β promoter activity was significantly boosted or crippled, respectively. IFIT3, TBK1 and phosphorylation of IRF3 were activated in poly(I:C)-transfected MARC-145 cells. It demonstrated that IFIT3 plays an important role in IFN-β induction in MARC-145 cells, and, when activated, it can inhibit PRRSV replication.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
106
|
Choi EJ, Lee CH, Hyun BH, Kim JJ, Lim SI, Song JY, Shin YK. A survey of porcine reproductive and respiratory syndrome among wild boar populations in Korea. J Vet Sci 2013; 13:377-83. [PMID: 23271179 PMCID: PMC3539123 DOI: 10.4142/jvs.2012.13.4.377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
No information is currently available on porcine reproductive and respiratory syndrome virus (PRRSV) infection in wild boars (Sus scrofa) in Korea. In this study, the status of PRRS in wild boars was investigated. Blood samples were collected from 267 wild boars from eight provinces in Korea. Four of the samples tested (1.5%) were positive for PRRSV antibodies and eight (3.0%) were positive for antigens. Of the virus-positive samples, three and five samples were typed as containing European (EU, type 1) or North American (NA, type 2) viruses, respectively. Two amplicons (one from type 1 and one from type 2) were used to analyze the PRRSV open reading frame 7 (ORF7) sequence. The nucleotide sequences of type 1 PRRSV ORF7 had identities between 96.1% and 98.4% with PRRSVs from domestic pigs in Korea. The sequences of type 2 PRRSV ORF7 had identities of 100% with the PRRSV strain VR-2332, which was prototypic North American strain. These results show that PRRSVs are present in wild boars in Korea, and effective PRRSV surveillance of the wild boar population might therefore be useful for disease control.
Collapse
Affiliation(s)
- Eun-Jin Choi
- Animal, Plant and Fisheries Quarantine and Inspection Agency, Anyang 430-855, Korea
| | | | | | | | | | | | | |
Collapse
|
107
|
Nam HM, Chae KS, Song YJ, Lee NH, Lee JB, Park SY, Song CS, Seo KH, Kang SM, Kim MC, Choi IS. Immune responses in mice vaccinated with virus-like particles composed of the GP5 and M proteins of porcine reproductive and respiratory syndrome virus. Arch Virol 2013; 158:1275-85. [PMID: 23392631 PMCID: PMC4126520 DOI: 10.1007/s00705-013-1612-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 12/09/2012] [Indexed: 01/05/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces reproductive failure in sows and respiratory problems in pigs of all ages. Live attenuated and inactivated vaccines are used on swine farms to control PRRSV. However, their protective efficacy against field strains of PRRSV remains questionable. New vaccines have been developed to improve the efficacy of these traditional vaccines. In this study, virus-like particles (VLPs) composed of the GP5 and M proteins of PRRSV were developed, and the capacity of the VLPs to elicit antigen-specific immunity was evaluated. Serum antibody titers and production of cytokines were measured in BALB/C mice immunized intramuscularly three times with different doses (0.5, 1.0, 2.0, and 4.0 μg) of the VLP vaccine. A commercial vaccine consisting of inactivated PRRSV and phosphate-buffered saline (PBS) were used as positive and negative controls, respectively. IgG titers to GP5 were significantly higher in all groups of mice vaccinated with the VLPs than in control mice. Neutralizing antibodies were only detected in mice vaccinated with 2.0 and 4.0 μg of the VLPs. Cytokine levels were determined in cell culture supernatants after in vitro stimulation of splenocytes with the VLPs for 3 days. Mice immunized with 4.0 μg of the VLPs produced a significantly higher amount of interferon-gamma (IFN-γ) than mice immunized with the commercial inactivated PRRSV vaccine and PBS. In contrast, immunization with the commercial vaccine induced higher production of IL-4 and IL-10 in mice than mice vaccinated with VLPs. These data together demonstrate the capacity of VLPs to induce both neutralizing antibodies and IFN-γ in immunized mice. The VLP vaccine developed in this study could serve as a platform for the generation of improved VLP vaccines to control PRRSV.
Collapse
Affiliation(s)
- Hae-Mi Nam
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Kyung-Sil Chae
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Young-Jo Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Nak-Hyung Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Kun-Ho Seo
- Department of Public Health, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea
| | - Sang-Moo Kang
- Department of Biology, Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea; Department of Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
108
|
Choi EJ, Lee CH, Song JY, Song HJ, Park CK, Kim B, Shin YK. Genetic diversity of porcine reproductive and respiratory syndrome virus in Korea. J Vet Sci 2013; 14:115-24. [PMID: 23628658 PMCID: PMC3694182 DOI: 10.4142/jvs.2013.14.2.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 04/04/2012] [Indexed: 11/20/2022] Open
Abstract
The high genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) has been an obstacle to developing an effective vaccine for porcine reproductive and respiratory syndrome (PRRS). This study was performed to assess the degree of genetic diversity among PRRSVs from Korean pig farms where wasting and respiratory syndrome was observed from 2005 to 2009. Samples from 786 farms were tested for the presence of PRRSV using reverse transcription PCR protocol. A total of 117 farms were positive for type 1 PRRSV while 198 farms were positive for type 2. Nucleotide sequences encoding the open reading frame (ORF) 5 were analyzed and compared to those of various published PRRSV isolates obtained worldwide. Sequence identity of the ORF 5 in the isolates was 81.6~100% for type 1 viruses and 81.4~100% for type 2 viruses. Phylogenetic analysis of the ORF 5 sequences showed that types 1 and 2 PRRSVs from Korea were mainly classified into three and four clusters, respectively. The analyzed isolates were distributed throughout the clusters independent of the isolation year or geographical origin. In conclusion, our results indicated that the genetic diversity of PRRSVs from Korean pig farms is high and has been increasing over time.
Collapse
Affiliation(s)
- Eun-Jin Choi
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Anyang 430-757, Korea
| | | | | | | | | | | | | |
Collapse
|
109
|
Nilubol D, Tripipat T, Hoonsuwan T, Kortheerakul K. Porcine reproductive and respiratory syndrome virus, Thailand, 2010-2011. Emerg Infect Dis 2013; 18:2039-43. [PMID: 23171619 PMCID: PMC3557868 DOI: 10.3201/eid1812.111105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Characterization of porcine reproductive and respiratory syndrome virus (PRRSV) isolates from pigs in Thailand showed 30-aa discontinuous deletions in nonstructural protein 2, identical to sequences for highly pathogenic PRRSV. The novel virus is genetically related to PRRSV from China and may have spread to Thailand through illegal transport of infectious animals from bordering countries.
Collapse
Affiliation(s)
- Dachrit Nilubol
- Chulalongkorn University, Veterinary Microbiology, Faculty of Veterinary Science, Bangkok, Thailand.
| | | | | | | |
Collapse
|
110
|
Yu Y, Wang R, Nan Y, Zhang L, Zhang Y. Induction of STAT1 phosphorylation at serine 727 and expression of proinflammatory cytokines by porcine reproductive and respiratory syndrome virus. PLoS One 2013; 8:e61967. [PMID: 23637938 PMCID: PMC3634824 DOI: 10.1371/journal.pone.0061967] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/15/2013] [Indexed: 01/14/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a viral pathogen that causes acute respiratory illnesses in young pigs. Since 1987, PRRSV has contributed substantial economic losses to the swine industry. Elevation of proinflammatory cytokines in PRRSV-infected pigs is thought to contribute to PRRSV pathogenesis. In this study, PRRSV VR-2385, a Type 2 strain with moderate virulence, was found to induce phosphorylation of signal transducer and activator of transcription 1 (STAT1) at serine 727 (pSTAT1-S727) in MARC-145 cells. No phosphorylated STAT1 at tyrosine 701 was detected, which indicates that the pSTAT1-S727 elevation was interferon-independent. The PRRSV-induced pSTAT1-S727, however, was dose-dependent and its levels increased with infection time. IngelVac PRRS MLV strain had a minimal effect on pSTAT1-S727. Compared to MLV-infected cells, VR-2385 infection caused significantly higher level of expression of proinflammatory cytokines, including interleukin 1 beta (IL-1beta) and IL-8. The VR-2385-induced pSTAT1-S727 and cytokine expression were reduced after SB203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK), or methylthioadenosine (MTA), a methyl transferase inhibitor, was added to the cells. The SB203580 and MTA-mediated inhibition suggested that the virus-induced pSTAT1-S727 was dependent on p38 MAPK pathway. In primary porcine alveolar macrophages (PAMs), VR-2385 also induced pSTAT1-S727 and expression of proinflammatory cytokines and chemokines, including IL-1beta, IL-8, chemokine ligand 2 (CCL2) and chemokine (C-X-C motif) ligand 10 (CXCL10). Similarly, SB203580 treatment of PAM cells blocked the elevation of pSTAT1-S727 and cytokine expression. Overexpression of individual viral proteins showed that non-structural protein 12 (nsp12) was able to induce elevation of pSTAT1-S727 and the expression of IL-1β and IL-8. These results indicated that PRRSV VR-2385 induces pSTAT1-S727 and the expression of proinflammatory cytokines, which contributes to the insight of PRRSV pathogenesis.
Collapse
Affiliation(s)
- Ying Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Rong Wang
- Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Yuchen Nan
- Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Linsheng Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YZ); (LZ)
| | - Yanjin Zhang
- Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (YZ); (LZ)
| |
Collapse
|
111
|
Positive inductive effect of IL-18 on virus-specific immune responses induced by PRRSV-GP5 DNA vaccine in swine. Res Vet Sci 2013; 94:346-53. [DOI: 10.1016/j.rvsc.2012.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/27/2012] [Accepted: 09/06/2012] [Indexed: 11/18/2022]
|
112
|
Yin Y, Liu C, Liu P, Yao H, Wei Z, Lu J, Tong G, Gao F, Yuan S. Conserved nucleotides in the terminus of the 3' UTR region are important for the replication and infectivity of porcine reproductive and respiratory syndrome virus. Arch Virol 2013; 158:1719-32. [PMID: 23512575 DOI: 10.1007/s00705-013-1661-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/03/2013] [Indexed: 12/11/2022]
Abstract
The 3' untranslated region (3' UTR), including the poly (A) tail, reportedly plays an important role in arterivirus replication, but the roles of the cis-acting elements present in the 3' UTR of porcine reproductive and respiratory syndrome virus (PRRSV) remain largely unknown. In the present study, PCR-based mutagenic analysis was conducted on the 3' UTR of PRRSV infectious full-length cDNA clone pAPRRS to investigate the structure and function of the conserved terminal nucleotides between the poly (A) tail and the 3' UTR region. Our findings indicated that the conservation of the primary sequence of the 3' terminal nucleotides, rather than the surrounding secondary structure, was vital for viral replication and infectivity. Four nucleotides (nt) (5'-(15517)AAUU(15520)-3') at the 3' proximal end of the 3' UTR and the dinucleotide 5'-AU-3' exerted an important regulatory effect on viral viability. Of the five 3'-terminal nucleotides of the 3' UTR (5'-(15503)AACCA(15507)-3'), at least three, including the last dinucleotide (5'-CA-3'), were essential for maintaining viral infectivity. Taken together, the 3'-terminal conserved sequence plays a critical role in PRRSV replication and may function as a contact site for specific assembly of the replication complex.
Collapse
Affiliation(s)
- Yang Yin
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai 200241, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Díaz I, Ganges L, Galindo-Cardiel I, Tarradas J, Álvarez B, Lorca-Oró C, Pujols J, Gimeno M, Darwich L, Domingo M, Domínguez J, Mateu E. Immunization with DNA Vaccines Containing Porcine Reproductive and Respiratory Syndrome Virus Open Reading Frames 5, 6, and 7 May Be Related to the Exacerbation of Clinical Disease after an Experimental Challenge. Viral Immunol 2013; 26:93-101. [DOI: 10.1089/vim.2012.0041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ivan Díaz
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Llilianne Ganges
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Iván Galindo-Cardiel
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Tarradas
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Belén Álvarez
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Cristina Lorca-Oró
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Pujols
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Mariona Gimeno
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laila Darwich
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mariano Domingo
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Domínguez
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Enric Mateu
- Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
114
|
Sun L, Li Y, Liu R, Wang X, Gao F, Lin T, Huang T, Yao H, Tong G, Fan H, Wei Z, Yuan S. Porcine reproductive and respiratory syndrome virus ORF5a protein is essential for virus viability. Virus Res 2013; 171:178-85. [DOI: 10.1016/j.virusres.2012.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/08/2012] [Accepted: 11/14/2012] [Indexed: 11/16/2022]
|
115
|
Jiang C, Xing F, Xing J, Jiang Y, Zhou E. Different expression patterns of PRRSV mediator genes in the lung tissues of PRRSV resistant and susceptible pigs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:127-131. [PMID: 22305867 DOI: 10.1016/j.dci.2012.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 01/14/2012] [Accepted: 01/14/2012] [Indexed: 05/31/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has caused severe economic loss in most swine-producing countries. The resistance to PRRS virus (PRRSV) infection varies among pig breeds and lines. In this study, we found that the Chinese Dapulian pigs (DPL) were more resistant to PRRSV than commercial Duroc×Landrace×Yorkshire (DLY) crossbred pigs in that lower rectal temperature and lower PRRSV copy number in the serum were detected in the former. Analysis of the mRNA expression of five PRRSV mediator genes (SIGLEC1, NMMHC-IIA, CD163, VIM and HSPG2) in the lung tissues indicated differences in expression between DLY and DPL pigs. In uninfected porcine lung tissues, the levels of SIGLEC1, NMMHC-IIA, CD163 and VIM genes were significantly higher in DLY than in DPL pigs (P<0.05); in PRRSV-infected pigs, the expression levels of NMMHC-IIA and CD163 mRNA were significantly higher in DPL pigs compared to uninfected ones (P<0.05), whereas these levels were not different in DLY pigs or between infected DPL and DLY pigs. Thus, the different expression of PRRSV mediator genes is likely related to pig resistance to PRRSV.
Collapse
Affiliation(s)
- Chenglan Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | | | | | | | | |
Collapse
|
116
|
Wang X, Sun L, Li Y, Lin T, Gao F, Yao H, He K, Tong G, Wei Z, Yuan S. Development of a differentiable virus via a spontaneous deletion in the nsp2 region associated with cell adaptation of porcine reproductive and respiratory syndrome virus. Virus Res 2013. [DOI: 10.1016/j.virusres.2012.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
117
|
Nilubol D, Tripipat T, Hoonsuwan T, Tipsombatboon P, Piriyapongsa J. Genetic diversity of the ORF5 gene of porcine reproductive and respiratory syndrome virus (PRRSV) genotypes I and II in Thailand. Arch Virol 2012; 158:943-53. [PMID: 23232748 DOI: 10.1007/s00705-012-1573-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 11/05/2012] [Indexed: 11/24/2022]
Abstract
To investigate the genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) in Thailand, 279 ORF5 sequences of PRRSV collected during 2010-2011 from 102 swine herds in five swine-producing areas were analyzed. The co-existence of European (EU) and North American (NA) genotypes was observed in 98 % of herds investigated and was evident at the pig level. Both genotypes have evolved separately with a temporal influence on strain development. Novel introductions influence the genetic diversity of the NA genotype. Although Thai EU and NA isolates develop their own clusters that are separate from those of other countries, there was no geographic influence on strain development within Thailand.
Collapse
Affiliation(s)
- Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | | | | | |
Collapse
|
118
|
Nilubol D, Tripipat T, Hoonsuwan T, Kortheerakul K. Porcine Reproductive and Respiratory Syndrome Virus, Thailand, 2010–2011. Emerg Infect Dis 2012. [DOI: 10.3201/eid1811.111105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
119
|
Zhou L, Ni YY, Piñeyro P, Sanford BJ, Cossaboom CM, Dryman BA, Huang YW, Cao DJ, Meng XJ. DNA shuffling of the GP3 genes of porcine reproductive and respiratory syndrome virus (PRRSV) produces a chimeric virus with an improved cross-neutralizing ability against a heterologous PRRSV strain. Virology 2012; 434:96-109. [PMID: 23051709 DOI: 10.1016/j.virol.2012.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/30/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important swine pathogen. Here we applied the DNA shuffling approaches to molecularly breed the PRRSV GP3 gene, a neutralizing antibodies inducer, in an attempt to improve its heterologous cross-neutralizing ability. The GP3 genes of six different PRRSV strains were bred by traditional DNA shuffling. Additionally, synthetic DNA shuffling of the GP3 gene was also performed using degenerate oligonucleotides. The shuffled-GP3-libraries were cloned into the backbone of a DNA-launched PRRSV infectious clone pIR-VR2385-CA. Four traditional-shuffled chimeras each representing all 6 parental strains and four other synthetic-shuffled chimeras were successfully rescued. These chimeras displayed similar levels of replication both in vitro and in vivo, compared to the backbone parental virus, indicating that the GP3 shuffling did not impair the replication capability of the chimeras. One chimera GP3TS22 induced significantly higher levels of cross-neutralizing antibodies in pigs against a heterologous PRRSV strain FL-12.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061-0913, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Oh J, Lee C. Proteomic characterization of a novel structural protein ORF5a of porcine reproductive and respiratory syndrome virus. Virus Res 2012; 169:255-63. [DOI: 10.1016/j.virusres.2012.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/18/2012] [Accepted: 08/23/2012] [Indexed: 01/09/2023]
|
121
|
Li J, Murtaugh MP. Dissociation of porcine reproductive and respiratory syndrome virus neutralization from antibodies specific to major envelope protein surface epitopes. Virology 2012; 433:367-76. [PMID: 22981434 DOI: 10.1016/j.virol.2012.08.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 06/09/2012] [Accepted: 08/17/2012] [Indexed: 12/19/2022]
Abstract
Glycoprotein 5 (GP5) and membrane (M) protein are the major proteins in the envelope of porcine reproductive and respiratory syndrome virus (PRRSV). Although viral neutralization epitopes are reported in GP5 and M of type 2 PRRSV, their significance as targets of porcine humoral immunity is not well described. Thus, we constructed recombinant polypeptides containing ectodomain neutralization epitopes to examine their involvement in porcine antibody neutralization and antiviral immunity. PRRSV infection elicited ectodomain-specific antibodies, whose titers did not correlate with the neutralizing antibody (NA) response. Ectodomain-specific antibodies from PRRSV-neutralizing serum bound virus but did not neutralize infectivity. Furthermore, immunization of pigs with ectodomain polypeptides raised specific antibodies and provided partial protection without a detectable NA response. Finally the polypeptides did not block infection of porcine macrophages. These results suggest that the GP5/M ectodomain peptide epitopes are accessible for host antibody recognition, but are not associated with antibody-mediated virus neutralization.
Collapse
Affiliation(s)
- Juan Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
122
|
Kim WI, Kim JJ, Cha SH, Wu WH, Cooper V, Evans R, Choi EJ, Yoon KJ. Significance of genetic variation of PRRSV ORF5 in virus neutralization and molecular determinants corresponding to cross neutralization among PRRS viruses. Vet Microbiol 2012; 162:10-22. [PMID: 22959007 DOI: 10.1016/j.vetmic.2012.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/26/2012] [Accepted: 08/12/2012] [Indexed: 01/21/2023]
Abstract
A high rate of genetic and antigenic variability among porcine reproductive and respiratory syndrome viruses (PRRSVs) hampers effective prevention and control of the disease caused by PRRSV. The major envelope protein (GP5) encoded by the ORF5 of PRRSV has a critical role in inducing virus neutralizing (VN) antibody and cross protection among different strains of PRRSV. This study was conducted to identify sequence elements related to cross neutralization by comparing the ORF5 sequences of 69 field isolates in conjunction with their susceptibility to VN antibody raised against the VR2332 strain in vitro and in vivo. Five common variable sites (amino acid position 32-34, 38-39, 57-59, 137 and 151) were identified between susceptible and resistant viral isolates. Mutants whose ORF5 amino acid sequences were substituted with the sequences corresponding to the 5 identified common variable sites individually or concurrently were generated from a VR2332-backboned infectious clone by site mutagenesis. The change in the susceptibility of the mutants to VN antibodies specific for VR2332 or a heterologous PRRSV was assessed to determine the association of those 5 identified sites with cross neutralization. Among the five sites, the changes of amino acid sequences at three sites (32-34, 38-39, and 57-59) located in the N-terminal ectodomain of ORF5 significantly influenced the susceptibility of the mutant viruses to VN antibody, suggesting that sequence homology at these sites can be utilized as genetic markers to predict the degree of cross neutralization among different PRRSVs.
Collapse
Affiliation(s)
- Won-Il Kim
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Genini S, Paternoster T, Costa A, Botti S, Luini MV, Caprera A, Giuffra E. Identification of serum proteomic biomarkers for early porcine reproductive and respiratory syndrome (PRRS) infection. Proteome Sci 2012; 10:48. [PMID: 22873815 PMCID: PMC3492009 DOI: 10.1186/1477-5956-10-48] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/17/2012] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant swine diseases worldwide. Despite its relevance, serum biomarkers associated with early-onset viral infection, when clinical signs are not detectable and the disease is characterized by a weak anti-viral response and persistent infection, have not yet been identified. Surface-enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF MS) is a reproducible, accurate, and simple method for the identification of biomarker proteins related to disease in serum. This work describes the SELDI-TOF MS analyses of sera of 60 PRRSV-positive and 60 PRRSV-negative, as measured by PCR, asymptomatic Large White piglets at weaning. Sera with comparable and low content of hemoglobin (< 4.52 μg/mL) were fractionated in 6 different fractions by anion-exchange chromatography and protein profiles in the mass range 1-200 kDa were obtained with the CM10, IMAC30, and H50 surfaces. RESULTS A total of 200 significant peaks (p < 0.05) were identified in the initial discovery phase of the study and 47 of them were confirmed in the validation phase. The majority of peaks (42) were up-regulated in PRRSV-positive piglets, while 5 were down-regulated. A panel of 14 discriminatory peaks identified in fraction 1 (pH = 9), on the surface CM10, and acquired at low focus mass provided a serum protein profile diagnostic pattern that enabled to discriminate between PRRSV-positive and -negative piglets with a sensitivity and specificity of 77% and 73%, respectively. CONCLUSIONS SELDI-TOF MS profiling of sera from PRRSV-positive and PRRSV-negative asymptomatic piglets provided a proteomic signature with large scale diagnostic potential for early identification of PRRSV infection in weaning piglets. Furthermore, SELDI-TOF protein markers represent a refined phenotype of PRRSV infection that might be useful for whole genome association studies.
Collapse
Affiliation(s)
- Sem Genini
- Parco Tecnologico Padano - CERSA, Via Einstein, 26900, Lodi, Italy.
| | | | | | | | | | | | | |
Collapse
|
124
|
Brockmeier SL, Loving CL, Vorwald AC, Kehrli ME, Baker RB, Nicholson TL, Lager KM, Miller LC, Faaberg KS. Genomic sequence and virulence comparison of four Type 2 porcine reproductive and respiratory syndrome virus strains. Virus Res 2012; 169:212-21. [PMID: 23073232 DOI: 10.1016/j.virusres.2012.07.030] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 02/05/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a ubiquitous and costly virus that exhibits substantial sequence and virulence disparity among diverse isolates. In this study, we compared the whole genomic sequence and virulence of 4 Type 2 PRRSV isolates. Among the 4 isolates, SDSU73, MN184, and NADC30 were all clearly more virulent than NADC31, and among the 3 more virulent isolates, there were subtle differences based on viral replication, lung lesions, lymphadenopathy, febrile response, decreased weight gains, and cytokine responses in the lung. Lesions consistent with bacterial bronchopneumonia were present to varying degrees in pigs infected with PRRSV, and bacteria typically associated with the porcine respiratory disease complex were isolated from the lung of these pigs. Genomic sequence evaluation indicates that SDSU73 is most similar to the nucleotide sequence of JA142, the parental strain of Ingelvac(®) PRRS ATP, while the nucleotide sequences of NADC30 and NADC31 are more similar to strain MN184. Both the NADC30 and NADC31 isolates of PRRSV, isolated in 2008, maintain the nonstructural protein 2 (nsp2) deletion seen in MN184 that was isolated in 2001, but NADC31 has two additional 15 and 36 nucleotide deletions, and these strains are 8-14% different on a nucleotide basis from the MN184 strain. These results indicate that newer U.S. Type 2 strains still exhibit variability in sequence and pathogenicity and although PRRSV strains appear to be reducing the size of the nsp2 over time, this does not necessarily mean that the strain is more virulent.
Collapse
Affiliation(s)
- Susan L Brockmeier
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Wernike K, Bonilauri P, Dauber M, Errington J, LeBlanc N, Revilla-Fernández S, Hjulsager C, Isaksson M, Stadejek T, Beer M, Hoffmann B. Porcine reproductive and respiratory syndrome virus: interlaboratory ring trial to evaluate real-time reverse transcription polymerase chain reaction detection methods. J Vet Diagn Invest 2012; 24:855-66. [PMID: 22807507 DOI: 10.1177/1040638712452724] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To compare the real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays used for the diagnosis of Porcine reproductive and respiratory syndrome virus (PRRSV), a Europe-wide interlaboratory ring trial was conducted. A variety of PRRSV strains including North American (NA) and European (EU) genotype isolates were analyzed by the participants. Great differences regarding qualitative diagnostics as well as analytical sensitivity were observed between the individual RT-qPCR systems, especially when investigating strains from the EU genotype. None of the assays or commercial kits used in the ring trial could identify all different PRRSV strains with an optimal analytical and diagnostic sensitivity. The genetic variability of the PRRSV strains, which is supposed to hinder the diagnostic of the RT-PCR because of mutations at the primer binding sites, was also confirmed by sequencing and subsequent phylogenetic analysis. In summary, a major problem in PRRSV diagnostics by RT-qPCR is false-negative results. To achieve maximum safety in the molecular diagnosis of PRRSV, the combined usage of different assays or kits is highly recommended.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Wang FX, Wen YJ, Yang BC, Liu Z, Shi XC, Leng X, Song N, Wu H, Chen LZ, Cheng SP. Role of non-structural protein 2 in the regulation of the replication of the porcine reproductive and respiratory syndrome virus in MARC-145 cells: effect of gene silencing and over expression. Vet Microbiol 2012; 161:58-65. [PMID: 22959006 DOI: 10.1016/j.vetmic.2012.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/21/2012] [Accepted: 07/09/2012] [Indexed: 11/28/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease in swine-producing areas. Many vaccine strategies have been developed to control the disease, but none have yet been completely successful. The development of a cell line that can produce large yields of PRRSV vaccine is very necessary. In order to determine the role of Nsp2 in the replication of the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) in MARC-145 cells, we used an RNA interference-based short hairpin RNA of Nsp2 and constructed cell lines expressing the HP-PRRSV Nsp2 gene. Conserved HP-PRRSV Nsp2 sequences were used to design short interfering RNAs and test their ability to silence PRRSV transcript expression and replication in cells in vitro transfection. Nsp2, ORF7, and β-actin mRNA expression were determined using semi-quantitative real-time PCR. Infection with siRNA targeting Nsp2 was found to reduce the Nsp2 expression in MARC-145 cells infected with PRRSV. Both MARC-145-TJ Nsp2 and MARC-145-TJM Nsp2 cell lines were screened by G418, which were infected with HP-PRRSV, normal MARC-145 cells for mock, and then virus titers were calculated by TCID(50) after the CPE showing up. The downregulation of Nsp2 induced a remarkable decrease in PRRSV replication, causing the reduction of structural protein. The Nsp2-targeted siRNA was found to downregulate the expression of Nsp2 in MARC-145 cells and inducing replication reduce of PRRSV in MARC-145 cells. The shRNA vectors S-1 and S-2 could effectively induce the inhibition of viral replication in MARC-145. Results showed that cells expressing the Nsp2 gene of the highly pathogenic PRRSV TJ and attenuated TJM remained stable. PRRSV replication was faster in these cells than in MARC-145 cells, especially during the early stage. This shows that Nsp2 plays a positive role in PRRSV proliferation.
Collapse
Affiliation(s)
- Feng-Xue Wang
- Division of Zoonoses, State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130122, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Janková J, Celer V. Expression and serological reactivity of Nsp7 protein of PRRS genotype I virus. Res Vet Sci 2012; 93:1537-42. [PMID: 22795686 DOI: 10.1016/j.rvsc.2012.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 05/18/2012] [Accepted: 06/24/2012] [Indexed: 11/29/2022]
Abstract
The aim of this work was to express recombinant nonstructural Nsp7 protein of European genotype of porcine reproductive and respiratory syndrome virus and to evaluate its diagnostic sensitivity and specificity in serological diagnostics of the disease. The gene coding for Nsp7 protein was expressed in Escherichia coli cells and purified by IMAC. Serological reactivity of purified protein was assessed on a panel of swine sera in indirect ELISA test. Serum samples originated from PRRS positive farms, herds free of PRRS infection and PRRS free herds vaccinated with an inactivated vaccine. Nsp7 antigen proved to be suitable for serological detection of PRRS specific antibodies, showing diagnostic sensitivity of 82.2% and specificity of 97.6% when compared with IDEXX ELISA test. The nonstructural protein proved to be suitable for use as an antigen for the differentiation of post-infection and post-vaccination antibodies in pigs vaccinated with the inactivated vaccine. But the low overall antibody response to N protein after this type of vaccination makes this concept rather theoretical.
Collapse
Affiliation(s)
- J Janková
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1-3, 612 42 Brno, Czech Republic.
| | | |
Collapse
|
128
|
N-linked glycosylation of GP5 of porcine reproductive and respiratory syndrome virus is critically important for virus replication in vivo. J Virol 2012; 86:9941-51. [PMID: 22761373 DOI: 10.1128/jvi.07067-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
It has been proposed that the N-linked glycan addition at certain sites in GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) is important for production of infectious viruses and viral infectivity. However, such specific N-linked glycosylation sites do not exist in some field PRRSV isolates. This implies that the existence of GP5-associated glycan per se is not vital to the virus life cycle. In this study, we found that mutation of individual glycosylation sites at N30, N35, N44, and N51 in GP5 did not affect virus infectivity in cultured cells. However, the mutants carrying multiple mutations at N-linked glycosylation sites in GP5 had significantly reduced virus yields compared with the wild-type (wt) virus. As a result, no viremia and antibody response were detected in piglets that were injected with a mutant without all N-linked glycans in GP5. These results suggest that the N-linked glycosylation of GP5 is critically important for virus replication in vivo. The study also showed that removal of N44-linked glycan from GP5 increased the sensitivity of mutant virus to convalescent-phase serum samples but did not elicit a high-level neutralizing antibody response to wt PRRSV. The results obtained from the present study have made significant contributions to better understanding the importance of glycosylation of GP5 in the biology of PRRSV.
Collapse
|
129
|
Lu Z, Zhang J, Huang CM, Go YY, Faaberg KS, Rowland RRR, Timoney PJ, Balasuriya UBR. Chimeric viruses containing the N-terminal ectodomains of GP5 and M proteins of porcine reproductive and respiratory syndrome virus do not change the cellular tropism of equine arteritis virus. Virology 2012; 432:99-109. [PMID: 22739441 DOI: 10.1016/j.virol.2012.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/15/2012] [Accepted: 05/27/2012] [Indexed: 11/18/2022]
Abstract
Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are members of family Arteriviridae; they are highly species specific and differ significantly in cellular tropism in cultured cells. In this study we examined the role of the two major envelope proteins (GP5 and M) of EAV and PRRSV in determining their cellular tropism. We generated three viable EAV/PRRSV chimeric viruses by swapping the N-terminal ectodomains of these two proteins from PRRSV IA1107 strain into an infectious cDNA clone of EAV (rMLVB4/5 GP5ecto, rMLVB4/5/6 Mecto and rMLVB4/5/6 GP5&Mecto). The three chimeric viruses could only infect EAV susceptible cell lines but not PRRSV susceptible cells in culture. Therefore, these data unequivocally demonstrate that the ectodomains of GP5 and M are not the major determinants of cellular tropism, further supporting the recent findings that the minor envelope proteins are the critical proteins in mediating cellular tropism (Tian et al., 2012).
Collapse
Affiliation(s)
- Zhengchun Lu
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, United States
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Zhou F, Liang S, Chen AH, Singh CO, Bhaskar R, Niu YS, Miao YG. A transgenic Marc-145 cell line of piggyBac transposon-derived targeting shRNA interference against porcine reproductive and respiratory syndrome virus. Vet Res Commun 2012; 36:99-105. [PMID: 22297554 DOI: 10.1007/s11259-012-9519-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is now considered to be one of the most important diseases in countries with intensive swine industries. The two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus (PRRSV), GP5 and M (encoded by ORF5 and ORF6 genes, respectively), are associated as disulfide-linked heterodimers (GP5/M) in the virus particle. In this study, we designed 5 of the small hairpin RNAs (shRNAs) targeting the GP5 and M gene of PRRSV respectively, and investigated their inhibition to the production of PRRSV. The highest activity displayed in shRNAs of the ORF6e sequence (nts 261-279), which the inhibition rate reached was 99.09%. The result suggests that RNAi technology might serve as a potential molecular strategy for PRRSV therapy. Furthermore, the transgenic Marc-145 cell line of piggyBac transposon-derived targeting shRNA interference against PRRS virus was established. It presented stable inhibition to the replication and amplification of PRRS. The work implied that shRNAs targeting the GP5 and M gene of PRRSV may be used as potential RNA vaccines in vivo, and supplied the screening methods of transformed pig embryonic fibroblast which are prerequisite for the disease-resistant transgenic pigs to PRRS.
Collapse
Affiliation(s)
- Fang Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | | | | | | | | | | | | |
Collapse
|
131
|
Zhang X, Wang X, Mu L, Ding Z. Immune responses in pigs induced by recombinant DNA vaccine co-expressing swine IL-18 and membrane protein of porcine reproductive and respiratory syndrome virus. Int J Mol Sci 2012; 13:5715-5728. [PMID: 22754326 PMCID: PMC3382812 DOI: 10.3390/ijms13055715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/15/2012] [Accepted: 05/03/2012] [Indexed: 02/07/2023] Open
Abstract
In this study, two DNA vaccines, which express the membrane (M) protein of porcine respiratory and reproductive syndrome virus (PRRSV) (pEGFP-M) and co-express both M and swine IL-18 (pEGFP-IL18-M), were constructed and their abilities to induce humoral and cellular responses in piglets were comparatively evaluated. Experimental results showed that both recombinant DNA vaccines could not elicit neutralizing antibodies in the immunized piglets. However, both DNA vaccines elicited Th1-biased cellular immune responses. Notably, pigs immunized with the plasmid pEGFP-IL18-M developed significantly higher levels of IFN-γ and IL-2 production response and stronger specific T-lymphocyte proliferation response than the pigs inoculated with the plasmids pEGFP-M and pEGFP-IL18 (P < 0.05). These results illustrated that co-expression of M and IL-18 proteins could significantly improve the potency of DNA vaccination on the activation of vaccine-induced virus-specific cell-mediated immune responses in pigs, which may be used as a strategy to develop a new generation of vaccines against highly pathogenic PRRSV.
Collapse
Affiliation(s)
- Xiaodong Zhang
- College of Animal Science and Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China; E-Mails: (X.Z.); (X.W.); (L.M.)
| | - Xiaoli Wang
- College of Animal Science and Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China; E-Mails: (X.Z.); (X.W.); (L.M.)
| | - Lianzhi Mu
- College of Animal Science and Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China; E-Mails: (X.Z.); (X.W.); (L.M.)
| | - Zhuang Ding
- College of Animal Science and Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China; E-Mails: (X.Z.); (X.W.); (L.M.)
| |
Collapse
|
132
|
Gp96 enhances the immunogenicity of subunit vaccine of porcine reproductive and respiratory syndrome virus. Virus Res 2012; 167:162-72. [PMID: 22561908 DOI: 10.1016/j.virusres.2012.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/22/2012] [Accepted: 04/26/2012] [Indexed: 01/26/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the pig industry worldwide. Currently available commercial vaccines provide limited protection due to delayed and weak cell-mediated immunity and neutralizing antibody production, thus the immunomodulators should be considered in order to improve the efficacy of PRRSV vaccines. Heat shock protein gp96 may be used as a modulator to enhance both innate and adaptive immune responses. In the present study, two multi-epitope subunit vaccines, named as Cp1 and Cp2, were designed based on the conserved B cell epitopes of viral proteins with the N-terminal 22-370 amino acids (aa) of porcine gp96 (Gp96N) chosen as the adjuvant. Immune responses elicited by the different combinations of Cp1/Cp2 and Gp96N were examined in mice and piglets. The results indicated that the group of Cp1/Cp2-Gp96N (CG) combination induced 3-4-fold higher titers of Cp1/Cp2-ELISA antibodies and neutralizing antibodies (NAs) in mice than the groups which received Cp1/Cp2 immunization alone or with Freund's adjuvant. Additionally, Gp96N significantly enhanced the levels of lymphocyte proliferative responses of splenocytes or peripheral blood mononuclear cells from vaccinated mice or piglets. The production of IFN-γ in mice splenocytes, TNF-α, IFN-γ, and IL-12 in sera of piglets were also remarkably increased with the treatment of Gp96N, while IL-4 was reduced by half and IL-10 was decreased to an undetectable level. These results suggest that the porcine Gp96N could effectively enhance the innate and adaptive immune responses of Cp1/Cp2 with a Th1-type bias. Therefore, the multi-epitope subunit vaccine Cp1/Cp2 co-administered with porcine Gp96N might potentially be a promising candidate vaccine for the prevention and control of PRRSV in pigs.
Collapse
|
133
|
Lee YJ, Lee C. Stress-activated protein kinases are involved in porcine reproductive and respiratory syndrome virus infection and modulate virus-induced cytokine production. Virology 2012; 427:80-9. [PMID: 22424736 DOI: 10.1016/j.virol.2012.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/09/2012] [Accepted: 02/21/2012] [Indexed: 02/08/2023]
Abstract
The present study examined the role of the p38 MAPK and JNK pathways during PRRSV infection in immortalized porcine alveolar macrophage (PAM) cells. Infection with PRRSV was found to progressively activate p38 and JNK1/2 up to 36 h postinfection and then their phosphorylation levels dramatically decreased to baseline at 48 h postinfection. In contrast, UV-inactivated PRRSV failed to trigger phosphorylation of these SAPKs, indicating that the post-entry process is responsible for their activation. Independent treatment of cells with a selective p38 or JNK inhibitor markedly impaired PRRSV infection, resulting in significant reduction in synthesis of viral genomic and subgenomic RNAs, viral protein expression, and progeny virus production. Notably, cytokine production in PAM cells infected with PRRSV was shown to be altered by inhibiting these SAPKs. Altogether, our data suggest that the p38 and JNK signaling pathways play pivotal roles in PRRSV replication and may regulate immune responses during virus infection.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Microbiology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | | |
Collapse
|
134
|
Disulfide linkages mediating nucleocapsid protein dimerization are not required for porcine arterivirus infectivity. J Virol 2012; 86:4670-81. [PMID: 22301142 DOI: 10.1128/jvi.06709-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The nucleocapsid (N) proteins of the North American (type II) and European (type I) genotypes of porcine reproductive and respiratory syndrome virus (PRRSV) share only approximately 60% genetic identity, and the functionality of N in both genotypes, especially its role in virion assembly, is still poorly understood. In this study, we demonstrated that the ORF7 3' untranslated region or ORF7 of type I is functional in the type II PRRSV background. Based on these results, we postulated that the cysteine at position 90 (Cys90) of the type II N protein, which corresponds to an alanine in the type I protein, is nonessential for virus infectivity. The replacement of Cys90 with alanine confirmed this hypothesis. We then hypothesized that all of the cysteines in the N protein could be replaced by alanines. Mutational analysis revealed that, in contradiction to previously reported findings, the replacement of all of the cysteines, either singly or in combination, did not impair the growth of either type II or type I PRRSV. Treatment with the alkylating agent N-ethylmaleimide inhibited cysteine-mediated N dimerization in living cells but not in released virions. Additionally, bimolecular fluorescence complementation assays revealed noncovalent interactions in living cells among the N and C termini and between the N-terminal and C-terminal regions of the N proteins of both genotypes of PRRSV. These results demonstrate that the disulfide linkages mediating the N dimerization are not required for PRRSV viability and help to promote our understanding of the mechanism underlying arterivirus particle assembly.
Collapse
|
135
|
The presence of alpha interferon at the time of infection alters the innate and adaptive immune responses to porcine reproductive and respiratory syndrome virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:508-14. [PMID: 22301694 DOI: 10.1128/cvi.05490-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating and costly diseases to the swine industry worldwide. Overall, the adaptive immune response to PRRS virus (PRRSV) is weak, which results in delayed elimination of virus from the host and inferior vaccine protection. PRRSV has been shown to induce a meager alpha interferon (IFN-α) response, and we hypothesized that elevated IFN-α levels early in infection would shorten the induction time and increase elements of the adaptive immune response. To test this, we measured both antibody and cell-mediated immunity in pigs after the administration of a nonreplicating human adenovirus type 5 vector expressing porcine IFN-α (Ad5-pIFN-α) at the time of PRRSV infection and compared the results to those for pigs infected with PRRSV alone. Viremia was delayed, and there was a decrease in viral load in the sera of pigs administered the Ad5-pIFN-α. Although seroconversion was slightly delayed in pigs receiving Ad5-pIFN-α, probably due to the early reduction in viral replication, little difference in the overall or neutralizing antibody response was seen. However, there was an increase in the number of virus-specific IFN-γ-secreting cells detected in the pigs receiving Ad5-pIFN-α, as well as an altered cytokine profile in the lung at 14 days postinfection, indicating that the presence of IFN-α at the time of infection can alter innate and adaptive immune responses to PRRSV.
Collapse
|
136
|
Li Y, Tas A, Snijder EJ, Fang Y. Identification of porcine reproductive and respiratory syndrome virus ORF1a-encoded non-structural proteins in virus-infected cells. J Gen Virol 2012; 93:829-839. [PMID: 22258855 DOI: 10.1099/vir.0.039289-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) replicase gene consists of two large ORFs, ORF1a and ORF1b, the latter of which is expressed by ribosomal frameshifting. The ORF1a-encoded part of the resulting replicase polyproteins (pp1a and pp1ab) is predicted to be processed proteolytically into ten non-structural proteins (nsps), known as nsp1-8, with both the nsp1 and nsp7 regions being cleaved internally (yielding nsp1α and nsp1β, and nsp7α and nsp7β, respectively). The experimental verification of these predictions depends strongly on the ability to identify individual cleavage products with specific antibodies. In this study, a panel of monoclonal and polyclonal antibodies was generated, which together were able to recognize eight ORF1a-encoded PRRSV nsps. Using these reagents, replicase cleavage products were detected in PRRSV-infected MARC-145 cells using a variety of immunoassays. By immunofluorescence microscopy, most nsps could be detected by 6 h post-infection. During the early stages of infection, nsp1β, nsp2, nsp4, nsp7α, nsp7β and nsp8 co-localized in distinct punctate foci in the perinuclear region of the cell, which were determined to be the site of viral RNA synthesis by in situ labelling. Western blot and immunoprecipitation analysis identified most individual nsps and several long-lived processing intermediates (nsp3-4, nsp5-7, nsp5-8 and nsp3-8). The identification and subcellular localization of PRRSV nsps in virus-infected cells documented here provides a basis for the further structure-function studies. Thus, this PRRSV antibody panel will be an important tool for future studies on the replication and pathogenesis of this major swine pathogen.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, USA
| | - Ali Tas
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Ying Fang
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD, USA.,Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
137
|
Identification and characterization of monoclonal antibodies against the ORFV059 protein encoded by Orf virus. Virus Genes 2012; 44:429-40. [PMID: 22237464 DOI: 10.1007/s11262-011-0710-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/26/2011] [Indexed: 12/24/2022]
Abstract
Recent outbreaks of orf in China have been attributed to a novel strain of Orf virus (ORFV) designated ORFV-Jilin. Currently, monoclonal antibodies (Mabs) have not yet been developed against this specific pathogen even though such entities could have potential applications regarding the diagnosis and characterization of ORFV-Jilin. Therefore, the current study was undertaken to generate Mab against the immunodominant ORFV059 protein of this virus. For this purpose, the ORFV-Jilin ORFV059 protein was expressed in Escherichia coli and subsequently used as an antigen to immunize mice and for the initial screening of hybridomas prepared from the mice for their ability to produce anti-ORFV059 protein Mabs via an indirect ELISA. Ten, positive hybridomas were identified in this manner and verified based on the ability of their released Mab to react specifically with both naturally and artificially expressed ORFV059 protein in Western blots. The two hybridomas with the greatest propensity to secrete Mab were subcloned three times before being introduced intraperitoneally into mice. Afterwards, both Mab were separately purified from the mice's ascetic fluids and found to successfully recognize the ORFV-Jilin ORFV059 protein in a variety of immunological assays. Thus, the widespread utility of these Mab as a diagnostic core reagent should prove invaluable for further investigations regarding the mechanisms of orf pathogenesis and the control of this disease. In this regard, it should be noted that Mab A3 was used to confirm the predicted late expression of the ORFV-Jilin ORFV059 protein during virus replication.
Collapse
|
138
|
Xu XG, Wang ZS, Zhang Q, Li ZC, Ding L, Li W, Wu HY, Chang CD, Lee LH, Tong DW, Liu HJ. Baculovirus as a PRRSV and PCV2 bivalent vaccine vector: baculovirus virions displaying simultaneously GP5 glycoprotein of PRRSV and capsid protein of PCV2. J Virol Methods 2011; 179:359-66. [PMID: 22172969 DOI: 10.1016/j.jviromet.2011.11.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022]
Abstract
The GP5 glycoprotein of PRRSV is the main target for inducing neutralizing antibodies and protective immunity in the natural host. The capsid (Cap) protein is the major immunogenic protein and associated with the production of PCV2-specific neutralizing antibodies. In the present study, one genetic recombinant baculovirus BacSC-Dual-GP5-Cap was constructed. This virus displays simultaneously histidine-tagged GP5 and Cap proteins with the baculovirus glycoprotein gp64 TM and CTD on the virion surface as well as the surface of the virus-infected cells. After infection, the GP5 and Cap proteins were expressed and anchored simultaneously on the plasma membrane of Sf-9 cells, as revealed by Western blot and confocal microscopy. This report demonstrated first that both GP5 and Cap proteins were displayed successfully on the viral surface, revealed by immunogold electron microscopy. Vaccination of swine with recombinant baculovirus BacSC-Dual-GP5-Cap elicited significantly higher GP5 and Cap ELISA antibody titers in swine than the control groups. Virus neutralization test also showed that serum from the BacSC-Dual-GP5-Cap treated swine had significant levels of virus neutralization titers. Lymphocyte proliferation responses could be induced in swine immunized with BacSC-Dual-GP5-Cap than the control groups. These findings demonstrate that the BacSC-Dual-GP5-Cap bivalent subunit vaccine can be a potential vaccine against PRRSV and PCV2 infections.
Collapse
Affiliation(s)
- Xin-Gang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Sagong M, Lee C. Porcine reproductive and respiratory syndrome virus nucleocapsid protein modulates interferon-β production by inhibiting IRF3 activation in immortalized porcine alveolar macrophages. Arch Virol 2011; 156:2187-95. [PMID: 21947566 PMCID: PMC7086947 DOI: 10.1007/s00705-011-1116-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/13/2011] [Indexed: 12/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection appears to elicit a weak innate immune response suppressing type 1 interferon (IFN) production. Recent studies have revealed that several nonstructural proteins encoded by the PRRSV genome independently antagonize the type 1 IFN system. The present study sought to identify the structural proteins that possess the immune evasion properties in immortalized porcine alveolar macrophages (PAM). Each structural protein gene was stably expressed in a porcine monocyte-derived macrophage cell line, PAM-pCD163, and tested for its potential to inhibit IFN-β induction. We then focused on the nucleocapsid (N) protein, which has a strong inhibitory effect on dsRNA-induced IFN-β production. Upon dsRNA stimulation, IFN-β production was shown to decrease proportionally with increasing levels of N expression. Furthermore, the PRRSV N protein was found to down-regulate IFN-dependent gene production by dsRNA. Taken together, these results indicate the ability of N to modulate the dsRNA-mediated IFN induction pathways. In addition, the N protein significantly interfered with dsRNA-induced phosphorylation and nuclear translocation of IRF3. Our data suggest that the PRRSV N protein is a responsible component, independent of other nonstructural elements, for evading the IFN response by antagonizing IRF3 activation.
Collapse
Affiliation(s)
- Mingeun Sagong
- Department of Microbiology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | | |
Collapse
|
140
|
Baig TT, Zakhartchouk A. New insights into RNA packaging in porcine reproductive and respiratory syndrome virus. J Gen Virol 2011; 92:2865-2870. [PMID: 21918012 DOI: 10.1099/vir.0.036079-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While identifying whether the smallest packaged heteroclite subgenomic RNA (S9) of porcine reproductive and respiratory syndrome virus (PRRSV) contains a packaging signal, we found that S9 was capable of binding to the basic amino acid-rich domain (synthetic peptide of aa 34-53) of the packaging protein (N). In addition, by using truncations at the 5' and 3' ends of S9, a minimal binding region of 35 nt was found to be essential for binding to both the synthetic peptide and to the full-length N protein. Furthermore, by using cell-culture experiments, we found that S9 was capable of packaging non-viral RNA sequence into PRRSV particles and that the 35 nt region was essential for this activity. Taken together, our data suggest that this 35 nt region might be an important element for packaging PRRSV genomic RNA into virus particles.
Collapse
Affiliation(s)
- Tayyba T Baig
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Alexander Zakhartchouk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
141
|
WEI TC, TIAN ZJ, ZHOU YJ, AN TQ, JIANG YF, XIAO Y, HU S, PENG JM, HAO XF, ZHANG SR, TONG GZ. Evaluation of the Pathogenicity of a Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Variant in Piglets. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60120-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
142
|
Song BH, Kim JM, Kim JK, Jang HS, Yun GN, Choi EJ, Song JY, Yun SI, Lee YM. Packaging of porcine reproductive and respiratory syndrome virus replicon RNA by a stable cell line expressing its nucleocapsid protein. J Microbiol 2011; 49:516-23. [PMID: 21717343 PMCID: PMC7091078 DOI: 10.1007/s12275-011-1280-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/13/2011] [Indexed: 11/05/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the Arteriviridae family, is one of the most common and economically important swine pathogens. Although both live-attenuated and killed-inactivated vaccines against the virus have been available for a decade, PRRSV is still a major problem in the swine industry worldwide. To explore the possibility of producing single-round infectious PRRSV replicon particles as a potential vaccine strategy, we have now generated two necessary components: 1) a stable cell line (BHK/Sinrepl9/PRRSV-N) that constitutively expresses the viral nucleocapsid (N) protein localized to the cytoplasm and the nucleolus and 2) a PRRSV replicon vector (pBAC/PRRSV/Replicon-AN) with a 177-nucleotide deletion, removing the 3′-half portion of ORF7 in the viral genome, from which the self-replicating propagation-defective replicon RNAs were synthesized in vitro by SP6 polymerase run-off transcription. Transfection of this replicon RNA into N protein-expressing BHK-21 cells led to the secretion of infectious particles that packaged the replicon RNA, albeit with a low production efficiency of 0.4 × 102 to 1.1 × 102 infectious units/ml; the produced particles had only single-round infectivity with no cell-to-cell spread. This trans-complementation system for PRRSV provides a useful platform for studies to define the packaging signals and motifs present within the viral genome and N protein, respectively, and to develop viral replicon-based antiviral vaccines that will stop the infection and spread of this pathogen.
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Bao Y, Guo Y, Zhang L, Zhao Z, Li N. Inhibition of porcine reproductive and respiratory syndrome virus replication by RNA interference in MARC-145 cells. Mol Biol Rep 2011; 39:2515-22. [PMID: 21667252 DOI: 10.1007/s11033-011-1003-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 06/01/2011] [Indexed: 11/28/2022]
Abstract
With the ultimate aim of producing an RNA interference-mediated transgenic pig that is resistant to porcine reproductive and respiratory syndrome virus (PRRSV), we have investigated the effect of RNA interference (RNAi) on silencing the expression of viral genes in the MARC-145 cell line. Twenty small interfering RNAs (siRNAs) were designed and screened for their ability to suppress the expression of the genes ORF1b, 5, 6, and 7 from the highly virulent isolate, PRRSV-JXwn06. Of these siRNAs, the four most effective were selected and four short hairpin RNA (shRNA) expression vectors (pGenesil-1-1b-135, pGenesil-1-1b-372, pGenesil-1-6-135, and pGenesil-1-6-169) targeting ORF1b and ORF6 were constructed and delivered into MARC-145 cells. These cells were then infected with JXwn06. All four vectors inhibited the PRRSV-specific cytopathic effect (CPE). The virus titers in cells transfected with pGenesil-1-1b-135, pGenesil-1-1b-372, pGenesil-1-6-135, and pGenesil-1-6-169 were lower than that of control cells by approximately 150-, 600-, 2.3- and 1.7-fold, respectively. In addition, the expression levels of ORF1 and ORF6 were reduced compared with controls. The unglycosylated membrane protein M, encoded by ORF6, was not detectable in cells transfected with shRNA expression vectors. These results verified that RNAi can effectively inhibit PRRSV-JXwn06 replication in cultured cells in vitro. The four shRNA expression vectors are an initial step in the production of transgenic pigs with PRRSV resistance.
Collapse
Affiliation(s)
- Yonghua Bao
- Department of Basic Immunology, Xinxiang Medical University, Jinsui Street, Xinxiang 453003, People's Republic of China.
| | | | | | | | | |
Collapse
|
144
|
Vanhee M, Van Breedam W, Costers S, Geldhof M, Noppe Y, Nauwynck H. Characterization of antigenic regions in the porcine reproductive and respiratory syndrome virus by the use of peptide-specific serum antibodies. Vaccine 2011; 29:4794-804. [PMID: 21554913 DOI: 10.1016/j.vaccine.2011.04.071] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/12/2011] [Accepted: 04/19/2011] [Indexed: 12/22/2022]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus that causes reproductive failure in sows and boars, and respiratory disease in pigs of all ages. Antibodies against several viral envelope proteins are produced upon infection, and the glycoproteins GP4 and GP5 are known targets for virus neutralization. Still, substantial evidence points to the presence of more, yet unidentified neutralizing antibody targets in the PRRSV envelope proteins. The current study aimed to identify and characterize linear antigenic regions (ARs) within the entire set of envelope proteins of the European prototype PRRSV strain Lelystad virus (LV). Seventeen LV-specific antisera were tested in pepscan analysis on GP2, E, GP3, GP4, GP5 and M, resulting in the identification of twenty-one ARs that are capable of inducing antibodies upon infection in pigs. A considerable number of these ARs correspond to previously described epitopes in different European- and North-American-type PRRSV strains. Remarkably, the largest number of ARs was found in GP3, and two ARs in the GP3 ectodomain consistently induced antibodies in a majority of infected pigs. In contrast, all remaining ARs, except for a highly immunogenic epitope in GP4, were only recognized by one or a few infected animals. Sensitivity to antibody-mediated neutralization was tested for a selected number of ARs by in vitro virus-neutralization tests on alveolar macrophages with peptide-purified antibodies. In addition to the known neutralizing epitope in GP4, two ARs in GP2 and one in GP3 turned out to be targets for virus-neutralizing antibodies. No virus-neutralizing antibody targets were found in E, GP5 or M. Since the neutralizing AR in GP3 induced antibodies in a majority of infected pigs, the immunogenicity of this AR was studied more extensively, and it was demonstrated that the corresponding region in GP3 of virus strains other than LV also induces virus-neutralizing antibodies. This study provides new insights into PRRSV antigenicity, and contributes to the knowledge on protective immunity and immune evasion strategies of the virus.
Collapse
Affiliation(s)
- Merijn Vanhee
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
145
|
Chia MY, Hsiao SH, Chan HT, Do YY, Huang PL, Chang HW, Tsai YC, Lin CM, Pang VF, Jeng CR. Evaluation of the immunogenicity of a transgenic tobacco plant expressing the recombinant fusion protein of GP5 of porcine reproductive and respiratory syndrome virus and B subunit of Escherichia coli heat-labile enterotoxin in pigs. Vet Immunol Immunopathol 2011; 140:215-25. [PMID: 21277027 DOI: 10.1016/j.vetimm.2011.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/12/2010] [Accepted: 01/01/2011] [Indexed: 11/22/2022]
Abstract
Escherichia coli heat-labile enterotoxin B subunit (LTB) can be used as an adjuvant for co-administered antigens. Our previous study showed that the expression of neutralizing epitope GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) in transgenic tobacco plant (GP5-T) could induce PRRSV-specific immune responses in pigs. A transgenic tobacco plant co-expressing LTB and PRRSV GP5 as a fusion protein (LTB-GP5-T) was further constructed and its immunogenicity was evaluated. Pigs were given orally three consecutive doses of equal concentration of recombinant GP5 protein expressed in leaves of LTB-GP5-T or GP5-T at a 2-week interval and challenged with PRRSV at 7 weeks post-initial immunization. Pigs receiving LTB-GP5-T or GP5-T developed PRRSV-specific antibody- and cell-mediated immunity and showed significantly lower viremia and tissue viral load and milder lung lesions than wild type tobacco plant (W-T). The LTB-GP5-T-treated group had relatively higher immune responses than the GP5-T-treated group, although the differences were not statistically significant.
Collapse
Affiliation(s)
- Min-Yuan Chia
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Immune evasion of porcine reproductive and respiratory syndrome virus through glycan shielding involves both glycoprotein 5 as well as glycoprotein 3. J Virol 2011; 85:5555-64. [PMID: 21411530 DOI: 10.1128/jvi.00189-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Passive administration of porcine reproductive and respiratory syndrome virus (PRRSV) neutralizing antibodies (NAbs) can effectively protect pigs against PRRSV infection. However, after PRRSV infection, pigs typically develop a weak and deferred NAb response. One major reason for such a meager NAb response is the phenomenon of glycan shielding involving GP5, a major glycoprotein carrying one major neutralizing epitope. We describe here a type II PRRSV field isolate (PRRSV-01) that is highly susceptible to neutralization and induces an atypically rapid, robust NAb response in vivo. Sequence analysis shows that PRRSV-01 lacks two N-glycosylation sites, normally present in wild-type (wt) PRRSV strains, in two of its envelope glycoproteins, one in GP3 (position 131) and the other in GP5 (position 51). To determine the influence of these missing N-glycosylation sites on the distinct neutralization phenotype of PRRSV-01, a chimeric virus (FL01) was generated by replacing the structural genes of type II PRRSV strain FL12 cDNA infectious clone with those from PRRSV-01. N-glycosylation sites were reintroduced into GP3 and GP5 of FL01, separately or in combination, by site-directed mutagenesis. Reintroduction of the N-glycosylation site in either GP3 or GP5 allowed recovery of in vivo and in vitro glycan shielding capacity, with an additive effect when these sites were reintroduced into both glycoproteins simultaneously. Although the loss of these glycosylation sites has seemingly occurred naturally (presumably by passage through cell cultures), PRRSV-01 virus quickly regains these glycosylation sites through replication in vivo, suggesting that a strong selective pressure is exerted at these sites. Collectively, our data demonstrate the involvement of an N-glycan moiety located in GP3 in glycan shield interference.
Collapse
|
147
|
Van Breedam W, Costers S, Vanhee M, Gagnon CA, Rodríguez-Gómez IM, Geldhof M, Verbeeck M, Van Doorsselaere J, Karniychuk U, Nauwynck HJ. Porcine reproductive and respiratory syndrome virus (PRRSV)-specific mAbs: supporting diagnostics and providing new insights into the antigenic properties of the virus. Vet Immunol Immunopathol 2011; 141:246-57. [PMID: 21470695 DOI: 10.1016/j.vetimm.2011.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 03/02/2011] [Accepted: 03/06/2011] [Indexed: 01/27/2023]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important viral pathogens in the swine industry. Despite great efforts of pig holders, veterinarians, researchers and vaccine developers, the virus still causes major production losses. It is clear that efficient and correct monitoring and rational development of vaccines are crucial in the combat against this pathogen. PRRSV-specific monoclonal antibodies (mAbs) are essential tools for both diagnostic and research purposes. This study describes the production of PRRSV GP3-, GP5- and N-specific hybridomas and an extensive characterization of the mAbs. The N-specific mAbs generated in this study appear to be useful tools for diagnostics, as they were found to react with genetically very different PRRSV isolates and may serve to discriminate between European and American type PRRSV isolates. These mAbs also allowed detection of the PRRSV N protein in both formalin-fixed, paraffin-embedded tissue sections and frozen tissue sections of PRRSV-infected lungs, further illustrating their diagnostic value. Different neutralization assays pointed out that none of the GP3- and GP5-specific mAbs tested shows virus-neutralizing capacity. This is noteworthy, as these mAbs recognize epitopes in the predicted ectodomains of their target protein and since the GP5-specific antibodies specifically react with the antigenic region that corresponds to the "major neutralizing epitope" suggested for American type PRRSV. The current findings argue against an important role of the identified antigenic regions in direct antibody-mediated neutralization of European type PRRSV in vivo. However, it is also clear that findings concerning a specific PRRSV epitope cannot always be generalized, as the antigenic determinants and their biological properties may differ radically between different virus isolates.
Collapse
Affiliation(s)
- Wander Van Breedam
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Identification of new defective interfering RNA species associated with porcine reproductive and respiratory syndrome virus infection. Virus Res 2011; 158:33-6. [PMID: 21385595 DOI: 10.1016/j.virusres.2011.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 11/24/2022]
Abstract
In the present study, seven new defective interfering (DI) RNA species of porcine reproductive and respiratory syndrome virus (PRRSV) were identified. RT-PCR, Northern blot and sequence analyses indicated that these DI RNA specie have deletions of 8513-9176 nucleotides located between Nsp1/Nsp2 and Nsp10. Compared with the previous DI RNAs of PRRSV reported, they have three distinct characteristics: much smaller deletion sizes; different nucleotide repeats (2-12nt) used in the junction sites and in-frame deletions. The results further suggested that the similarity-assisted RNA recombination may be the main cause of generation of DI RNAs in PRRSV and probably in other arteriviruses.
Collapse
|
149
|
Das PB, Vu HLX, Dinh PX, Cooney JL, Kwon B, Osorio FA, Pattnaik AK. Glycosylation of minor envelope glycoproteins of porcine reproductive and respiratory syndrome virus in infectious virus recovery, receptor interaction, and immune response. Virology 2011; 410:385-94. [PMID: 21195444 DOI: 10.1016/j.virol.2010.12.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/24/2010] [Accepted: 12/03/2010] [Indexed: 02/07/2023]
Abstract
The role of N-glycosylation of the three minor envelope glycoproteins (GP2, GP3, and GP4) of porcine reproductive and respiratory syndrome virus (PRRSV) on infectious virus production, interactions with the receptor CD163, and neutralizing antibody production in infected pigs was examined. By mutation of the glycosylation sites in these proteins, the studies show that glycan addition at N184 of GP2, N42, N50 and N131 of GP3 is necessary for infectious virus production. Although single-site mutants of GP4 led to infectious virus production, mutation of any two sites in GP4 was lethal. Furthermore, the glycosylation of GP2 and GP4 was important for efficient interaction with CD163. Unlike PRRSVs encoding hypoglycosylated form of GP5 that induced significantly higher levels of neutralizing antibodies in infected piglets, PRRSVs encoding hypoglycosylated forms of GP2, GP3 or GP4 did not. These studies reveal the importance of glycosylation of these minor GPs in the biology of PRRSV.
Collapse
Affiliation(s)
- Phani B Das
- School of Veterinary Medicine and Biomedical Sciences, and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0900, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Johnson CR, Griggs TF, Gnanandarajah J, Murtaugh MP. Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J Gen Virol 2011; 92:1107-1116. [PMID: 21307222 PMCID: PMC3139420 DOI: 10.1099/vir.0.030213-0] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus that emerged in the late 1980s in both Europe and North America as the causative agent of porcine reproductive and respiratory syndrome (PRRS), now the most important disease of swine worldwide. Despite extensive characterization of PRRSV proteins by direct analysis and comparison with other arteriviruses, determinants of virulence, pathogenesis and protective immune recognition remain poorly understood. Thus, we hypothesized that additional ORFs are present in the PRRSV genome that may contribute to its biological properties, and so we screened highly purified virions of strain VR2332, the prototype type 2 PRRSV, for evidence of novel polypeptides. A 51 aa polypeptide was discovered that is encoded by an alternative ORF of the subgenomic mRNA encoding the major envelope glycoprotein, GP5, and which is incorporated into virions. The protein, referred to as ORF5a protein, is expressed in infected cells, and pigs infected with PRRSV express anti-ORF5a protein antibodies. A similar ORF is present as an alternative reading frame in all PRRSV subgenomic RNA5 genes and in all other arteriviruses, suggesting that this ORF5a protein plays a significant role in arterivirology. Its discovery also provides a new potential target for immunological and pharmacological intervention in PRRS.
Collapse
Affiliation(s)
- Craig R Johnson
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | - Theodor F Griggs
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | - Josephine Gnanandarajah
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | - Michael P Murtaugh
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|