101
|
Dai K, Ma X, Yang Z, Chang YF, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Yan Q, Han X, Ma X, Wen X, Wen Y. Polyamine Transport Protein PotD Protects Mice against Haemophilus parasuis and Elevates the Secretion of Pro-Inflammatory Cytokines of Macrophage via JNK-MAPK and NF-κB Signal Pathways through TLR4. Vaccines (Basel) 2019; 7:vaccines7040216. [PMID: 31847381 PMCID: PMC6963478 DOI: 10.3390/vaccines7040216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
The potD gene, belonging to the well-conserved ABC (ATP-binding cassette) transport system potABCD, encodes the bacterial substrate-binding subunit of the polyamine transport system. In this study, we found PotD in Haemophilus (Glaesserella) parasuis could actively stimulate both humoral immune and cellular immune responses and elevate lymphocyte proliferation, thus eliciting a Th1-type immune response in a murine immunity and infection model. Stimulation of Raw 264.7 macrophages with PotD validated that Toll-like receptor 4, rather than 2, participated in the positive transcription and expression of pro-inflammatory cytokines IL–1β, IL–6, and TNF–α using qPCR and ELISA. Blocking signal-regulated JNK–MAPK and RelA(p65) pathways significantly decreased PotD-induced pro-inflammatory cytokine production. Overall, we conclude that vaccination of PotD could induce both humoral and cellular immune responses and provide immunoprotection against H. parasuis challenge. The data also suggest that Glaesserella PotD is a novel pro-inflammatory mediator and induces TLR4-dependent pro-inflammatory activity in Raw 264.7 macrophages through JNK–MAPK and RelA(p65) pathways.
Collapse
Affiliation(s)
- Ke Dai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Xiaoyu Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Zhen Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, New York, NY 14850, USA
- Correspondence: (Y.-F.C.); (Y.W.); Tel.: +1-607-253-3675 (Y.-F.C.); +86-135-5006-2555 (Y.W.)
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Xintian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
- Correspondence: (Y.-F.C.); (Y.W.); Tel.: +1-607-253-3675 (Y.-F.C.); +86-135-5006-2555 (Y.W.)
| |
Collapse
|
102
|
Herbst-Gervasoni CJ, Christianson DW. Binding of N8-Acetylspermidine Analogues to Histone Deacetylase 10 Reveals Molecular Strategies for Blocking Polyamine Deacetylation. Biochemistry 2019; 58:4957-4969. [PMID: 31746596 DOI: 10.1021/acs.biochem.9b00906] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eukaryotic histone deacetylase 10 (HDAC10) is a Zn2+-dependent hydrolase that exhibits catalytic specificity for the hydrolysis of the polyamine N8-acetylspermidine. The recently determined crystal structure of HDAC10 from Danio rerio (zebrafish) reveals a narrow active site cleft and a negatively charged "gatekeeper" (E274) that favors the binding of the slender cationic substrate. Because HDAC10 expression is upregulated in advanced-stage neuroblastoma and induces autophagy, the selective inhibition of HDAC10 suppresses the autophagic response and renders cancer cells more susceptible to cytotoxic chemotherapeutic drugs. Here, we describe X-ray crystal structures of zebrafish HDAC10 complexed with eight different analogues of N8-acetylspermidine. These analogues contain different Zn2+-binding groups, such as hydroxamate, thiolate, and the tetrahedral gem-diolate resulting from the addition of a Zn2+-bound water molecule to a ketone carbonyl group. Notably, the chemistry that accompanies the binding of ketonic substrate analogues is identical to the chemistry involved in the first step of catalysis, i.e., nucleophilic attack of a Zn2+-bound water molecule at the scissile carbonyl group of N8-acetylspermidine. The most potent inhibitor studied contains a thiolate Zn2+-binding group. These structures reveal interesting geometric changes in the metal coordination polyhedron that accommodate inhibitor binding. Additional interactions in the active site highlight features contributing to substrate specificity. These interactions are likely to contribute to inhibitor binding selectivity and will inform the future design of compounds selective for HDAC10 inhibition.
Collapse
Affiliation(s)
- Corey J Herbst-Gervasoni
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
103
|
Ozer Kaya S, Erisir M, Gur S, Kandemir FM, Benzer F, Kaya E, Sonmez M, Turk G. The changes in semen quality, arginase activity and nitric oxide level in dexamethasone-treated rams. Andrologia 2019; 52:e13464. [PMID: 31721281 DOI: 10.1111/and.13464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 11/30/2022] Open
Abstract
This study was made to investigate the effects of intramuscular administrations of dexamethasone on seminal plasma nitric oxide levels and arginase activity, and some spermatological parameters in rams. Ten Akkaraman rams weighing 50-60 kg and 2 years old were used as material in this study. The study was performed during the breeding season (September-November) for rams. The semen was collected by artificial vagina at 1st, 4th, 24th, 48th, 72nd and 96th hours for control group before dexamethasone administration. For treatment group, 0.25 mg/kg dexamethasone was administered and semen was collected at the time points described for control group. Spermatological characteristics of semen samples (semen volume, pH, sperm motility, density and abnormal sperm rate), seminal plasma arginase enzyme activities and nitric oxide levels were determined. It was determined that the administration of dexamethasone was detected to decrease seminal plasma arginase activity (p < .05 and .01) and nitric oxide level (p < .05), semen volume (p < .05 and .01), mass activity (p < .05 and .01), sperm density (p < .05) and sperm motility (p < .05 and .01), and to increase abnormal sperm rate (p < .05 and .01). In conclusion, dexamethasone is not recommended to be used during the breeding season as it damages the sperm quality of the rams.
Collapse
Affiliation(s)
- Seyma Ozer Kaya
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Firat University, Elazığ, Turkey
| | - Mine Erisir
- Department of Biochemistry, Faculty of Veterinary Medicine, Firat University, Elazığ, Turkey
| | - Seyfettin Gur
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Firat University, Elazığ, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Fulya Benzer
- Department of Food Engineering, Faculty of Engineering, Munzur University, Tunceli, Turkey
| | - Emre Kaya
- Department of Biochemistry, Faculty of Veterinary Medicine, Firat University, Elazığ, Turkey
| | - Mustafa Sonmez
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Firat University, Elazığ, Turkey
| | - Gaffari Turk
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Firat University, Elazığ, Turkey
| |
Collapse
|
104
|
Baroli G, Sanchez JR, Agostinelli E, Mariottini P, Cervelli M. Polyamines: The possible missing link between mental disorders and epilepsy (Review). Int J Mol Med 2019; 45:3-9. [PMID: 31746386 DOI: 10.3892/ijmm.2019.4401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/22/2019] [Indexed: 11/05/2022] Open
Abstract
Polyamines are small positively charged alkylamines that are essential in a number of crucial eukaryotic processes, like normal cell growth and development. In normal physiological conditions, intracellular polyamine content is tightly regulated through a fine regulated network of biosynthetic and catabolic enzymes and a transport system. The dysregulation of this network is frequently associated to different tumors, where high levels of polyamines has been detected. Polyamines also modulate ion channels and ionotropic glutamate receptors and altered levels of polyamines have been observed in different brain diseases, including mental disorders and epilepsy. The goal of this article is to review the role of polyamines in mental disorders and epilepsy within a frame of the possible link between these two brain pathologies. The high comorbidity between these two neurological illnesses is strongly suggestive that they share a common background in the central nervous system. This review proposes an additional association between the noradrenalin/serotonin and glutamatergic neuronal circuits with polyamines. Polyamines can be considered supplementary defensive shielding molecules, important to protect the brain from the development of epilepsy and mental illnesses that are caused by different types of neurons. In this contest, the modulation of polyamine metabolism may be a novel important target for the prevention and therapeutic treatment of these diseases that have a high impact on the costs of public health and considerably affect quality of life.
Collapse
Affiliation(s)
- Giulia Baroli
- Department of Science, University of Rome 'Roma Tre', I‑00146 Rome, Italy
| | | | - Enzo Agostinelli
- Department of Biochemical Sciences 'Rossi Fanelli', University of Rome 'La Sapienza', I‑00185 Rome, Italy
| | - Paolo Mariottini
- Department of Science, University of Rome 'Roma Tre', I‑00146 Rome, Italy
| | - Manuela Cervelli
- Department of Science, University of Rome 'Roma Tre', I‑00146 Rome, Italy
| |
Collapse
|
105
|
Studies of ternary complexes formed in the biocoordination systems including copper(II) ions, polyamines and l-lysine. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
106
|
Nishio T, Yoshikawa Y, Shew CY, Umezawa N, Higuchi T, Yoshikawa K. Specific effects of antitumor active norspermidine on the structure and function of DNA. Sci Rep 2019; 9:14971. [PMID: 31628357 PMCID: PMC6802174 DOI: 10.1038/s41598-019-50943-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023] Open
Abstract
We compared the effects of trivalent polyamines, spermidine (SPD) and norspermidine (NSPD), a chemical homologue of SPD, on the structure of DNA and gene expression. The chemical structures of SPD and NSPD are different only with the number of methylene groups between amine groups, [N-3-N-4-N] and [N-3-N-3-N], respectively. SPD plays vital roles in cell function and survival, including in mammals. On the other hand, NSPD has antitumor activity and is found in some species of plants, bacteria and algae, but not in humans. We found that both polyamines exhibit biphasic effect; enhancement and inhibition on in vitro gene expression, where SPD shows definitely higher potency in enhancement but NSPD causes stronger inhibition. Based on the results of AFM (atomic force microscopy) observations together with single DNA measurements with fluorescence microscopy, it becomes clear that SPD tends to align DNA orientation, whereas NSPD induces shrinkage with a greater potency. The measurement of binding equilibrium by NMR indicates that NSPD shows 4-5 times higher affinity to DNA than SPD. Our theoretical study with Monte Carlo simulation provides the insights into the underlying mechanism of the specific effect of NSPD on DNA.
Collapse
Affiliation(s)
- Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Chwen-Yang Shew
- Doctoral Program in Chemistry, The Graduate Center of the City University of New York, New York, 10016, USA.
- Department of Chemistry, College of Staten Island, Staten Island, New York, 10314, USA.
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan.
| |
Collapse
|
107
|
Thomas TJ, Tajmir-Riahi HA, Pillai CKS. Biodegradable Polymers for Gene Delivery. Molecules 2019; 24:molecules24203744. [PMID: 31627389 PMCID: PMC6832905 DOI: 10.3390/molecules24203744] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The cellular transport process of DNA is hampered by cell membrane barriers, and hence, a delivery vehicle is essential for realizing the potential benefits of gene therapy to combat a variety of genetic diseases. Virus-based vehicles are effective, although immunogenicity, toxicity and cancer formation are among the major limitations of this approach. Cationic polymers, such as polyethyleneimine are capable of condensing DNA to nanoparticles and facilitate gene delivery. Lack of biodegradation of polymeric gene delivery vehicles poses significant toxicity because of the accumulation of polymers in the tissue. Many attempts have been made to develop biodegradable polymers for gene delivery by modifying existing polymers and/or using natural biodegradable polymers. This review summarizes mechanistic aspects of gene delivery and the development of biodegradable polymers for gene delivery.
Collapse
Affiliation(s)
- T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, KTL N102, 675 Hoes Lane, Piscataway, NJ 08854, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| | | | - C K S Pillai
- Department of Chemistry-Biochemistry-Physics, University of Québec in Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada.
| |
Collapse
|
108
|
Evaluation of polyamines as marker of melanoma cell proliferation and differentiation by an improved high-performance liquid chromatographic method. Amino Acids 2019; 51:1623-1631. [PMID: 31617109 DOI: 10.1007/s00726-019-02799-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
The differentiation therapy is focused on the identification of new agents able to impair the proliferative and metastatic potential of cancer cells through the induction of differentiation. Although several markers of cell differentiation on tumor cells have been identified, their causal relationship with neoplastic competence has not been characterized in sufficient detail to propose their use as new pharmacological targets useful for the design of new differentiation agents. Polyamine level in cancer cells and in body fluids was proposed as potential marker of cell proliferation and differentiation. The main advantage of this marker is the possibility to evaluate the antineoplastic activity of new drugs able to induce cell differentiation and consequently to inhibit tumor growth and metastasis. The presented report shows a simply and highly reproducible reverse-phase high-performance liquid chromatographic (HPLC) method for the determination of ortho-phthalaldehyde (OPA) derivatives of polyamines: putrescine (PUT), cadaverine (CAD), spermidine (SPD) and spermine (SPM). The novelty of this method is the fluorescence response for OPA-derivate of SPM, generally low in other procedures, that has been significantly improved by the use of a fully endcapped packing material with minimal silanol interactions. The limits of detection for PUT, CAD, SPD and SPM were 0.6, 0.7, 0.8, and 0.4 pmol/mL, respectively. The analysis time was ≤ 20 min, and the relative recovery rate was of about 97%. To verify the usefulness of this method, it has been validated in a murine melanoma cell line (B16-F10) treated with two theophylline derivatives (namely 8-chlorotheophylline and 8-bromotheophylline). These two compounds increased the activity of tissue transglutaminase (TG2) and the synthesis of melanin, two recognized markers of melanoma cell differentiation, and significantly reduced the levels of intracellular polyamines.
Collapse
|
109
|
Salimova EV, Tret’yakova EV, Parfenova LV. Synthesis and cytotoxic activity of 3-amino substituted fusidane triterpenoids. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02445-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
110
|
Kart D, Yabanoglu Ciftci S, Nemutlu E. Altered metabolomic profile of dual-species biofilm: Interactions between Proteus mirabilis and Candida albicans. Microbiol Res 2019; 230:126346. [PMID: 31563763 DOI: 10.1016/j.micres.2019.126346] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 01/04/2023]
Abstract
In this study, we aimed to determine the interspecies interactions between Proteus mirabilis and Candida albicans. Mono and dual-species biofilms were grown in a microtiter plate and metabolomic analysis of the biofilms was performed. The effects of togetherness of two species on the expression levels of candidal virulence genes and urease and swarming activities of P.mirabilis were investigated. The growth of C.albicans was inhibited by P.mirabilis whereas the growth and swarming activity of P.mirabilis were increased by C.albicans. The inhibition of Candida cell growth was found to be biofilm specific. The alteration was not detected in urease activity. The expressions of EFG1, HWP1 and SAP2 genes were significantly down-regulated, however, LIP1 was upregulated by P.mirabilis. In the presence of P.mirabilis carbonhydrates, amino acids, polyamine and lipid metabolisms were altered in C.albicans. Interestingly, the putrescine level was increased up to 230 fold in dual-species biofilm compared to monospecies C.albicans biofilm. To our knowledge, this is the first study to investigate the impact of each microbial pathogen on the dual microbial environment by integration of metabolomic data.
Collapse
Affiliation(s)
- Didem Kart
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Sıhhiye, Ankara, Turkey.
| | - Samiye Yabanoglu Ciftci
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, Sıhhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Sıhhiye, Ankara, Turkey
| |
Collapse
|
111
|
Osko JD, Roose BW, Shinsky SA, Christianson DW. Structure and Function of the Acetylpolyamine Amidohydrolase from the Deep Earth Halophile Marinobacter subterrani. Biochemistry 2019; 58:3755-3766. [PMID: 31436969 PMCID: PMC6736730 DOI: 10.1021/acs.biochem.9b00582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polyamines are small organic cations that are essential for cellular function in all kingdoms of life. Polyamine metabolism is regulated by enzyme-catalyzed acetylation-deacetylation cycles in a fashion similar to the epigenetic regulation of histone function in eukaryotes. Bacterial polyamine deacetylases are particularly intriguing, because these enzymes share the fold and function of eukaryotic histone deacetylases. Recently, acetylpolyamine amidohydrolase from the deep earth halophile Marinobacter subterrani (msAPAH) was described. This Zn2+-dependent deacetylase shares 53% amino acid sequence identity with the acetylpolyamine amidohydrolase from Mycoplana ramosa (mrAPAH) and 22% amino acid sequence identity with the catalytic domain of histone deacetylase 10 from Danio rerio (zebrafish; zHDAC10), the eukaryotic polyamine deacetylase. The X-ray crystal structure of msAPAH, determined in complexes with seven different inhibitors as well as the acetate coproduct, shows how the chemical strategy of Zn2+-dependent amide hydrolysis and the catalytic specificity for cationic polyamine substrates is conserved in a subterranean halophile. Structural comparisons with mrAPAH reveal that an array of aspartate and glutamate residues unique to msAPAH enable the binding of one or more Mg2+ ions in the active site and elsewhere on the protein surface. Notwithstanding these differences, activity assays with a panel of acetylpolyamine and acetyllysine substrates confirm that msAPAH is a broad-specificity polyamine deacetylase, much like mrAPAH. The broad substrate specificity contrasts with the narrow substrate specificity of zHDAC10, which is highly specific for N8-acetylspermidine hydrolysis. Notably, quaternary structural features govern the substrate specificity of msAPAH and mrAPAH, whereas tertiary structural features govern the substrate specificity of zHDAC10.
Collapse
Affiliation(s)
- Jeremy D. Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | - Benjamin W. Roose
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | | | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
112
|
Sousa AR, Oliveira AV, Oliveira MJ, Sarmento B. Nanotechnology-based siRNA delivery strategies for metastatic colorectal cancer therapy. Int J Pharm 2019; 568:118530. [DOI: 10.1016/j.ijpharm.2019.118530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
|
113
|
Iwasaki H, Shimura T, Kataoka H. Current status of urinary diagnostic biomarkers for colorectal cancer. Clin Chim Acta 2019; 498:76-83. [PMID: 31421118 DOI: 10.1016/j.cca.2019.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Fecal occult blood test (FOBT) and flexible sigmoidoscopy are the currently using screening methods for colorectal cancer (CRC). However, these methods still have problems of high false positive rates in FOBT and increased invasiveness and cost associated with endoscopy. The development of non-invasive biomarkers is thus important for the diagnosis of CRC. Urine is one of the most commonly used samples for mass screening owing to its non-invasive and simple process of collection; however, the discovery of urinary diagnostic biomarkers for malignancies is still challenging and developing. Since urine contains abundant substances reflecting systemic body condition, urinary biomarker might contribute to detect CRC in a completely non-invasive manner. In this review, we describe the current utility of urinary diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Hiroyasu Iwasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
114
|
Chen J, Ni H, Meng Z, Wang J, Huang X, Dong Y, Sun C, Zhang Y, Cui L, Li J, Jia X, Meng Q, Li C. Supramolecular trap for catching polyamines in cells as an anti-tumor strategy. Nat Commun 2019; 10:3546. [PMID: 31391464 PMCID: PMC6685945 DOI: 10.1038/s41467-019-11553-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/20/2019] [Indexed: 01/14/2023] Open
Abstract
Polyamines are essential for the growth of eukaryotic cells and can be dysregulated in tumors. Here we describe a strategy to deplete polyamines through host-guest encapsulation using a peptide-pillar[5]arene conjugate (P1P5A, P1 = RGDSK(N3)EEEE) as a supramolecular trap. The RGD in the peptide sequence allows the molecule to bind to integrin αvβ3-overexpressing tumor cells. The negative charged glutamic acid residues enhance the inclusion affinities between the pillar[5]arene and cationic polyamines via electrostatic interactions and facilitate the solubility of the conjugate in aqueous media. The trap P1P5A efficiently encapsulates polyamines with association constants of 105-106 M-1. We show that P1P5A has a wide spectrum of antitumor activities, and induces apoptosis via affecting the polyamine biosynthetic pathway. Experiments in vivo show that P1P5A effectively inhibits the growth of breast adenocarcinoma xenografts in female nude mice. This work reveals an approach for suppressing tumor growth by using supramolecular macrocycles to trap polyamines in tumor cells.
Collapse
Affiliation(s)
- Junyi Chen
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Hanzhi Ni
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China.,Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Xiayang Huang
- Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, P. R. China
| | - Yansheng Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Chao Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Yadan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Lei Cui
- Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Li
- Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, P. R. China
| | - Xueshun Jia
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China.
| | - Chunju Li
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China. .,Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, P. R. China. .,Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.
| |
Collapse
|
115
|
Puleston DJ, Buck MD, Klein Geltink RI, Kyle RL, Caputa G, O'Sullivan D, Cameron AM, Castoldi A, Musa Y, Kabat AM, Zhang Y, Flachsmann LJ, Field CS, Patterson AE, Scherer S, Alfei F, Baixauli F, Austin SK, Kelly B, Matsushita M, Curtis JD, Grzes KM, Villa M, Corrado M, Sanin DE, Qiu J, Pällman N, Paz K, Maccari ME, Blazar BR, Mittler G, Buescher JM, Zehn D, Rospert S, Pearce EJ, Balabanov S, Pearce EL. Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation. Cell Metab 2019; 30:352-363.e8. [PMID: 31130465 PMCID: PMC6688828 DOI: 10.1016/j.cmet.2019.05.003] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022]
Abstract
How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis.
Collapse
Affiliation(s)
- Daniel J Puleston
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Michael D Buck
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | - Ryan L Kyle
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - George Caputa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - David O'Sullivan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Alanna M Cameron
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Angela Castoldi
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Yaarub Musa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Agnieszka M Kabat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Lea J Flachsmann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Cameron S Field
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Annette E Patterson
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Stefanie Scherer
- Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Francesca Alfei
- Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Francesc Baixauli
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - S Kyle Austin
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Beth Kelly
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Mai Matsushita
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Jonathan D Curtis
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Katarzyna M Grzes
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Matteo Villa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Mauro Corrado
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - David E Sanin
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Jing Qiu
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Nora Pällman
- Division of Haematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Katelyn Paz
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Center for Pediatrics, and Faculty of Medicine, Medical Center - University of Freiburg, Freiburg 79106, Germany
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Dietmar Zehn
- Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Stefan Balabanov
- Division of Haematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
116
|
El-Sayed ASA, George NM, Yassin MA, Alaidaroos BA, Bolbol AA, Mohamed MS, Rady AM, Aziz SW, Zayed RA, Sitohy MZ. Purification and Characterization of Ornithine Decarboxylase from Aspergillus terreus; Kinetics of Inhibition by Various Inhibitors. Molecules 2019; 24:molecules24152756. [PMID: 31362455 PMCID: PMC6696095 DOI: 10.3390/molecules24152756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
l-Ornithine decarboxylase (ODC) is the rate-limiting enzyme of de novo polyamine synthesis in humans and fungi. Elevated levels of polyamine by over-induction of ODC activity in response to tumor-promoting factors has been frequently reported. Since ODC from fungi and human have the same molecular properties and regulatory mechanisms, thus, fungal ODC has been used as model enzyme in the preliminary studies. Thus, the aim of this work was to purify ODC from fungi, and assess its kinetics of inhibition towards various compounds. Forty fungal isolates were screened for ODC production, twenty fungal isolates have the higher potency to grow on L-ornithine as sole nitrogen source. Aspergillus terreus was the most potent ODC producer (2.1 µmol/mg/min), followed by Penicillium crustosum and Fusarium fujikuori. These isolates were molecularly identified based on their ITS sequences, which have been deposited in the NCBI database under accession numbers MH156195, MH155304 and MH152411, respectively. ODC was purified and characterized from A. terreus using SDS-PAGE, showing a whole molecule mass of ~110 kDa and a 50 kDa subunit structure revealing its homodimeric identity. The enzyme had a maximum activity at 37 °C, pH 7.4-7.8 and thermal stability for 20 h at 37 °C, and 90 days storage stability at 4 °C. A. terreus ODC had a maximum affinity (Km) for l-ornithine, l-lysine and l-arginine (0.95, 1.34 and 1.4 mM) and catalytic efficiency (kcat/Km) (4.6, 2.83, 2.46 × 10-5 mM-1·s-1). The enzyme activity was strongly inhibited by DFMO (0.02 µg/mL), curcumin (IC50 0.04 µg/mL), propargylglycine (20.9 µg/mL) and hydroxylamine (32.9 µg/mL). These results emphasize the strong inhibitory effect of curcumin on ODC activity and subsequent polyamine synthesis. Further molecular dynamic studies to elucidate the mechanistics of ODC inhibition by curcumin are ongoing.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Nelly M George
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Marwa A Yassin
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | | | - Ahmed A Bolbol
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Marwa S Mohamed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Amgad M Rady
- Faculty of Biotechnology, Modern Science and Arts University, Cairo, Egypt
| | - Safa W Aziz
- Department of Laboratory and Clinical Science, College of Pharmacy, University of Babylon, Babylon, Iraq
| | - Rawia A Zayed
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Z Sitohy
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
117
|
Martín-Molina A, Lue L, Quesada-Pérez M, Bohinc K. Interaction between charged lipid vesicles and point- or rod-like trivalent ions. Colloids Surf B Biointerfaces 2019; 178:525-529. [PMID: 31004839 DOI: 10.1016/j.colsurfb.2019.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
This work examines the influence of the charge distribution of trivalent cations on their interaction with soft anionic particles, using a combination of experimental measurements and theoretical modelling. In particular, we perform electrophoresis measurements to determine the zeta-potential of anionic liposomes in the presence of spermidine and lanthanum cations. We work in a range of electrolyte concentration where a reversal in the electrophoretic mobility of the liposomes is expected; however, unlike the case of lanthanum cations, spermidine does not induce mobility reversal of liposomes. As a result, the charge distribution within the counterion appears to be a key factor. This conclusion is supported by a theory that accounts for intra-ionic correlations, which has previously been successfully used to describe the colloidal electric double layer. It allows us to model spermidine as rod-like ions and lanthanum cations as point-like ions in order to test the importance of the ionic geometry in the interactions with soft particles such as lipid vesicles.
Collapse
Affiliation(s)
- Alberto Martín-Molina
- Departamento de Fisica Aplicada and Instituto Carlos I de Fisica Teorica y Computacional, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Leo Lue
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
| | - Manuel Quesada-Pérez
- Departamento de Fisica, Escuela Politecnica Superior de Linares, Universidad de Jaen, 23700 Linares, Jaen, Spain
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
118
|
Molnar M, Liddell SC, Wadkins RM. Effects of Polyamine Binding on the Stability of DNA i-Motif Structures. ACS OMEGA 2019; 4:8967-8973. [PMID: 31459985 PMCID: PMC6648627 DOI: 10.1021/acsomega.9b00784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/13/2019] [Indexed: 05/12/2023]
Abstract
B-form DNA can adopt alternative structures under conditions such as superhelical duress. Alternative DNA structures are favored when there is asymmetric distribution of guanosine and cytosine on complimentary DNA strands. A guanosine-rich strand can form a four-stranded structure known as a quadruplex (G4). The complimentary cytosine-rich strand can utilize intercalating cytosine-cytosine base pairing to form a four-stranded structure known as the i-motif (iM). Both secondary structures are energetically uphill from double-strand DNA (dsDNA), meaning that additional factors are needed for their formation. Most iMs require slightly acidic conditions for structure stabilization. However, crowding agents such as polyethylene glycols and dextrans can shift the pK a of the iM to near-physiological pH ≈ 7. Nucleic acids have long been known to be bound and stabilized by polyamines such as putrescine, spermidine, and spermine. Polyamines have very high concentrations in cells (0.1-30 mM), and their binding to DNA is driven by electrostatic interactions. Polyamines typically bind in the minor groove of DNA. However, because of the unusual structure of iMs, it was unknown whether polyamines might also bind and stabilize iMs. The study described here was undertaken to analyze polyamine-iM interactions. The thermal stability and pH dependence of iM structures were determined in the presence of polyamines. In contrast to dsDNA, our results suggest that polyamines have considerably weaker interactions with iMs, as demonstrated by the minimal change in iM pH dependence and thermal stability. Our results suggest that polyamines are unlikely to provide a significant source of iM stabilization in vivo.
Collapse
Affiliation(s)
- Michael
M. Molnar
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Shelby C. Liddell
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Randy M. Wadkins
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
119
|
Flavin Oxidase-Induced ROS Generation Modulates PKC Biphasic Effect of Resveratrol on Endothelial Cell Survival. Biomolecules 2019; 9:biom9060209. [PMID: 31151226 PMCID: PMC6628153 DOI: 10.3390/biom9060209] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic antioxidants. Paradoxically, we have previously demonstrated that high RES concentrations exert a pro-oxidant effect eventually elevating ROS levels leading to cell death. Here, we further elucidate the molecular determinants underpinning RES-induced oxidative cell death. Methods: Using human umbilical vein endothelial cells (HUVECs), the effect of increasing concentrations of RES on DNA synthesis and apoptosis was studied. In addition, mRNA and protein levels of cell survival or apoptosis genes, as well as protein kinase C (PKC) activity were determined. Results: While high concentrations of RES reduce PKC activity, inhibit DNA synthesis and induce apoptosis, low RES concentrations elicit an opposite effect. This biphasic concentration-dependent effect (BCDE) of RES on PKC activity is mirrored at the molecular level. Indeed, high RES concentrations upregulate the proapoptotic Bax, while downregulating the antiapoptotic Bcl-2, at both mRNA and protein levels. Similarly, high RES concentrations downregulate the cell cycle progression genes, c-myc, ornithine decarboxylase (ODC) and cyclin D1 protein levels, while low RES concentrations display an increasing trend. The BCDE of RES on PKC activity is abrogated by the ROS scavenger Tempol, indicating that this enzyme acts downstream of the RES-elicited ROS signaling. The RES-induced BCDE on HUVEC cell cycle machinery was also blunted by the flavin inhibitor diphenyleneiodonium (DPI), implicating flavin oxidase-generated ROS as the mechanistic link in the cellular response to different RES concentrations. Finally, PKC inhibition abrogates the BCDE elicited by RES on both cell cycle progression and pro-apoptotic gene expression in HUVECs, mechanistically implicating PKC in the cellular response to different RES concentrations. Conclusions: Our results provide new molecular insight into the impact of RES on endothelial function/dysfunction, further confirming that obtaining an optimal benefit of RES is concentration-dependent. Importantly, the BCDE of RES could explain why other studies failed to establish the cardio-protective effects mediated by natural antioxidants, thus providing a guide for future investigation looking at cardio-protection by natural antioxidants.
Collapse
|
120
|
Spermidine Prevents Heart Injury in Neonatal Rats Exposed to Intrauterine Hypoxia by Inhibiting Oxidative Stress and Mitochondrial Fragmentation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5406468. [PMID: 31217839 PMCID: PMC6537013 DOI: 10.1155/2019/5406468] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/14/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Intrauterine hypoxia (IUH) is a common intrauterine dysplasia that can cause programming of the offspring cardiovascular system. In this study, we hypothesized that placental treatment with spermidine (SPD) can prevent heart injury in neonatal offspring exposed to IUH. Pregnant rats were exposed to 21% O2 or 10% O2 (hypoxia) for 7 days prior to term or were exposed to hypoxia and intraperitoneally administered SPD or SPD+difluromethylornithine (DFMO) on gestational days 15-21. Seven-day-old offspring were then sacrificed to assess several parameters. Our results demonstrated that IUH led to decreased myocardial ornithine decarboxylase (ODC) and increased spermidine/spermine N1-acetyltransferase (SSAT) expression in the offspring. IUH also resulted in decreased offspring body weight, heart weight, cardiomyocyte proliferation, and antioxidant capacity and increased cardiomyocyte apoptosis and fibrosis. Furthermore, IUH caused mitochondrial structure abnormality, dysfunction, and decreased biogenesis and led to a fission/fusion imbalance in offspring hearts. In vitro, hypoxia induced mitochondrial ROS accumulation, decreased membrane potential, and increased fragmentation. Notably, all hypoxia-induced changes analyzed in this study were prevented by SPD. Thus, in utero SPD treatment is a potential strategy for preventing IUH-induced neonatal cardiac injury.
Collapse
|
121
|
Kalpana B, Murthy DK, Balakrishna N, Aiyengar MT. Genetic variants of chromosome 9p21.3 region associated with coronary artery disease and premature coronary artery disease in an Asian Indian population. Indian Heart J 2019; 71:263-271. [PMID: 31543200 PMCID: PMC6796635 DOI: 10.1016/j.ihj.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Asian Indians have a propensity for premature, severe, and diffuse coronary artery disease (CAD). Several single-nucleotide polymorphisms (SNPs) in the 'core CAD' region of the chromosomal region 9p21.3 are known to be strongly associated with CAD. OBJECTIVES We aimed to study SNPs in the 9p21.3 region associated with CAD and premature CAD and identify their association with demographic and clinical characteristics in an Asian Indian population. METHODS SNP genotyping was performed for 30 SNPs of the 9p21.3 region using MassARRAY® technology. Along with demographic and SNP data analysis, we also performed multivariate logistic regression analysis and multifactor dimensionality reduction analysis to study SNP-SNP and SNP-demographic/clinical variable interactions. RESULTS Our results suggest that females are at a higher risk of premature CAD. We found that SNPs rs1333045 (CC), rs16905599 (AA), rs2383206 (GG), rs2383208 (AG), and rs4977574 (GG) were significantly associated with premature CAD. When adjusted for covariates/confounders, we found that rs2383206 showed the strongest risk association with CAD followed by rs16905599 and rs2383208. Further, SNPs rs1333049 (CC) and rs4977574 (GG) were found to be exclusively associated with premature CAD cases, suggesting their potential as genetic markers for premature CAD in the local population. Upon gender-based stratification, it was found that rs10757272 (TT and TC) is significantly associated with eightfold to ninefold CAD risk specifically among females. SNP rs7865618 (GG) is significantly associated with more than 2.5-fold CAD risk specifically among males. CONCLUSION Our study suggests that SNPs at the 9p21 risk locus may be used to generate a reliable genetic risk score along with markers at other loci.
Collapse
Affiliation(s)
- Bellary Kalpana
- Department of Genetics & Biotechnology, Bhavan's Vivekananda College, Sainikpuri, Secunderabad 500094, Telangana State, India.
| | - Dwarkanath K Murthy
- Department of Genetics & Biotechnology, Osmania University, Hyderabad 500007, Telangana State, India.
| | - Nagalla Balakrishna
- Division of Biostatistics, National Institute of Nutrition, Hyderabad 500007, Telangana State, India.
| | - Mohini T Aiyengar
- Department of Genetics & Biotechnology, Bhavan's Vivekananda College, Sainikpuri, Secunderabad 500094, Telangana State, India.
| |
Collapse
|
122
|
In Vitro Thermal and Ethanol Adaptations to Improve Vinegar Fermentation at High Temperature of Komagataeibacter oboediens MSKU 3. Appl Biochem Biotechnol 2019; 189:144-159. [PMID: 30957194 DOI: 10.1007/s12010-019-03003-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/27/2019] [Indexed: 12/30/2022]
Abstract
High temperature and high ethanol concentrations obviously affect vinegar fermentation. The thermotolerant and ethanol-resistant strains are expected to become one of the technologies for effective vinegar fermentation. This study aimed to further improve thermotolerant Komagataeibacter oboediens MSKU 3 through thermal and ethanol adaptations for acetic acid fermentation. The MSKU 3 strain was independently cultured by a repetitive cultivation in gradually increasing temperature from 37 to 39 °C for thermal adaptation, while adaptation to ethanol was carried out from concentrations of 3 to 5.5% (v/v) at 37 °C. Acetic acid fermentation revealed that the thermo-adapted T4 strain could produce 2.82% acidity with 3% ethanol at 39 °C, whereas the ethanol-adapted E3 strain could produce 3.54% acidity with 5.5% ethanol at 37 °C, in contrast to the parental strain, MSKU 3, in which no fermentation occurs at either 39 °C or 5.5% ethanol. Furthermore, genome mapping analysis of T4 and E3 strains against the genome of parental strain MSKU 3 revealed several mutated genes that are associated with thermotolerance or ethanol adaptation. The occurrence of these adaptation-associated mutations during adaptive evolution was also analyzed. Therefore, adapted strains T4 and E3 revealed the potential of Komagataeibacter oboediens strain improvement to further enhance vinegar fermentation with high ethanol concentration at high temperature.
Collapse
|
123
|
Crystal structure of dimeric Synechococcus spermidine synthase with bound polyamine substrate and product. Biochem J 2019; 476:1009-1020. [DOI: 10.1042/bcj20180811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 11/17/2022]
Abstract
AbstractSpermidine is a ubiquitous polyamine synthesized by spermidine synthase (SPDS) from the substrates, putrescine and decarboxylated S-adenosylmethionine (dcAdoMet). SPDS is generally active as homodimer, but higher oligomerization states have been reported in SPDS from thermophiles, which are less specific to putrescine as the aminoacceptor substrate. Several crystal structures of SPDS have been solved with and without bound substrates and/or products as well as inhibitors. Here, we determined the crystal structure of SPDS from the cyanobacterium Synechococcus (SySPDS) that is a homodimer, which we also observed in solution. Unlike crystal structures reported for bacterial and eukaryotic SPDS with bound ligands, SySPDS structure has not only bound putrescine substrate taken from the expression host, but also spermidine product most probably as a result of an enzymatic reaction. Hence, to the best of our knowledge, this is the first structure reported with both amino ligands in the same structure. Interestingly, the gate-keeping loop is disordered in the putrescine-bound monomer while it is stabilized in the spermidine-bound monomer of the SySPDS dimer. This confirms the gate-keeping loop as the key structural element that prepares the active site upon binding of dcAdoMet for the catalytic reaction of the amine donor and putrescine.
Collapse
|
124
|
Changes in L-arginine metabolism by Sema4D deficiency induce promotion of microglial proliferation in ischemic cortex. Neuroscience 2019; 406:420-431. [PMID: 30922994 DOI: 10.1016/j.neuroscience.2019.03.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/26/2019] [Accepted: 03/15/2019] [Indexed: 02/02/2023]
Abstract
Cerebral ischemia induces neuroinflammation and microglial activation, in which activated microglia upregulate their proliferative activity and change their metabolic states. In activated microglia, l-arginine is metabolized competitively by inducible nitric oxide synthase (iNOS) and arginase (Arg), which then synthesize NO or polyamines, respectively. Our previous study demonstrated that Sema4D deficiency inhibits iNOS expression and promotes proliferation of ionized calcium-binding adaptor molecule 1 (Iba1)-positive (Iba1+) microglia in the ischemic cortex, although the underlying mechanisms were unclear. Using middle cerebral artery occlusion, we tested the hypothesis that Sema4D deficiency alters the balance of l-arginine metabolism between iNOS and Arg, leading to an increase in the production of polyamines, which are an essential factor for cell proliferation. In the peri-ischemic cortex, almost all iNOS+ and/or Arg1+ cells were Iba1+ microglia. In the peri-ischemic cortex of Sema4D-deficient (Sema4D-/-) mice, the number of iNOS+ Arg1- Iba1+ microglia was smaller and that of iNOS- Arg1+ Iba1+ microglia was greater than those of wild-type (WT) mice. In addition, urea and polyamine levels in the ischemic cortex of Sema4D-/- mice were higher than those of WT mice; furthermore, the presence of Sema4D inhibited polyamine production in primary microglia obtained from Sema4D-/- mice. Finally, microglia cultured under polyamine putrescine-supplemented conditions demonstrated increased proliferation rates over non-supplemented controls. These findings indicate that Sema4D regulates microglial proliferation at least in part by regulating the competitive balance of l-arginine metabolism.
Collapse
|
125
|
Repulsive/attractive interaction among compact DNA molecules as judged through laser trapping: difference between linear- and branched-chain polyamines. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-018-4435-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
126
|
Spizzirri UG, Puoci F, Iemma F, Restuccia D. Biogenic amines profile and concentration in commercial milks for infants and young children. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:337-349. [PMID: 30722764 DOI: 10.1080/19440049.2018.1563306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Commercial milks for infants and young children (CMIYC) received much attention during last years for their impact on the nutritional status, health and development of the new-born and babies. Among possible contaminants contained in these foods, biogenic amines (BAs) have rarely been determined although they can exert toxic effects in humans if ingested at high concentrations. Spermine, spermidine, putrescine, histamine, tyramine, β-phenylethylamine and cadaverine have been quantified in CMIYC samples by LC-UV after derivatisation with dansyl-chloride. Once optimised in terms of linearity (R2 ≥ 0.989), recovery percentages (92.9-97.3), LOD (0.2-0.4 μg g-1 or 0.03-0.05 μg mL-1 depending on the samples), LOQ (0.5-1.0 μg g-1 and 0.08-0.13 μg mL-1 depending on the samples) and repeatability (0.1-0.2 intra-day; 0.2-0.4 inter-day), the method has been applied to real samples. Very low total BAs concentrations have been found in reconstituted (1.18-3.12 mg L-1) and liquid milks (0.33-2.30 mg L-1), with different biogenic amine profiles and distributions. A risk assessment based on the available information regarding Acute Reference Doses of histamine and tyramine, as well as the application of common Biogenic Amine Indexes, showed that none of the analysed samples represented a possible risk for babies, also considering a worst case evaluation. These findings confirmed the strict safety and quality protocols adopted during the production of CMIYC. Chemical compounds studied in this article: Ammonium chloride (PubChem CID: 25517); Cadaverine hydrochloride (PubChem CID: 5351467); Hydrochloridric acid (PubChem CID: 313); Histamine dihydrochloride (PubChem CID: 5818); Phenylethylamine hydrochloride (PubChem CID: 9075); Putrescine dihydrochloride (PubChem CID: 9532); Sodium hydroxide (PubChem CID: 14798); Spermine tetrahydrochloride (PubChem CID: 1103); Spermidine trihydrochloride (PubChem CID: 1102); Tyramine hydrochloride (PubChem CID: 66449).
Collapse
Affiliation(s)
- U Gianfranco Spizzirri
- a Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Arcavacata di Rende CS , Italy
| | - Francesco Puoci
- a Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Arcavacata di Rende CS , Italy
| | - Francesca Iemma
- a Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Arcavacata di Rende CS , Italy
| | - Donatella Restuccia
- a Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Arcavacata di Rende CS , Italy
| |
Collapse
|
127
|
Polyamines in Microalgae: Something Borrowed, Something New. Mar Drugs 2018; 17:md17010001. [PMID: 30577419 PMCID: PMC6356823 DOI: 10.3390/md17010001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023] Open
Abstract
Microalgae of different evolutionary origins are typically found in rivers, lakes, and oceans, providing more than 45% of global primary production. They provide not only a food source for animals, but also affect microbial ecosystems through symbioses with microorganisms or secretion of some metabolites. Derived from amino acids, polyamines are present in almost all types of organisms, where they play important roles in maintaining physiological functions or against stress. Microalgae can produce a variety of distinct polyamines, and the polyamine content is important to meet the physiological needs of microalgae and may also affect other species in the environment. In addition, some polyamines produced by microalgae have medical or nanotechnological applications. Previous studies on several types of microalgae have indicated that the putative polyamine metabolic pathways may be as complicated as the genomes of these organisms, which contain genes originating from plants, animals, and even bacteria. There are also several novel polyamine synthetic routes in microalgae. Understanding the nature of polyamines in microalgae will not only improve our knowledge of microalgal physiology and ecological function, but also provide valuable information for biotechnological applications.
Collapse
|
128
|
Wang Y, Gao T, Li S, Xia W, Zhang W, Yang G. Direct Demonstration of DNA Compaction Mediated by Divalent Counterions. J Phys Chem B 2018; 123:79-85. [PMID: 30540472 DOI: 10.1021/acs.jpcb.8b09398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We unambiguously demonstrated DNA attraction and its regulation mediated by divalent cations Mg2+ and Ca2+ by tethering a DNA single chain at various pH solutions. It is found that DNA is compacted when the pH of the solution containing these divalent counterions is decreased below 5. When the pH of the medium is ∼4, DNA is in an unstable transition state, being able to switch between compact and extensible states. We can also regulate the DNA attraction through a cyclic process of DNA compaction and unraveling by alternating the pH of the solution between 3 and 8. The corresponding change of morphology of DNA modulated by pH is also confirmed by atomic force microscopy (AFM). In the theoretical aspect, the present experimental finding is consistent with the coarse-grained simulation of Langevin dynamics on the effect of pH on DNA in a solution of divalent counterions.
Collapse
Affiliation(s)
- Yanwei Wang
- Department of Physics , Wenzhou University , Wenzhou 325035 , China
| | - Tianyong Gao
- Department of Physics , Wenzhou University , Wenzhou 325035 , China
| | - Shuhang Li
- Department of Physics , Wenzhou University , Wenzhou 325035 , China
| | - Wenyan Xia
- Department of Physics , Wenzhou University , Wenzhou 325035 , China
| | - Wei Zhang
- Department of Physics , Wenzhou University , Wenzhou 325035 , China
| | - Guangcan Yang
- Department of Physics , Wenzhou University , Wenzhou 325035 , China
| |
Collapse
|
129
|
Sokolović D, Djindjić B, Krstić D, Marković V, Ristić G, M . Sokolović D, Golubović M, Djordjević B, Dunjić M, Popović D, Karuntanović T, Tatar N, Babović P. THE EFFECT OF MELATONIN ON THE CATABOLISM OF POLYAMINES IN THE RAT THYMUS DURING THE EXPOSURE TO MICROWAVE RADIATION. ACTA MEDICA MEDIANAE 2018. [DOI: 10.5633/amm.2018.0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
130
|
Daval S, Belcour A, Gazengel K, Legrand L, Gouzy J, Cottret L, Lebreton L, Aigu Y, Mougel C, Manzanares-Dauleux MJ. Computational analysis of the Plasmodiophora brassicae genome: mitochondrial sequence description and metabolic pathway database design. Genomics 2018; 111:1629-1640. [PMID: 30447277 DOI: 10.1016/j.ygeno.2018.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/23/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Plasmodiophora brassicae is an obligate biotrophic pathogenic protist responsible for clubroot, a root gall disease of Brassicaceae species. In addition to the reference genome of the P. brassicae European e3 isolate and the draft genomes of Canadian or Chinese isolates, we present the genome of eH, a second European isolate. Refinement of the annotation of the eH genome led to the identification of the mitochondrial genome sequence, which was found to be bigger than that of Spongospora subterranea, another plant parasitic Plasmodiophorid phylogenetically related to P. brassicae. New pathways were also predicted, such as those for the synthesis of spermidine, a polyamine up-regulated in clubbed regions of roots. A P. brassicae pathway genome database was created to facilitate the functional study of metabolic pathways in transcriptomics approaches. These available tools can help in our understanding of the regulation of P. brassicae metabolism during infection and in response to diverse constraints.
Collapse
Affiliation(s)
- Stéphanie Daval
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France.
| | - Arnaud Belcour
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | - Kévin Gazengel
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | - Ludovic Legrand
- LIPM, INRA, CNRS, Université de Toulouse, Castanet Tolosan, France
| | - Jérôme Gouzy
- LIPM, INRA, CNRS, Université de Toulouse, Castanet Tolosan, France
| | - Ludovic Cottret
- LIPM, INRA, CNRS, Université de Toulouse, Castanet Tolosan, France
| | - Lionel Lebreton
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | - Yoann Aigu
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | - Christophe Mougel
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | | |
Collapse
|
131
|
Lomozik L, Bregier-Jarzebowska R, Gasowska A, Hoffmann S, Zalewska A. Biocoordination reactions in copper(II) ions and l-glutamic acid systems including tetramines: 1,11-diamino-4,8-diazaundecane or 1,12-diamino-4,9-diazadodecane. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.07.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
132
|
Sato M, Toyama T, Lee JY, Miura N, Naganuma A, Hwang GW. Activation of ornithine decarboxylase protects against methylmercury toxicity by increasing putrescine. Toxicol Appl Pharmacol 2018; 356:120-126. [DOI: 10.1016/j.taap.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/13/2018] [Accepted: 08/01/2018] [Indexed: 11/15/2022]
|
133
|
Liu J, Zhao M, Song W, Ma L, Li X, Zhang F, Diao L, Pi Y, Jiang K. An amine oxidase gene from mud crab, Scylla paramamosain, regulates the neurotransmitters serotonin and dopamine in vitro. PLoS One 2018; 13:e0204325. [PMID: 30248122 PMCID: PMC6152983 DOI: 10.1371/journal.pone.0204325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/06/2018] [Indexed: 11/20/2022] Open
Abstract
Amine oxidase, which participates in the metabolic processing of biogenic amines, is widely found in organisms, including higher organisms and various microorganisms. In this study, the full-length cDNA of a novel amine oxidase gene was cloned from the mud crab, Scylla paramamosain, and termed SpAMO. The cDNA sequence was 2,599 bp in length, including an open reading frame of 1,521 bp encoding 506 amino acids. Two amino acid sequence motifs, a flavin adenine dinucleotide-binding domain and a flavin-containing amine oxidoreductase, were highly conserved in SpAMO. A quantitative real-time polymerase chain reaction analysis showed that the expression level of SpAMO after quercetin treatment was time- and concentration-dependent. The expression of SpAMO tended to decrease and then increase in the brain and haemolymph after treatment with 5 mg/kg/d quercetin; after treatment with 50 mg/kg/d quercetin, the expression of SpAMO declined rapidly and remained low in the brain and haemolymph. These results indicated that quercetin could inhibit the transcription of SpAMO, and the high dose (50 mg/kg/d) had a relatively significant inhibitory effect. SpAMO showed the highest catalytic activity on serotonin, followed by dopamine, β-phenylethylamine, and spermine, suggesting that the specific substrates of SpAMO are serotonin and dopamine. A bioinformatics analysis of SpAMO showed that it has molecular characteristics of spermine oxidase, but a quercetin test and enzyme activity study indicated that it also functions like monoamine oxidase. It is speculated that SpAMO might be a novel amine oxidase in S. paramamosain that has the functions of both spermine oxidase and monoamine oxidase.
Collapse
Affiliation(s)
- Junguo Liu
- Key Laboratory of Aquatic Genomics, Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Ming Zhao
- Key Laboratory of Aquatic Genomics, Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Wei Song
- Key Laboratory of Aquatic Genomics, Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Lingbo Ma
- Key Laboratory of Aquatic Genomics, Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- * E-mail: (KJ); (LM)
| | - Xiu Li
- Key Laboratory of Aquatic Genomics, Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Fengying Zhang
- Key Laboratory of Aquatic Genomics, Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Le Diao
- Key Laboratory of Aquatic Genomics, Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Yan Pi
- School of Life Sciences, Fudan University, Shanghai, China
| | - Keji Jiang
- Key Laboratory of Aquatic Genomics, Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- * E-mail: (KJ); (LM)
| |
Collapse
|
134
|
Murray-Stewart T, Dunworth M, Lui Y, Giardiello FM, Woster PM, Casero RA. Curcumin mediates polyamine metabolism and sensitizes gastrointestinal cancer cells to antitumor polyamine-targeted therapies. PLoS One 2018; 13:e0202677. [PMID: 30138353 PMCID: PMC6107220 DOI: 10.1371/journal.pone.0202677] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/07/2018] [Indexed: 12/27/2022] Open
Abstract
Curcumin, a natural polyphenol that contributes to the flavor and yellow pigment of the spice turmeric, is known for its antioxidant, anti-inflammatory, and anticarcinogenic properties. Capable of affecting the initiation, promotion, and progression of carcinogenesis through multiple mechanisms, curcumin has potential utility for both chemoprevention and chemotherapy. Previous studies demonstrated that curcumin can inhibit ornithine decarboxylase (ODC) activity in human leukemia and breast cancer cells, and pretreatment with dietary curcumin blocks carcinogen-induced ODC activity in rodent models of skin, colon, and renal cancer. The current study investigated the regulation of polyamine metabolism in human gastric and colon carcinoma cell lines in response to curcumin. Curcumin treatment significantly induced spermine oxidase (SMOX) mRNA and activity, which results in the generation of hydrogen peroxide, a source of ROS. Simultaneously, curcumin down regulated spermidine/spermine N1-acetyltransferase (SSAT) activity and the biosynthetic enzymes ODC and S-adenosylmethionine decarboxylase (SAMDC), thereby diminishing intracellular polyamine pools. Combination treatments using curcumin with the ODC inhibitor 2-difluoromethylornithine (DFMO), an agent currently in clinical chemoprevention trials, significantly enhanced inhibition of ODC activity and decreased growth of GI cancer cell lines beyond that observed with either agent alone. Similarly, combining curcumin with the polyamine analogue bis(ethyl)norspermine enhanced growth inhibition that was accompanied by enhanced accumulation of the analogue and decreased intracellular polyamine levels beyond those observed with either agent alone. Importantly, cotreatment with curcumin permitted the lowering of the effective dose of ODC inhibitor or polyamine analogue. These studies provide insight into the polyamine-related mechanisms involved in the cancer cell response to curcumin and its potential as a chemopreventive or chemotherapeutic agent in the GI tract.
Collapse
Affiliation(s)
- Tracy Murray-Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Matthew Dunworth
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yuan Lui
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Francis M. Giardiello
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Patrick M. Woster
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States of America
| | - Robert A. Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
135
|
Lam SK, U KP, Li YY, Xu S, Cheng PNM, Ho JCM. Inhibition of ornithine decarboxylase 1 facilitates pegylated arginase treatment in lung adenocarcinoma xenograft models. Oncol Rep 2018; 40:1994-2004. [PMID: 30066894 PMCID: PMC6111542 DOI: 10.3892/or.2018.6598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/02/2018] [Indexed: 11/25/2022] Open
Abstract
Arginine depletion has shown anticancer effects among arginine auxotrophic cancers. An anti-proliferative effect of pegylated arginase (BCT-100) has been shown in acute myeloid leukaemia, hepatocellular carcinoma and mesothelioma. The aim of the present study was to evaluate the effect of BCT-100 in lung adenocarcinoma. A panel of lung adenocarcinoma cell lines and xenograft models were used to investigate the effect of BCT-100. Protein expression, arginine level, putrescine level, spermidine level and apoptosis were analyzed by western blotting, ELISA, high performance liquid chromatography, dot blot and TUNEL assay, respectively. BCT-100 converts arginine to ornithine. BCT-100 reduced in vitro cell viability across different lung adenocarcinoma cell lines and suppressed tumour growth in an HCC4006 ×enograft, while paradoxical growth stimulation was observed in H358, HCC827, H1650 and H1975 ×enografts. Upon BCT-100 treatment, ornithine decarboxylase 1 (ODC1) was induced in two solid tumour xenografts (H1650 and H1975). It was postulated that the accumulated ornithine could be channeled via ODC1 to produce polyamines that promoted tumour growth. The action of an ODC1 inhibitor (α-difluoromethylornithine, DFMO) was studied in the restoration of the anticancer effects of BCT-100 in lung adenocarcinoma. In both H1650 and H1975 ×enografts, a combination of DFMO and BCT-100 significantly suppressed tumour growth, resulting in doubled median survival compared with the control. Putrescine was decreased in almost all treatment arms in the H1650, H1975 and HCC4006 ×enografts. Nonetheless spermidine was reduced only following DFMO/BCT-100 treatment in the H1650 and H1975 ×enografts. Apoptosis was enhanced in the combined treatment arm in both H1650 and H1975 ×enografts. In the HCC4006 ×enograft, addition of DFMO did not alter the tumour suppressive effect of BCT-100. In conclusion, inhibition of ODC1 by DFMO was crucial in facilitating BCT-100 treatment in lung adenocarcinoma that was partially mediated by depleting arginine and polyamines with consequent apoptosis.
Collapse
Affiliation(s)
- Sze-Kwan Lam
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - Kin Pong U
- Bio‑Cancer Treatment International, Hong Kong, SAR, P.R. China
| | - Yuan-Yuan Li
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - Shi Xu
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | | | - James Chung-Man Ho
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| |
Collapse
|
136
|
Campos-Góngora E, Palande AS, León-Ramirez C, Pathan EK, Ruiz-Herrera J, Deshpande MV. Determination of the effect of polyamines on an oil-degrading strain of Yarrowia lipolytica using an odc minus mutant. FEMS Yeast Res 2018; 18:5049475. [DOI: 10.1093/femsyr/foy073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/04/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- E Campos-Góngora
- Universidad Autónoma de Nuevo León, Centro de Investigación en Nutrición y Salud Pública, Monterrey, NL, México
| | - A S Palande
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune-411008, India
| | - C León-Ramirez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, México
| | - E K Pathan
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune-411008, India
| | - J Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, México
| | - M V Deshpande
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune-411008, India
| |
Collapse
|
137
|
Palanimurugan R, Gödderz D, Kurian L, Dohmen RJ. Analysis of Cotranslational Polyamine Sensing During Decoding of ODC Antizyme mRNA. Methods Mol Biol 2018; 1694:309-323. [PMID: 29080176 DOI: 10.1007/978-1-4939-7398-9_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyamines are essential poly-cations with vital functions in all cellular systems. Their levels are controlled by intricate regulatory feedback mechanisms. Abnormally high levels of polyamines have been linked to cancer. A rate-limiting enzyme in the biosynthesis of polyamines in fungi and higher eukaryotes is ornithine-decarboxylase (ODC). Its levels are largely controlled posttranslationally via ubiquitin-independent degradation mediated by ODC antizyme (OAZ). The latter is a critical polyamine sensor in a feedback control mechanism that adjusts cellular polyamine levels. Here, we describe an approach employing quantitative western blot analyses that provides in vivo evidence for cotranslational polyamine-sensing by nascent OAZ in yeast. In addition, we describe an in vitro method to detect polyamine binding by antizyme.
Collapse
Affiliation(s)
- R Palanimurugan
- Center for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | | | - Leo Kurian
- Laboratory for Developmental and Regenerative RNA biology, Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - R J Dohmen
- Institute for Genetics, Biocenter, University of Cologne, 50674, Cologne, Germany.
| |
Collapse
|
138
|
Fleeman RM, Debevec G, Antonen K, Adams JL, Santos RG, Welmaker GS, Houghten RA, Giulianotti MA, Shaw LN. Identification of a Novel Polyamine Scaffold With Potent Efflux Pump Inhibition Activity Toward Multi-Drug Resistant Bacterial Pathogens. Front Microbiol 2018; 9:1301. [PMID: 29963035 PMCID: PMC6010545 DOI: 10.3389/fmicb.2018.01301] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/28/2018] [Indexed: 02/02/2023] Open
Abstract
We have previously reported the use of combinatorial chemistry to identify broad-spectrum antibacterial agents. Herein, we extend our analysis of this technology toward the discovery of anti-resistance molecules, focusing on efflux pump inhibitors. Using high-throughput screening against multi-drug resistant Pseudomonas aeruginosa, we identified a polyamine scaffold that demonstrated strong efflux pump inhibition without possessing antibacterial effects. We determined that these molecules were most effective with an amine functionality at R1 and benzene functionalities at R2 and R3. From a library of 188 compounds, we studied the properties of 5 lead agents in detail, observing a fivefold to eightfold decrease in the 90% effective concentration of tetracycline, chloramphenicol, and aztreonam toward P. aeruginosa isolates. Additionally, we determined that our molecules were not only active toward P. aeruginosa, but toward Acinetobacter baumannii and Staphylococcus aureus as well. The specificity of our molecules to efflux pump inhibition was confirmed using ethidium bromide accumulation assays, and in studies with strains that displayed varying abilities in their efflux potential. When assessing off target effects we observed no disruption of bacterial membrane polarity, no general toxicity toward mammalian cells, and no inhibition of calcium channel activity in human kidney cells. Finally, combination treatment with our lead agents engendered a marked increase in the bactericidal capacity of tetracycline, and significantly decreased viability within P. aeruginosa biofilms. As such, we report a unique polyamine scaffold that has strong potential for the future development of novel and broadly active efflux pump inhibitors targeting multi-drug resistant bacterial infections.
Collapse
Affiliation(s)
- Renee M. Fleeman
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Ginamarie Debevec
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Kirsten Antonen
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Jessie L. Adams
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Radleigh G. Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Gregory S. Welmaker
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Richard A. Houghten
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Marc A. Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
139
|
Roh C. Metabolomics in Radiation-Induced Biological Dosimetry: A Mini-Review and a Polyamine Study. Biomolecules 2018; 8:biom8020034. [PMID: 29844258 PMCID: PMC6023017 DOI: 10.3390/biom8020034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 01/09/2023] Open
Abstract
In this study, we elucidate that polyamine metabolite is a powerful biomarker to study post-radiation changes. Metabolomics in radiation biodosimetry, the application of a metabolomics analysis to the field of radiobiology, promises to increase the understanding of biological responses by ionizing radiation (IR). Radiation exposure triggers a complex network of molecular and cellular responses that impacts metabolic processes and alters the levels of metabolites. Such metabolites have potential as biomarkers for radiation dosimetry. Among metabolites, polyamine is one of many potential biomarkers to estimate radiation response. In addition, this review provides an opportunity for the understanding of a radiation metabolomics in biodosimetry and a polyamine case study.
Collapse
Affiliation(s)
- Changhyun Roh
- Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29, Geumgu-gil, Jeongeup-si, Jeonbuk 56212, Korea.
- Radiation Biotechnology and Applied Radioisotope Science, University of Science Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea.
| |
Collapse
|
140
|
Myc, Oncogenic Protein Translation, and the Role of Polyamines. Med Sci (Basel) 2018; 6:medsci6020041. [PMID: 29799508 PMCID: PMC6024823 DOI: 10.3390/medsci6020041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 01/21/2023] Open
Abstract
Deregulated protein synthesis is a common feature of cancer cells, with many oncogenic signaling pathways directly augmenting protein translation to support the biomass needs of proliferating tissues. MYC’s ability to drive oncogenesis is a consequence of its essential role as a governor linking cell cycle entry with the requisite increase in protein synthetic capacity, among other biomass needs. To date, direct pharmacologic inhibition of MYC has proven difficult, but targeting oncogenic signaling modules downstream of MYC, such as the protein synthetic machinery, may provide a viable therapeutic strategy. Polyamines are essential cations found in nearly all living organisms that have both direct and indirect roles in the control of protein synthesis. Polyamine metabolism is coordinately regulated by MYC to increase polyamines in proliferative tissues, and this is further augmented in the many cancer cells harboring hyperactivated MYC. In this review, we discuss MYC-driven regulation of polyamines and protein synthetic capacity as a key function of its oncogenic output, and how this dependency may be perturbed through direct pharmacologic targeting of components of the protein synthetic machinery, such as the polyamines themselves, the eukaryotic translation initiation factor 4F (eIF4F) complex, and the eukaryotic translation initiation factor 5A (eIF5A).
Collapse
|
141
|
Lane DJR, Bae DH, Siafakas AR, Suryo Rahmanto Y, Al-Akra L, Jansson PJ, Casero RA, Richardson DR. Coupling of the polyamine and iron metabolism pathways in the regulation of proliferation: Mechanistic links to alterations in key polyamine biosynthetic and catabolic enzymes. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2793-2813. [PMID: 29777905 DOI: 10.1016/j.bbadis.2018.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 12/21/2022]
Abstract
Many biological processes result from the coupling of metabolic pathways. Considering this, proliferation depends on adequate iron and polyamines, and although iron-depletion impairs proliferation, the metabolic link between iron and polyamine metabolism has never been thoroughly investigated. This is important to decipher, as many disease states demonstrate co-dysregulation of iron and polyamine metabolism. Herein, for the first time, we demonstrate that cellular iron levels robustly regulate 13 polyamine pathway proteins. Seven of these were regulated in a conserved manner by iron-depletion across different cell-types, with four proteins being down-regulated (i.e., acireductone dioxygenase 1 [ADI1], methionine adenosyltransferase 2α [MAT2α], Antizyme and polyamine oxidase [PAOX]) and three proteins being up-regulated (i.e., S-adenosyl methionine decarboxylase [AMD1], Antizyme inhibitor 1 [AZIN1] and spermidine/spermine-N1-acetyltransferase 1 [SAT1]). Depletion of iron also markedly decreased polyamine pools (i.e., spermidine and/or spermine, but not putrescine). Accordingly, iron-depletion also decreased S-adenosylmethionine that is essential for spermidine/spermine biosynthesis. Iron-depletion additionally reduced 3H-spermidine uptake in direct agreement with the lowered levels of the polyamine importer, SLC22A16. Regarding mechanism, the "reprogramming" of polyamine metabolism by iron-depletion is consistent with the down-regulation of ADI1 and MAT2α, and the up-regulation of SAT1. Moreover, changes in ADI1 (biosynthetic) and SAT1 (catabolic) partially depended on the iron-regulated changes in c-Myc and/or p53. The ability of iron chelators to inhibit proliferation was rescuable by putrescine and spermidine, and under some conditions by spermine. Collectively, iron and polyamine metabolism are intimately coupled, which has significant ramifications for understanding the integrated role of iron and polyamine metabolism in proliferation.
Collapse
Affiliation(s)
- Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Aritee R Siafakas
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yohan Suryo Rahmanto
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Lina Al-Akra
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Robert A Casero
- Johns Hopkins University School of Medicine and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
142
|
Zhou S, Gu J, Liu R, Wei S, Wang Q, Shen H, Dai Y, Zhou H, Zhang F, Lu L. Spermine Alleviates Acute Liver Injury by Inhibiting Liver-Resident Macrophage Pro-Inflammatory Response Through ATG5-Dependent Autophagy. Front Immunol 2018; 9:948. [PMID: 29770139 PMCID: PMC5940752 DOI: 10.3389/fimmu.2018.00948] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
Liver-resident macrophages (Kupffer cells, KCs) and autophagy play critical roles in the pathogenesis of toxin-induced liver injury. Recent evidence indicates that autophagy can regulate macrophage M1/M2 polarization under different inflammatory conditions. Polyamines, including putrescine, spermidine, and spermine (SPM), are polycations with anti-oxidative, anti-aging, and cell autophagy induction properties. This study aimed to determine the mechanisms by which SPM protects against thioacetamide (TAA)-induced acute liver injury in a mouse model. Pretreatment with SPM significantly alleviated liver injury and reduced intrahepatic inflammation in TAA-induced liver injury compared to controls. SPM markedly inhibited M1 polarization, but promoted M2 polarization of KCs obtained from TAA-exposed livers, as evidenced by decreased IL-1β and iNOS gene induction but increased Arg-1 and Mrc-1 gene induction accompanied by decreased STAT1 activation and increased STAT6 activation. Furthermore, pretreatment with SPM enhanced autophagy, as revealed by increased LC3B-II levels, decreased p62 protein expression, and increased ATG5 protein expression in TAA-treated KCs. Knockdown of ATG5 in SPM-pretreated KCs by siRNA resulted in a significant increase in pro-inflammatory TNF-α and IL-6 secretion and decreased anti-inflammatory IL-10 secretion after TAA treatment, while no significant changes were observed in cytokine production in the TAA treatment alone. Additionally, the effect of SPM on regulation of KC M1/M2 polarization was abolished by ATG5 knockdown in TAA-exposed KCs. Finally, in vivo ATG5 knockdown in KCs abrogated the protective effect of SPM against TAA-induced acute liver injury. Our results indicate that SPM-mediated autophagy inhibits M1 polarization, while promoting M2 polarization of KCs in TAA-treated livers via upregulation of ATG5 expression, leading to attenuated liver injury. This study provides a novel target for the prevention of acute liver injury.
Collapse
Affiliation(s)
- Shun Zhou
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Song Wei
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Wang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Haoming Zhou
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ling Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
143
|
Specific and highly efficient condensation of GC and IC DNA by polyaza pyridinophane derivatives. Int J Biol Macromol 2018; 109:143-151. [PMID: 29247733 DOI: 10.1016/j.ijbiomac.2017.11.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 11/23/2022]
Abstract
Two bis-polyaza pyridinophane derivatives and their monomeric reference compounds revealed strong interactions with ds-DNA and RNA. The bis-derivatives show a specific condensation of GC- and IC-DNA, which is almost two orders of magnitude more efficient than the well-known condensation agent spermine. The type of condensed DNA was identified as ψ-DNA, characterized by the exceptionally strong CD signals. At variance to the almost silent AT(U) polynucleotides, these strong CD signals allow the determination of GC-condensates at nanomolar nucleobase concentrations. Detailed thermodynamic characterisation by ITC reveals significant differences between the DNA binding of the bis-derivative compounds (enthalpy driven) and that of spermine and of their monomeric counterparts (entropy driven). Atomic force microscopy confirmed GC-DNA compaction by the bis-derivatives and the formation of toroid- and rod-like structures responsible for the ψ-type pattern in the CD spectra.
Collapse
|
144
|
Shinsky SA, Christianson DW. Polyamine Deacetylase Structure and Catalysis: Prokaryotic Acetylpolyamine Amidohydrolase and Eukaryotic HDAC10. Biochemistry 2018. [PMID: 29533602 DOI: 10.1021/acs.biochem.8b00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyamines such as putrescine, spermidine, and spermine are small aliphatic cations that serve myriad biological functions in all forms of life. While polyamine biosynthesis and cellular trafficking pathways are generally well-defined, only recently has the molecular basis of reversible polyamine acetylation been established. In particular, enzymes that catalyze polyamine deacetylation reactions have been identified and structurally characterized: histone deacetylase 10 (HDAC10) from Homo sapiens and Danio rerio (zebrafish) is a highly specific N8-acetylspermidine deacetylase, and its prokaryotic counterpart, acetylpolyamine amidohydrolase (APAH) from Mycoplana ramosa, is a broad-specificity polyamine deacetylase. Similar to the greater family of HDACs, which mainly serve as lysine deacetylases, both enzymes adopt the characteristic arginase-deacetylase fold and employ a Zn2+-activated water molecule for catalysis. In contrast with HDACs, however, the active sites of HDAC10 and APAH are sterically constricted to enforce specificity for long, slender polyamine substrates and exclude bulky peptides and proteins containing acetyl-l-lysine. Crystal structures of APAH and D. rerio HDAC10 reveal that quaternary structure, i.e., dimer assembly, provides the steric constriction that directs the polyamine substrate specificity of APAH, whereas tertiary structure, a unique 310 helix defined by the P(E,A)CE motif, provides the steric constriction that directs the polyamine substrate specificity of HDAC10. Given the recent identification of HDAC10 and spermidine as mediators of autophagy, HDAC10 is rapidly emerging as a biomarker and target for the design of isozyme-selective inhibitors that will suppress autophagic responses to cancer chemotherapy, thereby rendering cancer cells more susceptible to cytotoxic drugs.
Collapse
Affiliation(s)
- Stephen A Shinsky
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
145
|
Cellular and Animal Model Studies on the Growth Inhibitory Effects of Polyamine Analogues on Breast Cancer. Med Sci (Basel) 2018. [PMID: 29533973 PMCID: PMC5872181 DOI: 10.3390/medsci6010024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyamine levels are elevated in breast tumors compared to those of adjacent normal tissues. The female sex hormone, estrogen is implicated in the origin and progression of breast cancer. Estrogens stimulate and antiestrogens suppress the expression of polyamine biosynthetic enzyme, ornithine decarboxylate (ODC). Using several bis(ethyl)spermine analogues, we found that these analogues inhibited the proliferation of estrogen receptor-positive and estrogen receptor negative breast cancer cells in culture. There was structure-activity relationship in the efficacy of these compounds in suppressing cell growth. The activity of ODC was inhibited by these compounds, whereas the activity of the catabolizing enzyme, spermidine/spermine N¹-acetyl transferase (SSAT) was increased by 6-fold by bis(ethyl)norspermine in MCF-7 cells. In a transgenic mouse model of breast cancer, bis(ethyl)norspermine reduced the formation and growth of spontaneous mammary tumor. Recent studies indicate that induction of polyamine catabolic enzymes SSAT and spermine oxidase (SMO) play key roles in the anti-proliferative and apoptotic effects of polyamine analogues and their combinations with chemotherapeutic agents such as 5-fluorouracil (5-FU) and paclitaxel. Thus, polyamine catabolic enzymes might be important therapeutic targets and markers of sensitivity in utilizing polyamine analogues in combination with other therapeutic agents.
Collapse
|
146
|
Rossi G, Cerquetella M, Scarpona S, Pengo G, Fettucciari K, Bassotti G, Jergens AE, Suchodolski JS. Effects of probiotic bacteria on mucosal polyamines levels in dogs with IBD and colonic polyps: a preliminary study. Benef Microbes 2018; 9:247-255. [PMID: 29022381 DOI: 10.3920/bm2017.0024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spermine (SPM) and its precursor putrescine (PUT), regulated by ornithine decarboxylase (ODC) and diamino-oxidase (DAO), are polyamines required for cell growth and proliferation. Only a few studies have investigated the anti-inflammatory and tumour inhibitory properties of probiotics on mucosal polyamine levels. We investigated the effects of a high concentration multistrain probiotic for human use on colonic polyamine biosynthesis in dogs. Histological sections (inflammatory bowel disease, n=10; polyposis, n=5) were assessed after receiving 112 to 225×109 lyophilised bacteria daily for 60 days at baseline (T0) and 30 days after treatment end (T90). Histology scores, expression of PUT, SPM, ODC and DAO, and a clinical activity index (CIBDAI) were compared at T0 and T90. In polyps, cellular proliferation (Ki-67 expression), and apoptosis (caspase-3 protein expression) were also evaluated. After treatment, in inflammatory bowel disease significant decreases were observed for CIBDAI (P=0.006) and histology scores (P<0.001); PUT, SPM and ODC expression increased (P<0.01). In polyps, a significant decrease in polyamine levels, ODC activity, and Ki-67, and a significant increase in caspase-3 positivity and DAO expression (P=0.005) was noted. Our results suggest potential anti-proliferative and anti-inflammatory effects of the probiotic mixture in polyps and inflammation, associated with reduced mucosal infiltration and up-regulation of PUT, SPM, and ODC levels.
Collapse
Affiliation(s)
- G Rossi
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Macerata (MC), Italy
| | - M Cerquetella
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Macerata (MC), Italy
| | - S Scarpona
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Macerata (MC), Italy
| | - G Pengo
- 2 Clinic 'St. Antonio', Strada Statale 415, km 38,50, 26020 Madignano (CR), Italy
| | - K Fettucciari
- 3 Department of Experimental Medicine, University of Perugia School of Medicine, Piazzale Lucio Severi 1-8, 06123 Perugia, Italy
| | - G Bassotti
- 4 Gastroenterology and Hepatology Section, Department of Medicine, University of Perugia School of Medicine, Santa Maria della Misericordia Hospital, Piazzale Menghini 1, 06156 San Sisto, Italy
| | - A E Jergens
- 5 College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr., Ames, IA 50010, USA
| | - J S Suchodolski
- 6 Gastrointestinal Laboratory, Texas A&M University, 4474 TAMU, College Station, TX 77843, USA
| |
Collapse
|
147
|
The microbiology and treatment of human mastitis. Med Microbiol Immunol 2018; 207:83-94. [PMID: 29350290 DOI: 10.1007/s00430-017-0532-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/15/2017] [Indexed: 12/29/2022]
Abstract
Mastitis, which is generally described as an inflammation of breast tissue, is a common and debilitating disease which frequently results in the cessation of exclusive breastfeeding and affects up to 33% of lactating women. The condition is a primary cause of decreased milk production and results in organoleptic and nutritional alterations in milk quality. Recent studies employing culture-independent techniques, including metagenomic sequencing, have revealed a loss of bacterial diversity in the microbiome of mastitic milk samples compared to healthy milk samples. In those infected, the pathogens Staphylococcus aureus, Staphylococcus epidermidis and members of corynebacteria have been identified as the predominant etiological agents in acute, subacute and granulomatous mastitis, respectively. The increased incidence of antibiotic resistance in the causative species is also a key cause of concern for treatment of the disease, thus leading to the need to develop novel therapies. In this respect, probiotics and bacteriocins have revealed potential as alternative treatments.
Collapse
|
148
|
Kang B, Xu Q, Chen Z, Wu Y, Yang S, Yang X, Zhang Z, Jiang D. Characterization of goose SPMS: Molecular characterization and expression profiling of SPMS in the goose ovary. Reprod Biol 2018; 18:60-65. [PMID: 29336947 DOI: 10.1016/j.repbio.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/13/2017] [Accepted: 01/04/2018] [Indexed: 11/24/2022]
Abstract
Spermine synthase (SPMS), which converts spermidine into spermine, is essential for normal cell growth and development processes in humans and other mammals, but the molecular characterization and expression profiling of the SPMS gene remain undetermined in goose tissues and ovarian follicles. In this study, the SPMS cDNA sequence of the Sichuan white goose was cloned and analysed, and SPMS mRNA expression was profiled in various tissues and ovarian follicles. The results showed that the open reading frame of the SPMS cDNA sequence was 1092 bp in length, encoding 363 amino acids with a molecular weight of 41 kDa. Among all the examined tissues, SPMS expression was highest in the spleen and cerebrum and lowest in the breast and thigh muscles. SPMS expression in the F1 follicle was significantly higher than that in the POF (except for POF2) (P < 0.05). Our results indicate that SPMS might play an important role in follicular development and ovulation.
Collapse
Affiliation(s)
- Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Qilin Xu
- Institute of Animal Science, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, PR China
| | - Ziyu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Yongsheng Wu
- Institute of Animal Science, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, PR China
| | - Su Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Xicheng Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Zhao Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
149
|
Regulation of Polyamine Metabolism by Curcumin for Cancer Prevention and Therapy. Med Sci (Basel) 2017; 5:medsci5040038. [PMID: 29258259 PMCID: PMC5753667 DOI: 10.3390/medsci5040038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022] Open
Abstract
Curcumin (diferuloylmethane), the natural polyphenol responsible for the characteristic yellow pigment of the spice turmeric (Curcuma longa), is traditionally known for its antioxidant, anti-inflammatory, and anticarcinogenic properties. Capable of affecting the initiation, promotion, and progression of carcinogenesis through multiple mechanisms, curcumin has potential utility for both chemoprevention and chemotherapy. In human cancer cell lines, curcumin has been shown to decrease ornithine decarboxylase (ODC) activity, a rate-limiting enzyme in polyamine biosynthesis that is frequently upregulated in cancer and other rapidly proliferating tissues. Numerous studies have demonstrated that pretreatment with curcumin can abrogate carcinogen-induced ODC activity and tumor development in rodent tumorigenesis models targeting various organs. This review summarizes the results of curcumin exposure with regard to the modulation of polyamine metabolism and discusses the potential utility of this natural compound in conjunction with the exploitation of dysregulated polyamine metabolism in chemopreventive and chemotherapeutic settings.
Collapse
|
150
|
Collapse of DNA in packaging and cellular transport. Int J Biol Macromol 2017; 109:36-48. [PMID: 29247730 DOI: 10.1016/j.ijbiomac.2017.12.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/02/2023]
Abstract
The dawn of molecular biology and recombinant DNA technology arose from our ability to manipulate DNA, including the process of collapse of long extended DNA molecules into nanoparticles of approximately 100 nm diameter. This condensation process is important for the packaging of DNA in the cell and for transporting DNA through the cell membrane for gene therapy. Multivalent cations, such as natural polyamines (spermidine and spermine), were initially recognized for their ability to provoke DNA condensation. Current research is targeted on molecules such as linear and branched polymers, oligopeptides, polypeptides and dendrimers that promote collapse of DNA to nanometric particles for gene therapy and on the energetics of DNA packaging.
Collapse
|