101
|
Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behav Brain Res 2008; 193:140-3. [DOI: 10.1016/j.bbr.2008.04.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 04/23/2008] [Accepted: 04/26/2008] [Indexed: 01/09/2023]
|
102
|
Sillaber I, Panhuysen M, Henniger MSH, Ohl F, Kühne C, Pütz B, Pohl T, Deussing JM, Paez-Pereda M, Holsboer F. Profiling of behavioral changes and hippocampal gene expression in mice chronically treated with the SSRI paroxetine. Psychopharmacology (Berl) 2008; 200:557-72. [PMID: 18629477 DOI: 10.1007/s00213-008-1232-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 06/10/2008] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Monoamine-based antidepressants inhibit neurotransmitter reuptake within short time. However, it commonly takes several weeks until clinical symptoms start to resolve--indicating the involvement of effects distant from reuptake inhibition. OBJECTIVE To unravel other mechanisms involved in drug action, a "reverse" pharmacological approach was applied to determine antidepressant-induced alterations of hippocampal gene expression. MATERIALS AND METHODS The behavioral response to long-term paroxetine administration of male DBA/2Ola mice was assessed by the forced swim test (FST), the modified hole board (mHB), and the dark/light box. Hippocampi of test-naive mice were dissected, and changes in gene expression by paroxetine treatment were investigated by means of microarray technology. RESULTS AND DISCUSSION Robust effects of paroxetine on passive stress-coping behavior in the FST were observed. Furthermore, anxiolytic properties of long-term antidepressant treatment could be identified in DBA mice in both, the mHB and dark/light box. Analysis of microarray results revealed a list of 60 genes differentially regulated by chronic paroxetine treatment. Preproenkephalin 1 and inhibin beta-A showed the highest level of transcriptional change. Furthermore, a number of candidates involved in neuroplasticity/neurogenesis emerged (e.g., Bdnf, Gfap, Vim, Sox11, Egr1, Stat3). Seven selected candidates were confirmed by in situ hybridization. Additional immunofluorescence colocalization studies of GFAP and vimentin showed more positive cells to be detected in long-term paroxetine-treated DBA mice. CONCLUSION Candidate genes identified in the current study using a mouse strain validated for its responsiveness to long-term paroxetine treatment add, in our opinion, to unraveling the mechanism of action of paroxetine as a representative for SSRIs.
Collapse
Affiliation(s)
- Inge Sillaber
- Max-Planck-Institute of Psychiatry, 80804 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 2008; 28:9055-65. [PMID: 18768700 DOI: 10.1523/jneurosci.1424-08.2008] [Citation(s) in RCA: 728] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Prenatal stress is associated with an increased vulnerability to neurodevelopmental disorders, including autism and schizophrenia. To determine the critical time window when fetal antecedents may induce a disease predisposition, we examined behavioral responses in offspring exposed to stress during early, mid, and late gestation. We found that male offspring exposed to stress early in gestation displayed maladaptive behavioral stress responsivity, anhedonia, and an increased sensitivity to selective serotonin reuptake inhibitor treatment. Long-term alterations in central corticotropin-releasing factor (CRF) and glucocorticoid receptor (GR) expression, as well as increased hypothalamic-pituitary-adrenal (HPA) axis responsivity, were present in these mice and likely contributed to an elevated stress sensitivity. Changes in CRF and GR gene methylation correlated with altered gene expression, providing important evidence of epigenetic programming during early prenatal stress. In addition, we found the core mechanism underlying male vulnerability may involve sex-specific placenta responsivity, where stress early in pregnancy significantly increased expression of PPARalpha (peroxisome proliferator-activated receptor alpha), IGFBP-1 (insulin-like growth factor binding protein 1), HIF3alpha (hypoxia-inducible factor 3a), and GLUT4 (glucose transporter 4) in male placentas but not females. Examination of placental epigenetic machinery revealed basal sex differences, providing further evidence that sex-specific programming begins very early in pregnancy, and may contribute to the timing and vulnerability of the developing fetus to maternal perturbations. Overall, these results indicate that stress experience early in pregnancy may contribute to male neurodevelopmental disorders through impacts on placental function and fetal development.
Collapse
|
104
|
Common genetic variations in human brain-specific tryptophan hydroxylase-2 and response to antidepressant treatment. Pharmacogenet Genomics 2008; 18:495-506. [PMID: 18496129 DOI: 10.1097/fpc.0b013e3282fb02cb] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Genetic variability within the serotoninergic system may predict the response to antidepressant drugs. Several polymorphisms in the gene coding for the brain-specific tryptophan hydroxylase (TPH2) have been associated with susceptibility to psychiatric diseases. In this study, we analyzed the correlation between TPH2 polymorphisms and response to antidepressant drugs. METHODS The study included 182 patients who received drug treatment for major depression. To assess the variability in the TPH2 gene, four single nucleotide polymorphisms (SNPs) tagging the common TPH2 haplotypes and six SNPs medically relevant according to data from other studies were analyzed in a multiplex single base primer extension reaction. RESULTS Two SNPs, rs10897346 and rs1487278, were significantly associated with response to therapy (P=0.003 and 0.007). The rs10897346 variant showed the highest predictive values with carriers of null C alleles showing a 2.6-fold increased risk (95% confidence interval 1.4-4.8) for nonresponse compared with the others. The effect was found in all major types of antidepressant medications administered in this study and was statistically significant in the subgroup on selective serotonin reuptake inhibitors. Multiple logistic regression analyses confirmed the rs10879346 polymorphism as an independent predictor of the antidepressant response (odds ratio: 3.86; 1.75-8.55, P=0.0008). The therapeutically relevant variant rs10897346 is completely linked with the functional Pro312Pro polymorphism, which is known to affect TPH2 expression and may influence serotonin synthesis in the brain. CONCLUSION The polymorphisms rs10897346 and Pro312Pro in the TPH2 gene might play an important role for TPH2 expression and antidepressant drug response.
Collapse
|
105
|
Jacobsen JPR, Nielsen EØ, Hummel R, Redrobe JP, Mirza N, Weikop P. Insensitivity of NMRI mice to selective serotonin reuptake inhibitors in the tail suspension test can be reversed by co-treatment with 5-hydroxytryptophan. Psychopharmacology (Berl) 2008; 199:137-50. [PMID: 18496675 DOI: 10.1007/s00213-008-1142-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 03/10/2008] [Indexed: 11/29/2022]
Abstract
RATIONALE Exploring differences between mouse strains in drug effects in models of antidepressant-like activity may provide clues to the neurobiology of antidepressant responses. OBJECTIVES The objective of this study was to explore whether insensitivity to selective serotonin reuptake inhibitors (SSRIs) in NMRI mice in the tail suspension test can be related to 5-hydroxytryptamine (5-HT) function. MATERIALS AND METHODS We compared NMRI and C57Bl/6 mice, a SSRI-sensitive strain, in the tail suspension test following citalopram, paroxetine, or fluoxetine and determined 5-HT transporter (5-HTT) densities, 5-HT tissue and extracellular levels, 5-HT synthesis, tryptophan hydroxylase 2 (TPH2) genotypes and hypothermia induced by the 5-HT(1A) agonist 8-OH-DPAT. In NMRI mice, we tested if co-treatment with 5-HTP would increase 5-HT levels and confer SSRI sensitivity in the tail suspension test. RESULTS C57Bl/6, but not NMRI, mice responded to SSRIs in the tail suspension test. 5-HTT densities in the frontal cortex and hippocampus were similar between the strains. NMRI mice had lower tissue 5-HT levels in these regions and decreased extracellular 5-HT in the frontal cortex at baseline and following citalopram. C57Bl/6 mice were more sensitive to 8-OH-DPAT-induced hypothermia. Both strains had the 1473C TPH2 genotype and similar 5-HT synthesis. In NMRI mice, 5-HTP co-treatment restored the tail suspension and extracellular 5-HT responses to SSRIs to levels equivalent to those seen in C57Bl/6 mice. CONCLUSION Low 5-HT function in NMRI mice may account for their insensitivity to SSRIs in the tail suspension test. As the tail suspension test is a predictor of clinical efficacy, the current data suggest that 5-HTP adjunct treatment may benefit SSRI treatment refractory patients.
Collapse
Affiliation(s)
- Jacob P R Jacobsen
- In vivo Pharmacology, NeuroSearch A/S, Pederstrupvej 93, Ballerup, Denmark.
| | | | | | | | | | | |
Collapse
|
106
|
Onishchenko N, Karpova N, Sabri F, Castrn E, Ceccatelli S. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem 2008; 106:1378-87. [DOI: 10.1111/j.1471-4159.2008.05484.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
107
|
Jacobsen JPR, Weikop P, Hansen HH, Mikkelsen JD, Redrobe JP, Holst D, Bond CT, Adelman JP, Christophersen P, Mirza NR. SK3 K+ channel-deficient mice have enhanced dopamine and serotonin release and altered emotional behaviors. GENES BRAIN AND BEHAVIOR 2008; 7:836-48. [PMID: 18616612 DOI: 10.1111/j.1601-183x.2008.00416.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SK3 K(+) channels influence neuronal excitability and are present in 5-hydroxytryptamine (5-HT) and dopamine (DA) nuclei in the brain stem. We therefore hypothesized that SK3 channels affect 5-HT and DA neurotransmission and associated behaviors. To explore this, we used doxycycline-induced conditional SK3-deficient (T/T) mice. In microdialysis, T/T mice had elevated baseline levels of striatal extracellular DA and the metabolites dihydroxyphenylacetic acid and homovanillic acid. While baseline hippocampal extracellular 5-HT was unchanged in T/T mice, the 5-HT response to the 5-HT transporter inhibitor citalopram was enhanced. Furthermore, baseline levels of the 5-HT metabolite 5-hydroxyindoleacetic acid were elevated in T/T mice. T/T mice performed equally to wild type (WT) in most sensory and motor tests, indicating that SK3 deficiency does not lead to gross impairments. In the forced swim and tail suspension tests, the T/T mice displayed reduced immobility compared with WT, indicative of an antidepressant-like phenotype. Female T/T mice were more anxious in the zero maze. In contrast, anxiety-like behaviors in the open-field and four-plate tests were unchanged in T/T mice of both sexes. Home cage diurnal activity was also unchanged in T/T mice. However, SK3 deficiency had a complex effect on activity responses to novelty: T/T mice showed decreased, increased or unchanged activity responses to novelty, depending on sex and context. In summary, we report that SK3 deficiency leads to enhanced DA and 5-HT neurotransmission accompanied by distinct alterations in emotional behaviors.
Collapse
Affiliation(s)
- J P R Jacobsen
- Department of In Vivo Pharmacology, Neurosearch A/S, Ballerup, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Guzzetti S, Calcagno E, Canetta A, Sacchetti G, Fracasso C, Caccia S, Cervo L, Invernizzi RW. Strain differences in paroxetine-induced reduction of immobility time in the forced swimming test in mice: role of serotonin. Eur J Pharmacol 2008; 594:117-24. [PMID: 18691569 DOI: 10.1016/j.ejphar.2008.07.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/11/2008] [Accepted: 07/21/2008] [Indexed: 11/16/2022]
Abstract
We studied the antidepressant-like effect of paroxetine in strains of mice carrying different isoforms of tryptophan hydroxylase-2 (TPH-2), the enzyme responsible for the synthesis of brain serotonin (5-HT). The effect of paroxetine alone and in combination with pharmacological treatments enhancing or lowering 5-HT synthesis or melatonin was assessed in the forced swimming test in mice carrying allelic variants of TPH-2 (1473C in C57BL/6 and 1473G in DBA/2 and BALB/c). Changes in brain 5-hydroxytryptophan (5-HTP) accumulation and melatonin levels were measured by high-performance liquid chromatography. Paroxetine (2.5 and 5 mg/kg) reduced immobility time in C57BL/6J and C57BL/6N mice but had no such effect in DBA/2J, DBA/2N and BALB/c mice, even at 10 mg/kg. Enhancing 5-HT synthesis with tryptophan reinstated the antidepressant-like effect of paroxetine in DBA/2J, DBA/2N and BALB/c mice whereas inhibition of 5-HT synthesis prevented the effect of paroxetine in C57BL/6N mice. The response to paroxetine was not associated with changes in locomotor activity, brain melatonin or brain levels of the drug measured at the end of the behavioral test. These results support the importance of 5-HT synthesis in the response to SSRIs and suggest that melatonin does not contribute to the ability of tryptophan to rescue the antidepressant-like effect of paroxetine.
Collapse
Affiliation(s)
- Sara Guzzetti
- Istituto di Ricerche Farmacologiche Mario Negri, Department of Neuroscience, Laboratory of Experimental Psychopharmacology, Via La Masa 19, 20156 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Chen GL, Miller GM. Rhesus monkey tryptophan hydroxylase-2 coding region haplotypes affect mRNA stability. Neuroscience 2008; 155:485-91. [PMID: 18593594 DOI: 10.1016/j.neuroscience.2008.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/27/2008] [Accepted: 05/29/2008] [Indexed: 12/22/2022]
Abstract
Tryptophan hydroxylase-2 (TPH2) synthesizes neuronal 5-HT and its genetic variance is associated with numerous behavioral traits and psychiatric disorders. This study characterized the functional significance of two nonsynonymous single nucleotide polymorphisms (SNPs) (C74A and G223A) in rhesus monkey TPH2 (mTPH2). Four haplotypes of mTPH2 were cloned into pcDNA3.1 and stably transfected into PC12 cells. The levels of mTPH2 mRNA and protein were assessed by quantitative real-time PCR and Western blot, respectively, while the intracellular 5-HT was measured by enzyme-linked immunosorbent assay (ELISA). The variant A-A haplotype showed significantly higher levels of mTPH2 mRNA and protein, as well as significantly higher 5-HT production than the wild-type C-G haplotype, while the other two variant haplotypes (C-A and A-G) also tended to produce more 5-HT than C-G haplotype when stably expressed in PC12 cells. Both C74A and G223A were predicted to change mRNA secondary structure, and analysis of the mRNA stability showed that the wild-type C-G haplotype mRNA degrades more quickly than mRNAs of the mutant mTPH2 haplotypes in both stable PC12 and transient HEK-293 cells. This study demonstrates that nonsynonymous SNPs in mTPH2 can affect mRNA stability. Our findings provide an additional mechanism by which nonsynonymous SNPs affect TPH2 function, and further our understanding of TPH2 gene expression regulation.
Collapse
Affiliation(s)
- G-L Chen
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | |
Collapse
|
110
|
Miller BH, Schultz LE, Gulati A, Cameron MD, Pletcher MT. Genetic regulation of behavioral and neuronal responses to fluoxetine. Neuropsychopharmacology 2008; 33:1312-22. [PMID: 17609676 DOI: 10.1038/sj.npp.1301497] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite widespread use of antidepressants, the factors underlying the behavioral response to antidepressants are unknown. It has been shown that antidepressant treatment promotes the proliferation and survival of neurons in the adult hippocampus via enhanced serotonergic signaling, but it is unclear whether hippocampal neurogenesis is responsible for the behavioral response to antidepressants. Furthermore, a large subpopulation of patients fails to respond to antidepressant treatment due to presumed underlying genetic factors. In the present study, we have used the phenotypic and genotypic variability of inbred mouse strains to show that there is a genetic component to both the behavioral and neuronal effects of chronic fluoxetine treatment, and that this antidepressant induces an increase in hippocampal cell proliferation only in the strains that also show a positive behavioral response to treatment. Furthermore, the behavioral and neuronal responses are associated with an upregulation of genes known to promote neuronal proliferation and survival. These results suggest that inherent genetic predisposition to increased serotonin-induced neurogenesis may be a determinant of antidepressant efficacy.
Collapse
Affiliation(s)
- Brooke H Miller
- Department of Molecular Therapeutics, The Scripps Research Institute--Scripps Florida, Jupiter, FL 33458, USA
| | | | | | | | | |
Collapse
|
111
|
O'Reilly K, Bailey SJ, Lane MA. Retinoid-mediated regulation of mood: possible cellular mechanisms. Exp Biol Med (Maywood) 2008; 233:251-8. [PMID: 18296731 DOI: 10.3181/0706-mr-158] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vitamin A and its derivatives, the retinoids, have long been studied for their ability to alter central nervous system (CNS) development. Increasingly, it is recognized that sufficient levels of retinoids may also be required for adult CNS function. However, excess dietary vitamin A, due to the consumption of supplements or foods rich in vitamin A, has been reported to induce psychosis. In addition, 13-cis-retinoic acid (13-cis-RA, isotretinoin), the active ingredient in the acne treatment Accutane, has been reported to cause adverse psychiatric events, including depression and suicidal ideation. Nevertheless, epidemiological studies have reported no consistent link between Accutane use and clinical depression in humans. Using an animal model, we have recently shown that 13-cis-RA induces an increase in depression-related behavior. Impairments in spatial learning and memory have also been demonstrated following 13-cis-RA treatment in mice. This review focuses on the behavioral and possible cellular effects of retinoid deficiency or excess in the adult brain in relation to altered mood. Specifically, we discuss the effect of retinoids on depression-related behaviors and whether norepinephrinergic, dopaminergic, or serotonergic neurotransmitter systems may be impaired. In addition, we consider the evidence that adult neurogenesis, a process implicated in the pathophysiology of depression, is reduced by retinoid signaling. We suggest that 13-cis-RA treatment may induce depression-related behaviors by decreasing adult neurogenesis and/or altering the expression of components of serotonergic neurotransmitter system, thereby leading to impaired serotonin signaling.
Collapse
Affiliation(s)
- Kally O'Reilly
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
112
|
McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN. Autism-like behavioral phenotypes in BTBR T+tf/J mice. GENES BRAIN AND BEHAVIOR 2008; 7:152-63. [PMID: 17559418 DOI: 10.1111/j.1601-183x.2007.00330.x] [Citation(s) in RCA: 588] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Autism is a behaviorally defined neurodevelopmental disorder of unknown etiology. Mouse models with face validity to the core symptoms offer an experimental approach to test hypotheses about the causes of autism and translational tools to evaluate potential treatments. We discovered that the inbred mouse strain BTBR T+tf/J (BTBR) incorporates multiple behavioral phenotypes relevant to all three diagnostic symptoms of autism. BTBR displayed selectively reduced social approach, low reciprocal social interactions and impaired juvenile play, as compared with C57BL/6J (B6) controls. Impaired social transmission of food preference in BTBR suggests communication deficits. Repetitive behaviors appeared as high levels of self-grooming by juvenile and adult BTBR mice. Comprehensive analyses of procedural abilities confirmed that social recognition and olfactory abilities were normal in BTBR, with no evidence for high anxiety-like traits or motor impairments, supporting an interpretation of highly specific social deficits. Database comparisons between BTBR and B6 on 124 putative autism candidate genes showed several interesting single nucleotide polymorphisms (SNPs) in the BTBR genetic background, including a nonsynonymous coding region polymorphism in Kmo. The Kmo gene encodes kynurenine 3-hydroxylase, an enzyme-regulating metabolism of kynurenic acid, a glutamate antagonist with neuroprotective actions. Sequencing confirmed this coding SNP in Kmo, supporting further investigation into the contribution of this polymorphism to autism-like behavioral phenotypes. Robust and selective social deficits, repetitive self-grooming, genetic stability and commercial availability of the BTBR inbred strain encourage its use as a research tool to search for background genes relevant to the etiology of autism, and to explore therapeutics to treat the core symptoms.
Collapse
Affiliation(s)
- H G McFarlane
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892-3730, USA
| | | | | | | | | | | |
Collapse
|
113
|
Long-term citalopram maintenance in mice: selective reduction of alcohol-heightened aggression. Psychopharmacology (Berl) 2008; 196:407-16. [PMID: 17952412 DOI: 10.1007/s00213-007-0972-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) alleviate many affective disturbances in human clinical populations and are used in animal models to study the influence of serotonin (5-HT) on aggressive behavior and impulsivity. OBJECTIVE We hypothesized that long-term SSRI treatment may reduce aggressive behavior escalated by alcohol consumption in mice. Therefore, aggression was tested in male CFW mice to determine whether repeated citalopram (CIT) administration reduces alcohol-heightened aggression. MATERIALS AND METHODS Resident male mice self-administered alcohol by performing an operant response on a panel placed in their home cage that delivered a 6% alcohol solution. Mice repeatedly confronted an intruder 15 min after self-administration of either 1 g/kg alcohol (EtOH) or water (H(2)O). Aggressive behaviors were higher in most mice when tests occurred after EtOH intake relative to H(2)O. Once baseline aggression was established, animals were injected (i.p.) twice daily with 10 mg/kg CIT or saline (SAL) for 32 days. Every 4 days throughout the CIT treatment period, aggressive encounters occurred 6 h after CIT injections, with testing conditions alternating between EtOH and H(2)O intake. RESULTS Aggression was only modestly affected by CIT in the first 2 weeks of treatment. However, by day 17 of CIT treatment, alcohol-heightened aggressive behavior was abolished, while baseline aggression remained stable. These data lend support for the role of the 5-HT transporter in the control of alcohol-related aggressive behavior, and the time course of effects suggests that a change in density of 5HT(1A) autoreceptors is necessary before antidepressant drugs produce beneficial outcomes.
Collapse
|
114
|
Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc Natl Acad Sci U S A 2008; 105:1333-8. [PMID: 18212115 DOI: 10.1073/pnas.0711496105] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of brain serotonin (5-HT) neurotransmission is thought to underlie mental conditions as diverse as depression, anxiety disorders, bipolar disorder, autism, and schizophrenia. Despite treatment of these conditions with serotonergic drugs, the molecular mechanisms by which 5-HT is involved in the regulation of aberrant emotional behaviors are poorly understood. Here, we generated knockin mice expressing a mutant form of the brain 5-HT synthesis enzyme, tryptophan hydroxylase 2 (Tph2). This mutant is equivalent to a rare human variant (R441H) identified in few individuals with unipolar major depression. Expression of mutant Tph2 in mice results in markedly reduced ( approximately 80%) brain 5-HT production and leads to behavioral abnormalities in tests assessing 5-HT-mediated emotional states. This reduction in brain 5-HT levels is accompanied by activation of glycogen synthase kinase 3beta (GSK3beta), a signaling molecule modulated by many psychiatric therapeutic agents. Importantly, inactivation of GSK3beta in Tph2 knockin mice, using pharmacological or genetic approaches, alleviates the aberrant behaviors produced by 5-HT deficiency. These findings establish a critical role of Tph2 in the maintenance of brain serotonin homeostasis and identify GSK3beta signaling as an important pathway through which brain 5-HT deficiency induces abnormal behaviors. Targeting GSK3beta and related signaling events may afford therapeutic advantages for the management of certain 5-HT-related psychiatric conditions.
Collapse
|
115
|
Tenner K, Qadri F, Bert B, Voigt JP, Bader M. The mTPH2 C1473G single nucleotide polymorphism is not responsible for behavioural differences between mouse strains. Neurosci Lett 2007; 431:21-5. [PMID: 18082956 DOI: 10.1016/j.neulet.2007.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 10/15/2007] [Accepted: 11/07/2007] [Indexed: 11/17/2022]
Abstract
Tryptophan hydroxylase 2 (TPH2) is the rate limiting enzyme of serotonin synthesis in the brain. A recently described functional (C1473G) single nucleotide polymorphism in mouse TPH2 resulting in vitro in a strongly decreased enzymatic activity was suspected to be responsible for the observed differences in 5-HT levels and behaviour between mice strains. We bred two substrains of C57BL/6 mice carrying the two isoforms and could show that both exhibit equal TPH activity, brain 5-HT content and behaviour. These data indicate that the distinct behavioural characteristics of mouse strains are not due to differences in TPH2 activity, but to other variations in the genetic background.
Collapse
Affiliation(s)
- Katja Tenner
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
116
|
Diers JA, Ivey KD, El-Alfy A, Shaikh J, Wang J, Kochanowska AJ, Stoker JF, Hamann MT, Matsumoto RR. Identification of antidepressant drug leads through the evaluation of marine natural products with neuropsychiatric pharmacophores. Pharmacol Biochem Behav 2007; 89:46-53. [PMID: 18037479 DOI: 10.1016/j.pbb.2007.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 10/25/2007] [Accepted: 10/26/2007] [Indexed: 11/26/2022]
Abstract
The marine environment is a valuable resource for drug discovery due to its diversity of life and associated secondary metabolites. However, there is very little published data on the potential application of marine natural products to treat neuropsychiatric disorders. Many natural products derived from chemically defended organisms in the marine environment have pharmacophores related to serotonin or clinically utilized antidepressant drugs. Therefore, in the present study, compounds selected for their structural similarity to serotonin or established antidepressants were evaluated for antidepressant-like activity using the forced swim and tail suspension tests in mice. The antidepressant positive controls, citalopram (selective serotonin reuptake inhibitor) and despiramine (tricyclic antidepressant) both dose-dependently reduced immobility time in the forced swim and tail suspension tests. Two marine natural product compounds tested, aaptamine and 5,6-dibromo-N,N-dimethyltryptamine, also produced significant antidepressant-like activity in the forced swim test. In the tail suspension test, the antidepressant-like effects of 5,6-dibromo-N,N-dimethyltryptamine were confirmed, whereas aaptamine failed to produce significant results. None of the tested compounds induced hyperlocomotion, indicating that nonspecific stimulant effects could not account for the observed antidepressant-like actions of the compounds. These studies highlight the potential to rationally select marine derived compounds for treating depression and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jeffrey A Diers
- The Department of Pharmacology, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Cook MN, Dunning JP, Wiley RG, Chesler EJ, Johnson DK, Miller DR, Goldowitz D. Neurobehavioral mutants identified in an ENU-mutagenesis project. Mamm Genome 2007; 18:559-72. [PMID: 17629744 DOI: 10.1007/s00335-007-9035-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
We report on a battery of behavioral screening tests that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU-mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and used a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open-field mutants (one displaying hyperlocomotion, the other hypolocomotion), four tail-suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsiveness to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning-and-memory mutant (displaying reduced response to the conditioned stimulus). These findings highlight the utility of a set of behavioral tasks used in a high-throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Melloni N Cook
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152, and VA Tennessee Valley Healthcare System, Nashville 37212, USA.
| | | | | | | | | | | | | |
Collapse
|
118
|
Liu X, Stancliffe D, Lee S, Mathur S, Gershenfeld HK. Genetic dissection of the tail suspension test: a mouse model of stress vulnerability and antidepressant response. Biol Psychiatry 2007; 62:81-91. [PMID: 17125744 DOI: 10.1016/j.biopsych.2006.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/17/2006] [Accepted: 08/19/2006] [Indexed: 12/20/2022]
Abstract
BACKGROUND The tail suspension test (TST) is a mouse screening test for antidepressants. METHODS An F2 intercross was derived from NMRI and 129S6 inbred strains (n = 747). Mice underwent standardized TST with 2 sessions: (1) baseline and (2) imipramine (30 mg/kg, intraperitoneally) TST. RESULTS A whole genome scan of this intercross mapped significant basal TST quantitative trait loci (QTL) on chromosomes (chr) 5 (peak 61 cM, Lod 5.7), 12 (peak 43 cM, Lod 5.2), and 18 (peak 51 cM, Lod 3.0). A suggestive QTL on chr 4 (peak 62 cM; Lod 3.1) overlapped regions containing previously mapped QTLs. For TST imipramine response, QTL were mapped on chr 1, 4, and 5. The chromosome 5 locus affected basal TST, antidepressant immobility response, and tail suspension-induced hyperthermia (TSIH) behaviors. An outbred NMRI F2 population provided further evidence for a chr 5 QTL. This chr 5 region harbors a cluster of gamma aminobutyric acid (GABA)-A receptor subunits and the human syntenic region includes chr 4p, 1p11, 12q24, and 22q11.24. A significant TSIH QTL (Tsih1) mapped on chr 4 near the Leptin receptor (Lepr). CONCLUSIONS These QTL provide potential regions of interest for human genetic studies in stress-diathesis models of psychiatric illness and antidepressant responsiveness.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Chromosome Mapping
- Chromosomes, Mammalian/genetics
- Crosses, Genetic
- Disease Models, Animal
- Fever/genetics
- Genetic Predisposition to Disease/genetics
- Hindlimb Suspension/physiology
- Imipramine/pharmacology
- Imipramine/therapeutic use
- Immobilization/physiology
- Immobilization/psychology
- Immunohistochemistry
- Injections, Intraperitoneal
- Lod Score
- Mice
- Mice, Inbred Strains
- Quantitative Trait Loci/genetics
- Receptors, Cell Surface/genetics
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/genetics
- Receptors, Leptin
- Stress, Psychological/drug therapy
- Stress, Psychological/etiology
- Stress, Psychological/genetics
- Terminology as Topic
Collapse
Affiliation(s)
- Xiaoqing Liu
- Department of Psychiatry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
119
|
Kalueff AV, Wheaton M, Murphy DL. What's wrong with my mouse model? Behav Brain Res 2007; 179:1-18. [PMID: 17306892 DOI: 10.1016/j.bbr.2007.01.023] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 01/15/2007] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
Stress plays a key role in pathogenesis of anxiety and depression. Animal models of these disorders are widely used in behavioral neuroscience to explore stress-evoked brain abnormalities, screen anxiolytic/antidepressant drugs and establish behavioral phenotypes of gene-targeted or transgenic animals. Here we discuss the current situation with these experimental models, and critically evaluate the state of the art in this field. Noting a deficit of fresh ideas and especially new paradigms for animal anxiety and depression models, we review existing challenges and outline important directions for further research in this field.
Collapse
Affiliation(s)
- A V Kalueff
- Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, MD 20892-1264, USA.
| | | | | |
Collapse
|
120
|
Invernizzi RW. Role of TPH-2 in brain function: News from behavioral and pharmacologic studies. J Neurosci Res 2007; 85:3030-5. [PMID: 17492791 DOI: 10.1002/jnr.21330] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The recent discovery of TPH-2, a new isoform of tryptophan hydroxylase, the enzyme that catalyses the transformation of tryptophan into 5-hydroxytryptophan and the rate-limiting step in brain serotonin (5-HT) biosynthesis, has boosted new interest in the many functions of 5-HT in the brain and non-nervous tissues. Recent studies on TPH-2 are reviewed with particular attention to the role of this enzyme in behavior and in response to drugs as assessed by comparing strains of mice carrying a functional polymorphism of TPH-2. Most studies concur to indicate that 5-HT synthesis through TPH-2 influence nervous tissues whereas TPH-1 is responsible for the synthesis and action of 5-HT in peripheral organs. Partial impairment of brain 5-HT synthesis caused by polymorphism of the gene encoding TPH-2 causes reduced release of the neurotransmitter, increased aggressiveness, and alters the response to drugs inhibiting the reuptake of 5-HT. Strain comparison might be a useful strategy to investigate the genotype-dependent alterations of TPH-2.
Collapse
Affiliation(s)
- Roberto W Invernizzi
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| |
Collapse
|
121
|
Nakamura K, Hasegawa H. Developmental role of tryptophan hydroxylase in the nervous system. Mol Neurobiol 2007; 35:45-54. [PMID: 17519505 DOI: 10.1007/bf02700623] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 11/30/1999] [Accepted: 09/08/2006] [Indexed: 11/25/2022]
Abstract
The serotonin 5-hydroxytryptamine (5-HT) neurotransmitter system contributes to various physiological and pathological conditions. 5-HT is the first neurotransmitter for which a developmental role was suspected. Tryptophan hydroxylase (TPH) catalyzes the rate-limiting reaction in the biosynthesis of 5-HT. Both TPH1 and TPH2 have tryptophan hydroxylating activity. TPH2 is abundant in the brain, whereas TPH1 is mainly expressed in the pineal gland and the periphery. However, TPH1 was found to be expressed predominantly during the late developmental stage in the brain. Recent advances have shed light on the kinetic properties of each TPH isoform. TPH1 showed greater affinity for tryptophan and stronger enzymic activity than TPH2 under conditions reflecting those in the developing brain stem. Transient alterations in 5-HT homeostasis during development modify the fine wiring of brain connections and cause permanent changes to adult behavior. An increasing body of evidence suggests the involvement of developmental brain disturbances in psychiatric disorders. These findings have revived a long-standing interest in the developmental role of 5-HT-related molecules. This article summarizes our understanding of the kinetics and possible neuronal functions of each TPH during development and in the adult.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Pathology, Juntendo University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
122
|
Crowley JJ, Brodkin ES, Blendy JA, Berrettini WH, Lucki I. Pharmacogenomic evaluation of the antidepressant citalopram in the mouse tail suspension test. Neuropsychopharmacology 2006; 31:2433-42. [PMID: 16554742 DOI: 10.1038/sj.npp.1301065] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The identification of genetic variants regulating antidepressant response in human patients would allow for more individualized, rational, and successful drug treatments. We have previously identified the BALB/cJ inbred mouse strain as highly responsive to the selective serotonin reuptake inhibitor (SSRI) citalopram in the tail suspension test (TST), a widely used and well-established screening paradigm for detecting compounds with antidepressant activity. In contrast, A/J mice did not show a significant response to citalopram in this test despite exposure to equivalent plasma levels of the drug. To identify genetic determinants of this differential response, 506 F2 mice from an intercross between BALB/cJ and A/J mice were phenotyped. Composite interval mapping of 92 mice from the phenotypic extremes revealed three loci on chromosomes 7, 12, and 19 affecting citalopram response in the TST. The quantitative trait locus (QTL) at the telomeric end of chromosome 19 showed the greatest level of significance. Three candidate genes residing in this locus include those for vesicular monoamine transporter 2 (VMAT2, slc18a2), alpha 2A adrenergic receptor (adra2a), and beta 1 adrenergic receptor (adrb1). The protein coding regions of these three genes in BALB/cJ and A/J mice were sequenced and two polymorphisms were found in VMAT2 (Leu117Pro and Ser505Pro), while the transcribed regions of adra2a and adrb1 were of identical sequence between strains. Follow-up studies are needed to determine if the VMAT2 polymorphisms are functional and if they could explain the chromosome 19 QTL. The present quantitative trait study suggests possible candidate genes for human pharmacogenetic studies of therapeutic responses to SSRIs such as citalopram.
Collapse
Affiliation(s)
- James J Crowley
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
123
|
Jacobson LH, Cryan JF. Feeling strained? Influence of genetic background on depression-related behavior in mice: a review. Behav Genet 2006; 37:171-213. [PMID: 17029009 DOI: 10.1007/s10519-006-9106-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 08/11/2006] [Indexed: 02/03/2023]
Abstract
Depression is a growing pandemic in developed societies. The use of inbred mouse strains in pre-clinical psychiatric research has proven to be a valuable resource. Firstly, they provide the background for genetic manipulations that aid in the discovery of molecular pathways that may be involved in major depression. Further, inbred mouse strains are also being used in the determination of genetic and environmental influences that may pre-dispose or trigger depression-related behavior. This review aims to highlight the utility of inbred mouse strains in depression research, while providing an overview of the current state of research into behavioral differences between strains in paradigms commonly used in the field. Neurochemical differences that may underlie strain differences are examined, and some caveats and cautions associated with the use of inbred strains are highlighted.
Collapse
Affiliation(s)
- L H Jacobson
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | | |
Collapse
|
124
|
McArthur R, Borsini F. Animal models of depression in drug discovery: a historical perspective. Pharmacol Biochem Behav 2006; 84:436-52. [PMID: 16844210 DOI: 10.1016/j.pbb.2006.06.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/31/2006] [Accepted: 06/06/2006] [Indexed: 12/16/2022]
Abstract
Over the course of the last 50 years many models of major depressive disorder have been developed on the basis of theoretical aspects of this disorder. These models and procedures have been crucial in the discovery and development of clinically-effective drugs. Notwithstanding, there is presently great concern about the discrepancy between positive outcomes of new candidate drugs in animal models and apparent lack of efficacy in humans i.e., the predictive validity of animal models. Some reasons for this concern lie in the over-reliance in the face value of behavioural models, design of clinical trials, placebo responses, genetic variations in response to drugs, species differences in bioavailability and toxicology, and not least, disinterest of pharmaceutical sponsors to continue developing certain drugs. Present model development is focusing on endophenotypic aspects of behaviours rather than trying to model whole syndromes. This essay traces the origins and theoretical bases of our animal models of depression or depressed-like behaviours in humans and indicates how they have evolved from behavioural assays used to measure the potency and efficacy of potential candidate drugs to tools by which endophenotypes of depression may be identified and verified pharmacologically. A cautionary note is included though to indicate that the true predictive validity of our models will not be fully assessed until we can determine the attrition rate of molecules discovered from new drug targets translating into clinically-effective drugs.
Collapse
Affiliation(s)
- Robert McArthur
- McArthur and Associates GmbH, Ramsteinerstrasse 28, CH-4052 Basel, Switzerland.
| | | |
Collapse
|
125
|
Zhang X, Beaulieu JM, Gainetdinov RR, Caron MG. Functional polymorphisms of the brain serotonin synthesizing enzyme tryptophan hydroxylase-2. Cell Mol Life Sci 2006; 63:6-11. [PMID: 16378243 PMCID: PMC2792355 DOI: 10.1007/s00018-005-5417-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many neuropsychiatric disorders are considered to be related to the dysregulation of brain serotonergic neurotransmission. Tryptophan hydroxylase-2 (TPH2) is the neuronal-specific enzyme that controls brain serotonin synthesis. There is growing genetic evidence for the possible involvement of TPH2 in serotonin-related neuropsychiatric disorders; however, the degree of genetic variation in TPH2 and, in particular, its possible functional consequences remain unknown. In this short review, we will summarize some recent findings with respect to the functional analysis of TPH2.
Collapse
Affiliation(s)
- X. Zhang
- Department of Cell Biology, and Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Box 3287, Durham, North Carolina 27710 USA
| | - J.-M. Beaulieu
- Department of Cell Biology, and Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Box 3287, Durham, North Carolina 27710 USA
| | - R. R. Gainetdinov
- Department of Cell Biology, and Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Box 3287, Durham, North Carolina 27710 USA
| | - M. G. Caron
- Department of Cell Biology, and Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Box 3287, Durham, North Carolina 27710 USA
| |
Collapse
|