101
|
Di Sole F, Vadnagara K, Moe OW, Babich V. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family. Am J Physiol Renal Physiol 2012; 303:F165-79. [PMID: 22189947 PMCID: PMC3404583 DOI: 10.1152/ajprenal.00628.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022] Open
Abstract
The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca(2+)-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca(2+)-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, and nuclear export signals. These structural features are essential for the function of the three members of the CHP subfamily. Indeed, CHP1-CHP3 have multiple and diverse essential functions, ranging from the regulation of the plasma membrane Na(+)/H(+) exchanger protein function, to carrier vesicle trafficking and gene transcription. The diverse functions attributed to the CHP subfamily rendered an understanding of its action highly complex and often controversial. This review provides a comprehensive and organized examination of the properties and physiological roles of the CHP subfamily with a view to revealing a link between CHP diverse functions.
Collapse
Affiliation(s)
- Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8885, USA.
| | | | | | | |
Collapse
|
102
|
Regulation of inflammatory response in human chondrocytes by lentiviral mediated RNA interference against S100A10. Inflamm Res 2012; 61:1219-27. [PMID: 22797859 DOI: 10.1007/s00011-012-0519-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 06/13/2012] [Accepted: 06/22/2012] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The aim of the present study was to evaluate the effects of S100A10 silencing on the inflammatory response in human chondrocytes (HCs).The inflammation induced by lipopolysaccharide (LPS) was investigated in HCs in which the S100A10 was blocked with a lentiviral shRNA vector. METHODS A lentiviral shRNA vector targeting S100A10 was constructed and packaged to effectively block S100A10 expression in HCs. HCs were infected with the lentivirus. S100A10 expression levels in HCs were detected by western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was employed to evaluate the change of cytokine secretion levels. The effects of S100A10 silencing on the activation of mitogen-activated protein kinases (MAPKs) and NF-κB signaling pathway were also determined by western blot analysis. In addition, fluo-3-AM was used to demonstrate the change in calcium mobilization. RESULTS Lentivirus effectively infected the HCs and inhibited the expression of S100A10. HCs with downregulated S100A10 showed significantly decreased production of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-10. S100A10 silencing markedly suppressed the activation of MAPKs induced by LPS. Furthermore, the calcium concentration increase in HCs stimulated by LPS was also inhibited by S100A10 knockdown. CONCLUSION Our investigation demonstrated that S100A10 might be considered as a potential target for anti-inflammatory treatment.
Collapse
|
103
|
Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. Int J Neuropsychopharmacol 2012; 15:669-79. [PMID: 21682946 DOI: 10.1017/s1461145711000940] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
P11 (S100A10) has been associated with the pathophysiology of depression both in human and rodent models. Different types of antidepressants have been shown to increase P11 levels in distinct brain regions and P11 gene therapy was recently proven effective in reversing depressive-like behaviours in mice. However, the molecular mechanisms that govern P11 gene expression in response to antidepressants still remain elusive. In this study we report decreased levels of P11, associated with higher DNA methylation in the promoter region, in the prefrontal cortex of the Flinders Sensitive Line (FSL) genetic rodent model of depression. This hypermethylated pattern was reversed to normal, as indicated by the control line, after chronic administration of escitalopram (a selective serotonin reuptake inhibitor; SSRI). The escitalopram-induced hypomethylation was associated with both an increase in P11 gene expression and a reduction in mRNA levels of two DNA methyltransferases that have been shown to maintain DNA methylation in adult forebrain neurons (Dnmt1 and Dnmt3a). In conclusion, our data further support a role for P11 in depression-like states and suggest that this gene is controlled by epigenetic mechanisms that can be affected by antidepressant treatment.
Collapse
|
104
|
Gillet JP, Calcagno AM, Varma S, Davidson B, Bunkholt Elstrand M, Ganapathi R, Kamat AA, Sood AK, Ambudkar SV, Seiden MV, Rueda BR, Gottesman MM. Multidrug resistance-linked gene signature predicts overall survival of patients with primary ovarian serous carcinoma. Clin Cancer Res 2012; 18:3197-206. [PMID: 22492981 PMCID: PMC3376649 DOI: 10.1158/1078-0432.ccr-12-0056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study assesses the ability of multidrug resistance (MDR)-associated gene expression patterns to predict survival in patients with newly diagnosed carcinoma of the ovary. The scope of this research differs substantially from that of previous reports, as a very large set of genes was evaluated whose expression has been shown to affect response to chemotherapy. EXPERIMENTAL DESIGN We applied a customized TaqMan low density array, a highly sensitive and specific assay, to study the expression profiles of 380 MDR-linked genes in 80 tumor specimens collected at initial surgery to debulk primary serous carcinoma. The RNA expression profiles of these drug resistance genes were correlated with clinical outcomes. RESULTS Leave-one-out cross-validation was used to estimate the ability of MDR gene expression to predict survival. Although gene expression alone does not predict overall survival (OS; P = 0.06), four covariates (age, stage, CA125 level, and surgical debulking) do (P = 0.03). When gene expression was added to the covariates, we found an 11-gene signature that provides a major improvement in OS prediction (log-rank statistic P < 0.003). The predictive power of this 11-gene signature was confirmed by dividing high- and low-risk patient groups, as defined by their clinical covariates, into four specific risk groups on the basis of expression levels. CONCLUSION This study reveals an 11-gene signature that allows a more precise prognosis for patients with serous cancer of the ovary treated with carboplatin- and paclitaxel-based therapy. These 11 new targets offer opportunities for new therapies to improve clinical outcome in ovarian cancer.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Hermann A, Donato R, Weiger TM, Chazin WJ. S100 calcium binding proteins and ion channels. Front Pharmacol 2012; 3:67. [PMID: 22539925 PMCID: PMC3336106 DOI: 10.3389/fphar.2012.00067] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/03/2012] [Indexed: 12/23/2022] Open
Abstract
S100 Ca(2+)-binding proteins have been associated with a multitude of intracellular Ca(2+)-dependent functions including regulation of the cell cycle, cell differentiation, cell motility and apoptosis, modulation of membrane-cytoskeletal interactions, transduction of intracellular Ca(2+) signals, and in mediating learning and memory. S100 proteins are fine tuned to read the intracellular free Ca(2+) concentration and affect protein phosphorylation, which makes them candidates to modulate certain ion channels and neuronal electrical behavior. Certain S100s are secreted from cells and are found in extracellular fluids where they exert unique extracellular functions. In addition to their neurotrophic activity, some S100 proteins modulate neuronal electrical discharge activity and appear to act directly on ion channels. The first reports regarding these effects suggested S100-mediated alterations in Ca(2+) fluxes, K(+) currents, and neuronal discharge activity. Recent reports revealed direct and indirect interactions with Ca(2+), K(+), Cl(-), and ligand activated channels. This review focuses on studies of the physical and functional interactions of S100 proteins and ion channels.
Collapse
Affiliation(s)
- Anton Hermann
- Division of Cellular and Molecular Neurobiology, Department of Cell Biology, University of SalzburgSalzburg, Austria
| | - Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, University of PerugiaPerugia, Italy
| | - Thomas M. Weiger
- Division of Cellular and Molecular Neurobiology, Department of Cell Biology, University of SalzburgSalzburg, Austria
| | - Walter J. Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt UniversityNashville, TN, USA
| |
Collapse
|
106
|
Fang YT, Lin CF, Wang CY, Anderson R, Lin YS. Interferon-γ stimulates p11-dependent surface expression of annexin A2 in lung epithelial cells to enhance phagocytosis. J Cell Physiol 2012; 227:2775-87. [DOI: 10.1002/jcp.23026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
107
|
Fenouille N, Grosso S, Yunchao S, Mary D, Pontier-Bres R, Imbert V, Czerucka D, Caroli-Bosc FX, Peyron JF, Lagadec P. Calpain 2-dependent IκBα degradation mediates CPT-11 secondary resistance in colorectal cancer xenografts. J Pathol 2012; 227:118-29. [PMID: 22069124 DOI: 10.1002/path.3034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/20/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
CPT-11 (irinotecan), the first-line chemotherapy for advanced stage colorectal cancer, remains inactive in about half of patients (primary chemoresistance) and almost all initial responders develop secondary resistance after several courses of treatment (8 months on average). Nude mice bearing HT-29 colon cancer xenografts were treated with CPT-11 and/or an NF-κB inhibitor for two courses. We confirm that NF-κB inhibition potentiated CPT-11 anti-tumoural effect after the first course of treatment. However, tumours grew again at the end of the second course of treatment, generating resistant tumours. We observed an increase in the basal NF-κB activation in resistant tumours and in two resistant sublines, either obtained from resistant HT-29 tumours (HT-29R cells) or generated in vitro (RSN cells). The decrease of NF-κB activation in HT-29R and RSN cells by stable transfections with the super-repressor form of IκBα augmented their sensitivity to CPT-11. Comparing gene expression profiles of HT-29 and HT-29R cells, we identified the S100A10/Annexin A2 complex and calpain 2 as over-expressed potential NF-κB inducers. SiRNA silencing of calpain 2 but not of S100A10 and/or annexin A2, resulted in a decrease in NF-κB activation, an increase in cellular levels of IκBα and a partial restoration of the CPT-11 sensitivity in both HT-29R and RSN cells, suggesting that calpain 2-dependent IκBα degradation mediates CPT-11 secondary resistance. Thus, targeted therapies directed against calpain 2 may represent a novel strategy to enhance the anti-cancer efficacy of CPT-11.
Collapse
Affiliation(s)
- Nina Fenouille
- INSERM, U895, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Inflammation, Cancer, Cellules Souches Cancéreuses, Nice, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Dempsey BR, Shaw GS. Identification of calcium-independent and calcium-enhanced binding between S100B and the dopamine D2 receptor. Biochemistry 2011; 50:9056-65. [PMID: 21932834 PMCID: PMC3196243 DOI: 10.1021/bi201054x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
S100B is a dimeric EF-hand protein that undergoes a calcium-induced
conformational change and exposes a hydrophobic protein-binding surface.
Recently S100B was identified as a binding partner of the dopamine
D2 receptor in a bacterial two-hybrid screen involving the third intracellular
loop (IC3). The low in vivo calcium concentration
in bacteria (100–300 nM) suggests this interaction may occur
in the absence of calcium. In this work the calcium-sensitive ability
for S100B to recruit the IC3 of the dopamine D2 receptor was examined,
and regions in both proteins required for complex formation were identified.
Peptide array experiments identified the C-terminal 58 residues of
the IC3 (IC3-C58) as the major interacting site for S100B. These experiments
along with pull-down assays showed the IC3 interacts with S100B in
the absence and presence of calcium. 1H–15N HSQC experiments were used to identify residues, primarily in helices
III and IV, utilized in the IC3-C58 interaction. NMR titration data
indicated that although an interaction between apo-S100B and IC3-C58
occurs without calcium, the binding was enhanced more than 100-fold
upon calcium binding. Further, it was established that shorter regions
within IC3-C58 comprising its N- and C-terminal halves had diminished
binding to Ca2+-S100B and did not display any observable
affinity in the absence of calcium. This indicates that residue or
structural components within both regions are required for optimal
interaction with Ca2+-S100B. This work represents the first
example of an S100B target that interacts with both the apo- and calcium-saturated
forms of S100B.
Collapse
Affiliation(s)
- Brian R Dempsey
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
109
|
Abstract
The vascular endothelial cells line the inner surface of blood vessels and function to maintain blood fluidity by producing the protease plasmin that removes blood clots from the vasculature, a process called fibrinolysis. Plasminogen receptors play a central role in the regulation of plasmin activity. The protein complex annexin A2 heterotetramer (AIIt) is an important plasminogen receptor at the surface of the endothelial cell. AIIt is composed of 2 molecules of annexin A2 (ANXA2) bound together by a dimer of the protein S100A10. Recent work performed by our laboratory allowed us to clarify the specific roles played by ANXA2 and S100A10 subunits within the AIIt complex, which has been the subject of debate for many years. The ANXA2 subunit of AIIt functions to stabilize and anchor S100A10 to the plasma membrane, whereas the S100A10 subunit initiates the fibrinolytic cascade by colocalizing with the urokinase type plasminogen activator and receptor complex and also providing a common binding site for both tissue-type plasminogen activator and plasminogen via its C-terminal lysine residue. The AIIt mediated colocalization of the plasminogen activators with plasminogen results in the rapid and localized generation of plasmin to the endothelial cell surface, thereby regulating fibrinolysis.
Collapse
|
110
|
Chen Y, Chen J, Wen H, Gao P, Wang J, Zheng Z, Gu J. S100A10 downregulation inhibits the phagocytosis of Cryptococcus neoformans by murine brain microvascular endothelial cells. Microb Pathog 2011; 51:96-100. [DOI: 10.1016/j.micpath.2011.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 12/25/2022]
|
111
|
Hong D, Chen HX, Yu HQ, Wang C, Deng HT, Lian QQ, Ge RS. Quantitative proteomic analysis of dexamethasone-induced effects on osteoblast differentiation, proliferation, and apoptosis in MC3T3-E1 cells using SILAC. Osteoporos Int 2011; 22:2175-86. [PMID: 21060993 PMCID: PMC4507272 DOI: 10.1007/s00198-010-1434-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 09/21/2010] [Indexed: 10/18/2022]
Abstract
SUMMARY The impairment of osteoblast differentiation is one cause of the glucocorticoid-induced osteoporosis (GCOP). The quantitative proteomic analysis of the dexamethasone (DEX)-induced effects of osteoblast differentiation, proliferation, and apoptosis using stable-isotope labeling by amino acids in cell culture (SILAC) demonstrated drastic changes of some key proteins in MC3T3-E1 cells. INTRODUCTION The impairment of osteoblast differentiation is one of the main explanations of GCOP. SILAC enables accurate quantitative proteomic analysis of protein changes in cells to explore the underlying mechanism of GCOP. METHODS Osteoprogenitor MC3T3-E1 cells were treated with or without 10(−6) M DEX for 7 days, and the differentiation ability, proliferation, and apoptosis of the cells were measured. The protein level changes were analyzed using SILAC and liquid chromatography-coupled tandem mass spectrometry. RESULTS In this study, 10(−6) M DEX inhibited both osteoblast differentiation and proliferation but induced apoptosis in osteoprogenitor MC3T3-E1 cells on day 7. We found that 10(−6) M DEX increased the levels of tubulins (TUBA1A, TUBB2B, and TUBB5), IQGAP1, S100 proteins (S100A11, S100A6, S100A4, and S100A10), myosin proteins (MYH9 and MYH11), and apoptosis and stress proteins, while inhibited the protein levels of ATP synthases (ATP5O, ATP5H, ATP5A1, and ATP5F1), G3BP-1, and Ras-related proteins (Rab-1A, Rab-2A, and Rab-7) in MC3T3-E1 cells. CONCLUSIONS Several members of the ATP synthases, myosin proteins, small GTPase superfamily, and S100 proteins may participate in functional inhibition of osteoblast progenitor cells by GCs. Such protein expression changes may be of pathological significance in coping with GCOP.
Collapse
Affiliation(s)
- D. Hong
- Population Council, 1230 York Avenue, New York, NY 10065, USA
- Orthopedic Department, Taizhou Hospital, Wenzhou Medical College, Linhai 317000, China
| | - H.-X. Chen
- Orthopedic Department, Taizhou Hospital, Wenzhou Medical College, Linhai 317000, China
| | - H.-Q. Yu
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - C. Wang
- Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - H.-T. Deng
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Q.-Q. Lian
- The Second Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325000, China
| | - R.-S. Ge
- Population Council, 1230 York Avenue, New York, NY 10065, USA
- The Second Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
112
|
Potez S, Luginbühl M, Monastyrskaya K, Hostettler A, Draeger A, Babiychuk EB. Tailored protection against plasmalemmal injury by annexins with different Ca2+ sensitivities. J Biol Chem 2011; 286:17982-91. [PMID: 21454475 DOI: 10.1074/jbc.m110.187625] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The annexins, a family of Ca(2+)- and lipid-binding proteins, are involved in a range of intracellular processes. Recent findings have implicated annexin A1 in the resealing of plasmalemmal injuries. Here, we demonstrate that another member of the annexin protein family, annexin A6, is also involved in the repair of plasmalemmal lesions induced by a bacterial pore-forming toxin, streptolysin O. An injury-induced elevation in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) triggers plasmalemmal repair. The highly Ca(2+)-sensitive annexin A6 responds faster than annexin A1 to [Ca(2+)](i) elevation. Correspondingly, a limited plasmalemmal injury can be promptly countered by annexin A6 even without the participation of annexin A1. However, its high Ca(2+) sensitivity makes annexin A6 highly amenable to an unproductive binding to the uninjured plasmalemma; during an extensive injury accompanied by a massive elevation in [Ca(2+)](i), its active pool is severely depleted. In contrast, annexin A1 with a much lower Ca(2+) sensitivity is ineffective at the early stages of injury; however, it remains available for the repair even at high [Ca(2+)](i). Our findings highlight the role of the annexins in the process of plasmalemmal repair; a number of annexins with different Ca(2+)-sensitivities provide a cell with the means to react promptly to a limited injury in its early stages and, at the same time, to withstand a sustained injury accompanied by the continuous formation of plasmalemmal lesions.
Collapse
Affiliation(s)
- Sarah Potez
- Department of Cell Biology, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
113
|
Interaction of calpactin light chain (S100A10/p11) and a viral NS protein is essential for intracellular trafficking of nonenveloped bluetongue virus. J Virol 2011; 85:4783-91. [PMID: 21411520 DOI: 10.1128/jvi.02352-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bluetongue virus (BTV), a member of the Reoviridae family, is an insect-borne animal pathogen. Virus release from infected cells is predominantly by cell lysis, but some BTV particles are also released from the plasma membrane. The nonstructural protein NS3 has been implicated in this process. Using alternate initiator methionine residues, NS3 is expressed as a full-length protein and as a truncated variant that lacks the initial 13 residues, which, by yeast-two hybrid analyses, have been shown to interact with a cellular trafficking protein S100A10/p11. To understand the physiological significance of this interaction in virus-infected cells, we have used reverse genetics to investigate the roles of NS3 and NS3A in virus replication and localization in both mammalian and insect vector-derived cells. A virus expressing NS3 but not NS3A was able to propagate in and release from mammalian cells efficiently. However, growth of a mutant virus expressing only NS3A was severely attenuated, although protein expression, replication, double-stranded RNA (dsRNA) synthesis, and particle assembly in the cytoplasm were observed. Two of three single-amino-acid substitutions in the N-terminal 13 residues of NS3 showed phenotypically similar effects. Pulldown assay and confocal microscopy demonstrated a lack of interaction between NS3 and S100A10/p11 in mutants with poor replication. The role of NS3/NS3A was also assessed in insect cells where virus grew, albeit with a reduced titer. Notably, however, while wild-type particles were found within cytoplasmic vesicles in insect cells, mutant viruses were scattered throughout the cytoplasm and not confined to vesicles. These results provide support for a role for the extreme amino terminus of NS3 in the late stages of virus growth in mammalian cells, plausibly in egress. However, both NS3 and NS3A were required for efficient BTV growth in insect cells.
Collapse
|
114
|
Identification of regions responsible for the open conformation of S100A10 using chimaeric S100A11-S100A10 proteins. Biochem J 2011; 434:37-48. [PMID: 21269277 DOI: 10.1042/bj20100887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
S100A11 is a dimeric EF-hand calcium-binding protein. Calcium binding to S100A11 results in a large conformational change that uncovers a broad hydrophobic surface used to interact with phospholipid-binding proteins (annexins A1 and A2) and facilitate membrane vesiculation events. In contrast with other S100 proteins, S100A10 is unable to bind calcium due to deletion and substitution of calcium-ligating residues. Despite this, calcium-free S100A10 assumes an 'open' conformation that is very similar to S100A11 in its calcium-bound state. To understand how S100A10 is able to adopt an open conformation in the absence of calcium, seven chimaeric proteins were constructed where regions from calcium-binding sites I and II, and helices II-IV in S100A11 were replaced with the corresponding regions of S100A10. The chimaeric proteins having substitutions in calcium-binding site II displayed increased hydrophobic surface exposure as assessed by bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'disulfonic acid, dipotassium salt) fluorescence and phenyl-Sepharose binding in the absence of calcium. This response is similar to that observed for Ca2+-S100A11 and calcium-free S100A10. Further, this substitution resulted in calcium-insensitive binding to annexin A2 for one chimaeric protein. The results indicate that residues within site II are important in stabilizing the open conformation of S100A10 and presentation of its target binding site. In contrast, S100A11 chimaeric proteins with helical substitutions displayed poorer hydrophobic surface exposure and, consequently, unobservable annexin A2 binding. The present study represents a first attempt to systematically understand the molecular basis for the calcium-insensitive open conformation of S100A10.
Collapse
|
115
|
Kim JS, Kim EJ, Kim HJ, Yang JY, Hwang GS, Kim CW. Proteomic and metabolomic analysis of H2O2-induced premature senescent human mesenchymal stem cells. Exp Gerontol 2011; 46:500-10. [PMID: 21382465 DOI: 10.1016/j.exger.2011.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 01/29/2023]
Abstract
Stress induced premature senescence (SIPS) occurs after exposure to many different sublethal stresses including H(2)O(2), hyperoxia, or tert-butylhydroperoxide. Human mesenchymal stem cells (hMSCs) exhibit limited proliferative potential in vitro, the so-called Hayflick limit. According to the free-radical theory, reactive oxygen species (ROS) might be the candidates responsible for senescence and age-related diseases. H(2)O(2) may be responsible for the production of high levels of ROS, in which the redox balance is disturbed and the cells shift into a state of oxidative stress, which subsequently leads to premature senescence with shortening telomeres. H(2)O(2) has been the most commonly used inducer of SIPS, which shares features of replicative senescence (RS) including a similar morphology, senescence-associated β-galactosidase activity, cell cycle regulation, etc. Therefore, in this study, the senescence of hMSC during SIPS was confirmed using a range of different analytical methods. In addition, we determined five differentially expressed spots in the 2-DE map, which were identified as Annexin A2 (ANXA2), myosin light chain 2 (MLC2), peroxisomal enoyl-CoA hydratase 1 (ECH1), prosomal protein P30-33K (PSMA1) and mutant β-actin by ESI-Q-TOF MS/MS. Also, proton ((1)H) nuclear magnetic resonance spectroscopy (NMR) was used to elucidate the difference between metabolites in the control and hMSCs treated with H(2)O(2). Among these metabolites, choline and leucine were identified by (1)H-NMR as up-regulated metabolites and glycine and proline were identified as down-regulated metabolites.
Collapse
Affiliation(s)
- Ji-Soo Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
116
|
Swanwick RS, Pristerá A, Okuse K. The trafficking of Na(V)1.8. Neurosci Lett 2010; 486:78-83. [PMID: 20816723 PMCID: PMC2977848 DOI: 10.1016/j.neulet.2010.08.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 12/23/2022]
Abstract
The α-subunit of tetrodotoxin-resistant voltage-gated sodium channel Na(V)1.8 is selectively expressed in sensory neurons. It has been reported that Na(V)1.8 is involved in the transmission of nociceptive information from sensory neurons to the central nervous system in nociceptive [1] and neuropathic [24] pain conditions. Thus Na(V)1.8 has been a promising target to treat chronic pain. Here we discuss the recent advances in the study of trafficking mechanism of Na(V)1.8. These pieces of information are particularly important as such trafficking machinery could be new targets for painkillers.
Collapse
Affiliation(s)
| | | | - Kenji Okuse
- Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
117
|
Babini E, Bertini I, Borsi V, Calderone V, Hu X, Luchinat C, Parigi G. Structural characterization of human S100A16, a low-affinity calcium binder. J Biol Inorg Chem 2010; 16:243-56. [PMID: 21046186 DOI: 10.1007/s00775-010-0721-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 10/09/2010] [Indexed: 11/29/2022]
Abstract
The homodimeric structure of human S100A16 in the apo state has been obtained both in the solid state and in solution, resulting in good agreement between the structures with the exception of two loop regions. The homodimeric solution structure of human S100A16 was also calculated in the calcium(II)-bound form. Differently from most S100 proteins, the conformational rearrangement upon calcium binding is minor. This characteristic is likely to be related to the weak binding affinity of the protein for the calcium(II) ions. In turn, this is ascribed to the lack of the glutamate residue at the end of the S100-specific N-domain binding site, which in most S100 proteins provides two important side chain oxygen atoms as calcium(II) ligands. Furthermore, the presence of hydrophobic interactions stronger than for other S100 proteins, present in the closed form of S100A16 between the third and fourth helices, likely make the closed structure of the second EF-hand particularly stable, so even upon calcium(II) binding such a conformation is not disrupted.
Collapse
Affiliation(s)
- Elena Babini
- Department of Food Science, University of Bologna, Piazza Goidanich 60, 47521, Cesena, Italy
| | | | | | | | | | | | | |
Collapse
|
118
|
Mathie A, Rees KA, El Hachmane MF, Veale EL. Trafficking of neuronal two pore domain potassium channels. Curr Neuropharmacol 2010; 8:276-86. [PMID: 21358977 PMCID: PMC3001220 DOI: 10.2174/157015910792246146] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/18/2010] [Accepted: 01/18/2010] [Indexed: 01/05/2023] Open
Abstract
The activity of two pore domain potassium (K2P) channels regulates neuronal excitability and cell firing. Post-translational regulation of K2P channel trafficking to the membrane controls the number of functional channels at the neuronal membrane affecting the functional properties of neurons. In this review, we describe the general features of K channel trafficking from the endoplasmic reticulum (ER) to the plasma membrane via the Golgi apparatus then focus on established regulatory mechanisms for K2P channel trafficking. We describe the regulation of trafficking of TASK channels from the ER or their retention within the ER and consider the competing hypotheses for the roles of the chaperone proteins 14-3-3, COP1 and p11 in these processes and where these proteins bind to TASK channels. We also describe the localisation of TREK channels to particular regions of the neuronal membrane and the involvement of the TREK channel binding partners AKAP150 and Mtap2 in this localisation. We describe the roles of other K2P channel binding partners including Arf6, EFA6 and SUMO for TWIK1 channels and Vpu for TASK1 channels. Finally, we consider the potential importance of K2P channel trafficking in a number of disease states such as neuropathic pain and cancer and the protection of neurons from ischemic damage. We suggest that a better understanding of the mechanisms and regulations that underpin the trafficking of K2P channels to the plasma membrane and to localised regions therein may considerably enhance the probability of future therapeutic advances in these areas.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, Universities of Kent and Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | | | | | | |
Collapse
|
119
|
Singleton PA, Mirzapoiazova T, Guo Y, Sammani S, Mambetsariev N, Lennon FE, Moreno-Vinasco L, Garcia JGN. High-molecular-weight hyaluronan is a novel inhibitor of pulmonary vascular leakiness. Am J Physiol Lung Cell Mol Physiol 2010; 299:L639-51. [PMID: 20709728 DOI: 10.1152/ajplung.00405.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endothelial cell (EC) barrier dysfunction results in increased vascular permeability, a perturbation observed in inflammatory states, tumor angiogenesis, atherosclerosis, and both sepsis and acute lung injury. Therefore, agents that enhance EC barrier integrity have important therapeutic implications. We observed that binding of high-molecular-weight hyaluronan (HMW-HA) to its cognate receptor CD44 within caveolin-enriched microdomains (CEM) enhances human pulmonary EC barrier function. Immunocytochemical analysis indicated that HMW-HA promotes redistribution of a significant population of CEM to areas of cell-cell contact. Quantitative proteomic analysis of CEM isolated from human EC demonstrated HMW-HA-mediated recruitment of cytoskeletal regulatory proteins (annexin A2, protein S100-A10, and filamin A/B). Inhibition of CEM formation [caveolin-1 small interfering RNA (siRNA) and cholesterol depletion] or silencing (siRNA) of CD44, annexin A2, protein S100-A10, or filamin A/B expression abolished HMW-HA-induced actin cytoskeletal reorganization and EC barrier enhancement. To confirm our in vitro results in an in vivo model of inflammatory lung injury with vascular hyperpermeability, we observed that the protective effects of HMW-HA on LPS-induced pulmonary vascular leakiness were blocked in caveolin-1 knockout mice. Furthermore, targeted inhibition of CD44 expression in the mouse pulmonary vasculature significantly reduced HMW-HA-mediated protection from LPS-induced hyperpermeability. These data suggest that HMW-HA, via CD44-mediated CEM signaling events, represents a potentially useful therapeutic agent for syndromes of increased vascular permeability.
Collapse
Affiliation(s)
- Patrick A Singleton
- Dept. of Medicine, Univ. of Chicago, MC 6076, I-503C, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Wang XJ, Zhu YJ, Cui JG, Huang X, Gu J, Xu H, Wen H. Proteomic analysis of human umbilical vein endothelial cells incubated with Cryptococcus neoformans var. neoformans. Mycoses 2010; 54:e336-43. [PMID: 21910755 DOI: 10.1111/j.1439-0507.2010.01920.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cryptococcus neoformans is a medically important fungus and can infect all the organs of the body. As vascular endothelial cell is an important target for C. neoformans to penetrate any organs, the differential protein expression of human umbilical vascular endothelial cell (HUVEC) after incubating with C. neoformans may be the key to penetration. The proteins of HUVECs incubated with C. neoformans and normal HUVECs were collected and purified. After two-dimensional electrophoresis, the differential protein expression was identified by matrix-assisted laser desorption/ionisation mass spectrometry. The mRNA levels of some proteins were measured by real-time PCR. Three proteins were found significantly overexpressed in HUVECs incubated with C. neoformans, and nine other proteins were downregulated. The mRNA levels of S100A10 and peroxiredoxin I fluctuated with the protein levels. These results suggested that the expressions of peroxiredoxin I and S100A10 were regulated during the process of invasion of HUVECs by C. neoformans. We hypothesise that these proteins take part in the modifications of HUVEC cytoskeleton and the tolerance to oxidative stress, which may affect the process of invasion by C. neoformans.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- Mycology Center and Department of Dermatology, Changzheng Hospital, Secondary Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
121
|
Illien F, Finet S, Lambert O, Ayala-Sanmartin J. Different molecular arrangements of the tetrameric annexin 2 modulate the size and dynamics of membrane aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1790-6. [PMID: 20471359 DOI: 10.1016/j.bbamem.2010.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 12/23/2022]
Abstract
Annexin 2, a member of the annexin family of Ca2+-dependent membrane binding proteins is found in monomeric and heterotetrameric forms and has been involved in different membrane related functions. The heterotetrameric annexin 2 is composed of a dimer of S100A10, a member of the S100 family of Ca2+ binding proteins and two annexin 2 molecules ((Anx2-S100A10)2). Different molecular models including tetramers and octamers in which S100A10 is localized in the centre of the complex with the annexin 2 molecules positioned around S100A10 had been proposed. Herein, the organization of the (Anx2-S100A10)2 complex in conditions in which membranes are able to bridge was studied. We performed Cryo-electron microscopy observations of the tetrameric annexin 2 on the membrane surface, and study the S100A10 accessibility to antibodies by flow "cytometry". We also studied the kinetics and size evolution of vesicle aggregates by dynamic light scattering. The results show that the protein is able to organize in three different arrangements depending on the presence of Ca2+ and pH and that the aggregation is faster in the presence of Ca2+ compared with the aggregation in its absence. In one arrangement the S100A10 molecule is exposed to the solvent allowing its interaction with other proteins. The presented results will serve as a molecular basis to explain some of the functions of the tetrameric annexin 2.
Collapse
Affiliation(s)
- Françoise Illien
- CNRS, UMR 7203, Laboratoire des Biomolécules, Groupe N. J. Conté, Paris, France; Université Pierre et Marie Curie, CHU Saint Antoine, Paris, France; Ecole Normale Supérieure, Département de Chimie, Paris France
| | | | | | | |
Collapse
|
122
|
Abstract
The plasminogen activation system plays an integral role in the migration of macrophages in response to an inflammatory stimulus, and the binding of plasminogen to its cell-surface receptor initiates this process. Although previous studies from our laboratory have shown the importance of the plasminogen receptor S100A10 in cancer cell plasmin production, the potential role of this protein in macrophage migration has not been investigated. Using thioglycollate to induce a peritoneal inflammatory response, we demonstrate, for the first time, that compared with wild-type (WT) mice, macrophage migration across the peritoneal membrane into the peritoneal cavity in S100A10-deficient (S100A10(-/-)) mice was decreased by up to 53% at 24, 48, and 72 hours. Furthermore, the number of S100A10-deficient macrophages that infiltrated Matrigel plugs was reduced by 8-fold compared with their WT counterpart in vivo. Compared with WT macrophages, macrophages from S100A10(-/-) mice demonstrated a 50% reduction in plasmin-dependent invasion across a Matrigel barrier and a 45% reduction in plasmin generation in vitro. This loss in plasmin-dependent invasion was in part the result of a decreased generation of plasmin and a decreased activation of pro-MMP-9 by S100A10-deficient macrophages. This study establishes a direct involvement of S100A10 in macrophage recruitment in response to inflammatory stimuli.
Collapse
|
123
|
Jung MJ, Murzik U, Wehder L, Hemmerich P, Melle C. Regulation of cellular actin architecture by S100A10. Exp Cell Res 2010; 316:1234-40. [PMID: 20100475 DOI: 10.1016/j.yexcr.2010.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/15/2010] [Accepted: 01/20/2010] [Indexed: 12/29/2022]
Abstract
Actin structures are involved in several biological processes and the disruption of actin polymerisation induces impaired motility of eukaryotic cells. Different factors are involved in regulation and maintenance of the cytoskeletal actin architecture. Here we show that S100A10 participates in the particular organisation of actin filaments. Down-regulation of S100A10 by specific siRNA triggered a disorganisation of filamentous actin structures without a reduction of the total cellular actin concentration. In contrast, the formation of cytoskeleton structures containing tubulin was unhindered in S100A10 depleted cells. Interestingly, the cellular distribution of annexin A2, an interaction partner of S100A10, was unaffected in S100A10 depleted cells. Cells lacking S100A10 showed an impaired migration activity and were unable to close a scratched wound. Our data provide first insights of S100A10 function as a regulator of the filamentous actin network.
Collapse
Affiliation(s)
- M Juliane Jung
- Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, University Hospital Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
124
|
Abstract
Annexins are a large family of intracellular phospholipid-binding proteins, yet several extracellular roles have been identified. Specifically, annexin A2, found in a heterotetrameric complex with S100A10, not only serves as a key extracellular binding partner for pathogens and host proteins alike, but also can be shed or secreted. We reported previously that soluble annexin A2 tetramer (A2t) activates human monocyte-derived macrophages (MDM), resulting in secretion of inflammatory mediators and enhanced phagocytosis. Although a receptor for A2t has been cloned from bone marrow stromal cells, data contained in this study demonstrate that it is dispensable for A2t-dependent activation of MDM. Furthermore, A2t activates wild-type murine bone marrow-derived macrophages, whereas macrophages from myeloid differentiation factor 88-deficient mice display a blunted response, suggesting a role for Toll-like receptor (TLR) signaling. Small interfering RNA knockdown of TLR4 in human MDM reduced the response to A2t, blocking antibodies against TLR4 (but not TLR2) blocked activation altogether, and bone marrow-derived macrophages from TLR4(-/-) mice were refractory to A2t. These data demonstrate that the modulation of macrophage function by A2t is mediated through TLR4, suggesting a previously unknown, but important role for this stress-sensitive protein in the detection of danger to the host, whether from injury or invasion.
Collapse
|
125
|
Abstract
S100 proteins are differentially expressed in tumours of epithelial origin. Little is known about their expression in melanocyte-derived tumours of neuroectodermal origin. We have analysed the expression of some S100 proteins in this line of lesions using SAGE Genie informatics, cell culture and human tumour tissue. The pattern of expression of six S100 proteins was investigated at both the mRNA and protein levels, using quantitative real-time PCR, western blotting and immunohistochemical analysis. No differential expression was observed with respect to S100A4, S100A7, S100A8, S100A9 and S100A11. In contrast, S100A10 was downregulated in three melanoma cell lines compared with normal melanocytes. Using SAGE informatics, two-dimensional displays of microarray expression data from the NCI60_Novartis cell lines displayed a positive correlation between the expression of S100A10 and the expression of the proliferation marker, Ki67. Our data suggest that S100A10, like its binding partners S100A7 and annexin A2, is an oxidant-sensitive protein. In addition, higher expression of S100A10 was detected in melanocyte cell lines with long projections compared with melanoma cell lines with small ripples. In a panel of 47 melanocyte-derived lesions comprising melanocytic naevi and melanomas, S100A10 was expressed to varying degrees in the melanocytic lesions. The antigen was primarily expressed in regions with a strong proliferating or differentiating capacity, especially in regions in or near the epidermis. We suggest that S100A10 may play a role in the regulation of the proliferation or early maturation sequence of melanocytic lesions, and that it merits further study as a potential biomarker of activity.
Collapse
|
126
|
Monastyrskaya K, Babiychuk EB, Draeger A. The annexins: spatial and temporal coordination of signaling events during cellular stress. Cell Mol Life Sci 2009; 66:2623-42. [PMID: 19381436 PMCID: PMC11115530 DOI: 10.1007/s00018-009-0027-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/09/2009] [Accepted: 03/27/2009] [Indexed: 12/15/2022]
Abstract
Annexins are a family of structurally related, Ca2+-sensitive proteins that bind to negatively charged phospholipids and establish specific interactions with other lipids and lipid microdomains. They are present in all eukaryotic cells and share a common folding motif, the "annexin core", which incorporates Ca2+- and membrane-binding sites. Annexins participate in a variety of intracellular processes, ranging from the regulation of membrane dynamics to cell migration, proliferation, and apoptosis. Here we focus on the role of annexins in cellular signaling during stress. A chronic stress response triggers the activation of different intracellular pathways, resulting in profound changes in Ca2+ and pH homeostasis and the production of lipid second messengers. We review the latest data on how these changes are sensed by the annexins, which have the ability to simultaneously interact with specific lipid and protein moieties at the plasma membrane, contributing to stress adaptation via regulation of various signaling pathways.
Collapse
Affiliation(s)
- Katia Monastyrskaya
- Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland.
| | | | | |
Collapse
|
127
|
Protein–protein interactions involving voltage-gated sodium channels: Post-translational regulation, intracellular trafficking and functional expression. Int J Biochem Cell Biol 2009; 41:1471-81. [DOI: 10.1016/j.biocel.2009.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/23/2009] [Accepted: 01/26/2009] [Indexed: 01/06/2023]
|
128
|
Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, Lotze MT. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 2009; 7:17. [PMID: 19292913 PMCID: PMC2666642 DOI: 10.1186/1479-5876-7-17] [Citation(s) in RCA: 446] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 03/17/2009] [Indexed: 02/07/2023] Open
Abstract
The Receptor for Advanced Glycation Endproducts [RAGE] is an evolutionarily recent member of the immunoglobulin super-family, encoded in the Class III region of the major histocompatability complex. RAGE is highly expressed only in the lung at readily measurable levels but increases quickly at sites of inflammation, largely on inflammatory and epithelial cells. It is found either as a membrane-bound or soluble protein that is markedly upregulated by stress in epithelial cells, thereby regulating their metabolism and enhancing their central barrier functionality. Activation and upregulation of RAGE by its ligands leads to enhanced survival. Perpetual signaling through RAGE-induced survival pathways in the setting of limited nutrients or oxygenation results in enhanced autophagy, diminished apoptosis, and (with ATP depletion) necrosis. This results in chronic inflammation and in many instances is the setting in which epithelial malignancies arise. RAGE and its isoforms sit in a pivotal role, regulating metabolism, inflammation, and epithelial survival in the setting of stress. Understanding the molecular structure and function of it and its ligands in the setting of inflammation is critically important in understanding the role of this receptor in tumor biology.
Collapse
Affiliation(s)
- Louis J Sparvero
- Departments of Surgery and Bioengineering, University of Pittsburgh Cancer Institute, Pittsburgh, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Zuzarte M, Heusser K, Renigunta V, Schlichthörl G, Rinné S, Wischmeyer E, Daut J, Schwappach B, Preisig-Müller R. Intracellular traffic of the K+ channels TASK-1 and TASK-3: role of N- and C-terminal sorting signals and interaction with 14-3-3 proteins. J Physiol 2009; 587:929-52. [PMID: 19139046 PMCID: PMC2673767 DOI: 10.1113/jphysiol.2008.164756] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 01/08/2009] [Indexed: 01/03/2023] Open
Abstract
The two-pore-domain potassium channels TASK-1 (KCNK3) and TASK-3 (KCNK9) modulate the electrical activity of neurons and many other cell types. We expressed TASK-1, TASK-3 and related reporter constructs in Xenopus oocytes, mammalian cell lines and various yeast strains to study the mechanisms controlling their transport to the surface membrane and the role of 14-3-3 proteins. We measured potassium currents with the voltage-clamp technique and fused N- and C-terminal fragments of the channels to various reporter proteins to study changes in subcellular localisation and surface expression. Mutational analysis showed that binding of 14-3-3 proteins to the extreme C-terminus of TASK-1 and TASK-3 masks a tri-basic motif, KRR, which differs in several important aspects from canonical arginine-based (RxR) or lysine-based (KKxx) retention signals. Pulldown experiments with GST fusion proteins showed that the KRR motif in the C-terminus of TASK-3 channels was able to bind to COPI coatomer. Disabling the binding of 14-3-3, which exposes the KRR motif, caused localisation of the GFP-tagged channel protein mainly to the Golgi complex. TASK-1 and TASK-3 also possess a di-basic N-terminal retention signal, KR, whose function was found to be independent of the binding of 14-3-3. Suppression of channel surface expression with dominant-negative channel mutants revealed that interaction with 14-3-3 has no significant effect on the dimeric assembly of the channels. Our results give a comprehensive description of the mechanisms by which 14-3-3 proteins, together with N- and C-terminal sorting signals, control the intracellular traffic of TASK-1 and TASK-3.
Collapse
Affiliation(s)
- Marylou Zuzarte
- Institute of Physiology, Marburg University, Deutschhausstrasse 2, 35037 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I. S100B's double life: intracellular regulator and extracellular signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:1008-22. [PMID: 19110011 DOI: 10.1016/j.bbamcr.2008.11.009] [Citation(s) in RCA: 520] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/12/2008] [Accepted: 11/21/2008] [Indexed: 12/22/2022]
Abstract
The Ca2+-binding protein of the EF-hand type, S100B, exerts both intracellular and extracellular functions. Recent studies have provided more detailed information concerning the mechanism(s) of action of S100B as an intracellular regulator and an extracellular signal. Indeed, intracellular S100B acts as a stimulator of cell proliferation and migration and an inhibitor of apoptosis and differentiation, which might have important implications during brain, cartilage and skeletal muscle development and repair, activation of astrocytes in the course of brain damage and neurodegenerative processes, and of cardiomyocyte remodeling after infarction, as well as in melanomagenesis and gliomagenesis. As an extracellular factor, S100B engages RAGE (receptor for advanced glycation end products) in a variety of cell types with different outcomes (i.e. beneficial or detrimental, pro-proliferative or pro-differentiative) depending on the concentration attained by the protein, the cell type and the microenvironment. Yet, RAGE might not be the sole S100B receptor, and S100B's ability to engage RAGE might be regulated by its interaction with other extracellular factors. Future studies using S100B transgenic and S100B null mice might shed more light on the functional role(s) of the protein.
Collapse
Affiliation(s)
- Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, Section Anatomy, University of Perugia, Via del Giochetto C.P. 81 Succ. 3, 06122 Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Abstract
S100 proteins and annexins both constitute groups of Ca2+-binding proteins, each of which comprises more than 10 members. S100 proteins are small, dimeric, EF-hand-type Ca2+-binding proteins that exert both intracellular and extracellular functions. Within the cells, S100 proteins regulate various reactions, including phosphorylation, in response to changes in the intracellular Ca2+ concentration. Although S100 proteins are known to be associated with many diseases, exact pathological contributions have not been proven in detail. Annexins are non-EF-hand-type Ca2+-binding proteins that exhibit Ca2+-dependent binding to phospholipids and membranes in various tissues. Annexins bring different membranes into proximity and assist them to fuse, and therefore are believed to play a role in membrane trafficking and organization. Several S100 proteins and annexins are known to interact with each other in either a Ca2+-dependent or Ca2+-independent manner, and form complexes that exhibit biological activities. This review focuses on the interaction between S100 proteins and annexins, and the possible biological roles of these complexes. Recent studies have shown that S100-annexin complexes have a role in the differentiation of gonad cells and neurological disorders, such as depression. These complexes regulate the organization of membranes and vesicles, and thereby may participate in the appropriate disposition of membrane-associated proteins, including ion channels and/or receptors.
Collapse
Affiliation(s)
- Naofumi Miwa
- Department of Physiology, School of Medicine, Toho University, Tokyo, Japan
| | | | | |
Collapse
|
132
|
Pattarini R, Rong Y, Qu C, Morgan JI. Distinct mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine resistance revealed by transcriptome mapping in mouse striatum. Neuroscience 2008; 155:1174-94. [PMID: 18675323 PMCID: PMC2632608 DOI: 10.1016/j.neuroscience.2008.06.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/10/2008] [Accepted: 06/20/2008] [Indexed: 12/20/2022]
Abstract
The etiology of idiopathic Parkinson's disease is thought to involve interplay between environmental factors and predisposing genetic traits, although the identification of genetic risk factors remain elusive. The neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP) produces parkinsonian-like symptoms and pathology in mice and humans. As sensitivity to MPTP is genetically determined in mice this provides an opportunity to identify genes and biological mechanisms that modify the response to an exogenous agent that produces a Parkinson's disease-like condition. MPTP primarily targets dopaminergic nerve terminals in the striatum and elicits changes in striatal gene expression. Therefore, we used Affymetrix and qRT-PCR technology to characterize temporal mRNA changes in striatum in response to MPTP in genetically MPTP-sensitive, C57BL/6J, and MPTP-resistant Swiss Webster and BCL2-associated X protein (Bax)-/- mice. We identified three phases of mRNA expression changes composed of largely distinct gene sets. An early response (5 h) occurred in all strains of mice and multiple brain regions. In contrast, intermediate (24 h) and late (72 h) phases were striatum specific and much reduced in Swiss Webster, indicating these genes contribute and/or are responsive to MPTP-induced pathology. However, Bax-/- mice have robust intermediate responses. We propose a model in which the acute entry of MPP+ into dopaminergic nerve terminals damages them but is insufficient per se to kill the neurons. Rather, we suggest that the compromised nerve terminals elicit longer lasting transcriptional responses in surrounding cells involving production of molecules that feedback on the terminals to cause additional damage that results in cell death. In Swiss Webster, resistance lies upstream in the cascade of events triggered by MPTP and uncouples the acute events elicited by MPTP from the damaging secondary responses. In contrast, in Bax-/- mice resistance lies downstream in the cascade and suggests enhanced tolerance to the secondary insult rather than its attenuation.
Collapse
Affiliation(s)
- Roberto Pattarini
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Yongqi Rong
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Chunxu Qu
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - James I. Morgan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| |
Collapse
|
133
|
He KL, Deora AB, Xiong H, Ling Q, Weksler BB, Niesvizky R, Hajjar KA. Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11. J Biol Chem 2008; 283:19192-200. [PMID: 18434302 PMCID: PMC2443646 DOI: 10.1074/jbc.m800100200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/14/2008] [Indexed: 01/08/2023] Open
Abstract
The annexin A2 (A2) heterotetramer, consisting of two copies of A2 and two copies of S100A10/p11, promotes fibrinolytic activity on the surface of vascular endothelial cells by assembling plasminogen and tissue plasminogen activator (tPA) and accelerating the generation of plasmin. In humans, overexpression of A2 by acute promyelocytic leukemia cells is associated with excessive fibrinolysis and hemorrhage, whereas anti-A2 autoantibodies appear to accentuate the risk of thrombosis in patients with anti-phospholipid syndrome. Complete deficiency of A2 in mice leads to a lack of tPA cofactor activity, accumulation of intravascular fibrin, and failure to clear arterial thrombi. Within the endothelial cell, p11 is required for Src kinase-mediated tyrosine phosphorylation of A2, which signals translocation of both proteins to the cell surface. Here we show that p11 is expressed at very low levels in the absence of A2 both in vitro and in vivo. We demonstrate further that unpartnered p11 becomes polyubiquitinated and degraded via a proteasome-dependent mechanism. A2 stabilizes intracellular p11 through direct binding, thus masking an autonomous p11 polyubiquitination signal that triggers proteasomal degradation. This interaction requires both the p11-binding N-terminal domain of A2 and the C-terminal domain of p11. This mechanism prevents accumulation of free p11 in the endothelial cell and suggests that regulation of tPA-dependent cell surface fibrinolytic activity is precisely tuned to the intracellular level of p11.
Collapse
Affiliation(s)
- Kai-Li He
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Functional involvement of Annexin-2 in cAMP induced AQP2 trafficking. Pflugers Arch 2008; 456:729-36. [PMID: 18389276 DOI: 10.1007/s00424-008-0453-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/09/2008] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
Annexin-2 is required for the apical transport in epithelial cells. In this study, we investigated the involvement of annexin-2 in cAMP-induced aquaporin-2 (AQP2) translocation to the apical membrane in renal cells. We found that the cAMP-elevating agent forskolin increased annexin-2 abundance in the plasma membrane enriched fraction with a parallel decrease in the soluble fraction. Interestingly, forskolin stimulation resulted in annexin-2 enrichment in lipid rafts, suggesting that hormonal stimulation might be responsible for a new configuration of membrane interacting proteins involved in the fusion of AQP2 vesicles to the apical plasma membrane. To investigate the functional involvement of annexin-2 in AQP2 exocytosis, the fusion process between purified AQP2 membrane vesicles and plasma membranes was reconstructed in vitro and monitored by a fluorescence assay. An N-terminal peptide that comprises 14 residues of annexin-2 and that includes the binding site for the calcium binding protein p11 strongly inhibited the fusion process. Preincubation of cells with this annexin-2 peptide also failed to increase the osmotic water permeability in the presence of forskolin in intact cells. Altogether, these data demonstrate that annexin-2 is required for cAMP-induced AQP2 exocytosis in renal cells.
Collapse
|
135
|
Kraemer AM, Saraiva LR, Korsching SI. Structural and functional diversification in the teleost S100 family of calcium-binding proteins. BMC Evol Biol 2008; 8:48. [PMID: 18275604 PMCID: PMC2266712 DOI: 10.1186/1471-2148-8-48] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 02/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Among the EF-Hand calcium-binding proteins the subgroup of S100 proteins constitute a large family with numerous and diverse functions in calcium-mediated signaling. The evolutionary origin of this family is still uncertain and most studies have examined mammalian family members. RESULTS We have performed an extensive search in several teleost genomes to establish the s100 gene family in fish. We report that the teleost S100 repertoire comprises fourteen different subfamilies which show remarkable similarity across six divergent teleost species. Individual species feature distinctive subsets of thirteen to fourteen genes that result from local gene duplications and gene losses. Eight of the fourteen S100 subfamilies are unique for teleosts, while six are shared with mammalian species and three of those even with cartilaginous fish. Several S100 family members are found in jawless fish already, but none of them are clear orthologs of cartilaginous or bony fish s100 genes. All teleost s100 genes show the expected structural features and are subject to strong negative selection. Many aspects of the genomic arrangement and location of mammalian s100 genes are retained in the teleost s100 gene family, including a completely conserved intron/exon border between the two EF hands. Zebrafish s100 genes exhibit highly specific and characteristic expression patterns, showing both redundancy and divergence in their cellular expression. In larval tissue expression is often restricted to specific cell types like keratinocytes, hair cells, ionocytes and olfactory receptor neurons as demonstrated by in situ hybridization. CONCLUSION The origin of the S100 family predates at least the segregation of jawed from jawless fish and some extant family members predate the divergence of bony from cartilaginous fish. Despite a complex pattern of gene gains and losses the total repertoire size is remarkably constant between species. On the expression level the teleost S100 proteins can serve as precise markers for several different cell types. At least some of their functions may be related to those of their counterparts in mammals. Accordingly, our findings provide an excellent basis for future studies of the functions and interaction partners of s100 genes and finally their role in diseases, using the zebrafish as a model organism.
Collapse
Affiliation(s)
- Andreas M Kraemer
- Institute of Genetics, University of Cologne, Zuelpicher Strasse 47, 50674 Cologne, Germany
| | - Luis R Saraiva
- Institute of Genetics, University of Cologne, Zuelpicher Strasse 47, 50674 Cologne, Germany
| | - Sigrun I Korsching
- Institute of Genetics, University of Cologne, Zuelpicher Strasse 47, 50674 Cologne, Germany
| |
Collapse
|
136
|
Borthwick LA, Neal A, Hobson L, Gerke V, Robson L, Muimo R. The annexin 2-S100A10 complex and its association with TRPV6 is regulated by cAMP/PKA/CnA in airway and gut epithelia. Cell Calcium 2008; 44:147-57. [PMID: 18187190 DOI: 10.1016/j.ceca.2007.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Revised: 11/06/2007] [Accepted: 11/07/2007] [Indexed: 01/22/2023]
Abstract
The formation of a heterotetrameric complex between annexin 2 (anx 2) and S100A10 plays an important role in regulating the cellular distribution and biochemical properties of anx 2. A major distinction between the anx 2-S100A10 complex and other annexin-S100 complexes is that S100A10 binding to anx 2 occurs independently of calcium. Here we describe a cyclic 3',5'-adenosine monophosphate (cAMP) and cAMP-dependent protein kinase (PKA, EC 2.7.1.37)-dependent mechanism regulating anx 2-S100A10 complex formation and its interaction with the transient receptor potential vanilloid type 6 channel (TRPV6) in airway and gut epithelia. In both 16HBE14o- and Caco-2 cells, forskolin (FSK) stimulated increased anx 2-S100A10 complex formation, which was attenuated by either PKA inhibitors or calcineurin A (CnA) inhibitors. The anx 2-S100A10 complex association with TRPV6 was dependent on FSK-induced CnA-dependent dephosphorylation of anx 2. Analysis of the significance of the cAMP/PKA/CnA pathway on calcium influx showed that both PKA and CnA inhibitors attenuated Ca(45) uptake in Caco-2, but not 16HBE14o-, cells. Thus, the cAMP/PKA/CnA-induced anx 2-S100A10/TRPV6 complex may require additional factors for calcium influx or play a role independent of calcium influx in airway epithelia. In conclusion, our data demonstrates that cAMP/PKA/CnA signalling is important for anx 2-S100A10 complex formation and interaction with target molecules in both absorptive and secretory epithelia.
Collapse
Affiliation(s)
- Lee A Borthwick
- Academic Unit of Child Health, University of Sheffield, Stephenson Wing, Sheffield Children's Hospital, Sheffield, South Yorkshire S10 2TH, UK
| | | | | | | | | | | |
Collapse
|
137
|
Morel E, Gruenberg J. The p11/S100A10 light chain of annexin A2 is dispensable for annexin A2 association to endosomes and functions in endosomal transport. PLoS One 2007; 2:e1118. [PMID: 17971878 PMCID: PMC2040519 DOI: 10.1371/journal.pone.0001118] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 10/11/2007] [Indexed: 02/01/2023] Open
Abstract
Background Annexin A2 is a peripheral membrane protein that belongs to the annexin family of Ca2+ and phospholipid-binding proteins. This protein, which plays a role in membrane organization and dynamics in particular along the endocytic pathway, exists as a heterotetrameric complex, consisting of two annexin A2 molecules bound via their N-termini to a dimer of p11/S100A10 light chains. The light chain, and thus presumably formation of the heterotetramer, was reported to control annexin A2 association to the plasma membrane and to cortical actin, as well as the distribution of recycling endosomes. However, the specific role of the light chain and the functions of monomeric versus heterotetrameric annexin A2 have remained elusive in the endocytic pathway. Methodology/Principal Findings Here, we have investigated whether p11 plays a role in the endosomal functions of annexin A2. Using morphological and biochemical approaches, we found that p11, unlike annexin A2, was not present on early endosomes. Neither was the heterotetramer detected on purified early endosomes, while it was clearly present in total cell lysates. Moreover, knockdown of p11 with siRNAs did not affect annexin A2 targeting to early endosomes, and, conversely, binding of annexin A2 to purified endosomes or liposomes occurred without p11 in vitro. Finally, while we could confirm that annexin A2 knockdown inhibits transport beyond early endosomes, p11 knockdown had no such effects on early-to-late endosome transport. Conclusions/Significance Our data show that the binding of annexin A2 to endosomal membranes and its role in endosomal trafficking are independent of the p11/S100A10 light chain. We thus conclude that annexin A2 functions are fully supported by the monomeric form of the protein, at least the endocytic pathway leading to lysosomes.
Collapse
Affiliation(s)
- Etienne Morel
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|