101
|
Madrigano J, Baccarelli A, Mittleman MA, Sparrow D, Vokonas PS, Tarantini L, Schwartz J. Aging and epigenetics: longitudinal changes in gene-specific DNA methylation. Epigenetics 2012; 7:63-70. [PMID: 22207354 DOI: 10.4161/epi.7.1.18749] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA methylation has been associated with age-related disease. Intra-individual changes in gene-specific DNA methylation over time in a community-based cohort has not been well described. We estimated the change in DNA methylation due to aging for nine genes in an elderly, community-dwelling cohort of men. Seven hundred and eighty four men from the Veterans Administration Normative Aging Study who were living in metropolitan Boston from 1999-2009 donated a blood sample for DNA methylation analysis at clinical examinations repeated at approximately 3-5 year intervals. We used mixed effects regression models. Aging was significantly associated with decreased methylation of GCR, iNOS and TLR2 and with increased methylation of IFNγ, F3, CRAT and OGG. Obstructive pulmonary disease at baseline modified the effect of aging on methylation of IFNγ (interaction p = 0.04). For participants who had obstructive pulmonary disease at their baseline visit, the rate of change of methylation of IFNγ was -0.05% 5-methyl-cytosine (5-mC) per year (95% CI: -0.22, 0.13), but was 0.14% 5-mC per year (95% CI: 0.05, 0.24) for those without this condition. Models with random slopes indicated significant heterogeneity in the effect of aging on methylation of GCR, iNOS and OGG. These findings suggest that DNA methylation may reflect differential biological aging.
Collapse
Affiliation(s)
- Jaime Madrigano
- The Earth Institute and Mailman School of Public Health, Columbia University, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
Nutritional epigenetics has emerged as a novel mechanism underlying gene-diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modulates gene expression without changes in the underlying bp sequence, ultimately determining phenotype from genotype. DNA methylation and post-translational histone modifications are classical levels of epigenetic regulation. Epigenetic phenomena are critical from embryonic development through the aging process, with aberrations in epigenetic patterns emerging as aetiological mechanisms in many age-related diseases such as cancer, CVD and neurodegenerative disorders. Nutrients can act as the source of epigenetic modifications and can regulate the placement of these modifications. Nutrients involved in one-carbon metabolism, namely folate, vitamin B12, vitamin B6, riboflavin, methionine, choline and betaine, are involved in DNA methylation by regulating levels of the universal methyl donor S-adenosylmethionine and methyltransferase inhibitor S-adenosylhomocysteine. Other nutrients and bioactive food components such as retinoic acid, resveratrol, curcumin, sulforaphane and tea polyphenols can modulate epigenetic patterns by altering the levels of S-adenosylmethionine and S-adenosylhomocysteine or directing the enzymes that catalyse DNA methylation and histone modifications. Aging and age-related diseases are associated with profound changes in epigenetic patterns, though it is not yet known whether these changes are programmatic or stochastic in nature. Future work in this field seeks to characterise the epigenetic pattern of healthy aging to ultimately identify nutritional measures to achieve this pattern.
Collapse
|
103
|
Varga F, Karlic H, Thaler R, Klaushofer K. Functional aspects of cytidine-guanosine dinucleotides and their locations in genes. Biomol Concepts 2011; 2:391-405. [DOI: 10.1515/bmc.2011.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/12/2011] [Indexed: 12/31/2022] Open
Abstract
AbstractOriginally, the finding of a particular distribution of cytidine-guanosine dinucleotides (CpGs) in genomic DNA was considered to be an interesting structural feature of eukaryotic genome organization. Despite a global depletion of CpGs, genes are frequently associated with CpG clusters called CpG islands (CGIs). CGIs are prevalently unmethylated but often found methylated in pathologic situations. On the other hand, CpGs outside of CGIs are generally methylated and are found mainly in the heterochromatic fraction of the genome. Hypomethylation of those CpGs is associated with genomic instability in malignancy. Additionally, CpG-rich and CpG-poor regions, as well as CpG-shores, are defined. Usually, the methylation status inversely correlates with gene expression. Methylation of CpGs, as well as demethylation and generation of hydroxmethyl-cytosines, is strictly regulated during development and differentiation. This review deals with the relevance of the organizational features of CpGs and their relation to each other.
Collapse
Affiliation(s)
- Franz Varga
- 1Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - Heidrun Karlic
- 2Ludwig Boltzmann Institute for Leukemia Research and Hematology, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria and Ludwig Boltzmann Cluster Oncology, Vienna, Austria
| | - Roman Thaler
- 1Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - Klaus Klaushofer
- 1Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| |
Collapse
|
104
|
|
105
|
Saito S, Kato J, Hiraoka S, Horii J, Suzuki H, Higashi R, Kaji E, Kondo Y, Yamamoto K. DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status. Inflamm Bowel Dis 2011; 17:1955-65. [PMID: 21830274 DOI: 10.1002/ibd.21573] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 10/11/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although DNA methylation of colonic mucosa in ulcerative colitis (UC) has been suggested, the majority of published reports indicate the correlation between methylation of colon mucosa and occurrence of UC-related dysplasia or cancer without considering the mucosal inflammatory status. The aim of this study was to verify whether mucosal inflammation-specific DNA methylation occurs in the colon of UC. METHODS Of 15 gene loci initially screened, six loci (ABCB1, CDH1, ESR1, GDNF, HPP1, and MYOD1) methylated in colon mucosa of UC were analyzed according to inflammatory status using samples from 28 surgically resected UC patients. RESULTS Four of six regions (CDH1, GDNF, HPP1, and MYOD1) were more highly methylated in the active inflamed mucosa than in the quiescent mucosa in each UC patient (P = 0.003, 0.0002, 0.02, and 0.048, respectively). In addition, when the methylation status of all samples taken from examined patients was stratified according to inflammatory status, methylation of CDH1 and GDNF loci was significantly higher in active inflamed mucosa than in quiescent mucosa (P = 0.045 and 0.002, respectively). Multiple linear regression analysis revealed that active inflammation was an independent factor of methylation for CDH1 and GDNF. DNA methyltransferase 1 and 3b were highly expressed in colon epithelial cells with active mucosal inflammation, suggesting their involvement in inflammation-dependent methylation. CONCLUSIONS Methylation in colonic mucosa of UC was correlated with mucosal inflammatory status, suggesting the involvement of methylation due to chronic active inflammation in UC carcinogenesis.
Collapse
Affiliation(s)
- Shunsuke Saito
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Rajpathak SN, Liu Y, Ben-David O, Reddy S, Atzmon G, Crandall J, Barzilai N. Lifestyle factors of people with exceptional longevity. J Am Geriatr Soc 2011; 59:1509-12. [PMID: 21812767 PMCID: PMC6034120 DOI: 10.1111/j.1532-5415.2011.03498.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To assess lifestyle factors including physical activity, smoking, alcohol consumption, and dietary habits in men and women with exceptional longevity. DESIGN Retrospective cohort study. SETTING A cohort of community-dwelling Ashkenazi Jewish individuals with exceptional longevity defined as survival and living independently at age 95 and older. PARTICIPANTS Four hundred seventy-seven individuals (mean 97.3 ± 2.8, range 95-109; 74.6% women) and a subset of participants of the National Health and Nutrition Examination Survey (NHANES) I (n = 3,164) representing the same birth cohort as a comparison group. MEASUREMENTS A trained interviewer administrated study questionnaires to collect information on lifestyle factors and collected data on anthropometry. RESULTS People with exceptional longevity had similar mean body mass index (men, 25.4 ± 2.8 kg/m² vs 25.6 ± 4.0 kg/m² , P=.63; women, 25.0 ± 3.5 kg/m² vs 24.9 ± 5.4 kg/m² ; P = .90) and a similar proportion of daily alcohol consumption (men, 23.9 vs 22.4, P = .77; women, 12.1 vs 11.3, P = .80), of regular physical activity (men: 43.1 vs 57.2; P = .07; women: 47.0 vs 44.1, P = .76), and of a low-calorie diet (men: 20.8 vs 21.1, P=.32; women: 27.3 vs 27.1, P=.14) as the NHANES I population. CONCLUSION People with exceptional longevity are not distinct in terms of lifestyle factors from the general population, suggesting that people with exceptional longevity may interact with environmental factors differently than others. This requires further investigation.
Collapse
Affiliation(s)
- Swapnil N Rajpathak
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
107
|
Feser J, Tyler J. Chromatin structure as a mediator of aging. FEBS Lett 2011; 585:2041-8. [PMID: 21081125 PMCID: PMC3988783 DOI: 10.1016/j.febslet.2010.11.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 11/17/2022]
Abstract
The aging process is characterized by gradual changes to an organism's macromolecules, which negatively impacts biological processes. The complex macromolecular structure of chromatin regulates all nuclear processes requiring access to the DNA sequence. As such, maintenance of chromatin structure is an integral component to deter premature aging. In this review, we describe current research that links aging to chromatin structure. Histone modifications influence chromatin compaction and gene expression and undergo many changes during aging. Histone protein levels also decline during aging, dramatically affecting chromatin structure. Excitingly, lifespan can be extended by manipulations that reverse the age-dependent changes to chromatin structure, indicating the pivotal role chromatin structure plays during aging.
Collapse
Affiliation(s)
- Jason Feser
- Molecular Biology Program, University of Colorado School of Medicine, Aurora, CO, USA
| | | |
Collapse
|
108
|
Salminen A, Ojala J, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H. Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci 2011; 34:3-11. [PMID: 21649759 DOI: 10.1111/j.1460-9568.2011.07738.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular stress increases progressively with aging in mammalian tissues. Chronic stress triggers several signaling cascades that can induce a condition called cellular senescence. Recent studies have demonstrated that senescent cells express a senescence-associated secretory phenotype (SASP). Emerging evidence indicates that the number of cells expressing biomarkers of cellular senescence increases in tissues with aging, which implies that cellular senescence is an important player in organismal aging. In the brain, the aging process is associated with degenerative changes, e.g. synaptic loss and white matter atrophy, which lead to progressive cognitive impairment. There is substantial evidence for the presence of oxidative, proteotoxic and metabolic stresses in aging brain. A low-level, chronic inflammatory process is also present in brain during aging. Astrocytes demonstrate age-related changes that resemble those of the SASP: (i) increased level of intermediate glial fibrillary acidic protein and vimentin filaments, (ii) increased expression of several cytokines and (iii) increased accumulation of proteotoxic aggregates. In addition, in vitro stress evokes a typical senescent phenotype in cultured astrocytes and, moreover, isolated astrocytes from aged brain display the proinflammatory phenotype. All of these observations indicate that astrocytes are capable of triggering the SASP and the astrocytes in aging brain display typical characteristics of cellular senescence. Bearing in mind the many functions of astrocytes, it is evident that the age-related senescence of astrocytes enhances the decline in functional capacity of the brain. We will review the astroglial changes occurring during aging and emphasize that senescent astrocytes can have an important role in age-related neuroinflammation and neuronal degeneration.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
109
|
Allele-specific, age-dependent and BMI-associated DNA methylation of human MCHR1. PLoS One 2011; 6:e17711. [PMID: 21637341 PMCID: PMC3102661 DOI: 10.1371/journal.pone.0017711] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 02/11/2011] [Indexed: 12/15/2022] Open
Abstract
Background Melanin-concentrating hormone receptor 1 (MCHR1) plays a significant role in regulation of energy balance, food intake, physical activity and body weight in humans and rodents. Several association studies for human obesity showed contrary results concerning the SNPs rs133072 (G/A) and rs133073 (T/C), which localize to the first exon of MCHR1. The variations constitute two main haplotypes (GT, AC). Both SNPs affect CpG dinucleotides, whereby each haplotype contains a potential methylation site at one of the two SNP positions. In addition, 15 CpGs in close vicinity of these SNPs constitute a weak CpG island. Here, we studied whether DNA methylation in this sequence context may contribute to population- and age-specific effects of MCHR1 alleles in obesity. Principal Findings We analyzed DNA methylation of a 315 bp region of MCHR1 encompassing rs133072 and rs133073 and the CpG island in blood samples of 49 individuals by bisulfite sequencing. The AC haplotype shows a significantly higher methylation level than the GT haplotype. This allele-specific methylation is age-dependent. In young individuals (20–30 years) the difference in DNA methylation between haplotypes is significant; whereas in individuals older than 60 years it is not detectable. Interestingly, the GT allele shows a decrease in methylation status with increasing BMI, whereas the methylation of the AC allele is not associated with this phenotype. Heterozygous lymphoblastoid cell lines show the same pattern of allele-specific DNA methylation. The cell line, which exhibits the highest difference in methylation levels between both haplotypes, also shows allele-specific transcription of MCHR1, which can be abolished by treatment with the DNA methylase inhibitor 5-aza-2′-deoxycytidine. Conclusions We show that DNA methylation at MCHR1 is allele-specific, age-dependent, BMI-associated and affects transcription. Conceivably, this epigenetic regulation contributes to the age- and/or population specific effects reported for MCHR1 in several human obesity studies.
Collapse
|
110
|
Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J 2011; 30:2219-32. [PMID: 21522133 DOI: 10.1038/emboj.2011.124] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 03/30/2011] [Indexed: 12/23/2022] Open
Abstract
Aging is a multifactorial process that affects most of the biological functions of the organism and increases susceptibility to disease and death. Recent studies with animal models of accelerated aging have unveiled some mechanisms that also operate in physiological aging. However, little is known about the role of microRNAs (miRNAs) in this process. To address this question, we have analysed miRNA levels in Zmpste24-deficient mice, a model of Hutchinson-Gilford progeria syndrome. We have found that expression of the miR-29 family of miRNAs is markedly upregulated in Zmpste24(-/-) progeroid mice as well as during normal aging in mouse. Functional analysis revealed that this transcriptional activation of miR-29 is triggered in response to DNA damage and occurs in a p53-dependent manner since p53(-/-) murine fibroblasts do not increase miR-29 expression upon doxorubicin treatment. We have also found that miR-29 represses Ppm1d phosphatase, which in turn enhances p53 activity. Based on these results, we propose the existence of a novel regulatory circuitry involving miR-29, Ppm1d and p53, which is activated in aging and in response to DNA damage.
Collapse
|
111
|
Serio RN. Unraveling the Mysteries of Aging Through a Hutchinson–Gilford Progeria Syndrome Model. Rejuvenation Res 2011; 14:133-41. [DOI: 10.1089/rej.2010.1088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
112
|
Adkins RM, Thomas F, Tylavsky FA, Krushkal J. Parental ages and levels of DNA methylation in the newborn are correlated. BMC MEDICAL GENETICS 2011; 12:47. [PMID: 21453505 PMCID: PMC3078852 DOI: 10.1186/1471-2350-12-47] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 03/31/2011] [Indexed: 11/18/2022]
Abstract
Background Changes in DNA methylation patterns with age frequently have been observed and implicated in the normal aging process and its associated increasing risk of disease, particularly cancer. Additionally, the offspring of older parents are at significantly increased risk of cancer, diabetes, and neurodevelopmental disorders. Only a proportion of these increased risks among the children of older parents can be attributed to nondisjunction and chromosomal rearrangements. Results Using a genome-wide survey of 27,578 CpG dinucleotides in a cohort of 168 newborns, we examined the relationship between DNA methylation in newborns and a variety of parental and newborn traits. We found that methylation levels of 144 CpGs belonging to 142 genes were significantly correlated with maternal age. A weaker correlation was observed with paternal age. Among these genes, processes related to cancer were over-represented, as were functions related to neurological regulation, glucose/carbohydrate metabolism, nucleocytoplasmic transport, and transcriptional regulation. CpGs exhibiting gender differences in methylation were overwhelmingly located on the X chromosome, although a small subset of autosomal CpGs were found in genes previously shown to exhibit gender-specific differences in methylation levels. Conclusions These results indicate that there are differences in CpG methylation levels at birth that are related to parental age and that could influence disease risk in childhood and throughout life.
Collapse
Affiliation(s)
- Ronald M Adkins
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | | | | | | |
Collapse
|
113
|
Abstract
In this Perspective, we propose that communication theory--a field of mathematics concerned with the problems of signal transmission, reception and processing--provides a new quantitative lens for investigating multicellular biology, ancient and modern. What underpins the cohesive organisation and collective behaviour of multicellular ecosystems such as microbial colonies and communities (microbiomes) and multicellular organisms such as plants and animals, whether built of simple tissue layers (sponges) or of complex differentiated cells arranged in tissues and organs (members of the 35 or so phyla of the subkingdom Metazoa)? How do mammalian tissues and organs develop, maintain their architecture, become subverted in disease, and decline with age? How did single-celled organisms coalesce to produce many-celled forms that evolved and diversified into the varied multicellular organisms in existence today? Some answers can be found in the blueprints or recipes encoded in (epi)genomes, yet others lie in the generic physical properties of biological matter such as the ability of cell aggregates to attain a certain complexity in size, shape, and pattern. We suggest that Lasswell's maxim "Who says what to whom in what channel with what effect" provides a foundation for understanding not only the emergence and evolution of multicellularity, but also the assembly and sculpting of multicellular ecosystems and many-celled structures, whether of natural or human-engineered origin. We explore how the abstraction of communication theory as an organising principle for multicellular biology could be realised. We highlight the inherent ability of communication theory to be blind to molecular and/or genetic mechanisms. We describe selected applications that analyse the physics of communication and use energy efficiency as a central tenet. Whilst communication theory has and could contribute to understanding a myriad of problems in biology, investigations of multicellular biology could, in turn, lead to advances in communication theory, especially in the still immature field of network information theory.
Collapse
Affiliation(s)
- I S Mian
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | |
Collapse
|
114
|
Salminen A, Ojala J, Kaarniranta K. Apoptosis and aging: increased resistance to apoptosis enhances the aging process. Cell Mol Life Sci 2011; 68:1021-31. [PMID: 21116678 PMCID: PMC11114781 DOI: 10.1007/s00018-010-0597-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/28/2010] [Accepted: 11/11/2010] [Indexed: 12/14/2022]
Abstract
Apoptosis is a vital component in the evolutionarily conserved host defense system. Apoptosis is the guardian of tissue integrity by removing unfit and injured cells without evoking inflammation. However, apoptosis seems to be a double-edged sword since during low-level chronic stress, such as in aging, increased resistance to apoptosis can lead to the survival of functionally deficient, post-mitotic cells with damaged housekeeping functions. Senescent cells are remarkably resistant to apoptosis, and several studies indicate that host defense mechanisms can enhance anti-apoptotic signaling, which subsequently induces a senescent, pro-inflammatory phenotype during the aging process. At the molecular level, age-related resistance to apoptosis involves (1) functional deficiency in p53 network, (2) increased activity in the NF-κB-IAP/JNK axis, and (3) changes in molecular chaperones, microRNAs, and epigenetic regulation. We will discuss the molecular basis of age-related resistance to apoptosis and emphasize that increased resistance could enhance the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | | | | |
Collapse
|
115
|
Abstract
PURPOSE OF REVIEW This review synthesizes recently published information regarding nutrition and its impact upon epigenetically mediated mechanisms involved in longevity and aging. RECENT FINDINGS Recent studies enriched considerably our understanding of the relationship between aging and gene-nutrient interactions that continuously shape our phenotype. Epigenetic mechanisms play an important role in mediating between the nutrient inputs and the ensuing phenotypic changes throughout our entire life and seem to be responsible, in part, for the biological changes that occur during aging. Less is known about the epigenetic role that nutrients have in directly influencing longevity and aging. However, recent studies clearly indicated that because nutrition modulates epigenetic events associated with various diseases (e.g., cancer, obesity, and diabetes), there is at least an indirect epigenetic link between nutrition and longevity and, therefore, biologic plausibility to hypothesize the epigenetic role of nutrition in altering longevity. Apart from limited human studies, promising animal studies brought us much closer to understanding how nutrition could have such an impact upon longevity and aging. SUMMARY Complex epigenetic mechanisms are involved in aging and longevity, directly or indirectly via disease mechanisms. Nutrition has a strong impact upon epigenetic processes and, therefore, holds promise in having important roles in regulating longevity and aging.
Collapse
|
116
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:568-80. [PMID: 21030841 DOI: 10.1097/med.0b013e328341311d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
117
|
Osorio FG, Varela I, Lara E, Puente XS, Espada J, Santoro R, Freije JMP, Fraga MF, López-Otín C. Nuclear envelope alterations generate an aging-like epigenetic pattern in mice deficient in Zmpste24 metalloprotease. Aging Cell 2010; 9:947-57. [PMID: 20961378 DOI: 10.1111/j.1474-9726.2010.00621.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mutations in the nuclear envelope protein lamin A or in its processing protease ZMPSTE24 cause human accelerated aging syndromes, including Hutchinson-Gilford progeria syndrome. Similarly, Zmpste24-deficient mice accumulate unprocessed prelamin A and develop multiple progeroid symptoms, thus representing a valuable animal model for the study of these syndromes. Zmpste24-deficient mice also show marked transcriptional alterations associated with chromatin disorganization, but the molecular links between both processes are unknown. We report herein that Zmpste24-deficient mice show a hypermethylation of rDNA that reduces the transcription of ribosomal genes, being this reduction reversible upon treatment with DNA methyltransferase inhibitors. This alteration has been previously described during physiological aging in rodents, suggesting its potential role in the development of the progeroid phenotypes. We also show that Zmpste24-deficient mice present global hypoacetylation of histones H2B and H4. By using a combination of RNA sequencing and chromatin immunoprecipitation assays, we demonstrate that these histone modifications are associated with changes in the expression of several genes involved in the control of cell proliferation and metabolic processes, which may contribute to the plethora of progeroid symptoms exhibited by Zmpste24-deficient mice. The identification of these altered genes may help to clarify the molecular mechanisms underlying aging and progeroid syndromes as well as to define new targets for the treatment of these dramatic diseases.
Collapse
Affiliation(s)
- Fernando G Osorio
- Departamento de Bioquímica y Biología Molecular Unidad de Epigenética, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
Epigenetic signals are responsible for the establishment, maintenance, and reversal of metastable transcriptional states that are fundamental for the cell's ability to "remember" past events, such as changes in the external environment or developmental cues. Complex epigenetic states are orchestrated by several converging and reinforcing signals, including transcription factors, noncoding RNAs, DNA methylation, and histone modifications. Although all of these pathways modulate transcription from chromatin in vivo, the mechanisms by which epigenetic information is transmitted through cell division remain unclear. Because epigenetic states are metastable and change in response to the appropriate signals, a deeper understanding of their molecular framework will allow us to tackle the dysregulation of epigenetics in disease.
Collapse
Affiliation(s)
- Roberto Bonasio
- Howard Hughes Medical Institute and Department of Biochemistry, School of Medicine, New York University, New York, NY 10016, USA
| | | | | |
Collapse
|
119
|
Fleming TH, Humpert PM, Nawroth PP, Bierhaus A. Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: a mini-review. Gerontology 2010; 57:435-43. [PMID: 20962515 DOI: 10.1159/000322087] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 08/02/2010] [Indexed: 01/05/2023] Open
Abstract
Aging is a dynamic process in which its rate and subsequent longevity of an organism are dependent upon the balance between the reactive intermediates of normal cellular metabolism and the ability of the body to reduce these by-products through a multifaceted antioxidant defence system. Every disturbance of this balance constitutes a clear and present danger to the macromolecular integrity of the body. When defence mechanisms become diminished or impaired, the resulting imbalance results in accumulation of endogenous agents, such as reactive oxygen and carbonyl species, and a state of increased cellular stress, which can accelerate the rate of aging. Glycation is the non-enzymatic glycosylation of proteins, nucleotides and lipids by saccharide derivatives. Glucose and other reducing sugars are important glycating agents, but the most reactive physiological relevant glycating agents, are the dicarbonyls, in particular methylglyoxal. Endogenously formed dicarbonyl compounds can react with proteins to form advanced glycation endproducts (AGEs). Experimental models have recently provided evidence that reduced detoxification of AGE precursors by the glyoxalase system, engagement of the cellular receptor RAGE and RAGE-dependent sustained activation of the pro-inflammatory transcription factor nuclear factor κB might significantly contribute to the rate of aging and the onset of age-related neurodegenerative, musculoskeletal and vascular diseases.
Collapse
Affiliation(s)
- Thomas H Fleming
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Germany
| | | | | | | |
Collapse
|
120
|
Petkova TD, Seigel GM, Otteson DC. A role for DNA methylation in regulation of EphA5 receptor expression in the mouse retina. Vision Res 2010; 51:260-8. [PMID: 20875442 DOI: 10.1016/j.visres.2010.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 01/15/2023]
Abstract
Understanding the mechanisms regulating expression of retinal ganglion cell (RGC) specific and axon-guidance genes during development and in retinal stem cells will be critical for successful optic nerve regeneration. Müller glia have some characteristics of retinal stem cells but in mammals have demonstrated limited potential to differentiate into RGCs. Chromatin remodeling through histone deacetylation and DNA methylation are a potential mechanism for silencing genes necessary for neuronal differentiation of glial cells. We investigated DNA methylation as a mechanism for regulating expression of mouse EphA5, one member of a large family of ephrin receptor genes that regulate patterning of the topographic connections of RGCs during visual system development. We analyzed spatial and age-related patterns of EphA5 promoter methylation by bisulfite sequencing and mRNA expression by quantitative RT-PCR in the mouse retina. The CpG island in the EphA5 promoter was hypomethylated in the retina and showed no change in overall methylation with age, despite a decline in EphA5 mRNA expression levels in the adult retina. In the nasal retina of post-natal day 0 mice, there was a modest, but statistically significant increase in methylation. Increased methylation corresponded with lower levels of receptor mRNA expression in the nasal retina. We cloned the EphA5 promoter and found that site-specific differences in methylation could preferentially activate or repress promoter activity in transient transfections of rat retinal progenitor cells (R28) using luciferase assays. In sphere cultures generated by EGF/FGF2 stimulation of conditionally immortalized mouse Müller glia (ImM10), EphA5 promoter was hypermethylated and EphA5 mRNA was not detected. Demethylation using 5-azadeoxycytidine (AzadC) resulted in a significant decrease of methylation of the EphA5 promoter and re-expression of the EphA5 mRNA. The inverse relationship between EphA5 promoter methylation and mRNA expression is consistent with a role for DNA methylation in modulating the spatial patterns of EphA5 gene expression in the retina and in silencing EphA5 expression in ImM10 cells. The robust up-regulation of EphA5 in ImM10 cells following demethylation suggests that modulation of chromatin structure may be a useful approach for promoting expression of silenced developmental genes and increasing the neurogenic potential of Müller glia.
Collapse
Affiliation(s)
- Tihomira D Petkova
- Department of Vision Science, College of Optometry, Houston, TX 77204-2020, USA.
| | | | | |
Collapse
|
121
|
Mentis AFA, Kararizou E. Does ageing originate in utero? Biogerontology 2010; 11:725-9. [PMID: 20607402 DOI: 10.1007/s10522-010-9293-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 06/19/2010] [Indexed: 11/30/2022]
Abstract
Ageing still remains a conundrum on the cellular and molecular level, while environmental factors and interactions further increase the complexity of the ageing process. On the other hand is cancer, for which 20 years ago, it was proposed by Trichopoulos that it might have intrauterine origin. We herein discuss the idea that parameters such as the influence of insulin-like growth factor (IGF) signalling, of hormones and of the number of stem cells, as well as the effect of foetal and early life nutrition on ageing may also commence in utero and we provide epidemiological and biological data to advocate for this hypothesis. Finally, we analyse the public health implication of this hypothesis based on the World Health Organization (WHO) report that the burden of diseases, including ageing, may be due to impaired foetal development.
Collapse
|
122
|
Tacutu R, Budovsky A, Wolfson M, Fraifeld VE. MicroRNA-Regulated Protein–Protein Interaction Networks: How Could They Help in Searching for Pro-Longevity Targets? Rejuvenation Res 2010; 13:373-7. [DOI: 10.1089/rej.2009.0980] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Robi Tacutu
- The Shraga Segal Department of Microbiology and Immunology, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Arie Budovsky
- The Shraga Segal Department of Microbiology and Immunology, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology and Immunology, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vadim E. Fraifeld
- The Shraga Segal Department of Microbiology and Immunology, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
123
|
Lang F. Molecular determinants of life span. Pflugers Arch 2009; 459:237-8. [DOI: 10.1007/s00424-009-0708-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 07/29/2009] [Indexed: 01/21/2023]
|